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Background and Objective – Computational ultrasound imaging 

has become a well-established methodology in the ultrasound 

community. Simulations of ultrasound sequences and images 

allow the study of innovative techniques in terms of emission 

strategy, beamforming, and probe design. There is a wide spec-

trum of software dedicated to ultrasound imaging, each having 

its specificities in its applications and the numerical method. 

Methods – We describe in this two-part paper a new ultrasound 

simulator (SIMUS) for MATLAB, which belongs to the 

MATLAB UltraSound Toolbox (MUST). The SIMUS software 

simulates acoustic pressure fields and radiofrequency RF signals 

for uniform linear or convex probes. SIMUS is an open-source 

software whose features are 1) ease of use, 2) time-harmonic 

analysis, 3) pedagogy. The main goal was to offer a comprehen-

sive turnkey tool, along with a detailed theory for pedagogical 

and research purposes. 

Results – This article describes in detail the underlying linear 

theory of SIMUS and provides examples of simulated acoustic 

fields and ultrasound images. The accompanying article (part II) 

is devoted to the comparison of SIMUS with several software: 

Field II, k-Wave, FOCUS, and the Verasonics simulator. The 

MATLAB open codes for the simulator SIMUS are distributed 

under the terms of the GNU Lesser General Public License, and 

can be downloaded from https://www.biomecardio.com/MUST. 

Conclusions – The simulations described in the accompanying 

paper (Part II) show that SIMUS can be used for realistic simula-

tions in medical ultrasound imaging. 
 

Index Terms—Ultrasonic transducer arrays, Computer simula-

tion, Ultrasound imaging, Open-source codes. 

I. INTRODUCTION 

OMPUTATIONAL ultrasound imaging, which uses 

numerical analysis to solve problems that involve ultra-

sound wave propagations, has become a standard methodolo-

gy in the medical ultrasound imaging community. Before con-

sidering in vitro or in vivo investigations, computational ultra-

sound imaging can be used, for example, to 1) analyze ultra-

sound sequences and arrays [1], 2) develop or optimize beam-

forming or post-processing algorithms [2], 3) explore multiple 
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configurations through serial tests [3], 4) compare with peers 

in international challenges [4]. Among the freely available 

ultrasound simulators, Field II [5], [6], and k-Wave [7], [8] are 

arguably the most popular. These MATLAB toolboxes have 

widely promoted the use of ultrasound simulations for re-

search purposes, and the number of works that use these tools 

has been increasing over the years (Fig. 1). There is a whole 

range of software packages dedicated to ultrasound imaging, 

available for free, as open-source or not. A non-exhaustive list 

of ultrasound-imaging programs is available on the k-Wave 

website1. These software programs each have their specifici-

ties, both in their application and in the numerical method: 

propagation to simulate acoustic pressure fields [9], [10] 

and/or backpropagation to also generate ultrasound images 

[5], [7]; two- and/or three-dimensional; solved in the time [11] 

or frequency [12] domain; linear [13] and/or non-linear [14], 

[15]; grid-based [7] or mesh-free [5]; media with homogene-

ous [6] or inhomogeneous speed of sound [7], [11]; or convo-

lutional methods to quickly generate synthetic B-mode images 

[16], [17]. 

In this article, we propose a frequency-based ultrasound 

simulator called SIMUS. The goal was not to bring innovation 

in theoretical acoustics. The novelty of SIMUS lies in the 

computational model, which combines linear models de-

scribed in several articles [18]–[24] and in Schmerr’s book 

[25]. As detailed in the following sections, this simulator is 

based on far-field (Fraunhofer) and paraxial (Fresnel) acoustic 

equations. As we will see, the transducer elements are parti-

tioned along the azimuth �-direction to enable the use of far-

field equations. Roughly speaking, the paraxial approximation 

is valid if one does not deviate too much from the �-� azi-

muth plane, i.e. if the angles relative to this plane are small. 

SIMUS is the name of the MATLAB main function that 

simulates ultrasound radiofrequency (RF) signals. The condi-

tions and assumptions under which SIMUS works are ex-

plained in this document. SIMUS is an open-source code that 

can be adapted by an advanced user for her/his own purpose. 

We created SIMUS primarily for educational and practical 

purposes. It was first intended for students and researchers, as 

they needed fast, open-source programs for their research pro-

jects [1], [26]. The ultrasound simulator SIMUS is part of the 

MUST toolbox (MATLAB UltraSound Toolbox) [27], which 
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we distribute online under the terms of the GNU Lesser Gen-

eral Public License v3.0 (www.biomecardio.com/MUST/). 

The MUST toolbox is intended for students and researchers, 

both novice or advanced, for teaching or research in ultra-

sound medical imaging. The website includes many practical 

examples that allow a quick understanding of the essentials of 

ultrasound imaging.  

As with Field II [5], FOCUS [9], and k-Wave [7], MAT-

LAB was chosen as the programming language because of its 

widespread use in universities and research labs, and its rich 

repertoire of built-in functions for data analysis, data pro-

cessing, and image display. At the time of submission of this 

paper, only 1-D probes, rectilinear or convex, with elevation 

focusing, are considered in SIMUS. Although there is a grow-

ing interest in ultrasound imaging with a high number of 

transducer elements (e.g. 1024) and 2-D matrix arrays [28], 

[29], it appears that the 1-D configuration with a limited num-

ber of channels (typically 64 to 192) remains by far the most 

common configuration at present. The main assumptions on 

which SIMUS relies are 

1. Linearity, 

2. Scatterers acting as monopole sources, 

3. Weak (single) scattering. 

In essence, these hypotheses are similar to those in Field II. 

