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Multiple Relaxation Time Lattice Boltzmann Models for Multigrid Phase-Field
Segmentation of Tumors in 3D Ultrasound Images∗

Khac L. Nguyen† , Mohamed M. Tekitek† , Philippe Delachartre‡ , and Michel Berthier†

Abstract. We address the problem of tumor segmentation in 3D ultrasound images. Although many studies
have examined this subject, there is still a need to improve segmentation algorithms so as to obtain
the best estimation of tumor volumes. In this paper we propose a new approach based on a variational
formulation and a multigrid implementation of a multiple relaxation time lattice Boltzmann scheme.
The data attachment term, resp., the regularization term, of the energy to be minimized is given by
a log-likelihood, resp., the Allen–Cahn reaction diffusion equation. We investigate the stability and
accuracy of the proposed scheme with D3Q7 and D3Q19 lattices. Specifically, we show how to choose
the relaxation parameters to obtain a fourth-order exact scheme which is shown to be much more
relevant than a single relaxation time Bhatnagar–Gross–Krook scheme. Experiments conducted on
images with ground truth given by a dermatologist show that the proposed algorithm significantly
increases the Dice index (by 10%) and the sensitivity (by 25%) compared with a level set algorithm
and is consequently a good alternative to investigate the problem of volume underestimation.
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nonparametric estimation, multigrid, 3D ultrasound images, tumor segmentation
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1. Introduction. This paper addresses the problem of tumor segmentation in 3D ultra-
sound images. Practically speaking, there are two main difficulties that need to be managed.
The first one stems from the intrinsic characteristics of the images, namely, their size (about
300×299×832 voxels), the fact that the contrast is low, and the presence of speckle noise. The
second one comes from the nature of the object to be segmented and the precision required
to estimate the volume. Many contributions on this subject emphasize approaches based on
graph cut [25] and level set methods [5], [37]. In particular, the latter are well adapted to
handle the variability of tumor shapes and speckle patterns. They also provide time-efficient
algorithms. However, level set segmentations suffer from one major defect for concrete medi-
cal applications. It appears that they tend to underestimate the volume of tumors and that
they lack accuracy regarding the detection of the tumor boundary. One of the main objectives
of this study was to discuss a new model, from both theoretical and numerical viewpoints,
that improves the performance of the segmentation in terms of the Dice index, sensitivity,
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and mean average distance (MAD). This model is based on a variational formulation whose
energy is given by a data attachment term and a regularization term. Following [37], the data
attachment term is chosen to maximize the log-likelihood distance between intensity distri-
butions inside and outside the region to be segmented. Note that we use a nonparametric
estimation based on Parzen estimates [32]. This choice is motivated by arguments involving
the specific characteristics of high-frequency images of the skin. It is shown in [37] and [36]
that the region surrounding a skin tumor is composed of several tissues of different types
that create heterogeneity in the medium. This phenomenon makes use of classical parametric
distributions, such as Rayleigh, Rice, Nakagami, or K, inadequate [12]. The main difference
from the model studied in [37] is the choice of the regularization part of the energy. The
regularization term that we propose aims at creating a smooth diffuse interface of a given
size ε that can be thought of as a fuzzification of the boundary sought. A natural choice is
the Cahn–Hilliard energy that Γ-converges, when ε tends to 0, to the area of the boundary
[4]. The L2 gradient flow of the Cahn–Hilliard energy is the Allen–Cahn reaction diffusion
equation [1], which is known to be a relevant model to describe phase transitions in various
physical or chemical applications [20], [17]. Despite its popularity and efficiency in multiphase
fluid dynamics, the Allen–Cahn equation is still little used in applications regarding image
processing. The reader may refer, for instance, to [28], [18], and [44] for examples of segmen-
tation algorithms based on this equation or to [2] for examples of inpainting models based on
the Cahn–Hilliard energy. The experiments discussed in this paper show that the flexibility
introduced by the diffuse interface makes it possible to gain accuracy in the detection of the
boundary. A significant part of this work is dedicated to the numerical implementation of
the gradient flow of the variational formulation mentioned above. We investigate the per-
formances of various lattice Boltzmann schemes [43]. Lattice Boltzmann models (LBMs) are
widely used to simulate solutions of physical phenomena, e.g., fluid dynamics, because of their
easy parallel implementation; see, for instance, [33]. As applications to image processing, let
us mention the contributions of [40], [42] for level set implementations and [9], [23] for denois-
ing and contour detection. One has to note that the use of LBMs in image processing can be
problematic. These models are based on time and velocity discretizations of the Boltzmann
equation on lattices. The consistency of the discretizations and the stability of the schemes are
based on the conservation of several moments which, although they are significant in physical
problems, appear to have no real meaning in image processing. This explains why the de-
sign of LBM schemes in image processing is still an open question, especially with statistical
estimations. The major contribution of this work is the study of the efficiency of multiple
relaxation time (MRT) LBM schemes using D3Q7 and D3Q19 lattices [13], [14]. We show in
particular how to choose the relaxation parameters to obtain fourth-order exact schemes, the
stability of which is numerically established using Von Neumann analysis. These schemes,
which are shown to be much more relevant than single relaxation time Bhatnagar–Gross–
Krook (BGK) schemes [3], [8], [35] are good examples of the capability of the MRT method to
gain accuracy and stability, even in a nonphysical context. Concerning applications, we have
conducted experiments on synthetic images as well as on images from a clinical data set. The
latter were acquired at the Melanoma Skin Cancer Clinic, Hamilton Hill, Australia. They
measure 300× 299× 832 voxels, the last number corresponding to depth, with a lateral, resp.,
depth, resolution of 50, resp., 25 µm. They were chosen to be representative of the diversity
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of clinical cases and were manually segmented by a dermatologist. For each one of the 3D
images, 150 ground truth contours were drawn in the (x, z)-planes (z is the vertical axis) so
as to obtain a 3D volume by interpolation. Comparisons with the level set approach, ADLL,
of [37] show that the proposed algorithm significally increases the Dice index (by 10%) and
sensitivity (by 25%). It is consequently a good alternative approach to the problem of volume
underestimation. The main contributions of this work can be summarized as follows.

