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Abstract— Accurately predicting waitlist mortality for liver
transplant candidates is a critical yet challenging task.
Traditional models such as MELD, MELD-Na, and MELD 3.0
have been widely used by clinicians but fall short in delivering
precise mortality predictions when compared to machine
learning (ML) models. In this study, we conduct a comprehensive
comparative analysis of these conventional scoring systems
against advanced ML models, including LDA, TabNet, Random
Forest, and LightGBM. Results not only highlight the improved
predictive accuracy of certain ML models over MELD-based
scores but also identify the most significant variables influencing
3-month waitlist mortality. This analysis enables the proposal of
new, critical risk factors for consideration in future scoring
models. By leveraging these insights, we aim to contribute to the
development of a more efficient and equitable organ allocation
system, ultimately enhancing patient outcomes and potentially
saving more lives through better patient prioritization.

Keywords— Liver Transplant; MELD scores; Machine
Learning; Organ Allocation; Waitlist Mortality.

l. INTRODUCTION

Liver transplantation (LT) is a life-saving treatment for
end-stage liver disease. The growing disparity between organ
supply and demand, coupled with the complexity of transplant
outcomes, has driven the development of predictive models to
improve risk assessment and allocation systems. The Model for
End-Stage Liver Disease (MELD) [1], introduced in 2002, has
been widely used to prioritize patients based on 3-month
mortality risk. Later, MELD-Na [2] and the more recent
MELD 3.0 [3] were proposed, revising the MELD score by
adding serum sodium, albumin and gender information.

Despite these improvements, MELD-based scores remain
limited in predicting certain life-threatening conditions, known
as MELD exceptions [4-5], such as hepatocellular carcinoma
and recurrent cholangitis, which may not be fully captured by
these models. This highlights the need for more generalizable
and reliable modeling approaches to mortality prediction.

Machine learning (ML) has emerged as a powerful tool in
medical outcome modeling, with decision tree-based models
commonly used and neural networks explored in recent studies
[6-10]. However, these studies have notable limitations
affecting their generalizability and applicability. In [8], patient
data appeared in both training and test sets, which introduces
bias and risks inflating performance metrics. In [10], only 3%
of patients were women, limiting the applicability of the
findings to a broader population. Additionally, many studies
[7-9] applied ML algorithms to numerous features without
assessing their relevance. This can lead models to rely on
highly correlated features, masking important relationships and
complicating interpretability. Also, including more features
increases the likelihood of missing data in real-world clinical
practice. Finally, some works [9-10] have studied mortality risk
in LT by comparing different ML-based models; nevertheless,
without data understanding and under the methodological
limitations mentioned above.

In this study, we propose to conduct a comparative analysis
of traditional MELD-based scores and various ML models—
including linear model, neural networks, and tree-based
algorithms—to predict 3-month waitlist mortality among LT
candidates. Our aim is to identify the most suitable modeling
approach for this problematic. By addressing the limitations
highlighted in previous studies, we have developed a novel
mortality risk score that enhances predictive accuracy and
clinical utility. Furthermore, we identified and introduced new
risk factors that influence patient outcomes. By overcoming
existing system shortcomings and directly addressing prior
literature limitations, our work seeks to improve organ
allocation strategies for LT candidates.

Il. DATABASE AND METHODS

A. UNOS dataset description

This study uses data from the Organ Procurement and
Transplantation Network (OPTN) and the United Network for
Organ Sharing (UNOS), as found in the Standard Transplant
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Analysis and Research (STAR) file. The dataset includes
clinical and laboratory information on 259,081 patients listed in
the U.S. from February 27, 2002 to September 30, 2023 with
multiple observations per patient due to updates in their
records.

We focused on patients aged 18 or older at listing,
including those who: (i) died or were removed for being too
sick within three months, or (ii) survived beyond three months.
Patients listed with MELD exception scores or for multi-organ
transplants were excluded, aiming to curate a dataset reflective
of a broad spectrum of LT candidates. Additionally, patients
who received a transplant before the studied time period were
excluded as their outcomes cannot be known in the absence of
transplantation. Thus, the resultant dataset for the study
comprises data on 94,891 patients (83425 survivors and 11466
non-survivors). The cohort demographics including the number
of observations N (visits) per class, are given in Table I.