SIMUS, however, works in the frequency domain using a 

time-harmonic analysis. The frequency domain can indeed be 

more appropriate when dealing with bandpass signals. It can 

also easily consider physical aspects that depend on the fre-

quency, such as the directivity of the elements, attenuation in 

the tissues, or Rayleigh scattering, for example. For the sake 

of clarity, the syntax of SIMUS has been standardized with 

that of the functions included in the MUST toolbox, and the 

default settings are those commonly used in medical ultra-

sound. SIMUS is the main program that uses another 

MATLAB function called PFIELD, which calculates one-way 

or two-way acoustic pressure fields. SIMUS and PFIELD can 

be used independently of the other MUST functions. SIMUS 

calculates the radiofrequency from the acoustic spectra gener-

ated by PFIELD. One or the other function will be mentioned 

depending on the context. 

 

 

 

Fig. 1.  Number of yearly publications that cite [5] (Field II) or [7] (k-

Wave). The citation reports are from Web of Science. 

 

 

This article (Part I: theory) is accompanied by a second one 

(Part II: comparison with FieldII, k-Wave, FOCUS, and Vera-

sonics, Cigier A., Varray F. and Garcia D.) This first part de-

scribes the linear acoustic theory that underlies PFIELD. Sev-

eral approximations and linearizations have been used. It is 

essential to review them to identify the limits of PFIELD and 

under which conditions it can be used. Part I is illustrated with 

simulations of ultrasound pressure fields and ultrasound imag-

es. The second article (Part II) is devoted to the comparison of 

the acoustic pressures generated by PFIELD with those ob-

tained by Field II, k-Wave, FOCUS, and the Verasonics simu-

lator. 

In this first-part article, we will outline the theoretical rea-

soning leading to the equations included in PFIELD. We will 

first explain how ultrasound pressure fields are simulated and 

then address the generation of backscattered pressure signals. 

The last section will be illustrated with some realistic exam-

ples related to medical imaging. 

 

 

 

Fig. 2.  Coordinate system for a rectilinear array. In this paper, the height 

of an element is noted ℎ, and its width is 2�. �� stands for the distance to 

the elevation focus. 

 

II.  METHODS I: PFIELD INSIDE OUT 

This section describes the theory inside PFIELD. PFIELD 

simulates the pressure fields in the frequency domain, i.e. it is 

assumed that the pressure waves have a harmonic time de-

pendence such that the pressure is written as: 

 

�	
, �
 = Re �� �	
, �, �
�����d���
�� �. (1)

 
 represents a point in the radiated region of interest, � = √−1, � is time, � is the angular frequency. In the following 

subsections, we will describe how the pressure component �	
, �, �
 generated from one array element can be approxi-

mated, from which the backscattered echoes will be deduced. 

Although PFIELD also works for curvilinear arrays, the fol-

lowing sections describe the theory in the context of a rectilin-

ear probe (Fig. 2). The interested reader can refer to the 
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PFIELD code2 to learn about the slight modifications required 

for a convex probe. To estimate the waves that are backscat-

tered by a medium of point-like scatterers, one must first cal-

culate the acoustic pressure radiated by a single element trans-

ducer and an ultrasound array. As we will see, the width (=2�, see Fig. 2) and height (ℎ) of the element transducers are 

two key parameters. Recalling that only 1-D arrays will be 

addressed, elevation focusing will be taken into consideration. 

 

A. Overview of the problem 

We will use the conventional coordinate system for a recti-

linear array (Fig. 2), i.e. � along the azimuthal direction, $ for 

the elevation, and � describing the axial position. A similar 

system, noted in lowercase letters (%, &, '), will be applied for 

individual elements or sub-elements (Fig. 3): i.e. %, &, ' all 

equal zero at the center of an individual (sub-)element. The 

model starts with the Rayleigh-Sommerfeld integral, which 

describes an isolated element behaving like a baffled piston 

that vibrates on the %-& plane (Fig. 4). From the pressure 

waves radiated by a single element will follow those of the 

ultrasound probe. The distance between a point (′ =	%*, &*, 0
 of the piston and a point ( = 	%, &, '
 in the field 

(Fig. 3), is noted 

 ,* = -	% − %*
. / 	& − &*
. / '.. (2)

 

The distance between the center of the piston and a point ( 

in the field (Fig. 3), is noted 

 , = -%. / &. / '.. (3)

 

 

 

Fig. 3.  Coordinate system for an individual element. The distance ,′ is 

approximated by the expression (6). 

 

 

Medical ultrasound one-dimensional linear and convex ar-

rays contain an acoustic lens that focuses the ultrasound waves 

on the elevation plane. In SIMUS and PFIELD, the incident 

waves can be focused on the elevation plane at a given dis-

tance �� (Fig. 2 and Fig. 4), whose value is generally provided 

 
2 https://www.biomecardio.com/MUST 

 

by the probe manufacturer. A strategy for simulating elevation 

focusing is to use a large parabolic element [30] or to position 

small elements onto a parabolic surface [31]. Another strategy 

is to modify the piston velocity delays along the elevation di-

rection (Fig. 4), as described by Eq. (3.27) in [25]: 

 

0	&*, �
 = 01	�
���2 345
567  if  |&*| 9 :. ,  0 otherwise, 

(4)

 

with 01	�
 being the velocity amplitude. The time delays in 

Eq. (4) (= &*./<2=��>) were derived by assuming that &* ≪�� (paraxial approximation, see Eq. (3.24) in [25]). 

