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ABSTRACT 

Mosaic loss of the Y chromosome (mLOY) is the most common somatic event in men, strongly 
associated with aging and various health conditions. Current methods for detecting mLOY 
primarily rely on DNA genotyping arrays. Here, we present MosCoverY, a novel method for 
estimating mLOY from NGS sequencing data that can be applied to both exome and genome 
sequencing. MosCoverY addresses the challenges posed by the structure of the Y 
chromosome by focusing on single-copy genes and normalizing their coverage against 
autosomal exons matched by length and GC content. We validated MosCoverY using data 
from 212,062 male participants in the UK Biobank, comparing its results to those obtained 
using genotyping- or whole genome sequencing-based methods. MosCoverY identified mLOY 
in 5.6% of men, demonstrating performance that was comparable to the other methods. 
MosCoverY also replicated known associations between mLOY, age, smoking, all-cause 
mortality, and germline genetic loci, showing the strongest associations in many cases. 
MosCoverY offers a valuable tool for detecting mLOY from exome data in population-scale 
studies.  
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INTRODUCTION 
Somatic mutations are non-inheritable changes in the DNA of somatic cells leading to 
genetic mosaicism. These mutations are particularly well-described in blood, where 
they can cause clonal hematopoiesis (1–7). The most commonly occurring somatic 
event in leukocytes of male individuals is the mosaic loss of chromosome Y (mLOY) 
(8–12). The prevalence of mLOY increases with age and is associated with various 
health-related conditions, including all-cause mortality (13, 14), hematological cancer 
(15–18), solid tumors (14, 19), cardiovascular diseases (8, 9, 20, 21), and Alzheimer’s 
disease (15, 22). 

mLOY can be detected using targeted quantitative PCR assay, genotyping arrays or 
next-generation sequencing. The most commonly used methods utilize genotyping 
array data to detect the deviation in the intensity probe values on the Y chromosome 
(chrY). One such approach, mLRRY, calculates the median log-R ratio (mLRR, 
normalized intensity) in the male-specific part of the chrY (MSY), excluding 
pseudoautosomal regions (PARs), and considers values below a chosen threshold as 
evidence of mLOY (11, 19). Another method, PAR-LOY, uses long-range phasing 
information in the PARs to evaluate the allelic intensities imbalance in heterozygous 
sites between sex chromosomes (23).  

It is also possible to estimate mLOY from whole genome sequencing (WGS) data 
using tools developed for copy-number variant calling in tumor cells, even if a normal 
sample is not available. One example is Control-FREEC, which calculates the ploidy 
of genomic regions from coverage data, taking into account GC content and genome 
mappability information (24, 25). Although the mLOY estimation from Control-FREEC 
can be of high quality, WGS data are not always available and computationally 
expensive to work with. Control-FREEC can be run on exome sequencing data, but 
this requires a matched normal sample, similar to other copy-number callers like 
FACETs (8, 26). 

Currently, no method is available to call mLOY from exome sequencing data that can 
be applied to studies with only one sample per individual. Calling mLOY from exome 
sequencing data presents several challenges due to limited coverage of the Y 
chromosome (exome capture kits target mainly coding regions), biases in GC content 
that can affect coverage estimation, and the presence on chrY of repetitive sequences 
and regions highly similar to the X chromosome (27, 28). 

Here, we propose an approach to estimating mLOY from exome sequencing data that 
overcomes these challenges. We also show that our method can be directly used on 
genome sequencing data. We demonstrate its validity by comparing it with two 
methods based on genotyping array data - mLRRY and PAR-LOY, as well as with one 
WGS-based method - Control-FREEC.  
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METHODS 

Study participants 

We selected participants from the UK Biobank (UKB) who satisfied the following 
criteria: male genetic and self-reported sex, absence of sex aneuploidy, and 
availability of exome sequencing data. The UKB is a large, prospective cohort study 
consisting of approximately 500,000 participants from the United Kingdom, with 
extensive phenotypic, genetic, and imaging data collected (29, 30). We limited the 
choice of participants to those included in the Loh et al. study, which identified all 
mosaic chromosomal alterations, including loss of the Y chromosome, and returned 
the data to the UKB (Return #2062) (31). After applying all the filters, the total sample 
size was 212,062 individuals. For survival analyses and genome-wide association 
studies (GWAS), we included only individuals of European ancestry, reducing the 
sample size to 178,073.  

