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Abstract
We consider infinite-dimensional optimization problems motivated by the financial
model called Arbitrage Pricing Theory. Using probabilistic and functional analytic
tools, we provide a dual characterization of the superreplication cost. Then, we show
the existence of optimal strategies for investors maximizing their expected utility and
the convergence of their reservation prices to the super-replication cost as their risk-
aversion tends to infinity.

Keywords Infinite-dimensional optimization · Arbitrage Pricing Theory ·
Superreplication · Expected utility · Reservation price · Large markets

Mathematics Subject Classification 91G10 · 93E20 · 91B16

1 Introduction

We study infinite-dimensional optimization problems motivated by a celebrated finan-
cial theory called Arbitrage Pricing Theory (APT). We first expose the economic and
financial background related to APT and show how important it is for both the finan-
cial mathematics and the mathematical economics communities. Then, we explain our
contributions to this widely studied field together with their mathematical aspects.

Arbitrage Pricing Theory was originally introduced by Ross (see [1,2]), and later
extended by [3,4], and numerous other authors. The APT assumes an approximate
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factor model and states that the risky asset returns in a “large” financial market are
linearly dependent on a finite set of random variables, termed factors, in a way that the
residuals are uncorrelated with the factors and with each other. One of the desirable
aspects of the APT is that it can be empirically tested as argued, for example, in [5].
These conclusions had a huge bearing on empirical work: see for instance [6]. Papers
on the theoretical aspects of APT mainly focused on showing that the model is a good
approximation in a sequence of economies when there are “sufficiently many” assets
(see for example, [1,3,4]).

Ross derives the APT pricing formula under the assumption of absence of asymp-
totic arbitrage in the sense that a sequence of asymptotically costless and riskless finite
portfolios cannot yield a positive return in the limit.Mathematical finance subsequently
took up the idea of amarket involving a sequence ofmarketswith an increasing number
of assets in the so-called theory of large financial markets (see, among other papers,
[7–10]). Authors mainly studied the characterization of asymptotic notions of absence
of arbitrage, using sequences of portfolios involving finitely many assets, where the
classical notion of no-arbitrage holds true, i.e., non-negative portfolios with zero cost
should have zero return. For the sake of generality, continuous trading was assumed
in the overwhelming majority of related papers. But these generalizations somehow
overshadowed the highly original ideas suggested in [1], where a one-step model was
considered. They did not answer the following natural question either: in the APT is
there a way to consider strategies involving possibly all the infinitely many assets and
to exclude exact arbitrage for them rather than considering only asymptotic notions
of arbitrage? A first answer was given in [11] in a measure-theoretical setup. Then,
[12,13] proposed a straightforward concept of portfolios using infinitely many assets,
which we will use in the present paper, too: see Sect. 2. This notion leads to the
existence of equivalent risk-neutral (or martingale) probability measures.

While questions of arbitrage for APT have been extensively studied by the eco-
nomics and financial mathematics communities, other crucial topics—such as utility
maximizationor pricing—received little attention though these are important questions
in today’s markets, where there is a vast array of available assets. This is particularly
conspicuous in the credit market, where bonds of various maturities and issuers indeed
constitute an entity that may be best viewed as a large financial market (see [14]).
Questions of pricing inevitably arise and current literature on APT does not provide
satisfactory answers. A standard problem is calculating the superreplication cost of a
claim G. It is the minimal amount needed for an agent selling G in order to superrepli-
cate G by trading in the market. This is the hedging price with no risk and, to the best
of our knowledge, it was first introduced in [15] in the context of transaction costs.
In complete markets with finitely many assets, the superreplication cost is just the
cash flow’s expectation computed under the unique martingale measure. When such
markets are incomplete, there exists a so-called dual representation in terms of supre-
mum of those expectations computed under each risk-neutral probability measure, see
[16] and the references in [17]. Our first contribution is such a representation theorem
for APT under mild conditions (see Theorem 4.1). The proof is based on functional
analytic techniques such as the Marcinkiewicz–Zygmund inequality or the Banach–
Saks property. The uniform integrability property proved in Lemma 3.3 together with
dual methods (using risk-neutral probabilities) allow to prove, for the first time in the
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context of APT, the closure in probability of the set of attainable terminal payoffs,
after possibly throwing away money (see Proposition 3.1 and Corollary 3.1). We also
prove a characterization of the no-arbitrage condition in a so-called quantitative form
(see Proposition 3.2), which will be crucial in the rest of the paper. We mention [18],
where the superhedging of contingent claims has already been considered in the gen-
eral context of continuous-time large financial markets. That paper, however, relies on
the notion of generalized portfolios, which fail to have a natural interpretation unlike
the straightforward portfolio concept we use here.

Next, we consider economic agents whose preferences are of von Neumann-
Morgenstern type (see [19]), i.e., they are represented by concave increasing utility
functions. In our APT framework, we are able to prove the existence of optimizers
for such utility functions on the positive real axis (see Theorem 5.1). Such results
are standard for finitely many assets (see the references in [17]), but in the present
context we face infinite-dimensional portfolios. In the setting of APT, we mention
[20], which relies on the notion of generalized portfolios. Utility functions defined
on the real line (i.e., admitting losses) have been considered in [12,13] (we expose
the differences between these two papers and ours in Remark 3.2). Our quantitative
no-arbitrage characterization allows to prove a key boundedness condition on the set
of admissible strategies (see Lemma 3.4) and the existence of an optimal solution.
Finally, we establish that, when risk aversion tends to infinity, the utility indifference
(or reservation) prices (see [21]) tend to the superreplication price. This links in a
nice way investors’ price calculations to the preference-free cost of superhedging (see
Theorem 6.1). It also justifies the use of a cheaper, preference-based price instead of
the super-replication price, which may be too onerous.