 

 

 

Fig. 4.  An individual element acts as a baffled piston vibrating in the '-

direction. The velocities are delayed to simulate the elevation focusing 

induced by an acoustic lens. 

 

 

B. Acoustic field of a single array element 

Let us consider a planar piston embedded in an infinite rigid 

baffle, and vibrating along the z-direction. The resulting har-

monic pressure � at position ( = 	%, &, '
 is given by the Ray-

leigh-Sommerfeld integral (see e.g. Eq. 1 in [24] or Eq. 6.19 in 

[25]) 

 

�	(, �, �
 = 2@A.�B����� � � 0	&*, �
 ��2C4
,* D%′ D&′ℎ/2

�ℎ/2
E

�E , (5)

 

where F is the medium density, = is the speed of sound, and G =  �/= is the wavenumber. Assuming a paraxial propaga-

tion with respect to the z-direction, the distance ,′ [Eq. (3)] 

can be rewritten, in the far field, as (see Appendix) 

 

,* H , − %* sin L / <M�M4>5
.C , (6)

 

where the angle L is defined in Fig. 3. The far-field pressure 

can thus be approximated by inserting (6) into (5) and by sub-

stituting , for ,’ in the denominator: 
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�	(, �, �

= 2@A.�B  ����� N 0	&*, �
 ��2OC�P4 QRS T�<3U34>5

5V W
,E,:/.

�E,�:/. D%*D&*, (7)

 

which gives 

 �	(, �, �
 = 2@A.�B  X YZVC ����� × … 

�� ���2P4 QRS TD%*E
�E � �� 0	&*, �
��2<3U34>5

5V:/.
�:/. D&*�. (8)

 

Including the expression of the piston velocity [Eq. (4)] in 

the integrand of the second integral of Eq. (8) yields 

 �	(, �, �
 = 2@A.�B  X YZVC 00	�
����� × … 

�� ���2P4 QRS TD%*E
�E � ]� �−�G &′22�^��G_&−&′`2

2, D&′ℎ/2
−ℎ/2 a. (9)

 

The two integrals in the curly brackets will now be deter-

mined. The first integral in Eq. (9) yields3 

 

� ���2P4 QRS TD%*E
�E = 2� sinc	G� sin L
. (10)

 

The second integral of Eq. (9) could be explicitly ex-

pressed4 by using the imaginary error function (erfi). Howev-

er, the numerical estimation of the erfi function, e.g. through 

estimating the Faddeeva function [32], is computationally ex-

pensive. We thus opted for the use of a Gaussian superposition 

model [23]. The second integral of Eq. (9) is rewritten as 

 

� ���2 345
567��2<3U34>5

5V D&*:/.
�:/.

= � Π _M4
: ` ���2 345

567��2<3U34>5
5V D&*��

�� . 
(11)

 

where Π stands for the rectangle function. In the Gaussian 

superposition model, the rectangle function is approximated 

by a sum of Gaussians with complex coefficients (Fig. 5): 

 

Π _M4: ` H d ef��ghi34j k5l
fmn . (12)

 

Equation (11) thus becomes 

 

 
3 https://www.wolframalpha.com/input/?i=int+exp%28-

i*k*S*x%29+from+x+%3D+-b+to+b 
4 https://www.wolframalpha.com/input/?i=int+exp%28-

i*%28P*Y%5E2%2BQ*Y%2BR%29%29+from+Y+%3D+-

h%2F2+to+h%2F2 

� Π _M4: ` ���2 345567��2<3U34>5
5V D&*��

�� H d  l
fmn ef � ��ohM45�pM4�q  D&*��

�� , (13)

 

where 

 rf =  gh:5  ��2. O ns7� nCW  ;  u =  ��2MC  ;  v = �2M5.C  . (14)

 

Solving the right-hand side Gaussian integral5 in Eq. (13) 

yields 

 

� Π _M4: ` ���2345
567��2<3U34>5

5V D&*��
�� H d  l

fmn efw Boh � x5yzh{|. (15)

 

From Eq. (15), the second integral of Eq. (9) thus reduces to 

 

� ���2 345567��2<3U34>5
5V D&*:/.

�:/. H d  }
~=1

e~w �r~ � u24r~/v. (16)

 

Replacing the two integrals in (9) by their respective ex-

pressions (10) and (16) provides an estimate of the acoustic 

pressure generated by a single element: 

 �	(, �, �
 H
�2E�B F=01	�
�������������	�


XYZV
C ����� sinc	G� sin L
����������	T,2
 �∑ efw �zh� x5yzh{|lfmn ���������������	M,C,2


.  (17)

 

The coefficients ef and �f were determined by minimizing 

the ℓ. norm of the difference (rectangle – sum of Gaussians, 

Fig. 5) in the interval [– 2,2]. To ensure that the sum of the 

complex Gaussians is real, the coefficients are the complex 

conjugates of the others. By default, PFIELD uses four coeffi-

cients: 

 en = 0.187 / 0.275�, �n = 4.558 − 25.59�, e. = 0.288 − 1.954�, �. = 8.598 − 7.924�, e� = en���, �� = �n���, e� = e.���, �� = �.���. 
(18)

 

More coefficients can be used to obtain more numerical ac-

curacy (at the expense of computing time). Lists with up to 25 

coefficients are provided in [23], [33]. It should be noted, 

however, that obtaining realistic ultrasound images does not 

require very fine numerical precision. By way of example, 

Fig. 6 shows the effects of the number of Gaussians on fo-

cused pressure fields generated by a cardiac phased array. 

Four Gaussians led to small differences compared with ten 

Gaussians. 