– We designed a MRT LBM scheme of a multigrid variational formulation that combines
statistical estimations and a phase-field model. To the best of our knowledge, this is the first
time that such a scheme has been proposed for image segmentation.

– A rigorous analysis of the consistency and stability of the scheme was conducted. It was
shown that, even in a nonphysical context, the MRT approach is a good strategy to obtain
relevant performances and leads to schemes that perform much better than BGK schemes.

– Comparisons with a level set–based algorithm on images of a clinical data set show
that the proposed algorithm is a good solution to investigate the problem of tumor volume
underestimation. Moreover, this algorithm is easy to implement with readily reproducible
simulations.

This paper is organized as follows. Section 2 is devoted to the mathematical description
of the MRT LBM scheme for phase-field segmentation. The analysis of the consistency and
the stability of this scheme is detailed in section 3. In section 4, we propose experiments on
synthetic and clinical images and make comparisons with other approaches. We then draw
conclusions regarding the work presented.

2. MRT LBM scheme for phase-field segmentation. In this section we describe the
lattice Boltzmann schemes based on the variational formulation involving the Cahn–Hilliard
energy. The gradient flow corresponding to this variational formulation is a nonlinear diffusion
equation [6], [7], [41] whose solution evolves in time to minimize the given energy.

2.1. The variational formulation. The energy we consider is given by

(2.1) Eε(u) = −LL(u) +
µ

cW
ECHε ,

where µ and cW are constants (see below). The data attachment term, −LL(u), is minus
the log-likelihood ratio between intensity distributions inside and outside the region to be
segmented [37], and the regularization term ECHε is the Cahn–Hilliard energy

(2.2) ECHε (u) =

∫
Ω

(
ε
|∇u|2

2
+

1

ε
W (u)

)
dx.

Let us elucidate these two terms. In the last equation W is a double-well potential, typically
defined by W (u) = u2(1−u)2/2. It is well known that the L2 gradient flow of the Cahn–Hilliard
energy is the Allen–Cahn reaction diffusion equation

(2.3)
∂u

∂t
=

(
ε∆u− 1

ε
W ′(u)

)
.
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The dynamic of this equation makes the phase-field function u evolve so as to take the two
distinct values, 0 and 1, in each of the phases. This process creates a diffuse interface of size ε
where u varies smoothly from 0 to 1. The gradient flow of ECHε is associated with a geometric
minimization. It can be shown that the Cahn–Hilliard energy Γ-converges, when ε tends to 0,
to the area of the transition interface up to the multiplicative constant cW =

∫ 1
0 W (s)ds, which

depends only on W . We refer, for instance, to [19] and [30] for precise statements concerning
the Γ-convergence of the minimizers of ECHε and this geometric interpretation. We consider
now that the image to be segmented is divided into two regions. The first one, denoted ΩA,
is the region of interest corresponding for instance to phase 1, and the second one, ΩB, is the
background corresponding to phase 0. It is assumed that the intensity distributions in ΩA and
ΩB are different. Following [37], the likelihood hypothesis H1, “the distributions of intensities
I(x) in the two regions ΩA and ΩB are i.i.d. random variables with different distributions
PA and PB,” is compared to the null hypothesis H0, “all intensities in ΩA and ΩB are i.i.d.
random variables from a single distribution PΩA∪ΩB .” The data attachment term of energy
(2.1) is minus the log-likelihood ratio of the two hypothesis, this latter being given by

(2.4) LL = log

(∏
x∈ΩA

PA(I(x))
∏
x∈ΩB

PB(I(x))∏
x∈ΩA∪ΩB

PΩA∪ΩB (I(x))

)
.

We write

(2.5) LL =
∑
x∈ΩA

logPA(I(x)) +
∑
x∈ΩB

logPB(I(x)) + c,

where c is a constant that does not enter into consideration in the minimizing process. In the
following, the distributions PA and PB are estimated using nonparametric Parzen estimates
denoted P̂A and P̂B. According to the asymptotic equipartition theorem [11], we can replace
(1/|ΩA|)

∑
x∈ΩA

logPA(I(x)) with the entropy
∑

I PA(I) logPA(I) (and the same for PB, P̂A

and P̂B). A simple computation shows that

∑
I

P̂A(I) log P̂A(I) =
1

|ΩA|
∑
x∈ΩA

log P̂A(I(x))(2.6)

= DivKL(P̂A||PA) +
∑
I

PA(I) logPA(I),(2.7)

where DivKL denotes the Kullback–Leibler divergence. Consequently, we may consider that
the log-likelihood ratio LL involved in the data attachment term can be written as

(2.8) LL = (SA + SB)

with

(2.9) SA = |ΩA|
∑
I

P̂A(I) log P̂A(I), SB = |ΩB|
∑
I

P̂B(I) log P̂B(I),
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where |ΩA| =
∫

ΩA
dx, |ΩB| =

∫
ΩB

dx and

P̂A(I) =

∫
u2Kσ(I(x)− I)dx∫

u2dx
,(2.10)

