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Abstract— Accurately predicting waitlist mortality for liver 

transplant candidates is a critical yet challenging task. 

Traditional models such as MELD, MELD-Na, and MELD 3.0 

have been widely used by clinicians but fall short in delivering 

precise mortality predictions when compared to machine 

learning (ML) models. In this study, we conduct a comprehensive 

comparative analysis of these conventional scoring systems 

against advanced ML models, including LDA, TabNet, Random 

Forest, and LightGBM. Results not only highlight the improved 

predictive accuracy of certain ML models over MELD-based 

scores but also identify the most significant variables influencing 

3-month waitlist mortality. This analysis enables the proposal of 

new, critical risk factors for consideration in future scoring 

models. By leveraging these insights, we aim to contribute to the 

development of a more efficient and equitable organ allocation 

system, ultimately enhancing patient outcomes and potentially 

saving more lives through better patient prioritization. 

Keywords— Liver Transplant; MELD scores; Machine 

Learning; Organ Allocation; Waitlist Mortality. 

I.  INTRODUCTION  

Liver transplantation (LT) is a life-saving treatment for 
end-stage liver disease. The growing disparity between organ 
supply and demand, coupled with the complexity of transplant 
outcomes, has driven the development of predictive models to 
improve risk assessment and allocation systems. The Model for 
End-Stage Liver Disease (MELD) [1], introduced in 2002, has 
been widely used to prioritize patients based on 3-month 
mortality risk. Later, MELD-Na [2] and the more recent 
MELD 3.0 [3] were proposed, revising the MELD score by 
adding serum sodium, albumin and gender information.  

Despite these improvements, MELD-based scores remain 
limited in predicting certain life-threatening conditions, known 
as MELD exceptions [4-5], such as hepatocellular carcinoma 
and recurrent cholangitis, which may not be fully captured by 
these models. This highlights the need for more generalizable 
and reliable modeling approaches to mortality prediction. 

Machine learning (ML) has emerged as a powerful tool in 
medical outcome modeling, with decision tree-based models 
commonly used and neural networks explored in recent studies 
[6-10]. However, these studies have notable limitations 
affecting their generalizability and applicability. In [8], patient 
data appeared in both training and test sets, which introduces 
bias and risks inflating performance metrics. In [10], only 3% 
of patients were women, limiting the applicability of the 
findings to a broader population. Additionally, many studies 
[7-9] applied ML algorithms to numerous features without 
assessing their relevance. This can lead models to rely on 
highly correlated features, masking important relationships and 
complicating interpretability. Also, including more features 
increases the likelihood of missing data in real-world clinical 
practice. Finally, some works [9-10] have studied mortality risk 
in LT by comparing different ML-based models; nevertheless, 
without data understanding and under the methodological 
limitations mentioned above.    

In this study, we propose to conduct a comparative analysis 
of traditional MELD-based scores and various ML models—
including linear model, neural networks, and tree-based 
algorithms—to predict 3-month waitlist mortality among LT 
candidates. Our aim is to identify the most suitable modeling 
approach for this problematic. By addressing the limitations 
highlighted in previous studies, we have developed a novel 
mortality risk score that enhances predictive accuracy and 
clinical utility. Furthermore, we identified and introduced new 
risk factors that influence patient outcomes. By overcoming 
existing system shortcomings and directly addressing prior 
literature limitations, our work seeks to improve organ 
allocation strategies for LT candidates.   

II. DATABASE AND METHODS 

A. UNOS dataset description 

This study uses data from the Organ Procurement and 
Transplantation Network (OPTN) and the United Network for 
Organ Sharing (UNOS), as found in the Standard Transplant 



Analysis and Research (STAR) file. The dataset includes 
clinical and laboratory information on 259,081 patients listed in 
the U.S. from February 27, 2002 to September 30, 2023 with 
multiple observations per patient due to updates in their 
records.  

We focused on patients aged 18 or older at listing, 
including those who: (i) died or were removed for being too 
sick within three months, or (ii) survived beyond three months. 
Patients listed with MELD exception scores or for multi-organ 
transplants were excluded, aiming to curate a dataset reflective 
of a broad spectrum of LT candidates. Additionally, patients 
who received a transplant before the studied time period were 
excluded as their outcomes cannot be known in the absence of 
transplantation. Thus, the resultant dataset for the study 
comprises data on 94,891 patients (83425 survivors and 11466 
non-survivors). The cohort demographics including the number 
of observations N (visits) per class, are given in Table I.   