TABLE I. COHORT DEMOGRAPHICS.
Variable Survivors Non-survivors
(N=1299215) (N=58254)
Age at registration 52.97 +10.47 55.09 +10.48
Sex, male 781207 (60.13%) 33183 (56.96%)
MELD at listing 16.40 £ 6.52 30.76 £ 10.30
Bilirubin (mg/dL) 4.37 +5.59 15.44 +12.57
Creatinine (mg/dL) 1.07 £0.57 1.83+1.32
Sodium (mEg/L) 136.41 £ 4.44 135.04 +6.34
Albumin (g/dL) 3.10 £0.66 2.96+0.78
INR 1.57 £0.59 2.50+1.38
BMI 28.87 £5.81 28.91 +6.59
Ascites
Absent 222411 (17.12%) 4386 (7.53%)
Slight 641251 (49.36%) 21256 (36.49%)
Moderate/large 202694 (15.60%) 25245 (43.34%)
N/A 232859 (17.92%) 7367 (12.65%)

B. Data preprocessing

The study focuses on variables recorded prior to either
transplantation or removal from the waitlist. A total of 27
variables are considered, encompassing clinical, laboratory,
and disease-specific factors. To capture patient health
dynamics, we compute differences (DIFF variables) between
consecutive  measurements  for key lab  values:
SERUM_SODIUM, SERUM_CREAT, ALBUMIN,
BILIRUBIN, and INR. Missing values in numerical variables
(less than 7%) were imputed with class means, while
observations with missing categorical data (under 0.02%)
were removed. One-hot encoding, with the first category
omitted to prevent multicollinearity, was used to transform
categorical variables for model training.

C. Methodology

This study targets predicting mortality within three months
on the waiting list, using on one hand the three MELD-based
scores (MELD, MELD-Na and MELD 3.0), and on the other
hand four ML-based classifiers: (i) Linear Discriminant
Analysis (LDA) [11], (ii) Neural Network architecture for
tabular data including sequential attention mechanisms

(TabNet) [12], (iii) Random Forest (RF) [13] and (iv) Light
Gradient Boosting Machine (LightGBM) [14]. We use
different ML-based models to investigate the predictive power
of a linear classifier, as well as of more complex and
non-linear models relying on neural networks (TabNet) and
tree-based models (RF and LightGBM).

We propose to evaluate such ML-based models in two
steps: first considering only the variables of the MELD-based
scores, and second on the 27 variables. MELD, MELD-Na and
MELD 3.0 were calculated per observation as detailed in [3].

Due to the unbalanced dataset, we down-sample the
majority class into 23 balanced partitions, each containing the
same number of observations as the minority class and
different patients from the majority class. For each partition,
we perform 3-fold cross-validation to train and evaluate
classifiers, ensuring patient observations are kept in either the
training or test set. For both LDA and TabNet, we normalize
the variables using Z-score transformation. This is not
necessary for the tree-based models.

The optimal configuration for the classifiers is determined
using a grid search for each hyperparameter described in Table
I. The other hyperparameters are kept at their default settings
in scikit-learn across all models. The models are evaluated
using AUROC as the scoring metric and validated through
3-fold cross-validation to ensure robustness.

TABLE II. HYPERPARAMETER SPACE FOR ML CLASSIFIERS.
Methods Hyperparameters Grid
LDA Solver algorithm 'svd', 'Isqr', ‘eigen’
Covariance Shrinkage None, 'auto’, 0 to 1 (step 0of 0.1)
TabNet Decision Dim (n_d) 8, 16, 24
Attention Dim (n_a) 8, 16, 24

Num. of decision steps | 3,5

RF Number of trees 25 to 150 (step of 25), 200, 250
Maximum tree depth None, 2,3,4,5,7,10

Number of estimators 40 to 100 (step of 5), 125, 150

LightGBM

Models’ performance is assessed using AUROC, Accuracy,
Sensitivity (correctly classified non-survivors) and Specificity
(correctly classified survivors). We compute these metrics for
each of the three folds for all subsets and then average them.
The optimal decision threshold is selected to maximize both
sensitivity and specificity. After evaluating the ML classifiers
with all 27 features, we apply Gini importance criterion [13]
for feature selection to assess best model’s performance using
only the most relevant features.