The model is presented in Sect. 2. Concepts of no-arbitrage are discussed in Sect.
3. The dual characterization of superreplication prices is given in Sect. 4, the utility
maximization problem is treated in Sect. 5. The asymptotics of reservation prices in
the high risk-aversion regime is investigated in Sect. 6, and Sect. 7 concludes.

2 The LargeMarket Model

Let (�,F , P) be a probability space.We consider a one-step economy,which contains
a countable number of tradeable assets. The price of asset i ∈ N is given by (Si

t ){t∈{0,1}}.
The returns Ri , i ∈ N represent the profit (or loss) created tomorrow from investing
one dollar’s worth of asset i today, i.e., Ri = Si

1/Si
0 − 1. We briefly describe below

our version of the Arbitrage Pricing Model, identical to that of [8,12,13,22], which is
a special case of the model presented in [1,3]. Asset 0 represents a riskless investment
and, for simplicity, we assume a zero rate of return, i.e., R0 = 0. We assume that the
other assets’ returns are given by

Ri := μi + β̄iεi , 1 ≤ i ≤ m; Ri := μi +
m∑

j=1

β
j

i ε j + β̄iεi , i > m,
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where the εi are random variables andμi , β
j

i , β i are constants. The random variables
εi , 1 ≤ i ≤ m serve as factors, which influence the return on all the assets i ≥ 1,
while εi , i > m are random sources particular to the individual assets Ri , i > m.

Assumption 1 The εi are square-integrable, independent random variables satisfying
E(εi ) = 0 and E

(
ε2i

) = 1 for all i ≥ 1.

Assuming that β̄i �= 0, i ≥ 1, we reparametrize the model using

bi := −μi

β̄i
, 1 ≤ i ≤ m; bi := −μi

β̄i
+

m∑

j=1

μ jβ
j

i

β̄ j β̄i
, i > m

and set b := (bi )i≥1. Asset returns then take the following form:

Ri = β̄i (εi − bi ), 1 ≤ i ≤ m; Ri =
m∑

j=1

β
j

i (ε j − b j ) + β̄i (εi − bi ), i > m.

For some n ∈ N, a portfolio φ in the assets 0, . . . , n is an arbitrary sequence (φi )0≤i≤n

of real numbers satisfying
∑n

i=0 φi Si
0 = x , where x is a given initial wealth. As

S0
1 = S0

0 such a portfolio will have value tomorrow given by

V x,φ
n :=

n∑

i=0

φi Si
1 = x +

n∑

i=1

φi Si
0Ri = x +

n∑

i=1

hi (εi − bi ) =: V x,h
n ,

for some (h1, . . . , hn) ∈ R
n , using our parametrization.

The value tomorrow that can be attained using finitely many assets is given by
J x := ∪n≥1V x,h

n : (h1, . . . , hn) ∈ R
n . As J x fails to be closed in any reasonable

sense, we consider strategies, which can use infinitely many assets. This is desirable
from an economic point of view (see [11]). Let

� : �2 :=
{

(hi )i≥1 :
∞∑

i=1

h2
i < ∞

}
→ L2(P) := {X : � → R, E |X |2 < ∞}

x 	→ �(h) :=
∞∑

i=1

hiεi .

Recall that the spaces �2 and L2(P) are Hilbert spaces with the respective norm

||h||�2 :=
√∑∞

i=1 h2
i and ||X ||L2(P) := √

E(|X |2). The infinite sum in �(h) has to

be understood as the limit in L2(P) of (
∑n

i=1 hiεi )n≥1, which are Cauchy sequences.
Indeed, let h ∈ �2, under Assumption 1, for p > n,

E

⎛

⎝
( p∑

i=1

hiεi −
n∑

i=1

hiεi

)2
⎞

⎠ =
p∑

i=n+1

h2
i ≤

∞∑

i=n+1

h2
i ,
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which can be arbitrarily small for n large enough. Actually, under Assumption 1,
� is even an isometry, i.e., ||�(h)||2

L2(P)
= ∑∞

i=1 h2
i = ‖h‖2�2 . We would like to

give sense (as an L2(P) limit of a sequence of finite sums) to the portfolio value
V x,h := x + ∑∞

i=1 hi (εi − bi ). Since

E

⎛

⎝
( p∑

i=1

hi (εi − bi ) −
n∑

i=1

hi (εi − bi )

)2
⎞

⎠ =
p∑

i=n+1

h2
i +

p∑

i=n+1

h2
i b2i , (1)

we need the following hypothesis.

Assumption 2 We have that b ∈ �2.