Selecting chromosome Y exons from the exome capture kit 

Due to the structure of the MSY, we restricted the choice of genes that were used to 
calculate chrY coverage. We excluded genes in the ampliconic part of chrY as their 
copy number can vary a lot between individuals, and genes in X-transposed regions 
due to their high similarity to the X chromosome sequences, which could affect 
coverage estimation. We included only single-copy genes in the X-degenerate regions 
of MSY (as described in (27)), resulting in 13 genes (SRY, RPS4Y1, ZFY, AMELY, 
TBL1Y, USP9Y, DDX3Y, UTY, TMSB4Y, NLGN4Y, KDM5D, EIF1AY, RPS4Y2) and 
184 exons. We further filtered out exons that were outliers by coverage in individuals 
without evidence of mLOY as identified by the PAR-LOY method, reducing the number 
of exons to 173 (out of 45 genes with 578 exons captured by the exome kit used by 
UKB; selected exons are listed in Supplementary table 1). 

Selecting autosomal exons for normalization 

For each selected exon on chrY, we found 100 autosomal exons matched by GC 
content and length (Fig. S1). These autosomal exons were selected from the regions 
of the genome that are rarely gained or lost in blood (less than 10 gains and losses in 
the UKB database) (32; UKB Return #2062) and matched by propensity score using 
the MatchIt R library. All matched exons are listed in Supplementary table 2. 

Computing normalized chromosome Y coverage 

We calculated the median coverage of each of the selected exons (on chrY and 
autosomes) with the mosdepth tool from exome alignment files in .cram format (33). 
We normalized the median coverage of each selected chrY exon to the median 
coverage of its 100 matched autosomal exons, and the median of the results was an 
individual-level estimate of normalized chrY coverage (Figure 1A). Normalization to 
matched autosomal exons significantly reduced noise and improved correlation with 
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other methods compared to normalization to the median coverage of all exons on 
chromosome 1 (Fig. S2). The distribution of median chrY coverage in the population 
was then rescaled to 0.5, the expected value given chrY's haploid nature. 

Defining binary mLOY threshold 

We defined a binary trait of mLOY by setting the threshold at Q1-1.5*IQR of the scaled 
chrY coverage distribution. In the UKB, this threshold was 0.44, corresponding to 
approximately 12% of cells with mLOY (using formula 1).  

Converting scaled normalized chrY coverage to cell fraction 

We converted the scaled normalized coverage of chrY to a fraction of cells with mLOY 
using the following formula (Fig. S3):  

(1) 𝑪𝑭 = $
𝟎, 𝒊𝒇	𝒄𝒐𝒗𝒀 ≥ 𝟎. 𝟓																																	
−𝟐 ∗ 𝒄𝒐𝒗𝒀 + 𝟏, 𝒊𝒇	𝟎 < 𝒄𝒐𝒗𝒀 < 𝟎. 𝟓
𝟏, 𝒊𝒇	𝒄𝒐𝒗𝒀 ≤ 𝟎,																																				

 

where CF - fraction of cells with mLOY; covY - normalized scaled coverage of the Y 
chromosome. 

Other mLOY estimation methods 

To evaluate the performance of our method, we compared it to state-of-the-art 
methods used to estimate mLOY from genotyping or whole genome sequencing data.  

The first method uses the median log-R ratio over genotyping probes on MSY 
(mLRRY). We calculated mLRRY over 691 SNP probes in MSY and converted 
mLRRY to the fraction of cells with mLOY using the formula (25):  

(2) 𝑪𝑭 = 𝟏𝟎𝟎 ∗ (𝟏 − 𝟐𝟐∗𝒎𝑳𝑹𝑹𝒀), 

where CF - fraction of cells with mLOY; mLRRY - median log-R ratio over genotyping 
probes on MSY. 