 

 

 
5 https://mathworld.wolfram.com/GaussianIntegral.html 
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Fig. 5.  The rectangle function can be approximated by the sum of Gaussi-

ans, which simplifies the estimation of the integral in Eq. (11). 

 

 

 

Fig. 6.  Effects of the number of Gaussians in the Gaussian superposition 

model. Top row: focused pressure fields simulated with PFIELD for a 64-

element 2.7-MHz cardiac phased array (see Fig. 9). The middle line indi-

cates the number of Gaussians. Bottom row: relative errors with respect to 

the pressure field obtained with 10 Gaussians. 

 

 

In practice, it is not the velocity of the element that is 

known, but the acoustic pressure generated by an element, 

measured for example with a hydrophone. The first term in 

brackets (dimensionally homogeneous to pressure) in the ex-

pression (17) represents the spectrum of the transmit pressure 

pulse (up to a constant multiplier), noted ��P	�
. The sine 

cardinal sinc term represents the %-directivity of one element, 

noted �	L, G
. The last term in brackets is related to the eleva-

tion focusing. It is homogeneous to a distance and is noted δ	&, ,, G
. Using these notations, the acoustic pressure of one 

element finally reduces to 

 

�	(, �, �
 H ���	�
 ��2C, �	L, G
δ	&, ,, G
 ����� . (19)

 

More generally, if the transmission is delayed by Δ , the 

wave field is given by 

 

�	(, �, �
 H ���	�
 ��2C, �	L, G
δ	&, ,, G
 ���¡¢����� . (20)

 

It is recalled that the position variables ((, L, ,) in (20) are 

relative to the center of the element (Fig. 3). 

 

C. Acoustic field of a rectilinear array 

The expression (20) models acoustic waves radiated by one 

element. To derive this expression, the distance , with respect 

to the element [see Eq. (6)] was simplified by using a Fraun-

hofer (far-field) approximation in the azimuthal %-direction, 

and a Fresnel (paraxial) approximation in the elevation &-

direction. In order to fulfill the far-field condition, it may be 

necessary to split the array elements into £ sub-elements, in 

the azimuthal %-direction, if they are too wide (Fig. 7). Radia-

tion patterns that result from splitting are given in Appendix C 

for element transducers of different widths. In PFIELD, £ is 

chosen so that a sub-element width (= 2�/£) is not greater 

than the minimal wavelength (defined at -6dB): 

 £ = ¤ .E¥¦§¨©, (21)

 

where ª « is the ceiling function. As an indication, the num-

ber £ of simulated sub-element(s) per array element is typical-

ly 1 for cardiac phased arrays, and 2 for linear arrays. If an 

array contains ¬ elements, the total number of sub-elements is 

thus 	£¬
. Given the properties of linearity, the acoustic 

wavefield produced by an ¬-element array can be modeled by 

superimposing the 	£¬
 individual sub-element models de-

scribed by (20): 

 �	
, �, �
 H
���	�
����� d  ­®

¯mn °̄ ��2C±,̄ �	L¯, G
δ	&̄ , ,̄ , G
 ���¡¢± . (22)

 

In (22), the position variables (L¯, &̄ , ,̄ ) are relative to the 

center of the ²th sub-element. The position 
 = 	�, $, �
 is 

relative to the coordinate system of the array depicted in Fig. 

2. If �A,¯ stands for the abscissa of the ²th sub-element cen-

troid, then 

 

,̄ = w	� − �A,¯
. / $. / �., 
and  sin L¯ = 	� − �A,¯
/-	� − �A,¯
. / �.. (23)

 

 

 

Fig. 7.  To ensure that the far-field condition is met, the ¬ array elements 

are each divided into £ sub-elements. 

 

 

We here used �A,¯ = 0 since we only address rectilinear ar-
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rays in this paper. Let the leftmost to rightmost sub-elements 

be numbered sequentially, from 1 to ². In the case of a uni-

form linear array of pitch � (Fig. 7), it can be shown that its 

centroid abscissa can be written as 

 �A,¯ =  ³. _2 ¤­̄© − ¬ − 1` / E­	2	² − 1
	mod £
 − £ / 1
 (24)

 

The term ¶±·¸ corresponds to the number of the element to 

which the sub-element ² belongs. Note that �A,¯ (and �A,¯ ≠0) must be modified for a convex array (see the PFIELD code 

for details). The transmit delay Δ ¯ = Δ ª¯/­« in (22) is that of 

the ª²/£«th element. Each element has been weighted by °̄ =°ª¯/­« to consider transmit apodization. The equation (22) is 

the backbone of PFIELD. Once the transmit pressure ���	�
 

is given in the frequency domain, it allows simulation of real-

istic fields of acoustic pressure produced by an ultrasound 

array. In PFIELD, the transmit pressure is generated by con-

volving the one-way response of the transducer with a win-

dowed sine, as explained in the next section. An advanced 

user can define her own ���	�
 spectrum, derived from exper-

imental measurements for example. From the acoustic reci-

procity principle, Eq. (22) can also be applied to derive the 

backscattered echoes, as will be explained in section IV. 

 

 

III. METHODS II (CONT’D): SPECTRUM OF THE TRANSMIT 

PRESSURE 

The general expression (22) contains the spectrum of the 

transmit pressure ���	�
. An advanced user can easily include 

the spectrum of his/her choice in the code. In SIMUS and 

PFIELD, the default transmit pressure waveform is obtained 

by convolving a rectangularly-windowed sinusoid (a “perfect” 

pulse) with the point spread function (PSF) of the transducer. 