Then, (1) shows that (
∑n

i=1 hi (εi − bi ))n≥1 is a Cauchy-sequence in L2(P) and V x,h

is well defined. Notice furthermore that

E

⎛

⎝
( ∞∑

i=1

hi (εi − bi )

)2
⎞

⎠ =
∞∑

i=1

h2
i +

∞∑

i=1

h2
i b2i ≤ (1 + ‖b‖2�2)‖h‖2�2 < ∞. (2)

From now on, wewill use the notation 〈h, ε−b〉 := ∑∞
i=1 hi (εi −bi ).Under Assump-

tions 1 and 2, the portfolio values tomorrow that can be attained using infinitely many
assets with a strategy in �2 is thus given by

K x := {V x,h : h ∈ �2} = {x + 〈h, ε − b〉 : h ∈ �2}.

3 No-Arbitrage in LargeMarkets

InArbitrage PricingTheory, the classical notion of arbitrage is the asymptotic arbitrage
in the sense of [1] and [3].

Definition 3.1 There is an asymptotic arbitrage, if there exists a sequence of strategies
(h(n))n≥1, with h(n) = (h(n)i )1≤i≤n , such that

E
(

V x,h(n)
n

)
−→

n→+∞ ∞ and Var
(

V x,h(n)
n

)
−→

n→+∞ 0.

If there exists no such sequence, then we say that there is absence of asymptotic
arbitrage (AAA).

We would like to understand the link between AAA and the classical definition of
no-arbitrage, as formulated in the next definition.

Definition 3.2 The no-arbitrage condition on a “small market” with N random sources
for some N ≥ 1 holds true, if P(

∑N
i=1 hi (εi − bi ) ≥ 0) = 1 for (h1, . . . , hN ) ∈ R

N

implies that h1 = . . . = hN = 0. This is called AOA(N ).
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We prove that under the following assumption there is absence of arbitrage in any
of the small markets containing N assets (see Lemma 3.1) and also in the large market
(see Lemma 3.2).

Assumption 3 For all i ≥ 1, P(εi > bi ) > 0 and P(εi < bi ) > 0.

Lemma 3.1 Under Assumption 1, Assumption 3 implies AOA(N) for any N ≥ 1.
Moreover, AOA(N ) implies the so-called quantitative no-arbitrage condition: there
exists some αN ∈]0, 1[, such that for every (h1, . . . , hN ) ∈ R

N satisfying
∑N

i=1 h2
i

= 1, P(
∑N

i=1 hi (εi − bi ) < −αN ) > αN .

Proof Fix some N ≥ 1 and let (h1, . . . , hN ) ∈ R
N such that

∑N
i=1 hi (εi − bi ) ≥ 0

a.s. We proceed by contradiction.
Assume that IN := {i ∈ {1, . . . , N }, hi �= 0} �= ∅. Let Bi := {hi (εi − bi ) < 0}.
Then,

⋂
i∈IN

Bi ⊂ {∑N
i=1 hi (εi − bi ) < 0}. As the (εi )i≥1 are independent and

for i ∈ IN , P (Bi ) ≥ min {P ({εi − bi < 0}) , P ({εi − bi > 0})} > 0, we get that
P(

⋂
i∈IN

Bi ) = ∏
i∈IN

P (Bi ) > 0, a contradiction. The proof of the last result is
standard (see for example [23]) and thus omitted. ��

It is well known that absence of arbitrage in markets with finitely many assets
is equivalent to the existence of an equivalent martingale measure, see [24] and the
references in [17]. In the present settingwith infinitelymany assets,weneed to consider
equivalent martingale measures having a finite second moment. Let

M2 :=
{

Q ∼ P : d Q/d P ∈ L2(P), EQ(εi ) = bi , i ≥ 1
}

.

Remark 3.1 If Q ∈ M2 and if Assumptions 1 and 2 hold true, then for all h ∈ �2,

EQ
(
V 0,h

) = 0. This is Cauchy–Schwarz inequality, see also Lemma 3.4 of [13].

Unfortunately Assumptions 1–3 are not known to be sufficient to ensure that M2
�= ∅ (see Proposition 4 of [22]). So we also postulate the following.

Assumption 4 We have that supi≥1 E
(|εi |3

)
< ∞.

Remark 3.2 We comment on the main differences with [12,13,22]. First, we use [22]
to show M2 �= ∅. This justifies Assumption 4. In [13], both conditions

inf
i≥1

P(εi > x) > 0 and inf
i≥1

P(εi < −x) > 0 for all x ≥ 0, (3)

sup
i∈N

E
(
ε2i 1{|εi |≥N }

)
→ 0, N → ∞, (4)

were postulated. It was proved that the set K x is closed in probability and that for
concave, non-decreasing utility functions U : R → R there exist optimizers. In [12],
the rather restrictive assumption (3), which excludes, e.g., the case where all the εi are
bounded random variables, was relaxed at the price of requiring more integrability on
the εi than (4). Assumption 3 was postulated together with supi≥1 E(eγ |εi |) < ∞, for
some γ > 0. This strong moment condition was not justified in the APT problem, and
in this paper, we manage to use instead the weaker Assumption 4. Moreover, we will
be able to prove that Cx := K x − L2+(P) is closed in probability.
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In Corollary 1 of [22] it is shown that, under Assumptions 1, 3 and 4,

AAA ⇐⇒ Assumption 2 ⇐⇒ M2 �= ∅. (5)

Based on (5), one can show that AAA implies the classical no-arbitrage condition
stated with infinitely many assets.