We used the threshold of mLRRY < -0.076 to define the binary mLOY trait, 
corresponding to 10% of cells with mLOY as previously published (13)). 

The second method, PAR-LOY, uses genotyping array probe intensity to define allelic 
imbalance in heterozygous sites of PARs of chrY (Thompson et al. 2019). The PAR-
LOY estimate is available as part of the UKB return #2062 and provides both the binary 
mLOY estimates and the fraction of cells with mLOY (which is less than 10% for the 
majority of people).  

For a random subset of 360 individuals, we estimated relative chrY coverage with 
Control-FREEC software (24, 34). Control-FREEC segments the genome and 
identifies copy-number alterations using GC-content normalization and genome 
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mappability information. We ran it on WGS alignment files and calculated the median 
ratio (normalized coverage) across all windows, excluding windows with a median ratio 
of more than one as they likely represent repetitive regions of chrY and would add 
noise to the mLOY estimation. To convert it to the cell fraction we used formula 1, as 
for MosCoverY. 

Epidemiological validation: Association of mLOY with age and smoking, 
as well as with all-cause mortality 

To validate our method, we assessed the associations of mLOY with age and smoking 
status. We fitted a logistic regression model for the binary estimates of mLOY and a 
linear regression model for the fraction of cells with mLOY. We built separate models 
for each mLOY estimation method, fitting age at the first visit to the assessment center 
and ever-smoking status in the same model. We used the glm function with binomial 
family and lm function from R statistical software (v.4.1.1) to fit logistic and linear 
models, respectively. 

We also performed a survival analysis of all-cause mortality, modeling time to death 
using multivariable-adjusted Cox proportional hazard regression with age at the first 
visit to the assessment center, smoking status (current, previous, or never), and 
genetic principal components as covariates. Time interaction terms for age and 
smoking status were included to satisfy the proportional hazards assumption of the 
Cox model. The target variable was the binary mLOY trait estimated by the various 
methods. We used the coxph function from the survival package of R statistical 
software (v.4.1.1). 

Genetic validation: Genome-Wide Association Study 

For the Genome-Wide Association Study (GWAS) we focused on men of European 
ancestry. We filtered out variants with MAF less than 1%, minor allele count less than 
20, missing call frequencies greater than 0.1, and strong Hardy-Weinberg equilibrium 
deviation (p<1e-15). Genetic principal components (PCs) for the set of European-
ancestry men were calculated with plink2 on an LD-pruned set of 149,605 SNPs using 
the snpgdsLDpruning function from the SNPRelate R package. 

We performed genetic association testing with regenie (Mbatchou et al., 2021) in two 
steps: whole-genome ridge regression to reduce the dimension of genetic data (using 
N=611,713 variants), followed by association testing with the larger set of variants 
(N=9,607,831 imputed variants). Covariates included age, ever-smoking status, 
genotyping batch, WES release, and 10 genetic PCs. 

We identified statistically independent signals with GCTA-COJO (Genome-wide 
Complex Trait Analysis multi-SNP-based conditional & joint association analysis using 
GWAS summary data) (35, 36). We used a p-value threshold of 5e-8 to identify 
genome-wide significant SNPs, considering SNPs more than 1Mb apart to be in 
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linkage equilibrium and setting the collinearity threshold between SNPs to less than 
0.9. 

RESULTS 

Estimation of mLOY from Exome sequencing data 

We developed a novel approach that we called MosCoverY (mosaic Loss of Y 
chromosome from NGS sequencing coverage data) to estimate mLOY primarily from 
exome sequencing data. MosCoverY uses alignment files (in .bam or .cram format) 
and performs several steps to estimate the normalized median coverage of chrY. Key 
features of MosCoverY include focusing on single-copy genes on the Y chromosome 
and normalizing the coverage of exons in these genes to autosomal exons matched 
by GC content and length. This approach provides an individual-level estimate of 
normalized median chrY coverage, which is then scaled to match the expected 
population median of 0.5 (see Methods for details). Using this normalized median 
coverage, we statistically derive a binary mLOY estimate as Q1-1.5*IQR, so that 
individuals with normalized scaled coverage below this value are classified as having 
mLOY (Fig. 1A). 