The angular frequency of the sinusoid is that of the transducer 

(�A = 2� Â, the center frequency Â being provided by the 

manufacturer). The temporal width º of the rectangular win-

dow is defined in terms of the number of wavelengths ²¥ by º = ²¥/ Â = 2�²¥/�A. The spectrum of the rectangularly-

windowed pulse is given by 

 »¼	�
 = � ½sinc _º ���¾. ` − sinc _º ���¾. `¿ (25)

 

The spectrum of the transducer PSF is defined by a general-

ized Gaussian window that depends on two positive parame-

ters � and À: 

 

»�	�
 = ��i|���¾|Á �¾ k³
 

(26)

 

It is designed so that its pulse-echo response has a given 

bandwidth �E at -6 dB (Fig. 8). The pulse-echo fractional 

bandwidth is generally given by the manufacturer in percent. 

For example, a 65% bandwidth means that the frequency 

bandwidth of the response is such that �E = 0.65 �A. To de-

termine both � and À, it is postulated that »�	0
 = 2�n.Ã (the 

smallest positive single-precision floating-point number; 

PFIELD and SIMUS work in single precision). It follows that 

(see Appendix) 

 

»�	�
 = �� ÄS .i5 |ÅUÅ¾|ÅÆ k³
, with  � = ln 126 / ln _2 �¾�Æ`. (27)

 

 

 

Fig. 8.  Left – Pulse-echo response of the transducer. �A  is the center angu-

lar frequency (�A = 2� Â). �E is the angular frequency bandwidth.  Right 

– Example of a one-way transmit pulse (center frequency = 7.6 MHz, 

fractional bandwidth = 77%, excitation pulse = 1 wavelength). 

 

 

Fig. 8 (left panel) depicts an example of the simulated 

transducer response for a pulse-echo fractional bandwidth of 

77%. PFIELD does not include the electrical-acoustic conver-

sions that occur in the piezoelectric elements. The units of the 

simulated acoustic and electrical signals are thus arbitrary (not 

Pa or V). By using this simplified representation and writing 

the convolution in the frequency domain, the spectrum of the 

transmit pressure ���	�
 is given by this proportionality rela-

tionship: 

 ���	�
 ∝ »¼	�
 -»�	�
. (28)

 

A square root is needed since the transducer response »�	�
 is two-way (transmit + receive). Fig. 8 (right panel) 

presents a transmit pulse (one-way) in the temporal domain. 

 

 

IV. METHODS III (CONT’D): SIMUS INSIDE OUT 

A. Echoes received by a sub-element 

SIMUS uses PFIELD and point-like scatterers to simulate 

radiofrequency (RF) ultrasound signals. These scatterers be-

come individual monopole point sources when an incident 

wave reaches them. They do not acoustically interact with 

each other according to the assumption of single weak scatter-

ing. Each scatterer is defined by its reflection coefficient (ℛÊ), 

which describes how much amplitude of a wave is reflected. 

Although some tissues, such as blood, are governed by Ray-

leigh scattering [34], the ℛÊ coefficients are assumed constant, 

i.e. independent of frequency and incidence angle. From (22), 

the pressure signal received by a scatterer #Ê located at 
Ë =	�Ê , $Ê , �Ê
 is 
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 �	
Ë, �, �
 H 

���	�
����� d  ­®
¯mn °̄ ��2C±Ê,̄ Ê �	L¯Ê , G
δ	$Ê, ,̄ Ê , G
 ���¡¢± , (29)

 

where ,̄ Ê = -	�Ê − �A,¯
. / $Ê  . / �Ê  . and sin L¯Ê =	�Ê − �A,¯
/-	�Ê − �A,¯
. / �Ê .. The principle of acoustic 

reciprocity dictates that an acoustic response remains identical 

when the source and receiver are exchanged. Expression (19) 

can therefore give the pressure received by the Ìth sub-

element from a scatterer Ê, after accounting for its reflection 

coefficient ℛÊ: 

 �seÍÊ	�, �

H ℛÊ  �	
Ë, �, �
��������	
Ë,�
XUYÅÎ

��2CÏÊ,ÍÊ �	LÍÊ , G
δ	$Ê, ,ÍÊ , G
 , (30)

 

where ,ÍÊ = -	�Ê − �A,Í
. / $Ê  . / �Ê  . and sin LÍÊ =	�Ê − �A,Í
/-	�Ê − �A,Í
. / �Ê .. In (30), the superscript 

“se” means “sub-element”. Inserting (29) in (30), it follows 

that: 

 �seÍÊ	�, �
H ℛÊ ���	�
�����  
×  Ðd  ­®

¯mn
°̄ ��2C±Ê,̄ Ê �	L¯Ê , G
δ	$Ê, ,̄ Ê , G
 ���¡¢±Ñ  

×  ��2CÏÊ,ÍÊ �	LÍÊ , G
δ	$Ê, ,ÍÊ , G
. 
(31)

 

The expression (31) is the acoustic pressure backscattered 

by a single scatterer and received by the Ìth sub-element. As-

suming now that there is a total of Ò scatterers, the combina-

tion of their independent effect (single scattering assumption) 

gives the total pressure received by the Ìth sub-element: 

 �seÍ	�, �

H  ���	�
�����  d  Ó

Êmn ÔℛÊ

×  Ðd  ­®
¯mn °̄ ��2C±Ê,̄ Ê �	L¯Ê , G
δ	$Ê, ,̄ Ê , G
 ���¡¢±Ñ  

×  ��2CÏÊ,ÍÊ �	LÍÊ , G
δ	$Ê, ,ÍÊ , G
Õ. 
(32)

 

 

The expression (32) is for an individual sub-element #Ì. 