TABLE I.  COHORT DEMOGRAPHICS. 

Variable Survivors 

(N=1299215) 

Non-survivors 

(N=58254) 

Age at registration 52.97 ± 10.47 55.09 ± 10.48 

Sex, male 781207 (60.13%) 33183 (56.96%) 

MELD at listing 16.40 ± 6.52 30.76 ± 10.30 

Bilirubin (mg/dL) 4.37 ± 5.59 15.44 ± 12.57 

Creatinine (mg/dL) 1.07 ± 0.57 1.83 ± 1.32 

Sodium (mEq/L) 136.41 ± 4.44 135.04 ± 6.34 

Albumin (g/dL) 3.10 ± 0.66 2.96 ± 0.78 

INR 1.57 ± 0.59 2.50 ± 1.38 

BMI 28.87 ± 5.81 28.91 ± 6.59 

Ascites   

       Absent 222411 (17.12%) 4386 (7.53%) 

       Slight 641251 (49.36%) 21256 (36.49%) 

       Moderate/large 202694 (15.60%) 25245 (43.34%) 

       N/A 232859 (17.92%) 7367 (12.65%) 

 

B. Data preprocessing 

   The study focuses on variables recorded prior to either 

transplantation or removal from the waitlist. A total of 27 

variables are considered, encompassing clinical, laboratory, 
and disease-specific factors. To capture patient health 

dynamics, we compute differences (DIFF variables) between 

consecutive measurements for key lab values: 

SERUM_SODIUM, SERUM_CREAT, ALBUMIN, 

BILIRUBIN, and INR. Missing values in numerical variables 

(less than 7%) were imputed with class means, while 

observations with missing categorical data (under 0.02%) 

were removed. One-hot encoding, with the first category 

omitted to prevent multicollinearity, was used to transform 

categorical variables for model training.   

 

C. Methodology 

    This study targets predicting mortality within three months 

on the waiting list, using on one hand the three MELD-based 

scores (MELD, MELD-Na and MELD 3.0), and on the other 

hand four ML-based classifiers: (i) Linear Discriminant 

Analysis (LDA) [11], (ii) Neural Network architecture for 
tabular data including sequential attention mechanisms 

(TabNet) [12], (iii) Random Forest (RF) [13] and (iv) Light 

Gradient Boosting Machine (LightGBM) [14]. We use 

different ML-based models to investigate the predictive power 

of a linear classifier, as well as of more complex and          

non-linear models relying on neural networks (TabNet) and 
tree-based models (RF and LightGBM).   

 

    We propose to evaluate such ML-based models in two 

steps: first considering only the variables of the MELD-based 

scores, and second on the 27 variables. MELD, MELD-Na and 

MELD 3.0 were calculated per observation as detailed in [3].  

 

    Due to the unbalanced dataset, we down-sample the 

majority class into 23 balanced partitions, each containing the 

same number of observations as the minority class and 

different patients from the majority class. For each partition, 

we perform 3-fold cross-validation to train and evaluate 
classifiers, ensuring patient observations are kept in either the 

training or test set. For both LDA and TabNet, we normalize 

the variables using Z-score transformation. This is not 

necessary for the tree-based models.  

 

    The optimal configuration for the classifiers is determined 

using a grid search for each hyperparameter described in Table 

II. The other hyperparameters are kept at their default settings 

in scikit-learn across all models. The models are evaluated 

using AUROC as the scoring metric and validated through    

3-fold cross-validation to ensure robustness.  

TABLE II.  HYPERPARAMETER SPACE FOR ML CLASSIFIERS. 

Methods Hyperparameters Grid 

LDA Solver algorithm 

Covariance Shrinkage 

'svd', 'lsqr', 'eigen' 

None, 'auto', 0 to 1 (step of 0.1) 

TabNet Decision Dim (n_d) 

Attention Dim (n_a) 

Num. of decision steps 

8, 16, 24 

8, 16, 24 

3, 5 

RF Number of trees 

Maximum tree depth 

25 to 150 (step of 25), 200, 250 

None, 2,3,4,5,7,10 

LightGBM Number of estimators 40 to 100 (step of 5), 125, 150 

 

    Models’ performance is assessed using AUROC, Accuracy, 

Sensitivity (correctly classified non-survivors) and Specificity 

(correctly classified survivors). We compute these metrics for 

each of the three folds for all subsets and then average them. 