P̂B(I) =

∫
(u− 1)2Kσ(I(x)− I)dx∫

(u− 1)2dx
,(2.11)

are Parzen estimates [24], [32], for the distributions PA and PB involving the phase-field
function u. In the last equations, Kσ denotes a Gaussian kernel with standard deviation
σ. The proof of the following proposition (2.1) is very similar to [37, Appendix A]. As in
[37], we assume that Kσ(I(x) − I) ≈ δ(I(x) − I), where δ denotes the Dirac distribution.
This approximation can be justified by the discrete nature of the data: The values of the
Gaussian density are negligible outside the considered voxel if σ is small. We also assume that∫

ΩA
dx ≈

∫
Ω u

2dx because the profile function minimizing the Cahn–Hilliard energy is of the

form s 7−→ 1
2 −

1
2 tanh( s2ε) [10], [39]. These approximations are more and more valid as the

number of iterations increases. We have the following result.

Proposition 2.1. Assuming the above approximations, the gradient flow of energy (2.1) is
given by

(2.12)
∂u

∂t
= 2u log P̂A(I(x)) + 2(u− 1) log P̂B(I(x)) +

µ

cW

(
ε∆u− 1

ε
W ′(u)

)
.

Proof. We compute the functional derivative δSA/δu

δSA
δu

=
δ|ΩA|
δu

∑
I

P̂A(I) log P̂A(I)(2.13)

+|ΩA|
∑
I

δP̂A(I)

δu
log P̂A(I) + |ΩA|

∑
I

δP̂A(I)

δu
.(2.14)

Since |ΩA| =
∫

ΩA
dx '

∫
Ω u

2dx, we have

|ΩA|P̂A(I) =

∫
u2δ(I(x)− I)dx,(2.15)

δ|ΩA|
δu

P̂A(I) + |ΩA|
δP̂A(I)

δu
= 2uδ(I(x)− I),(2.16)

|ΩA|
δP̂A(I)

δu
= 2u[δ(I(x)− I)− P̂A(I)].(2.17)

Consequently, we obtain

δSA
δu

= 2u
∑
I

P̂A(I) log P̂A(I) +
∑
I

2u[δ(I(x)− I)− P̂A(I)] log P̂A(I)(2.18)

+
∑
I

2u[δ(I(x)− I)− P̂A(I)](2.19)
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and

(2.20)
δSA
δu

= 2u
∑
I

δ(I(x)− I) log P̂A(I) + 2u
∑
I

δ(I(x)− I)− 2u
∑
I

P̂A(I).

We also have ∑
I

δ(I(x)− I) log P̂A(I) ' δ ∗ log P̂A(I(x)) = log P̂A(I(x)),(2.21) ∑
I

δ(I(x)− I) ' δ ∗ 1 = 1,(2.22) ∑
I

P̂A(I) = 1.(2.23)

This means that

(2.24)
δSA
δu

= −2u log P̂A(I(x)).

We obtain in the same way

(2.25)
δSB
δu

= −2(u− 1) log P̂B(I(x)).

Flow (2.12) can be written as a diffusion equation with a source term

(2.26)
∂u

∂t
= ∇ · (K∇u) + F,

where the diffusion coefficient K is given by

(2.27) K =
εµ

cW
,

and the source term F reads

(2.28) F = 2u log P̂A(I(x)) + 2(u− 1) log P̂B(I(x))− µ

cW

1

ε
W ′(u).

The dynamic of gradient flow (2.12) makes the energy Eε decrease to a local minimum that
may depends on the chosen initial condition since the underlying optimization problem is
nonconvex. At the same time, the L2 energy ‖u‖2 of the solution of the nonlinear diffusion
equation may increase in time if the initial condition is located inside the tumor. Figure 1
shows results for the synthetic image shown in Figure 4. In this example, the local minimum
is reached after about 70 iterations.
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(a) (b)

Figure 1. (a) Energy Eε as time evolves. (b) L2 energy ‖u‖2 as time evolves.

2.2. LBM schemes. LBMs provide very efficient schemes to simulate solutions of physical
phenomena, e.g., fluid dynamics. The reader may refer, for instance, to [43] for an introduction
and the basic definitions used below. As mentioned before, the major contribution of this
work is the design and the rigorous analysis of 3D implementations of the diffusion equation
(2.26) using LBM. Lattice Boltzmann equations are a special discretization of the Boltzmann
equation. The distribution u depends on space, time, and velocity: u = u(x, v, t). The v-space
is discretized by introducing a finite set of n+ 1 weighted velocity directions ei and associated
distribution functions ui = ui(x, t), which are governed by the discrete Boltzmann equation.
We denote

(2.29) u = [u0, u1, . . . , un]T

with

(2.30) u(x, t) =

n∑
i=0

ui(x, t)

and

(2.31) F = [F0, F1, . . . , Fn]T ,

where Fi = tiF with ti the weight of the lattice in the direction ei [43]. The discrete Boltzmann
equation reads

(2.32) ui(x+ τci, t+ τ) = ui(x, t) + τFi +Qi

for i = 0, 1, . . . , n and where ci = cei with c = δx/τ the speed of the lattice and δx and τ
being the lattice spacing and time step. One usually distinguishes two classes of LBM schemes
depending on the choice of the collision operator Qi, namely, the BGK schemes and the MRT
schemes. In the BGK case, also called the single relaxation time (SRT) case, the collision
operator is given by

(2.33) Qi = ω(ueqi − ui),
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where ω is the relaxation parameter and

(2.34) ueq = [ueq0 , u
eq
1 , . . . , u

eq
n ]T

is the equilibrium distribution, typically the Maxwell distribution. For the problem under
consideration, it is given by [43]

(2.35) ueqi (x, t) = tiu(x, t).