Lemma 3.2 Assume that Assumptions 1, 3, 4 together with AAA hold true. Then,
〈h, ε − b〉 ≥ 0 a.s. for some h ∈ �2 implies that 〈h, ε − b〉 = 0 a.s.

Proof Let h ∈ �2 and assume that 〈h, ε − b〉 ≥ 0. Fix some Q ∈ M2 given by (5),
then EQ(〈h, ε−b〉) = 0 (see Remark 3.1). Thus 〈h, ε−b〉 = 0 Q-a.s. and also P-a.s.
since P and Q are equivalent. ��

The following lemma is crucial to prove the closure property of Cx (see Corollary
3.1).

Lemma 3.3 Let Assumptions 1 and 2 hold true and assume, for some γ ≥ 2, that
supi≥1 E |εi |γ < ∞. Then, there is a constant Cγ such that, for all h ∈ �2

E |〈h, ε − b〉|γ ≤ Cγ ‖h‖γ

�2

(
1 + ‖b‖γ

�2

)
.

Moreover, if γ = 3, for any c > 0, {|V x,h |2 : h ∈ �2, ‖h‖�2 ≤ c} and also
{|V x,h | : h ∈ �2, ‖h‖�2 ≤ c} are uniformly integrable.

Proof Let h(n) := (h1, . . . , hn, 0, 0, . . .) and b(n) := (b1, . . . , bn, 0, 0, . . .), for
n ≥ 1.

E |〈h(n), ε − b〉|γ = E

∣∣∣∣∣

n∑

i=1

hi (εi − bi )

∣∣∣∣∣

γ

≤2γ−1E

∣∣∣∣∣

n∑

i=1

hiεi

∣∣∣∣∣

γ

+2γ−1E

∣∣∣∣∣

n∑

i=1

hi bi

∣∣∣∣∣

γ

.

The Marcinkiewicz–Zygmund and triangle inequalities imply for some C̄ > 0

E

∣∣∣∣∣

n∑

i=1

hiεi

∣∣∣∣∣

γ

≤ C̄ E

⎛

⎝
(

n∑

i=1

h2
i ε

2
i

)γ /2
⎞

⎠ = C̄

∥∥∥∥∥

n∑

i=1

h2
i ε

2
i

∥∥∥∥∥

γ /2

Lγ /2(P)

≤ C̄

(
n∑

i=1

|hi |2 ‖εi‖2Lγ (P)

)γ /2

≤ C̄

(
sup
i≥1

‖εi‖2Lγ (P)

n∑

i=1

|hi |2
)γ /2

≤ C̄ sup
i≥1

E |εi |γ ‖h(n)‖γ

�2
.

Thus, E |〈h(n), ε−b〉|γ ≤ Cγ ‖h(n)‖γ

�2
(1+‖b(n)‖γ

�2
) and Fatou’s lemma finishes the

proof. ��
For all x ≥ 0, the set of attainable wealth at time 1, allowing the possibility of

throwing away money, is Cx := K x − L2+(P).
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Proposition 3.1 Let Assumptions 1–4 hold true. Fix some z ∈ R and let B ∈ L2(P)

such that B /∈ Cz . Then, there exists some η > 0 such that

inf
h∈�2

P(z + 〈h, ε − b〉 < B − η) > η. (6)

Proof Assume that (6) is not true. Then, for all n ≥ 1, there exists some h(n) ∈ �2
such that P(Vn < B − 1

n ) ≤ 1
n , where we have introduced the following notation:

Vn := z + 〈h(n), ε − b〉. Let Gn := {Vn ≥ B − 1
n } and set κn := (Vn − (B − 1

n ))1Gn .
Then, P(|Vn − κn − B| > 1

n ) = P (� \ Gn) ≤ 1
n and thus, (Vn − κn)n≥1 converges

to B in probability.
First, we claim that supn ||h(n)||�2 < ∞. Else, supn ||h(n)||�2 = ∞. So extracting

a subsequence (which we continue to denote by n), we may and will assume that
||h(n)||�2 → ∞, n → ∞. Let h̃i (n) := hi (n)/||h(n)||�2 for all n, i . Clearly, h̃(n) ∈ �2

with ||h̃(n)||�2 = 1. Then,

Wn := V 0,h̃(n) − κn

||h(n)||�2
→ 0 a.s., n → ∞.

Let Q ∈ M2 (which is not empty: see (5)). We claim that EQ (Wn) → 0. By the

Cauchy–Schwarz inequality,
∣∣EQ (Wn)

∣∣ ≤
√

E (d Q/d P)2
√

E
(
W 2

n

)
and it remains

to show the uniform integrability of W 2
n , n ∈ N under P .

|Wn|2 = |B − z − n−1|2
||h(n)||2�2

1Gn + |V 0,h̃(n)|21�\Gn

≤ |B|2 + |z|2 + n−2

||h(n)||2�2
+ |V 0,h̃(n)|2 ≤ c|B|2 + |V 0,h̃(n)|2,

for n big enough, with some constant c. Using Assumption 4 and Lemma 3.3,
|V 0,h̃(n)|2, n ∈ N for ‖h̃(n)‖�2 ≤ 1 is uniform integrable under P. As B2 is also
integrable, we get that EQ (Wn) goes to 0.