The distribution of normalized scaled chrY coverage is shown in Figure 1B. The 
individuals with normalized scaled chrY coverage higher than 0.6 and lower than 0 
were excluded. Using the binary threshold of 0.44 (derived as Q1-1.5*IQR), 
MosCoverY identified 11,897 (5.6%) men with mLOY. We converted the scaled 
normalized coverage of chrY to a fraction of cells with mLOY using Formula 1 
(Methods). The mean fraction of cells with mLOY estimated by MosCoverY in all UKB 
participants was 2.8% (including individuals without mLOY and hence with 0% of cells 
with mLOY). 

In comparison, binary estimates based on mLRRY and PAR-LOY identified 11,510 
(5.4%) and 21,462 (10.1%) men with mLOY, respectively. Across all three methods, 
mLOY was identified in 6,113 men (22.3% of all mLOY cases, Figure 1C). Unique to 
MosCoverY, 1,252 men (4.6% of the union of all mLOY cases) were identified, 
compared to 3,296 (12%) and 11,440 (41.8%) identified solely by mLRRY and PAR-
LOY, respectively. The normalized scaled coverage of chrY was on average lower for 
mLOY cases identified by MosCoverY only compared to those identified by either 
mLRRY or PAR-LOY or both, but it was higher compared to cases identified by 
MosCoverY together with either mLRRY or PAR-LOY or both (Fig. S4). 

The mean fraction of cells with mLOY estimated by mLRRY and PAR-LOY was 2.4% 
and 1.3%, respectively, both lower than the 2.8% estimated by MosCoverY. The 
fraction of cells with mLOY estimated by MosCoverY showed a strong correlation with 
both mLRRY and PAR-LOY estimates (Pearson’s correlation coefficient > 0.8; Figures 
1C and 1D), which was higher than the correlation between mLRRY and PAR-LOY 
estimates (Pearson’s correlation coefficient = 0.75; Figure 1F). We also estimated the 
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fraction of cells with mLOY from WGS data with the Control-FREEC tool (24, 34) for a 
subset of 360 randomly chosen individuals. The MosCoverY-derived fraction of cells 
with mLOY showed better correlation with Control-FREEC-derived cell fraction as 
compared to mLRRY and PAR-LOY (Figure 1G-I). 

Although our primary goal was to develop a method for identifying mLOY from exome 
sequencing data, MosCoverY can also be applied directly to WGS data. We 
demonstrated this by applying MosCoverY to a subset of 4,200 randomly selected 
individuals with genome sequencing data. The normalized coverage of chrY estimated 
from exome and genome sequencing showed a strong correlation (Pearson’s 
correlation = 0.9). Furthermore, 74% of individuals identified as mLOY cases were 
consistent between exome and genome sequencing (Fig. S5). Additionally, exome 
and genome sequencing data can be combined for mLOY identification. However, in 
this case they should be scaled separately before combining to define the mLOY 
threshold, rather than being combined prior to scaling (compare Fig. S6A and Fig. 
S6B). mLOY estimated from WGS data with MosCoverY also correlated well with 
mLOY estimated from WGS data with Control-FREEC in a subset of 360 individuals 
(Pearson’s correlation = 0.72 for normalized scales coverage and 0.82 for the fraction 
of cells with mLOY, Fig. S7). 

Epidemiological validation of MosCoverY 

In the absence of a gold-standard method to assess the presence of mLOY, we aimed 
at validating the performance of our approach by examining and comparing the 
strength of previously reported associations between mLOY and factors such as age, 
smoking, all-cause mortality, and genetic loci. 

The prevalence of mLOY in the UKB, as estimated by all three methods, significantly 
increases with age (Fig. 2A, Table 1). While the PAR-LOY method indicated the 
highest proportion of individuals with mLOY (around 27% at age 70), the strongest 
associations with age and smoking, as well as the best goodness of fit (Residual 
deviance), were observed with the MosCoverY estimate according to logistic 
regression analyses (Table 1). 