The BGK discrete Boltzmann equation is

(2.36) ui(x+ τci, t+ τ) = (1− ω)ui(x, t) + ωueqi (x, t) + τFi.

Since the weight ti sums to 1, (2.35) expresses the conservation of the moment of order 0. The
idea behind MRT schemes is to perform the collision of the particles in the space of momenta
so that additional relaxation parameters, which can be adjusted to gain accuracy and stability,
can be introduced [13]. The distribution vector u is mapped by means of a linear transform
with matrix M to the n-dimensional vector space of the first n momenta of the distribution

(2.37) m = Mu.

The single parameter ω of the BGK approach is replaced by a diagonal matrix Ŝ that contains
n relaxation parameters. In the same way, the equilibrium distribution ueq is replaced by an
n dimensional vector meq of equilibrium momenta. The collision term reads

(2.38) m̃(x, t) = (I− Ŝ)m(x, t) + Ŝmeq(x, t) + τFmo(x, t),

where Fmo is the expression of the source term in the space of momenta. After the collision,
the streaming process is performed in the initial space,

ũ(x, t) = M−1m̃(x, t),(2.39)

ui(x+ τci, t+ τ) = ũi(x, t).(2.40)

The MRT collision operator is defined by

(2.41) Qu = M−1ŜM(ueq − u).

The numerical experiments we propose in the following are made with D3Q7 and D3Q19
lattices. The choice of these lattices can be justified as follows. The most accurate D3Q27
lattice involves many more computations that do not appear to significantly improve the
results of the segmentation. The D3Q15 lattice is known to introduce numerical oscillations
due to the checkerboard (parity) invariance problem [14].
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2.3. The proposed multigrid scheme. To reduce computation times, a crucial issue for
practical use in a clinical context, and to gain accuracy and stability, we propose a multigrid
version of flow (2.12). The image is broken down into cells of size a whose coordinates
are denoted x̄ with x = ax̄. We denote also ū(x̄, t) = u(x, t), Ωx̄ = {x ∈ x̄} and P̂x̄(I)
the Parzen estimate of the intensity distribution in the volume Ωx̄. Writing (δEε/δū)(ū) =
|Ωx̄|(δEε/δu)(ū), we obtain

(2.42)
∂ū

∂t
= |Ωx̄|

[
δSA
δu

(ū) +
δSB
δu

(ū) +
µ

cW

(
ε∆ū− 1

ε
W ′(ū)

)]
.

The following equation must be satisfied:

(2.43) |Ωx̄|
δSA
δu

(ū) = 2ū

(∑
x∈x̄

log P̂A(I(x))

)
.

The same holds for SB. Using the approximation

(2.44)
∑
x∈x̄

log P̂A(I(x)) =
∑
I

|Ωx̄|Px̄(I) log P̂A(I),

we deduce that

(2.45)
δSA
δu

(ū) = 2ū
∑
I

P̂x̄(I) log P̂A(I)

and

(2.46)
δSB
δu

(ū) = 2(ū− 1)
∑
I

P̂x̄(I) log P̂B(I).

Finally, up to the multiplicative term |Ωx̄|, the multigrid flow reads

(2.47)
∂ū

∂t
= 2ū

∑
I

P̂x̄(I) log P̂A(I) + 2(ū− 1)
∑
I

P̂x̄(I) log P̂B(I) +
µ

cW

(
ε

a2
∆̄ū− 1

ε
W ′(ū)

)
,

where ∆̄ denotes the Laplacian at scale a. As before, this flow can be written as a diffusion
equation with source term

(2.48) F = 2ū
∑
I

P̂x̄(I) log P̂A(I) + 2(ū− 1)
∑
I

P̂x̄(I) log P̂B(I)− µ

cW

1

ε
W ′(ū)

and the diffusion coefficient

(2.49) K =
εµ

a2cW
.

As mentioned in section 2.2, we consider two MRT LBM implementations of this equation.
From now on, we adopt the notations ∆x = δx, ∆t = |Ωx̄|τ , and λ = ∆x/∆t. The first
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implementation involves a D3Q7 lattice with velocity directions and weights defined by

ei =

{
(0, 0, 0) i = 0
(±1, 0, 0), (0,±1, 0), (0, 0,±1) i = 1, 2, . . . , 6

(2.50)

ti =

{
1/4 i = 0
1/8 i = 1, 2, . . . , 6.

(2.51)

The transformation matrix M in (2.37) is

(2.52) M =



1 1 1 1 1 1 1
0 λ −λ 0 0 0 0
0 0 0 λ −λ 0 0
0 0 0 0 0 λ −λ
−6 1 1 1 1 1 1
0 2 2 −1 −1 −1 −1
0 0 0 1 1 −1 −1


.

As already noted in the introduction, we can choose the equilibrium momenta so as not to
take into account physical properties [29]. In this implementation, these equilibrium momenta
are given by

(2.53) meq = (u, 0, 0, 0, αu, 0, 0)T ,

where α is a free parameter. The relaxation matrix we consider is

(2.54) Ŝ = diag(0, s1, s1, s1, s2, s3, s3),

where s1, s2, and s3 are the relaxation parameters. The vector Fmo is defined by

(2.55) Fmo = [F, 0, 0, 0, αF, 0, 0]T .