As EQ V 0,h̃(n) = 0 (see Remark 3.1), we deduce that κn/||h(n)||�2 goes to zero
in L1(Q) and also Q-a.s. (along a subsequence) and, as Q is equivalent to P , P-a.s.
This implies that V 0,h̃(n) goes to 0 P-a.s. and in L2(P) as well (recall that the family
|V 0,h̃(n)|2, n ≥ 1 for ‖h̃(n)‖�2 ≤ 1 is uniformly integrable). But this is absurd since
using the isometry property [see (2)], we get that

‖V 0,h̃(n)‖2L2 = ‖h̃(n)‖2�2 +
∞∑

i=1

h̃2(n)i b
2
i ≥ 1 for all n ≥ 1.

This contradiction shows that necessarily supn ||h(n)||�2 < ∞.
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We have concluded that supn ||h(n)||�2 < ∞. Since �2 has the Banach–Saks prop-
erty, there exists a subsequence (nk)k≥1 and, some h∗ ∈ �2, such that

ĥ(N ) := 1

N

N∑

k=1

h(nk),
∥∥ĥ(N ) − h∗∥∥2

�2
→ 0, N → ∞.

Hence, using (2), E((V z,̂h(N ) − V z,h∗
)2) ≤ (1 + ‖b‖2�2)‖ĥ(N ) − h∗‖2�2 , which tends

to zero as N → ∞. So V z,̂h(N ) → V z,h∗
a.s. as well. Then,

V z,̂h(N ) − 1

N

N∑

k=1

κnk = 1

N

N∑

k=1

(
V z,h(nk) − κnk

)
→ B, N → ∞,

in probability, and also a.s., for a subsequence for which we keep the same notation.
Thus, 1

N

∑N
k=1 κnk converges a.s. and B ∈ Cz , a contradiction. ��

Corollary 3.1 Let Assumptions 1–4 hold true and fix some z ∈ R. Then, Cz is closed
in probability.

Proof Assume that Cz is not closed in probability. Then, one can find some h(n) ∈ �2
and κn ∈ L2+(P) such that θn := z +〈h(n), ε − b〉− κn ∈ Cz converges in probability
to some θ∗ /∈ Cz . Then, for any η > 0,

inf
h∈�2

P(z + 〈h, ε − b〉 < θ∗ − η) ≤ P(z + 〈h(n), ε − b〉 − κn < θ∗ − η) → 0,

when η goes to zero. This contradicts (6), showing closedness of Cz . ��
We now provide a quantitative version of the no-arbitrage condition (see Assump-

tion 3).

Proposition 3.2 Let Assumptions 1–4 hold true. Then, there exists α > 0, such that
for all h ∈ �2 with ‖h‖�2 = 1, P(〈h, ε − b〉 < −α) > α holds.

Proof We argue by contradiction. Assume that for all n ≥ 1, there exist h(n) with
‖h(n)‖�2 = 1 and P (〈h(n), ε − b〉 < −1/n) ≤ 1/n.
Clearly, 〈h(n), ε − b〉− → 0 in probability as n → ∞. Let Q ∈ M2 [see (5)]. We
claim that EQ(〈h(n), ε − b〉−) → 0. Using Cauchy-Schwarz inequality

EQ (〈h(n), ε − b〉−) ≤ ‖d Q/d P‖L2(P)

(
E

(
〈h(n), ε − b〉2−

))1/2
,

and it remains to show uniform integrability of 〈h(n), ε − b〉2−, n ∈ N under P .
This follows from 〈h(n), ε − b〉2− ≤ |V 0,h(n)|2, Assumption 4 and Lemma 3.3. So
EQ(〈h(n), ε − b〉−) → 0 but, since EQ(〈h(n), ε − b〉) = 0 by Remark 3.1, we also
get that E(〈h(n), ε − b〉+) → 0. It follows that EQ(|〈h(n), ε − b〉|) → 0, hence
〈h(n), ε − b〉 goes to zero Q-a.s. (along a subsequence) and, as Q is equivalent to
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P , P-a.s. Using again that |〈h(n), ε − b〉|2, n ∈ N is uniformly P-integrable, we
get E(|〈h(n), ε − b〉|2) → 0. But this contradicts the fact that E(|〈h(n), ε − b〉|2)
= ‖h(n)‖2�2 + ∑∞

i=1 h2
i (n)b2i ≥ 1 [see (2)]. ��

The following lemmaproves that, under the no-arbitrage condition (seeAssumption
3), any strategy with a non-negative final wealth is bounded.

Lemma 3.4 Let Assumptions 1–4 hold true. Let y ∈ R and h ∈ �2 such that
y + 〈h, ε − b〉 ≥ 0. Then, ‖h‖�2 ≤ |y|/α, see Proposition 3.2 for α.

Proof On {〈h, ε − b〉 < −α||h||�2}, which is of positive measure by Proposition 3.2,
|y| − α||h||�2 > y + 〈h, ε − b〉 ≥ 0 and ‖h‖�2 ≤ |y|/α follows. ��

4 Superreplication Price

Let G ∈ L0 be a random variable, which will be interpreted as the payoff of some
derivative security at time T . The superreplication price π(G) is the minimal initial
wealth needed for hedging G without risk. For all x ∈ R, let

A(G, x) :=
{

h ∈ �2 : V x,h ≥ G a.s.
}
and π(G) := inf{z ∈ R : A(G, z) �= ∅},

where π(G) = +∞ if A(G, z) = ∅ for every z. The so-called dual representation of
the superreplication price (see Theorem 4.1) in terms of supremum over the different
risk-neutral probability measures has a long history: see [16] and also the textbook
[17] for more details about this preference-free price.