The optimal decision threshold is selected to maximize both 

sensitivity and specificity. After evaluating the ML classifiers 

with all 27 features, we apply Gini importance criterion [13] 

for feature selection to assess best model’s performance using 

only the most relevant features.  

 

III. RESULTS 

Table III presents the predictive performance of MELD, 
MELD-Na, MELD 3.0, and the four ML models. Performance 
of ML models are evaluated using MELD-based variables and 
then the 27 variables. For the statistical analysis, we used the 
Wilcoxon Mann-Whitney test with Bonferroni correction to 
compare models on each metric. Each model was trained on 23 
data partitions and evaluated using 3-fold cross-validation, 



yielding 69 values per metric. These values were used to assess 
the significance of performance differences between models.  

TABLE III.  PERFORMANCE OF THE DIFFERENT MODELS FOR THE 3-
MONTH PERIOD. THE TABLE CELLS CONTAIN MEAN VALUES. 

 
AUROC 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

MELD 0.881   80.85  78.94  82.82  

MELD-Na 0.888  81.35  81.75  80.95  

MELD 3.0 0.884  81.08  81.81  80.30  

LDA 

(MELD) 
0.880 80.76 78.79 82.79 

LDA 

(MELD-Na) 
0.886 81.08 81.03 81.12 

LDA 

(MELD 3.0) 
0.880 80.45 81.10 79.78 

TabNet 

(MELD) 
0.884 81.15 79.19 83.17 

TabNet 

(MELD-Na) 
0.894 81.92 81.81 82.03 

TabNet 

(MELD 3.0) 
0.890 81.47 82.18 80.73 

RF 

(MELD) 
0.883 81.04 79.37 82.77 

RF 

(MELD-Na) 
0.888 81.35 80.34 82.40 

RF 

(MELD 3.0) 
0.895 82.03 81.86 82.20 

LightGBM 

(MELD) 
0.883 81.05 79.58 82.57 

LightGBM 

(MELD-Na) 
0.909 83.21 82.78 83.64 

LightGBM 

(MELD 3.0) 
0.909 83.22 83.43 82.98 

LDA 

(27 vars.) 
0.905 82.68 81.44 83.94 

TabNet 

(27 vars.) 
0.908 83.08 82.68 83.50 

RF 

(27 vars.) 
0.929 85.29 85.32 85.26 

LightGBM 

(27 vars.) 
0.935 85.77 85.58 85.97 

 

We note that MELD-Na significantly outperforms both the 
original MELD score and MELD 3.0 in terms of AUROC, 
achieving 0.888 compared to 0.881 for MELD (p = 1.23×10-9) 
and 0.884 for MELD 3.0 (p = 5.69×10-4). Additionally, 
MELD-Na and MELD 3.0 also show a good balance between 
sensitivity and specificity, both significantly surpassing MELD 
in sensitivity (p = 4.35×10-13 for MELD-Na and p = 9.91×10-16 
for MELD 3.0). These findings highlight that MELD-Na and 
MELD 3.0 are more effective at identifying high-risk patients 
than the original MELD score.   

Among ML models, TabNet, RF, and LightGBM, when 
trained on MELD-based variables, outperform MELD-based 
scores. LightGBM leads to the best performance, especially 
when using MELD-Na and MELD 3.0 variables, reaching an 
AUROC of 0.909 and an Accuracy of 83.2%. Notably, 
LightGBM shows slightly higher sensitivity when trained on 
the variables of MELD 3.0 compared to those of MELD-Na, at 
the price of a minor decrease in specificity. By contrast, LDA 
when trained on MELD variables gives worse performance 
compared to MELD-based scores.   

Finally, using all the 27 variables, the four ML models 
improve classification performance, with LightGBM achieving 
significantly the best results (AUROC = 0.935, accuracy = 
85.77%, sensitivity = 85.58%, specificity = 85.97%), 
confirmed by the Wilcoxon Mann-Whitney test (p < 0.05 for 
all comparisons). This underscores the benefit of incorporating 
additional variables beyond those used in MELD-based scores.      

      To improve model interpretability, we exploit Gini 
importance to select the most relevant features for LightGBM, 
our top-performing model. Figure 1 shows the feature 
importance results. 

 
Fig. 1. Feature importance of LightGBM for 3-month mortality prediction. 