 

Table 1 - Association of mLOY binary trait estimated by three methods with age in 
smoking 

 Beta SE P value 
Residual 
deviance 

Association with age  

MosCoverY 0.17 0.002 <1e-300 7.9e+04 
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Table 1 - Association of mLOY binary trait estimated by three methods with age in 
smoking 

PAR-LOY 0.14 0.001 <1e-300 1.2e+05 

mLRRY<-0.076 0.12 0.002 <1e-300 8.1e+04 

Association with ever smoking status  

MosCoverY 0.48 0.02 2.7e-96 7.9e+04 

PAR-LOY 0.32 0.02 2.2e-77 1.2e+05 

mLRRY<-0.076 0.37 0.02 7.4e-61 8.1e+04 

 

The fraction of cells with mLOY was also positively associated with age and smoking 
(Fig. 2B, Table 2), with the MosCoverY estimates again showing the strongest 
association and highest R-squared value. 

 

Table 2 - Association of fraction of cells (CF) with mLOY estimated by three methods 
with age in smoking 

 Beta SE P value 
Adjusted R-
squared 

Association with age  

MosCoverY CF 0.2 0.002 <1e-300 0.065 

PAR-LOY CF 0.13 0.001 <1e-300 0.048 

mLRRY CF 0.13 0.001 <1e-300 0.045 

Association with ever smoking status  

MosCoverY CF 0.7 0.03 2.1e-116 0.065 

PAR-LOY CF 0.47 0.02 8.0e-90 0.048 

mLRRY CF 0.44 0.02 3.6e-81 0.045 
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We further assessed the previously reported association of mLOY with all-cause 
mortality (37). Using a Cox proportional hazards model, we evaluated time to death 
with mLOY binary traits as explanatory variables, adjusting for age, smoking status, 
and genetic principal components. Binary mLOY estimates from MosCoverY and 
mLRRY were significantly associated with all-cause mortality, with mLRRY showing a 
slightly stronger association. In contrast, the PAR-LOY estimates were not associated 
with all-cause mortality, likely because most mLOY carriers identified by PAR-LOY 
had mLOY in fewer than 10% of cells. Higher fractions of cells with mLOY are known 
to be associated with a greater risk of death (20). When defining the binary mLOY trait 

by a higher cell fraction (≥20%), we observed stronger associations with all-cause 

mortality across all three methods, with MosCoverY showing the strongest association 

(Fig. 2C). 

In addition, we compared the association of mLOY with age and smoking across 
different groups of mLOY cases identified by one, two, or all three methods (as 
depicted in Fig.1C). The intersection of mLOY cases identified by all three methods 
(N=6,113) showed the strongest association with both age and smoking. Among the 
cases identified by two methods, the group identified by MosCoverY and mLRRY 
(N=1,362) showed the next strongest association. In the groups identified by only one 
of the methods, MosCoverY (N=1,252) demonstrated the strongest association with 
age and smoking, followed by PAR-LOY (N=11,440; Supplementary Table 3). When 
assessing association of mLOY with all-cause mortality in the same groups (but in the 
subset of European ancestry individuals), the only significant association was in the 
group of mLOY cases identified by all three methods (Figure S8). 

Genetic validation of MosCoverY 

Previously, many genetic loci have been identified as associated with mLOY, 
estimated with mLRRY and PAR-LOY, through GWAS (10, 23). To better compare the 
strength of these known genetic associations for three mLOY estimates, we repeated 
GWAS on the set of 178,073 UKB participants of European ancestry for mLOY traits 
estimated by mLRRY and PAR-LOY, and compared the results to MosCoverY. We 
performed separate GWAS for the binary mLOY trait (Fig.2D) and for the fraction of 
cells with mLOY (Fig.2E). 