Lemma 4.1 Let Assumptions 1–4 hold true. Then, π(G) > −∞ and A(G, π(G))

�= ∅.

Proof Assume that π(G) = −∞. Then, for all n ≥ 1, there exists hn ∈ �2 such that
−n +〈hn, ε−b〉 ≥ G a.s. Thus, 〈hn, ε−b〉 ≥ G +n ≥ (G +n)∧1 a.s. It follows that
(G + n) ∧ 1 ∈ C0, which is closed in probability (see Corollary 3.1). Thus, 1 ∈ C0,
i.e., 〈h, ε − b〉 ≥ 1 a.s. for some h ∈ �2, which contradicts AAA (or Assumption 2,
see (5)), see Lemma 3.2. So π(G) > −∞.

If π(G) = +∞, the second claim is trivial. So, assume that π(G) < ∞. Then, for
all n ≥ 1, there exists hn ∈ �2 such that π(G)+ 1/n +〈hn, ε − b〉 ≥ G a.s. It follows
that G − π(G) − 1/n ∈ C0. Thus, as C0 is closed, G − π(G) ∈ C0. ��

We are now in position to prove our duality result.

Theorem 4.1 Let Assumptions 1–4 hold true and let G ∈ L2(P). Then, π(G)

= supQ∈M2
EQ(G).

Proof Let s := supQ∈M2
EQ(G). Let x be such that there exists h ∈ �2 verifying

x+〈h, ε−b〉 ≥ G a.s. Fix Q ∈ M2 [see (5)].AsG ∈ L2(P), EQ(G) iswell definedby
theCauchy–Schwarz inequality.UsingRemark3.1,weget that EQ(x+〈h, ε−b〉) = x .
Thus, x ≥ EQ(G) and π(G) ≥ s follows. For the other inequality, it is enough to
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prove that G − s ∈ C0. Indeed, this will imply that there exists h ∈ �2 such that
s + 〈h, ε − b〉 ≥ G a.s., which shows, by definition of π(G), that s ≥ π(G). Assume
this is not true. Then, {G − s} /∈ C0 ∩ L2(P). As C0 is closed in probability (see
Corollary 3.1), we can apply classical Hahn–Banach argument (see, e.g., [17]) to find
some Q ∈ M2 such that EQ(G) > s. ��

Remark 4.1 One may wonder whether πn(G), the superreplication price of G in the
smallmarketwithn randomsources (εi )1≤i≤n , converges toπ(G), the superreplication
price of G in the large market. The answer is no in general.

Let εi , i ∈ N be standard Gaussian random variables, let bi = 0 for all i ∈ N and
define G := ∑∞

i=1 i−1εi . There exists no x, h1, . . . , hn with x + ∑n
j=1 h jε j ≥ G,

since this would mean that
∑n

j=1(h j − j−1)ε j − ∑
j≥n+1 j−1ε j ≥ −x, where the

left-hand side is a Gaussian random variable with nonzero variance. It follows that
πn(G) = ∞ while π(G) = 0, trivially.

5 Utility Maximization

We follow the traditional viewpoint of [19] and model economic agents’ preferences
by some concave strictly increasing differentiable utility function denoted by
U :]0,∞[→ R. Note that we extend U to [0,∞[ by (right)-continuity (U (0) may be
−∞). We also set U (x) = −∞ for x ∈] − ∞, 0[. For a contingent claim G ∈ L0

and x ∈ R, we define �(U , G, x) := {
h ∈ �2, EU+(V x,h − G) < +∞}

, the set of
strategies, where the expectation is well defined. Then, we set
A(U , G, x) := �(U , G, x) ∩ A(G, x). Note that even for x ≥ π(G), A(U , G, x)

might be empty. Indeed, from Lemma 4.1, we know that there exists some
h ∈ A(G, x), but h might not belong to �(U , G, x). But this holds true under appro-
priate assumptions, as proved in the lemma below.

Lemma 5.1 Let Assumptions 1–4 hold true. Assume that G ≥ 0 a.s. and U (x0) = 0,
U ′(x0) = 1, for some x0 ≥ 0. Then, A(G, x) = A(U , G, x) for all x ∈ R.

Proof As U is concave, increasing and differentiable with U (x0) = 0, U ′(x0) = 1,
we can bound it from above by its first order Taylor approximation, for all x ∈]0,∞[,
as follows:

U (x) ≤ U (max(x0, x)) ≤ U (x0) + max(x − x0, 0)U
′(x0) ≤ |x − x0| ≤ |x |,

since x0 ≥ 0. If x < π(G) then A(G, x) = ∅ and A(G, x) = A(U , G, x) =
∅. Let x ≥ π(G). Then, by Lemma 4.1, A(G, x) �= ∅. Let h ∈ A(G, x). Then,
V x,h ≥ G ≥ 0 a.s. and h ∈ A(0, x). Let A := {x + 〈h, ε − b〉 ≥ x0}.