We note that BILIRUBIN, SERUM CREAT, SERUM 
SODIUM and INR emerge as the top four features. 
Interestingly, these variables are included in the MELD-based 
scores. Additionally, factors such as functional state, age at 
registration (INIT_AGE), BMI, patient’s weight and the degree 
of ascites (ASCITES) emerge in the top predictors of mortality 
on the waiting list. It is noteworthy that these features are not 
taken into consideration by traditional risk score models. This 
finding highlights a gap in existing models and emphasizes the 
need to consider these variables in future risk scoring systems. 
Conversely, variables such as type of diabetes (DIAB) and 
GENDER (considered in MELD 3.0), are found to be less 
significant in predicting mortality for the studied time period. 
This result aligns with the findings in [7].  

We continue our study by analyzing the performance of 
LightGBM against the number of features, ordered by Gini 
importance. The analysis reveals that the differences in all 
performance metrics become non-significant when more than 
12 features are considered, compared to using the full set of 27 
features (p > 0.05 for all metrics). This indicates that additional 
features offer minimal benefits and can potentially introduce 
noise or overfitting. As shown in Table IV, LightGBM trained 
with the optimized set of 12 features achieves an AUROC of 
0.933, comparable to the AUROC of 0.935 obtained using the 
full set of 27 variables. This underscores the high predictive 
power of the selected features and validate the efficiency of the 
reduced feature set.  



TABLE IV.  LIGHTGBM PERFORMANCE CONSIDERING THE 12 MOST 

RELEVANT FEATURES IDENTIFIED WITH GINI METHOD.  

 
AUROC 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

LightGBM 0.933 85.59 85.31 85.88 

IV. DISCUSSION 

This study presents a comparative analysis of several ML 
models against MELD-based scores for predicting 3-month 
waitlist mortality in LT candidates. Our results showed that 
both MELD-Na and MELD 3.0 significantly outperform 
MELD in predicting 3-month waitlist mortality on our dataset. 
Our findings are consistent with the state-of-the-art [2-3], 
demonstrating that enhancements such as the inclusion of 
serum sodium, albumin, and gender in the MELD score 
significantly improve its predictive accuracy.  

ML models like TabNet, RF, and LightGBM, when trained 
on MELD-based variables, demonstrate higher accuracy than 
traditional MELD scores. Furthermore, among the ML 
approaches, non-linear models outperform the linear one 
(LDA). This suggests that non-linear interactions between 
variables are crucial for more accurate predictions, unlike the 
fixed scoring of MELD-based models.   

When considering all the 27 variables, LightGBM achieved 
the best performance (AUROC = 0.935), emphasizing the 
importance of considering additional variables beyond MELD 
scores to capture the complexities of patient conditions. 
Traditional fixed scoring systems fall short in modeling these 
nuances, whereas ML models can effectively account for them. 
Furthermore, decision tree-based models, such as RF and 
LightGBM, outperformed Neural Network models like TabNet 
in this study. This indicates that, in the realm of structured 
medical data, the decision tree paradigm seems more effective 
in identifying the nuanced patterns necessary for accurate 
mortality prediction [15].  

Using the Gini importance method, we identified 12 key 
variables critical for predicting waitlist mortality. LightGBM, 
when trained on these variables, achieved similar performance 
to when all 27 variables were used, demonstrating their strong 
predictive power. Notably, six of the selected variables are 
components of MELD-based scores, which demonstrates the 
effectiveness of our methodology. Our study emphasizes the 
importance of factors not included in MELD-based scores, 
such as patient’s functional state, age at registration, BMI, 
weight, degree of ascites, and changes in bilirubin over time. 
Through feature selection, we highlighted their specific 
contribution to waitlist mortality prediction.  

V. CONCLUSIONS 

Our study provides valuable insights into predicting LT 
waitlist mortality. We demonstrated the importance of non-
linear interactions in clinical data for more accurate 
predictions, in contrast to the fixed scoring of MELD-based 
models. Additionally, incorporating variables beyond MELD 
components significantly improved performance. Despite the 
growing interest in deep learning, decision tree-based models 
proved more effective in structured medical data. Our research 

also identified 12 key variables for mortality prediction, with 
six drawn from MELD-based scores. This reinforces the 
relevance of MELD components while also highlighting the 
importance of additional factors. These findings underscore the 
need to consider these factors more closely for improved organ 
allocation and waitlist management.  

In future work, we aim to validate our model on excluded 
populations and enhance its interpretability using explainability 
tools. 
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