We identified 36, 50 and 23 independent genetic signals for binary mLOY calls from 
MosCoverY, PAR-LOY and mLRRY, respectively. A total of 31 loci were shared 
between MosCoverY and PAR-LOY; 23 between MosCoverY and mLRRY and 22 
between PAR-LOY and mLRRY. The strongest association identified by three 
methods (rs56349439 at chr14:101168739) had the smallest p-value for MosCoverY. 
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All SNPs identified as independently associated are listed in Supplementary tables 4-
9. 

We identified 59, 35, and 38 loci associated with the fraction of cells with mLOY, as 
estimated by MosCoverY, PAR-LOY, and mLRRY, respectively: 34 were shared 
between MosCoverY and PAR-LOY, 36 betweenMosCoverY and mLRRY, and 32 
between PAR-LOY and mLRRY. Most of the genetic signals associated with the 
fraction of cells with mLOY intersected with those associated with the binary mLOY 
trait, and most showed the strongest associations for MosCoverY estimates (Fig.2E). 

DISCUSSION 
In this study, we developed MosCoverY, a novel approach to estimate mosaic loss of 
the Y chromosome (mLOY) from exome and genome sequencing data. This method 
provides an individual-level estimate of normalized median chrY coverage, which is 
used to derive a binary mLOY estimate and a quantitative measure of the fraction of 
cells with mLOY. We demonstrated the robustness of the MosCoverY method by 
comparing it to two widely used mLOY estimation methods based on genotyping array 
data - mLRRY and PAR-LOY. Our results demonstrate that MosCoverY provides an 
accurate and biologically meaningful estimate of mLOY, successfully overcoming the 
challenges of the Y chromosome structure by accounting for gene copy number, 
homology with X chromosome, and GC-bias. 

MosCoverY showed a strong correlation with estimates from mLRRY and PAR-LOY. 
The highest number of people with mLOY was identified by PAR-LOY, which can be 
explained by the relatively low threshold for the fraction of cells with mLOY used by 
default by this method: 2% vs 10% and 12% for mLRRY and MosCoverY, respectively.  

Defining the binary mLOY phenotype requires selecting a threshold, which we 
approached in a statistically defined manner. However, an alternative approach 
involves setting an arbitrary threshold based on a predefined fraction of cells with Y 
chromosome loss (Fig. S5). As the threshold increases, the proportion of individuals 
with mLOY identified by all three methods rises, relative to the total number of mLOY 
cases identified by any method. Setting a higher threshold for the fraction of cells with 
mLOY may be appropriate in certain contexts, as a higher fraction of cells affected by 
mLOY is likely to have a more pronounced impact on health-related outcomes (like all-
cause mortality in Fig 2C). 

The fraction of cells with mLOY also correlated well between three methods, with the 
highest correlation coefficient between MosCoverY and PAR-LOY and the lowest for 
PAR-LOY and mLRRY (Fig. 1D-E). MosCoverY also showed the highest correlation 
with Control-FRECC-estimated fraction of cells with mLOY from WGS data (Fig. 1G-
I). Despite a good correlation, the MosCoverY estimated cell fraction was on average 
higher compared to the two other methods, which can mean either the overestimation 
of the fraction of cells with mLOY by MosCoverY or its underestimation by PAR-LOY 
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and mLRRY. Both possibilities cannot be confidently ruled out. One of the steps in 
MosCoverY is the rescaling of the normalized chrY coverage to match the median of 
the distribution to the expected value of 0.5 which might be a source of overestimation. 
The argument against it is the fact that the correlation of the fraction of cells with mLOY 
with other methods when it’s estimated from rescaled coverage values improves 
compared to cell fraction estimated from the original normalized coverage of chrY.  

We also validated MosCoverY by replicating known associations between mLOY and 
various clinical, epidemiological and genetic measurements. As expected, the 
prevalence of mLOY showed a massive positive correlation with age, and significant 
associations were observed with smoking status and all-cause mortality. These 
findings are consistent with previous studies, underscoring the relevance of our 
method. Notably, MosCoverY's estimates showed the strongest associations with age 
and smoking, suggesting excellent sensitivity and robustness. Additionally, 
MosCoverY's ability to identify germline genetic loci associated with mLOY, often 
showing stronger associations (especially for quantitative fraction of cells with mLOY 
rather than binary mLOY trait), further supports its accuracy and utility in genetic 
studies. 