I1l. RESULTS

Table Il presents the predictive performance of MELD,
MELD-Na, MELD 3.0, and the four ML models. Performance
of ML models are evaluated using MELD-based variables and
then the 27 variables. For the statistical analysis, we used the
Wilcoxon Mann-Whitney test with Bonferroni correction to
compare models on each metric. Each model was trained on 23
data partitions and evaluated using 3-fold cross-validation,



yielding 69 values per metric. These values were used to assess
the significance of performance differences between models.

TABLE IIl. PERFORMANCE OF THE DIFFERENT MODELS FOR THE 3-
MONTH PERIOD. THE TABLE CELLS CONTAIN MEAN VALUES.
Accuracy Sensitivity | Specificity
AUROC ) o o
MELD 0.881 80.85 78.94 82.82
MELD-Na 0.888 81.35 81.75 80.95
MELD 3.0 0.884 81.08 81.81 80.30
LDA
(MELD) 0.880 80.76 78.79 82.79
LDA
(MELD-Na) | 0886 81.08 81.03 81.12
LDA
(MELD30) | 0880 80.45 81.10 79.78
TabNet
(MELD) 0.884 81.15 79.19 83.17
TabNet
(MELD-Na) | %894 81.92 81.81 82.03
TabNet
(MELD 3.0) 0.890 81.47 82.18 80.73
RF
(MELD) 0.883 81.04 79.37 82.77
RF
(MELD-Na) | 0888 81.35 80.34 82.40
RF
(MELD 3.0) 0.895 82.03 81.86 82.20
LightGBM
(MELD) 0.883 81.05 79.58 82.57
LightGBM
(MELD-Na) | ©9%° 83.21 82.78 83.64
LightGBM
(MELD3.0) | 9% 83.22 83.43 82.98
oA 0.905 82.68 81.44 83.94
(27 vars.)
TabNet 0.908 53.08 8268 53,50
(27 vars.)
RF
(27 vars.) 0.929 85.29 85.32 85.26
LightGBM 0.935 85.77 65 58 6507
(27 vars.)

We note that MELD-Na significantly outperforms both the
original MELD score and MELD 3.0 in terms of AUROC,
achieving 0.888 compared to 0.881 for MELD (p = 1.23x107%)
and 0.884 for MELD 3.0 (p = 5.69x10%). Additionally,
MELD-Na and MELD 3.0 also show a good balance between
sensitivity and specificity, both significantly surpassing MELD
in sensitivity (p = 4.35x10*® for MELD-Na and p = 9.91x10%6
for MELD 3.0). These findings highlight that MELD-Na and
MELD 3.0 are more effective at identifying high-risk patients
than the original MELD score.

Among ML models, TabNet, RF, and LightGBM, when
trained on MELD-based variables, outperform MELD-based
scores. LightGBM leads to the best performance, especially
when using MELD-Na and MELD 3.0 variables, reaching an
AUROC of 0.909 and an Accuracy of 83.2%. Notably,
LightGBM shows slightly higher sensitivity when trained on
the variables of MELD 3.0 compared to those of MELD-Na, at
the price of a minor decrease in specificity. By contrast, LDA
when trained on MELD variables gives worse performance
compared to MELD-based scores.

Finally, using all the 27 variables, the four ML models
improve classification performance, with LightGBM achieving
significantly the best results (AUROC = 0.935, accuracy =
85.77%, sensitivity = 85.58%, specificity = 85.97%),
confirmed by the Wilcoxon Mann-Whitney test (p < 0.05 for
all comparisons). This underscores the benefit of incorporating
additional variables beyond those used in MELD-based scores.

To improve model interpretability, we exploit Gini
importance to select the most relevant features for LightGBM,
our top-performing model. Figure 1 shows the feature
importance results.
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Fig. 1. Feature importance of LightGBM for 3-month mortality prediction.