The pressure wave �e	�, �
 received by one transducer ele-

ment is the coherent sum of the pressures received by all its 

sub-elements (Fig. 7). For the element #¶±·¸: 
 

�e¶²£¸	�, �
 = d �se¯�Ö	�, �
­�n
Öm1  (33)

 

The theoretical pressures were all derived for a single angu-

lar frequency � = 2�^. The full-band waveforms can be ob-

tained by summation in the frequency domain through an in-

verse fast Fourier transform. 

 

 

Fig. 9.  Focused pressure fields simulated with PFIELD for a 64-element 

2.7-MHz P4-2v cardiac phased array (kerf width = 50 μm, pitch = 0.3 mm, 

fractional bandwidth = 74%, elevation focus = 6 cm). These RMS (root 

mean square) acoustic fields illustrate emission sequences such as those 

used in standard transthoracic echocardiography, with focusing in the axial 

direction.  

 

 

B. Radiofrequency signals 

The spectrum of the radiofrequency RF signal of the Ìth 

sub-element is related to the received acoustic pressure (32) by 

 RFseÍ	�, �
 ∝ -»�	�
 �seÍ	�, �
, (34)

 

where it is recalled that -»�	�
 is the one-way transducer 

response. Alike (33), the RF signal related to one element is 

the coherent sum of the RF signals of its sub-elements. 
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V.  METHODS IV (CONT’D): THE 2-D CASE 

PFIELD and SIMUS can also work in two dimensions to 

speed up calculations, for example, when rapid testing is re-

quired. In a two-dimensional (2-D) %-' domain, the piston-like 

element generates a normal velocity that is constant every-

where (i.e. in [−∞, /∞]) in the &-direction. This situation is 

obtained when ℎ (element height) and �� (distance to eleva-

tion focus) both tend to /∞. In this limit case, the rectangular 

function in Eq. (12) becomes 1 for any &*, and the coefficients 

reduce to } = 1, with en = 1 and �n = 0. Under these condi-

tions, u./	4rn
 / v = 0 and √	�/rn
 = √	2��,/G
 [see Eq. 

(14) and (15)]. In 2-D, from (17), the acoustic pressure gener-

ated by a single element thus reads 

 �.-�	(, �, �
 H
�2E�B F=01	�
� XYZV

C ����� sinc	G� sin L
 w.�BC2 , 
(35)

 

which can be rewritten as 

 �.-�	(, �, �
 H
√2� �w2E�B F=01	�
�������������Tx	�


XYZV
√C ����� sinc	G� sin L
����������	L,G
 . (36)

 

The acoustic wave (22) radiated by an ¬-element array then 

becomes 

 

�.-�	
, �, �
 H √2� ���	�
����� d °̄ XYZV±
-C± �	L¯, G
 ���¡¢±

­®
¯mn . (37)

 

 

 

 

Fig. 10.  Plane-wave pressure field simulated with PFIELD for a 128-

element 7.6-MHz L11-5v linear array (kerf width = 30 μm, pitch = 0.27 

mm, fractional bandwidth = 77%, elevation focus = 1.8 cm). This RMS 

(root mean square) acoustic field illustrates an emission sequence (here, tilt 

angle = 10o) such as that used in “ultrafast” compound plane-wave imag-

ing, without focusing in the axial direction [35]. The two insets represent 

focal and elevational planes. 

 

 

Similarly, the pressure received by the Ìth sub-element (32) 

in a 2-D space reduces to 

 

�.-ÜQÝ Í	�, �
 H 	2�
 ���	�
�����  d  Ó
Êmn

ÔℛÊ

×  Ðd  ­®
¯mn °̄ XYZV±Ê

-C±Ê �	L¯Ê , G
 ���¡¢±Ñ  
×  XYZVÏÊ

-CÏÊ �	LÍÊ , G
Õ. 
(38)

 

 

 

 

Fig. 11.  RF signals simulated with SIMUS for a P4-2v phased array 

transmitting a focused wave in a medium that contains five scatterers. 

 

 

VI. METHODS V (CONT’D): BAFFLE IMPEDANCE AND 

DISPERSIVE MEDIUM 

A. Finite impedance baffle 

The general expressions (22) and (32) were derived by as-

suming that the baffle in which the transducer element is em-

bedded has an infinite acoustic impedance (rigid baffle). It 

might be recommended to use a finite baffle impedance to 

obtain more realistic radiation patterns [21], [22]. In such a 
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case, an obliquity factor must be added to the element directiv-

ity �	L, G
 [see Eq. (36)]. The expressions of the obliquity 

factors for a nonnegative finite impedance are given in [21] 

(null impedance = “soft” baffle) and [22] (positive imped-

ance). The element directivity becomes 

 

rigid:   �	L, G
 =  sinc	G� sin L
. 

soft:    �	L, G
 =  sinc	G� sin L
 cos L. 

otherwise:  �	L, G
 =  sinc	G� sin L
 ÞßQ TÞßQ T�à, 

(39)

 

with á standing for the ratio between the medium and baffle 

impedances. For a baffle of impedance 2.8 MRayl (epoxy) 

adjacent to soft tissues of impedance 1.6 MRayl, á = 1.75 

[22]. By default, the baffle is soft in PFIELD and SIMUS. 