U+(x + 〈h, ε − b〉 − G) ≤ U+(x + 〈h, ε − b〉)1A + U+(x0)1�\A

= U (x + 〈h, ε − b〉)1A ≤ |x+ < h, ε − b > |. (7)
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Using (2), the Cauchy–Schwarz inequality and Lemma 3.4, we get that

EU+(x + 〈h, ε − b〉 − G) ≤ |x | +
√

E
(〈h, ε − b〉2) ≤ |x | + ‖h‖�2

√
1 + ‖b‖2�2

≤ |x | + |x |
α

√
1 + ‖b‖2�2 < +∞. (8)

��
We now define the supremum of the expected utility at the terminal date when

delivering the claim G, starting from initial wealth x ∈ R :

u(G, x) := sup
h∈A(U ,G,x)

EU {V x,h − G}, (9)

where u(G, x) = −∞, ifA(U , G, x) = ∅. The following result establishes that there
exists an optimal investment for the investor we are considering.

Theorem 5.1 Let Assumptions 1–4 hold true. Let G ≥ 0 and x ∈ R such that
x ≥ π(G). Then, there exists h∗ ∈ A(U , G, x) such that

u(G, x) = EU (V x,h∗ − G).

Proof If U is constant, there is nothing to prove. Else, there exists x0 > 0 such that
U ′(x0) > 0. Replacing U by (U − U (x0))/U ′(x0), we may and will suppose that
U (x0) = 0 and U ′(x0) = 1. Note that π(G) ≥ 0, as G ≥ 0 a.s. (see Theorem 4.1).
Let hn ∈ A(G, x) = A(U , G, x) (see Lemmata 4.1 and 5.1) be a sequence such that

EU (V x,hn − G) ↑ u(G, x), n → ∞.

By Lemma 3.4, supn∈N ‖hn‖�2 ≤ x/α < ∞. Hence, as �2 has the Banach–Saks
Property, there exists a subsequence (nk)k≥1 and some h∗ ∈ �2 such that for

h̃n := 1

n

n∑

k=1

hnk , ‖h̃n − h∗‖�2 → 0, n → ∞.

Note that h̃n ∈ A(G, x) and supn∈N ‖h̃n‖�2 ≤ x/α < ∞. Using (2), we get that

E〈h̃n − h∗, ε − b〉2 ≤ ‖h̃n − h∗‖2�2(1 + ‖b‖2�2) → 0, n → ∞.

In particular, 〈h̃n − h∗, ε − b〉 → 0, n → ∞ in probability. Hence, we also get that
U (V x,h̃n − G) → U (V x,h∗ − G) in probability, by continuity (right-continuity in 0)
of U on [0,∞[. We also have (up to a subsequence) that V x,h̃n − G → V x,h∗ − G a.s.
and thus, h∗ ∈ A(G, x). Now, using (7), we have that U+(V x,h̃n − G) ≤ |V x,h̃n |. So
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Assumption 4 and Lemma 3.3 imply that {U+(V x,h̃n −G) : hn ∈ �2, ‖hn‖�2 ≤ x/α}
is uniformly integrable and

lim
n→∞ E

(
U+(V x,h̃n − G)

)
= E

(
U+(V x,h∗ − G)

)
.

Then, E(−U−(V x,h∗ −G)) ≥ lim supn→∞ E(−U−(V x,h̃n −G)), by Fatou’s lemma.
As by concavity of U ,

U (V x,h̃n − G) = U

(
1

n

n∑

k=1

(V x,hnk − G)

)
≥ 1

n

n∑

k=1

U
(

V x,hnk − G
)

,

we get that

EU (V x,h∗ − G) ≥ lim sup
n→∞

EU (V x,h̃n − G) ≥ u(G, x).

The proof is finished since h∗ ∈ A(G, x) = A(U , G, x) (see Lemma 5.1). ��

6 Convergence of the Reservation Price to the Superreplication Price

We go on incorporating a sequence of agents in our model.

Assumption 5 Suppose that Un :]0,∞[→ R, n ∈ N is a sequence of concave strictly
increasing twice continuously differentiable functions such that

∀x ∈]0,∞[ rn(x) := −U ′′
n (x)

U ′
n(x)

→ ∞, n → ∞.

Again we extend each Un to [0,∞[ by (right)-continuity, and set Un(x) = −∞ for
x ∈] − ∞, 0[. We define the value functions un(G, x) for our sequence of utility
functions (Un)n≥1 changing U by Un in (9).

Assumption 5 says that the sequence of agents we consider have asymptotically
infinite aversion towards risk. Indeed, [25] shows that an investor n has greater absolute
risk-aversion than investor m (i.e., rn(x) > rm(x) for all x) if and only if investor n is
more risk averse than m (i.e., the amount of cash for which she would exchange the
risk is smaller for n than for m).

The utility indifference (or reservation) price pn(G, x), introduced by [21], is

pn(G, x) := inf{z ∈ R : un(G, x + z) ≥ un(0, x)}.

Intuitively, it seems reasonable that under Assumption 5 the utility prices pn(G, x)

tend to π(G) and this was proved for finitely many assets in [26]. Now, we treat the
case of APT.
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Theorem 6.1 Assume that Assumptions 1–5 hold true. Suppose that x > 0 and G
∈ L2+(P). Then, the utility indifference prices pn(G, x) are well defined and converge
to π(G) as n → ∞.