The second implementation involves a D3Q19 lattice whose velocity directions and weights
are given by

ei =


(0, 0, 0) i = 0
(±1, 0, 0), (0,±1, 0), (0, 0,±1) i = 1, 2, . . . , 6
(±1,±1, 0), (±1, 0,±1), (0,±1,±1) i = 7, 8, . . . , 18

(2.56)

ti =


1/3 i = 0
1/18 i = 1, 2, . . . , 6
1/36 i = 7, 8, . . . , 18.

(2.57)
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The transformation matrix M in (2.37) is
(2.58)

M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8

12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1

0 λ −λ 0 0 0 0 λ −λ λ −λ λ −λ λ −λ 0 0 0 0

0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 0 0 λ −λ 0 0 λ λ −λ −λ 0 0 0 0 λ −λ λ −λ
0 0 0 −4 4 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1

0 0 0 0 0 λ −λ 0 0 0 0 λ λ −λ −λ λ λ −λ −λ
0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1

0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2

0 −4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2

0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0

0 0 0 −2 −2 2 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0

0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1

0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0

0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0

0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 1 −1 1 −1

0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1



.

In this implementation, the equilibrium momenta are given by

(2.59) meq = (u, αu, βu, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T ,

where α and β are free parameters. The relaxation matrix we consider is

(2.60) Ŝ = diag(0, s1, s2, s2, s2, s2, s2, s2, s2, s1, s2, s1, s2, s1, s1, s1, s2, s2, s2),

where s1 and s2 are the relaxation parameters. The vector Fmo is defined by

(2.61) Fmo = [F, αF, βF, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T .

The resulting algorithm is described in (2.1), where we drop the overbar to simplify the
notations. Note that we use the so-called strong splitting [21] when adding the source term in
the moment space. The main loop of the algorithm stops when the L2 distance between two
successive iterations is less than 0.1% (moment evaluation). Finally, the segmented region of
interest is the set where u ≥ 1/2. In the experiments described below we compare this new
implementation with the BGK implementation of [9].

3. Consistency and stability of the LBM MRT multigrid phase-field schemes. We
explain in this section how to choose the various parameters of the MRT schemes described
above in order to gain accuracy and stability. This is a crucial step that may lead to confusion
when comparing LBM implementation strategies. For instance, in [31], the authors cannot
find relevant parameters for MRT schemes. As shown in the following and concerning our
application, MRT schemes perform much better than BGK schemes when parameters are
suitably tuned.
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Algorithm 2.1 LBM MRT multigrid phase-field segmentation.

Initialize u
Compute source term F
Compute source lattice vector F
Compute M, M−1, Ŝ and Fmo
while Tol > 10−3 do

Map to moment space: m(k) = Mu(k)

Add source term (strange splitting): m(k) ←m(k) + ∆tF(k)
mo/2

Evaluate moments
Do collision (moment relaxation): m(k) ← (I− Ŝ)m(k) + Ŝmeq(k)

Add source term (strange splitting): m(k) ←m(k) + ∆tF(k)
mo/2

Map to initial space: u(k) = M−1m(k)

Compute boundary conditions: anti-bounce back conditions

Do streaming: u
(k+1)
i (x+ ciτ, t+ τ)← u

(k+1)
i (x, t)

Update distribution: u = u0 + · · ·+ un
Update source term F
Update source lattice vector Fmo

end while
return u

3.1. Consistency. We follow the approach of [16], where the authors explain how to
adjust the so-called quartic relaxation parameters in order to enforce fourth-order accuracy
for the thermal model and diffusive relaxation modes of the Stokes problem. Recall that the
parameters of the D3Q7 MRT scheme are α, s1, s2, and s3 and that those of the D3Q19 MRT
scheme are α, β, s1, and s2. We drop the overbar to simplify notations.

Proposition 3.1. There exist sets of parameters so that the D3Q7 and D3Q19 MRT diffu-
sion schemes are fourth-order consistent, i.e.,

(3.1)
∂u

∂t
−∇ · (K∇u) = O(∆t4),

and thus free of numerical diffusion.

Proof. We refer to [16] for details and give only the main arguments of the proof. Recall
that λ denotes the ∆x/∆t ratio. Using Taylor expansions, one can show that

(3.2)
∂u

∂t
−∇ · (K∇u) +A∆t2 +B∆t3 = O(∆t4)

with

(3.3) K =
λ2

21
∆t(6 + α)

(
1

s1
− 1

2

)
for the D3Q7 scheme and

(3.4) K =
λ2

57
∆t(30 + α)

(
1

s2
− 1

2

)
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for the D3Q19 scheme. Choosing the following quartic parameters for the D3Q7 scheme

s2 =

6 + α

1− α

(
1

s1
− 1

2

)
+

3α+ 4

12(α− 1)
(

1
s1
− 1

2

) +
1

2

−1

,(3.5)

s3 =

 1

6
(

1
s1
− 1

2

) +
1

2

−1

,(3.6)

we obtain A = B = 0 in (3.2). In the same way as [26], choosing the following quartic
parameters for the D3Q19 scheme

(3.7) s1 =
1

1√
3

+ 1
2

, s2 =
2

1√
3

+ 1
,

we also obtain A = B = 0 in (3.2).

In the experiments described below, we set s = s1 = 2/(1/
√

3 + 1) for the D3Q7 scheme
and s = s2 = 2/(1/

√
3 + 1), β = 0 for the D3Q19 scheme. The values of all the other

parameters are set by the value of the diffusion coefficient K.