 

 

B. Attenuation 

In addition to the distance-dependent decrease in amplitude 

caused by the inverse law (or inverse square-root law in 2-D), 

an ultrasound wave propagating in tissues is attenuated 

through scattering and absorption. In SIMUS, scattering is 

governed by the reflectivity coefficients ℛÊ. In the current 

version of the proposed ultrasound simulator, the medium is 

assumed non-dispersive, which means that waves of different 

wavelengths travel at the same phase velocity (= =). In 

PFIELD and SIMUS, absorption can be included in the ampli-

tude by adding a frequency-dependent multiplicative loss 

term. For numerical reasons (a recursive multiplication is used 

to calculate the exponential terms), this frequency dependence 

is linear in the current version of PFIELD. Amplitude absorp-

tion is obtained by substituting ��	2��2â
C for ��2C, where (Gã) 

is given by: 

 Gã = oäåæ.Ãç 2A.B n1y. (40)

 

The attenuation coefficient rèé is in dB/cm/MHz. A typical 

value for soft tissues is 0.5 dB/cm/MHz [36]. The 10� ac-

counts for the unit conversion (cm·MHz to m·Hz). The scalar 8.69 is an approximation of 20/ln	10
 (see Eq 4.4 in [37]). 

 

 

VII. METHODS VI (CONT’D): RMS PRESSURE FIELDS 

Equation (22) gives the acoustic pressure field for a given 

angular frequency �. This is the expression used by the 

SIMUS code when it calls PFIELD. When used alone, the 

PFIELD MATLAB code returns, by default, the root-mean-

square RMS pressure field. If we omit the 	�����
 term in (22) 

and define �	
, �
 by the relationship �	
, �, �
 ≝�	
, �
�����, the RMS pressure field is given by  

 

�ëìí	

 = wî �	
, �
. d�.�¾1 . (41)

 

The integral can be estimated by using a midpoint Riemann 

sum with ¬� equally spaced frequency samples: 

 

�ëìí	

 H ïΔ� d � _
, 2O ðñ7W�A`.®7
òm1 . (42)

 

The partition width Δ� must be small enough to ensure a 

proper approximation, but not too small to avoid computation-

al overload with a large ¬�. The angular frequency step is cho-

sen so that the phase increment in (20) be smaller than 2� 

everywhere in the radiated region of interest (roi), i.e. Δ� 

must verify [	Δ� =⁄ 
, / Δ�Δ ] < 2� for any distance , and 

transmit delay Δ , i.e. Δ� = minößR ÷2�/	,/= / Δ 
ø. 

 

Once the transmit delays Δ ¯ and the parameters of the ar-

ray are given, the equations (22) and (42) yield the RMS pres-

sure field at the location specified by 
. Fig. 9 and Fig. 10 

illustrate two examples of acoustic fields simulated with 

PFIELD: focused and plane wavefronts with a cardiac and 

linear array, respectively. In these examples, the 3-D equation 

was applied to take the elevation focusing into account. 

 

 

 

 

Fig. 12.  Simulation of a three-chamber-view echocardiographic image. RF 

signals were simulated with SIMUS by using 39,500 scatterers with prede-

fined reflection coefficients (top row). 128 focused waves were transmitted 

to create the 128 scanlines of the B-mode image. 

 

 

VIII.    RESULTS: MEDICAL ULTRASOUND IMAGES WITH SIMUS 

Medical ultrasound images, such as B-mode or color Dop-

pler images, can be generated by simulating RF signals 

through Eq. (32). Once RF signals are obtained, they can be 
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post-processed (e.g. using I/Q demodulation, beamforming, 

clutter filtering, phase analysis, envelope detection…) by us-

ing the MATLAB codes available in the MUST toolbox6. A 

series of RF signals given by SIMUS in a simplified configu-

ration (a focused wave that radiates five scatterers) is dis-

played in Fig. 11. Realistic ultrasound images can be obtained 

when using a large number of point-like scatterers, as ex-

plained in the next paragraphs. 

A. B-mode imaging 

Fig. 12 illustrates the simulation of a long-axis echocardio-

graphic image (three-chamber view) by scanning the left heart 

with a series of focused waves. The synthetic myocardial tis-

sue contained 39,500 randomly distributed point scatterers 

(density = 10 scatterers per wavelength squared) whose reflec-

tion coefficients are shown in Fig. 12. The fan-shaped B-mode 

image consists of 128 scanlines. Each scanline was construct-

ed from one tilted focused wave generated by a 2.7-MHz 

phased array (64 elements, 0.3-mm pitch, 74% fractional 

bandwidth, 6-cm elevation focus). RF signals were simulated 

with SIMUS, then I/Q demodulated and beamformed using a 

delay-and-sum with an optimal f-number [38]. The B-mode 

image was obtained by log-compressing the real envelopes. 

 

 

 

Fig. 13.  Simulation of color Doppler and vector Doppler in a 2-D carotid 

bifurcation. The displacements of ~26,000 blood scatterers (top row) were 

simulated by SPH (smoothed particle hydrodynamics), a Lagrangian CFD 

method [26]. The inset is at another time. RF signals were simulated with 

SIMUS by using unsteered plane waves. Color Doppler (bottom row, red-

blue patterns) and vector Doppler (bottom row, arrows) were generated by 

post-processing the I/Q signals (beamforming, autocorrelator, robust 
smoothing) with tools available in the MUST toolbox. Adapted from [26]. 