Proof Applying affine transformations to each Un, we may and will assume that
Un(x) = 0 and U ′

n(x) = 1 for all n ∈ N.
If π(G) = +∞ then for all z ∈ R, n ≥ 1, ∅ = A(G, z) = A(Un, G, z) and

un(G, x + z) = −∞. But un(0, x) ≥ EUn(x) = 0. Thus, pn(G, x) = +∞ for all
n ≥ 1 and the claim is proved.

Assume now that π(G) < ∞. Just like in the proof of Theorem 3 in [26],
pn(G, x) ≤ π(G). So, it remains to show that lim infn→∞ pn(G, x) ≥ π(G). If
this is not the case, we can find a subsequence (still denoted by n) and some η > 0
such that pn(G, x) ≤ π(G) − η for all n ≥ 1. We may and will assume that x ≥ η.
By definition of pn(G, x), we have that

un(G, x + π(G) − η) ≥ un(0, x).

Let y := x + π(G) − η < x + π(G). If we prove that limn→+∞ un(G, y) = −∞,

lim infn→+∞ un(0, x) ≥ lim infn→+∞ Un(x) ≥ 0 will provide a contradiction.
First, remark that x + G /∈ C y . Applying Proposition 3.1, we get some γ > 0 such

that infh∈�2 P(Ah) > γ , where Ah := {y + 〈h, ε − b〉 < x + G − γ }. Note that we
can always assume that x ≥ γ . As y ≥ π(G) ≥ 0, Lemmata 4.1 and 5.1 imply that
A(Un, G, y) �= ∅. Hence, for all h ∈ A(Un, G, y), we get that

EUn(y + 〈h, ε − b〉 − G) ≤ E1Ah Un(x − γ ) + E1�\Ah U+
n (y + h〈ε − b〉)

≤ γUn(x − γ ) + EU+
n (y + 〈h, ε − b〉).

Using (8), un(G, y) ≤ γUn(x − γ ) + y + y
α

√
1 + ‖b‖2�2 goes to −∞ when n goes to

infinity, by Lemma 4 of [26]. ��

7 Conclusions

The current paper, just like [12,13,22], is based on techniques that are at the intersection
of probability and functional analysis. These permit to state a dual representation for the
superreplication cost, to prove existence in the problem of maximization of expected
utility and to show the convergence of the reservation prices to the superreplication
cost in markets with infinitely many assets, which form an important model class of
financial mathematics, pertinent to, e.g., bond markets. In future work, our approach
is hoped to be extended to other infinite market models (e.g., complete ones, where
εi are not independent but form a complete orthonormal system) so as to gain further
insight about how these complex systems operate.

Acknowledgements Open access funding provided by Alfréd Rényi Institute of Mathematics. M.R. was
supported by NKFIH Grant KH 126505 and by Grant LP 2015-6 of the Hungarian Academy of Sciences.

123



262 Journal of Optimization Theory and Applications (2020) 186:248–263

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ross, S.A.: The arbitrage theory of capital asset pricing. J. Econ. Theory. 13, 341–360 (1976)
2. Ross, S.A.: Return, risk and arbitrage. In: Friend, I., Bicksler, J.L. (eds.) Risk and Return in Finance,

pp. 189–218. Balinger, Cambridge, MA (1977)
3. Huberman, G.: A simple approach to arbitrage pricing theory. J. Econ. Theory. 28, 289–297 (1982)
4. Chamberlain, G., Rothschild,M.: Arbitrage, factor structure, andmean-variance analysis on large asset

markets. Econometrica 51, 1281–1304 (1983)
5. Dybvig, P.H., Ross, S.A.: Yes, the APT is testable. J. Finance 40, 1173–1188 (1985)
6. Brownn, S.J., Weinstein, M.I.: A new approach to testing asset pricing models: the bilinear paradigm.

J. Finance 38(3), 711–743 (1983)
7. Kabanov, Yu.M., Kramkov, D.O.: Large financialmarkets: asymptotic arbitrage and contiguity. Theory

Probab. Appl. 39, 182–187 (1994)
8. Kabanov, Yu. M., Kramkov, D.O.: Asymptotic arbitrage in large financial markets. Finance Stoch. 2,

143–172 (1998)
9. Klein, I.: A fundamental theorem of asset pricing for large financial markets. Math. Finance 10, 443–

458 (2000)
10. Klein, I., Schachermayer, W.: Asymptotic arbitrage in non-complete large financial markets. Theory

Probab. Appl. 41, 780–788 (1996)
11. Ali Khan, M., Sun, Y.: Exact arbitrage, well-diversified portfolios and asset pricing in large markets.

J. Econ. Theory. 110, 337–373 (2003)
12. Rásonyi, M.: On optimal strategies for utility maximizers in the arbitrage pricing model. Int. J. Theor.

Appl. Finance 19(07), 1650047 (2016)
13. Rásonyi, M.: Maximizing expected utility in the arbitrage pricing model. J. Math. Anal. Appl. 454,

127–143 (2017)
14. Cuchiero, C., Klein, I., Teichmann, J.: A new perspective on the fundamental theorem of asset pricing

for large financial markets. Theory Probab. Appl. 60, 561–579 (2016)
15. Bensaid, B., Lesne, J-Ph, Pagés, H., Scheinkman, J.: Derivative asset pricing with transaction costs.

Math. Finance 2(2), 63–86 (1992)
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