The limitations of the MosCoverY method include the requirement of high-quality 
exome sequencing data, and its accuracy may be affected by sample-specific 
variations in sequencing depth and quality. Additionally, while MosCoverY effectively 
normalizes coverage against matched autosomal exons, discrepancies in GC content 
or other biases could still impact the results. Importantly, the exon matching procedure 
may need to be repeated if another exome capture kit was used to generate the 
sequencing data. Future improvements could focus on refining the normalization 
process and validating the method across diverse populations and sequencing 
platforms. Finally, MosCoverY cannot be used to estimate mLOY in an individual 
sample, because the rescaling procedure requires the application of the method to 
multiple exomes to estimate the population median and the binary mLOY threshold. 

MosCoverY can be directly applied to cohorts with exome and genome sequencing 
data, offering a valuable tool for large-scale epidemiological studies of mLOY, the most 
common type of somatic, age-related DNA change. mLOY is part of a bigger group of 
somatic DNA changes called mosaic chromosomal alterations (mCAs). Apart from 
mLOY, they include losses and gains of large parts or whole chromosomes, as well 
as copy-neutral loss of heterozygosity. All mCAs increase in prevalence with age and 
many have been shown to be associated with clonal hematopoiesis and various 
health-related conditions such as hematological cancers (38), solid tumors, diverse 
types of infections (4), and dementia (39). 
 
Understanding the prevalence and impact of mLOY can provide insights into age-
related diseases and male-specific health risks, and potentially help to explain the 
longevity gap between men and women as was proposed in several studies (14, 40, 
41). 
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FIGURES 
Figure 1. Description of the MosCoverY method and comparison with mLOY 
results obtained with mLRRY and PAR-LOY. 

A - One of the main principles of MosCoverY is a normalization of median coverage 
of selected chrY exons to a set of autosomal exons matched on GC content and 
length. Matched groups are represented by different shades of green color. The 
individual-level estimation of chrY coverage corresponds to the median across all 
normalized chrY exon coverage values. 

B - The distribution of normalized scaled chrY coverage in the UKB. Each dot 
represents an individual. The median of the distribution was scaled to 0.5 (red line), 
and the threshold to define mLOY was derived as Q1-1.5*IQR and is equal to 0.44 
(dashed black line). All individuals with normalized scaled chrY coverage below the 
threshold are considered as mLOY cases.  

C - Venn diagram comparing MosCoverY results with two other mLOY calling methods 
- PAR-LOY and mLRRY - with an indication of the total number of individuals with 
mLOY and their proportion according to each of the methods. 

D, E, F - Correlation of the fraction of cells with mLOY derived from each of the three 

methods - MosCoverY vs. PAR-LOY, MosCoverY vs. mLRRY, and mLRRY vs. PAR-

LOY. The Black dashed line represents a diagonal. (corr - Pearson’s correlation 

coefficient, * - p-value ≤ 0.001). 

G,H,I - Correlation of the fraction of cells with mLOY derived from MosCoverY, mLRRY 

and PAR-LOY with cell fraction estimated from WGS with Control-FREEC for a subset 

of 360 randomly chosen individuals.The Black dashed line represents a diagonal. (corr 

- Pearson’s correlation coefficient, * - p-value ≤ 0.001). 
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Figure 2. Biological validation of MosCoverY method. 

A - The prevalence of binary mLOY estimated by three methods increases with age. 

B - The fraction of cells containing mLOY estimated by three methods increases with 
age. 

C - Association of binary mLOY trait with all-cause mortality estimated by Cox 
proportional hazard model adjusted for age and smoking status. CF - fraction of cells 
with mLOY; HR - hazard ratio. 

D, E - Manhattan plot showing genetic loci associated with binary mLOY trait (D) and 
fraction of cells with mLOY (E). Each dot represents the genomic position, and the 
black horizontal dashed line represents a significant p-value threshold (5e-8). 
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