3.2. Stability. We propose numerical experiments in order to demonstrate the stability
of the D3Q7 and D3Q19 schemes when dealing with the above choice of quartic parameters.
These experiments are based on the classical Von Neumann analysis in the Fourier space (see
[27]). The initial condition is given by a plane wave of small amplitude with a wave vector
k = (kx, ky, kz), a uniform density u, and possibly a uniform vector velocity V = (Vx, Vy, Vz).
Let

(3.8) f = f0 + δf,

where f0 = (f0, . . . , fq) (q = 6 for the D3Q7 scheme and q = 18 for the D3Q19 scheme)
represents the uniform equilibrium state specified by the uniform and steady density u and
the vector velocity V = (Vx, Vy, Vz) and δf is a small perturbation. In our context, there is no
convection, and therefore we can choose Vx = Vy = Vz = 0. Inserting (3.8) in the the discrete
Boltzamnn equation (2.32) with collision operator (2.41) leads to

(3.9) f(x, t+ ∆t) = Gf(x, t),

where G is the amplification matrix. Let p = ei kx , and let q = ei ky and r = ei kz be the phase
factors. The amplification matrix G of the D3Q7 scheme can be written as the product

(3.10) G = PM−1ΨM,
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(a) (b) (c) (d)

Figure 2. Logarithmic eigenvalues Re[ln(zα)] versus absolute value of wave number |k| for the D3Q7
scheme. (a) The wave number k has azimuthal angle θ = 0 and polar angle φ = 0; (b) θ = 0, φ = π/6; (c)
θ = 0, φ = π/3; (d) θ = π/6, φ = π/6.

where

P = diag(1, p, 1/p, q, 1/q, r, 1/r),(3.11)

Ψ =



1 0 0 0 0 0 0
0 s1 0 0 0 0 0
0 0 s1 0 0 0 0
0 0 0 s1 0 0 0
0 0 0 0 s2 0 0
0 0 0 0 0 s3 0
0 0 0 0 0 0 s3


,(3.12)

and M is given by (2.52). The stability of the scheme is based on (3.9), which is an eigenvalue
problem and therefore requires the determination of the eigenvalues of the amplification matrix
G. These eigenvalues are obtained by numerically solving the following dispersion equation
[27]

(3.13) det(G− z Id) = 0 ,

where z = ei∆t is the time factor. The scheme becomes unstable when one of the eigenvalues
of G is greater than 1 or equivalently when one of the solutions zj , j = 1, 2 . . . , 7, of the
dispersion equation (3.13) satisfies <(ln zj) ≥ 0 [38]. Simulations illustrated in Figure 2 show
that the D3Q7 scheme is effectively stable when considering the quartic parameters chosen.
A similar study can be conducted for the D3Q19 scheme. The results are shown in Figure 3.

4. Experiments. First, we propose expriments on two kinds of synthetic images to empha-
size the importance of the multigrid aspect of the proposed algorithm. We investigated only
the D3Q7 case; similar results can be obtained with the D3Q19 scheme. In terms of stability,
we then compared the above-described MRT schemes (with well-chosen quartic parameters)
with a BGK, SRT scheme using both synthetic and clinical images. Finally, we describe the
results obtained on eight images from a clinical data set with ground truth given by a derma-
tologist and compare these results with those given by the ADLL level set algorithm of [37].
We make use of the four following classical measurements to evaluate the performance of the
segmentation [15], [34]. Let us denote Ω and R the segmented and the reference volumes to
be compared.
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(a) (b) (c) (d)

Figure 3. Logarithmic eigenvalues Re[ln(zα)] versus absolute value of wave number |k| for the D3Q19
scheme. (a) The wave number k has azimuthal angle θ = 0 and polar angle φ = 0; (b) θ = 0, φ = π/6; (c)
θ = 0, φ = π/3; (d) θ = π/6, φ = π/6.

– The sensitivity S is defined by S(Ω, R) = |Ω ∩R|/|R|.
– The precision P is defined by P (Ω, R) = |Ω ∩R|/|Ω|.
– The Dice index is given by the harmonic mean of S and P

(4.1) D(Ω, R) =
2|Ω ∩R|
|Ω|+ |R|

.

– The mean absolute distance makes it possible to determine if the boundary of the
segmented volume fits well with the boundary of the reference volume. Let us denote N∂Ω,
resp., N∂R, the number of voxels in the boundary ∂Ω, resp., ∂R, of the segmented, resp.,
reference, volume. The (symetric) MAD(Ω, R) is defined by

(4.2) MAD(Ω, R) =
∑
x∈∂Ω

d(x|R)

2surf(∂Ω)
+
∑
x∈∂R

d(x|Ω)

2surf(∂R)
.

In this definition, d(x|R) = minx′∈∂R ‖x′ − x‖ is the distance of the point x to the boundary
∂R, and the same replacing R with Ω. The terms surf(∂R) and surf(∂Ω) denote the number
of voxels in the boundaries ∂R and ∂Ω. Note that the MAD is measured in µm. In practice,
it can be useful to adjust the double-well potential W (u) to improve the segmentation. Let
us denote Wθ the potential defined by Wθ(u) = θW (u). A simple computation shows that
the diffusion coefficient K = µε/a2cW of (2.47) becomes K = µε′/a2cW with θε′ = ε and that
the coefficient µ/εcW of W ′(u) becomes µ/ε′θcW . This means that (2.47) is now considered
to involve three parameters, namely, µ, ε, and θ. Choosing µ and K determines ε and the
relaxation parameters of the MRT scheme. In all of the experiments the space step ∆x is
given by ∆x = 1/N with N = max(Nx, Ny, Nz) with Nx, Ny, and Nz the number of pixels
in each of the directions of the image. In short, the parameters that have to be tuned for the
experiments are µ, K, θ; the time step ∆t; and the scale a.