 

 

B. Color flow imaging and Vector flow imaging 

SIMUS (and the tools available in the MUST toolbox [27]) 

can also be used to simulate realistic color flow images (color 

Doppler) and vector flow images. Two-dimensional simula-

tions of color and vector Doppler in a 2-D carotid bifurcation 

were introduced in a previous work that combined CFD (com-

putational fluid dynamics) by SPH (smooth particle hydrody-

namics) with SIMUS [26]. In that paper, radiofrequency RF 

 
6 https://www.biomecardio.com/MUST 

signals were simulated by SIMUS using a plane-wave-

imaging sequence (non-tilted waves transmitted by a 128-

element linear array). After I/Q demodulation and beamform-

ing with two distinct subapertures (see details in [26]), a one-

lag slow-time autocorrelator was applied to recover 2-D veloc-

ity fields. The two beamforming subapertures provide two 

Doppler images with significantly different angles, which 

makes it possible to derive 2-D velocity vectors. This ap-

proach has been applied successfully in vivo with sub-Nyquist 

RF sampling [39] and can be generalized with more than two 

subapertures [40]. Fig. 13 provides two snapshots adapted 

from [26]. 

 

IX. RESULTS & DISCUSSION 

The results, as well as the advantages and limitations of 

SIMUS, are discussed in the accompanying article (part II). 

 

X. CONCLUSION 

The assumptions and simplifications included in PFIELD and 

SIMUS make its theory and numerical time-harmonic analysis 

convenient. The examples show that realistic ultrasound imag-

es can be created for educational and research purposes. How 

PFIELD compares to Field-II, k-Wave, FOCUS, and Verason-

ics is detailed in the accompanying article (part II). The cur-

rent version of PFIELD (2021), although it includes the 3-D 

acoustic equation for elevation focusing, is limited to one-

dimensional, linear, or convex ultrasonic transducers. A vol-

ume version is planned. Nevertheless, based on the far-field 

equations described in this paper, and keeping similar hypoth-

eses, an advanced user could adapt SIMUS for the simulation 

of matrix arrays and volumetric acoustic fields. 
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APPENDIX 

A. Paraxial and far-field distances 

Equation (2) can be rewritten as 

,* = 'w½1 / 	P�P4
5
ù5 ¿ / 	M�M4
5

ù5 . (43)

 

In the paraxial (Fresnel) approximation, 	& − &*
./'. ≪[1 / 	% − %*
./'.]. One can thus write7 

 

,* H -'. / 	% − %*
. / <M�M4>5
.-ù5�	P�P4
5. (44)

 

In the paraxial approximation, one has also ,. H %. / '.. 

The expression (44) can thus be approximated by 

 

,* H ,w1 / P45
C5 − 2 PP4

C5 / <M�M4>5
.Cïn�ú45

V5 �.úú4V5
. 

(45)

 

By keeping the 1st order of %* in the first square root and the 

0th order in the second (far-field approximation), we obtain 

 

,* H , _1 − PP4
C5 ` / <M�M4>5

.C . (46)

 

Because sin L = %/√%. / '. H %/, (Fig. 3), (46) reduces 

to Eq. (6). 

 

 

 

Fig. 14.  Comparison of on-axis pressure magnitudes (arbitrary units) 

generated by one element transducer at the center frequency (2-D acous-

tics): element splitting + far-field (thin black lines) vs. Rayleigh-

Sommerfeld integral (thick pink lines). The number of sub-elements was 

given by Eq. (21). The width of the element is 2�. 

 

 

B. Spectrum of the transducer PSF 

We need a �E bandwidth at -6 dB. Therefore, from (26): 

 

 
7 √û / % = √û / % <2√û> / O	%.
⁄  

»ý _�A ± �Æ. ` = ��_ �Æ.Á�¾`³ = n. (47)

 

One can thus deduce À: 

 À = n
√ÄS .�

�E2�A. (48)

 

By assuming that 

 »ý	0
 = »ý	2�A
 = �� �

�� = 2�n.Ã, (49)

 

the expressions (48) and (49) yield � [Eq. (27)]. 

 

C. Element splitting and far-field equations 

In MUST, the transducer elements are partitioned to enable 

the use of far-field equations (Fig. 7). The far-field approxima-

tion is valid if 2%%*/,. ≪ 1 [see Eq. (45) and (46)]. After 

partitioning, %* can be as large as �/� (� being the number 

of partitions per element), and % can be as large as ,. The ine-

quality thus becomes 	2�/�
/, ≪ 1, which means that the 

width of a sub-element must be sufficiently small compared to 

the distance to the point of interest. In PFIELD, we choose the 

default condition �/, ≪ 1 so that the number of partitions per 

element is determined by Eq. (21). Fig. 14 compares on-axis 

pressures (using 2-D acoustics) as calculated with element 

splitting [Eq. (37)] and far-field equations against those de-

rived from the Rayleigh-Sommerfeld integral [Eq. (2.46) in 

[25]].  

 

 

 

Fig. 15.  SIMUS-derived radiation patterns (RMS pressures) generated by 

one element transducer at the center frequency with 2-D acoustics (1st 

column). The normalized errors (2nd column) are with respect to the Ray-

leigh-Sommerfeld integral. The patterns along the white dashed lines are 

in Fig. 14. The width of the element is 2�. 
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Fig. 15 displays the radiation patterns generated by SIMUS 

and provides the normalized errors with respect to the Ray-

leigh-Sommerfeld integral. It can be seen that element split-

ting enables accurate pressure estimates even at small distanc-

es from the transducer. Note that the number of partitions can 

be optionally adjusted by the user to refine the results near the 

element transducer. This may however have a limited impact 

due to round-off errors related to the 1/, term in the equa-

tions. Specially adapted software such as FOCUS8 removes 

this singularity, allowing high accuracy to be achieved in the 

near-field region [41]. 
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