We note that BILIRUBIN, SERUM CREAT, SERUM
SODIUM and INR emerge as the top four features.
Interestingly, these variables are included in the MELD-based
scores. Additionally, factors such as functional state, age at
registration (INIT_AGE), BMI, patient’s weight and the degree
of ascites (ASCITES) emerge in the top predictors of mortality
on the waiting list. It is noteworthy that these features are not
taken into consideration by traditional risk score models. This
finding highlights a gap in existing models and emphasizes the
need to consider these variables in future risk scoring systems.
Conversely, variables such as type of diabetes (DIAB) and
GENDER (considered in MELD 3.0), are found to be less
significant in predicting mortality for the studied time period.
This result aligns with the findings in [7].

We continue our study by analyzing the performance of
LightGBM against the number of features, ordered by Gini
importance. The analysis reveals that the differences in all
performance metrics become non-significant when more than
12 features are considered, compared to using the full set of 27
features (p > 0.05 for all metrics). This indicates that additional
features offer minimal benefits and can potentially introduce
noise or overfitting. As shown in Table IV, LightGBM trained
with the optimized set of 12 features achieves an AUROC of
0.933, comparable to the AUROC of 0.935 obtained using the
full set of 27 variables. This underscores the high predictive
power of the selected features and validate the efficiency of the
reduced feature set.



TABLE V. LIGHTGBM PERFORMANCE CONSIDERING THE 12 MOST
RELEVANT FEATURES IDENTIFIED WITH GINI METHOD.
Accuracy Sensitivity Specificity
AROC | ) ) %)
LightGBM 0.933 85.59 85.31 85.88

IV. DISCUSSION

This study presents a comparative analysis of several ML
models against MELD-based scores for predicting 3-month
waitlist mortality in LT candidates. Our results showed that
both  MELD-Na and MELD 3.0 significantly outperform
MELD in predicting 3-month waitlist mortality on our dataset.
Our findings are consistent with the state-of-the-art [2-3],
demonstrating that enhancements such as the inclusion of
serum sodium, albumin, and gender in the MELD score
significantly improve its predictive accuracy.

ML models like TabNet, RF, and LightGBM, when trained
on MELD-based variables, demonstrate higher accuracy than
traditional MELD scores. Furthermore, among the ML
approaches, non-linear models outperform the linear one
(LDA). This suggests that non-linear interactions between
variables are crucial for more accurate predictions, unlike the
fixed scoring of MELD-based models.

When considering all the 27 variables, LightGBM achieved
the best performance (AUROC = 0.935), emphasizing the
importance of considering additional variables beyond MELD
scores to capture the complexities of patient conditions.
Traditional fixed scoring systems fall short in modeling these
nuances, whereas ML models can effectively account for them.
Furthermore, decision tree-based models, such as RF and
LightGBM, outperformed Neural Network models like TabNet
in this study. This indicates that, in the realm of structured
medical data, the decision tree paradigm seems more effective
in identifying the nuanced patterns necessary for accurate
mortality prediction [15].

Using the Gini importance method, we identified 12 key
variables critical for predicting waitlist mortality. LightGBM,
when trained on these variables, achieved similar performance
to when all 27 variables were used, demonstrating their strong
predictive power. Notably, six of the selected variables are
components of MELD-based scores, which demonstrates the
effectiveness of our methodology. Our study emphasizes the
importance of factors not included in MELD-based scores,
such as patient’s functional state, age at registration, BMI,
weight, degree of ascites, and changes in bilirubin over time.
Through feature selection, we highlighted their specific
contribution to waitlist mortality prediction.

V. CONCLUSIONS

Our study provides valuable insights into predicting LT
waitlist mortality. We demonstrated the importance of non-
linear interactions in clinical data for more accurate
predictions, in contrast to the fixed scoring of MELD-based
models. Additionally, incorporating variables beyond MELD
components significantly improved performance. Despite the
growing interest in deep learning, decision tree-based models
proved more effective in structured medical data. Our research

also identified 12 key variables for mortality prediction, with
six drawn from MELD-based scores. This reinforces the
relevance of MELD components while also highlighting the
importance of additional factors. These findings underscore the
need to consider these factors more closely for improved organ
allocation and waitlist management.

In future work, we aim to validate our model on excluded
populations and enhance its interpretability using explainability
tools.
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