4.1. D3Q7 multigrid phase-field segmentation of synthetic images. The first synthetic
image we consider is shown in Figure 4. It measures 256 × 256 × 256 voxels, that is, about
17 million voxels. It is corrupted by a Rayleigh distribution noise. The segmentation is
performed at scales a = 1, 2, 3, 4, 5. The time step is set as ∆t = 0.002 to ensure stability
at the initial scale a = 1. We choose K = 0.4 × 10−3, µ = 0.02, and θ = 10/a2. The
results are presented in Table 1. We can see that the Dice index slightly decreases when



MRT LBM SEGMENTATION OF 3D ULTRASOUND IMAGES 1339

(a) (b) (c) (d) (e)

Figure 4. D3Q7 MRT segmentation results for a simple synthetic image at different scales: (a) a = 1, (b)
a = 2, (c) a = 3, (d) a = 4, (e) d = 5. The time step is set as ∆t = 0.002. Reference contour in red.

Table 1
D3Q7 MRT segmentation results for a simple synthetic image at different scales and time step set as

∆t = 0.002.

a D S P MAD (pixels) T imes (seconds)

1 0.950 0.906 0.999 1.283 33447
2 0.978 0.976 0.980 0.663 1271
3 0.957 0.987 0.929 1.206 173
4 0.931 0.986 0.882 1.893 152
5 0.917 0.986 0.857 2.260 84

(a) (b) (c) (d)

Figure 5. D3Q7 MRT segmentation results for a synthetic image of a tumor at different scales: (a) a = 1,
(b) a = 2, (c) a = 3, (d) a = 4, (e) d = 5. The time step is set as ∆t = 0.002. Reference contour in red.

the scale increases. In contrast, the sensitivity increases. This can be explained by the fact
that the flow dynamics are less conservative at higher scales and by the large number of
iterations needed to get convergence at the initial scale [22]. Computation times of a simple
(nonparallel) implementation show that the large size of the image does not allow reasonable
segmentations at scale 1 or 2. Working at scale 3, one obtains a speed-up factor of about 2000.
Moreover, at higher scales the step time can be chosen much greater than 0.002. For a second
test we consider a synthetic image of a tumor measuring 322 × 142 × 172 voxels corrupted
by a Rayleigh distribution noise; see Figure 5. The parameters are given by K = 0.2× 10−3,
µ = 0.001, θ = 10/a2, and ∆t = 0.002. The results are presented in Table 2. These results
confirm the observations made in the previous case.

We focus now on scales 3 and 4 and increase the time step, which is impossible at scales 1
and 2 without losing stability. We set ∆t = 0.03. The results of the segmentation are shown
in Figure 6 and evaluated in Table 3. Increasing the time step makes the flow dynamic less
conservative and gives much better results in terms of both segmentation and computation
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Table 2
D3Q7 MRT segmentation results for a synthetic image of a tumor at different scales. The time step is set

as ∆t = 0.002.

a D S P MAD (pixels) Times (seconds)

1 0.595 0.423 1.000 7.020 6095
2 0.623 0.452 1.000 6.614 816
3 0.635 0.465 0.998 6.534 179
4 0.679 0.516 0.995 5.807 79

(a) (b)

Figure 6. D3Q7 MRT segmentation results for a synthetic image of a tumor at scales (a) a = 3 and (b)
a = 4. The time step is set as ∆t = 0.03. Reference contour in red.

Table 3
D3Q7 MRT segmentation results for a synthetic image of a tumor at scales a = 3 and a = 4. The time

step is set as ∆t = 0.03.

a D S P MAD (pixels) Times (seconds)

3 0.902 0.854 0.956 1.844 56
4 0.887 0.868 0.908 2.146 21

times. For example, in the case a = 4 and compared with the previous time step ∆t = 0.002,
the Dice index and MAD are improved by 31% and 63%, respectively, and the computational
time is decreased by 73%. These first experiments clearly show the advantages of the multigrid
approach: It makes the algorithm more stable, it significantly reduces the computation time,
and it improves the results of the segmentation.

4.2. MRT versus BGK segmentation. We concentrate now on comparing the proposed
MRT scheme with a classical BGK, SRT scheme using both the D3Q7 and D3Q19 lattices.
The aim is to show the benefit of introducing additional relaxation parameters to gain stability.
For each scheme, we compute the relative error

(4.3) err =
‖un+1 − un‖2
‖un‖2

,

where un = u(tn = nδt). This relative error should decrease in time if the scheme is nu-
merically stable. For the first comparison, we make use of the synthetic image of a tumor
introduced before. The parameters are set as follows: K = 0.3 × 10−3, µ = 0.01, θ = 1,
∆t = 0.04, and ∆t = 0.05. The scale is a = 4. The results of the simulations are shown
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(a) (b) (c) (d)

(e) (f)

Figure 7. Stability comparison performed on the synthetic image of a tumor. D3Q7 lattice: (a) time step:
∆t = 0.04, (b) time step ∆t = 0.05. D3Q19 lattice: (c) time step: ∆t = 0.04, (d) time step ∆t = 0.05. One
slice of the MRT LBM phase-field segmentation: (e) D3Q7 lattice and time step ∆t = 0.05, (f) D3Q19 lattice
at the time step ∆t = 0.05. Reference contour in red.

(a) (b) (c) (d)

Figure 8. Stability comparison performed on an image of the clinical data set Figure 10(d). D3Q7 lattice:
(a) time step ∆t = 0.015, (b) time step ∆t = 0.025. D3Q19 lattice: (c) time step ∆t = 0.015, (d) time step
∆t = 0.035.

in Figure 7. In the D3Q7 case, we can see that the BGK scheme is much more sensitive to
increasing the time step ∆t and becomes clearly unstable for ∆t = 0.05, whereas the MRT
scheme behaves in the same way. The D3Q19 case confirms this observation and shows that
the instability of the BGK scheme is not caused by the choice of the lattice. We reach the
same conclusion when using the image 10(d) of the clinical data set. The parameters are set
as follows: K = 0.5× 10−3, µ = 0.079, θ = 1, ∆t = 0.015, and ∆t = 0.025. The scale is a = 4.
The results of the simulations are shown in Figure 8. In conclusion, it appears that the MRT
approach is a good strategy to obtain relevant performance and leads to schemes that behave
much better than BGK schemes.

4.3. MRT multigrid phase-field segmentation of clinical images. We now evaluate the
proposed MRT scheme using the eight images of clinical data set 10. Let us recall that these
images were chosen to be representative of the diversity of clinical cases and were manually
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Figure 9. MRT LBM phase-field segmentation process for clinical images.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Images from the clinical data set and results of the LBM MRT D3Q7 segmentation.

segmented by a dermatologist. For each one of the 3D images, 150 ground truth contours are
drawn in the (x, z)-planes (z is the vertical axis) so as to obtain a 3D volume by interpolation.
Nearly 50 values of the intensity I are retained, and the gel area (black area above the
epidermis) is removed before the tumor segmentation is performed. The entire process in
described in Figure 9, and the results of the segmentation with the LBM MRT D3Q7 algorithm
are shown in Figure 10. The main objective of this section is to use the ADLL algorithm of
[37], based on a level set approach, for comparisons and to show that the new algorithm is
relevant for investigating the problem of the underestimation of the segmented volume. Let
us specify that the ADLL and the proposed MRT algorithms share the same data attachment
term and therefore that the difference between segmentation is only due to the regularization
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Table 4
Comparisons between ADDL level set [37], LBM MRT D3Q7, and LBM MRT D3Q19 algorithms.

Algorithm D S P MAD (pixels)

ADLL 0.755 ± 0.086 0.647 ± 0.134 0.934 ± 0.065 344 ± 106
MRT D3Q7 0.857 ± 0.052 0.859 ± 0.073 0.862 ± 0.082 202 ± 78
MRT D3Q19 0.858 ± 0.048 0.849 ± 0.064 0.873 ± 0.068 199 ± 68

(a) (b) (c)

Figure 11. Sensitivity S versus precision P . (a) ADLL level set [37]. (b) LBM MRT D3Q7 lattice. (c)
LBM MRT D3Q19 lattice.

term and the implementation. The performance indicators are given in Table 4. The scale
is a = 4. The parameters are tuned adaptively so as to maximize the Dice index for each
lesion. They are chosen as follows. For the ADLL algorithm, µ ∈ [0.001, 0.01], ∆t ∈ [0.8, 2],
and T = [2, 10]. For the MRT D3Q7 algorithm, K ∈ [0.27×10−3, 1×10−3], µ ∈ [0.132, 0.113],
∆t ∈ [0.01, 0.025], and θ ∈ [0.01, 3]. For the MRT D3Q19 algorithm, K ∈ [0.3×10−3, 2×10−3],
µ ∈ [0.01, 0.16], ∆t ∈ [0.01, 0.04], and θ ∈ [0.0056, 1.5].

It is not surprising that the ADLL algorithm gives the best precision P . Let us recall
that precision measures the fact that the segmented volume is indeed part of the tumor.
However, this segmented volume is too small, as it is confirmed by the sensitivity and the
MAD. Sensitivity measures the fact that the entire tumor has been segmented and the MAD
is the average distance to the boundary of the tumor. Quantitively, the sensitivity of the
ADLL algorithm is about 25% lower. As a consequence, the Dice index is also lower, about
14%. This means that the proposed algorithm performs better regarding the ability to segment
the entire tumor. Moreover, this algorithm gives a MAD about 42% higher than the ADLL
algorithm, which is a very significant improvement of the performance concerning the detection
of the boundary of the tumor. A compact presentation of these results is given in the trade-off
Figure 11 with the level sets of the Dice index. Slices of segmentations are shown in Figure 12.

The results of the MRT D3Q7 and MRT D3Q19 algorithms are very similar. For obvious
reasons due to computation costs, one finally may prefer the MRT D3Q7 implementation.

5. Conclusion. We have described a new algorithm for tumor segmentation in 3D ultra-
sound images. This algorithm is based on a variational formulation whose regularization term
is given by a phase-field model, namely, the Allen–Cahn reaction diffusion equation. An orig-
inal implementation of the corresponding gradient flow using LMB MRT schemes has been
discussed. It has been shown that it is possible to choose the relaxation quartic parameters
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Figure 12. Slices of segmentations. Top row: ADLL level set [37]. Middle row: LBM MRT D3Q7
lattice. Bottom row: LBM MRT D3Q19 lattice. First column: tumor Figure 10(a). Second column: tumor
Figure 10(b). Third column: tumor Figure 10(f). Last column: tumor Figure 10(d). Reference contour in red.

to obtain a fourth-order exact scheme without numerical diffusion. Moreover, the multigrid
implementation allows obtaining relevant computation times for medical applications. Ex-
periments have been conducted to validate the stability of the scheme. Comparisons with
a BGK, SRT implementation have demonstrated the significance of the MRT approach. Fi-
nally, comparisons with the ADLL level set algorithm have proven that our solution is a good
alternative to investigate the problem of underestimation of tumor volumes.
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