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ABSTRACT

The analysis of microscopic images of hair has a wide range of applications in the domains of cosmetics,
healthcare and forensics. The segmentation of the hair represents the initial step of automatic large-scale
quantitative analysis of microscopic images of hair. It ensures that subsequent quantitative measurements are
performed in an appropriate area corresponding to the hair, avoiding artifacts near the boundaries. This process
can be time-consuming, tedious and susceptible to subjective errors when conducted by a human operator.
Deep learning methods represent a promising solution; however, obtaining pixel-level accurate masks is a
costly process. This paper presents a novel weakly supervised pipeline for the segmentation of hair SEM
(Scanning Electron Microscope) microscopic images, which requires only simple image-level annotations for
training. The proposed method incorporates the Radon transform, the Sobel operator and a novel Boundary
Discrimination Module (BD-module) for the estimation of the presence of boundaries.
The proposed pipeline was evaluated on a recently collected hair SEM dataset (429 images). Furthermore, it
is benchmarked with methods including Unet and Segment Anything Model (SAM). The results demonstrated
a mean Hausdorff Distance improvement of over 30% and a standard deviation improvement of over 50%
in comparison with the Unet and SAM. Moreover, we proposed additional refinement modules to address
boundary nonlinear cases and conducted Grad-CAM analysis to enhance the interpretability of the BD-module.
Additionally, we proposed a novel quality estimation metric based on gradient map for self-quality assessment.
The SEM hair dataset is accessible to the research community in an open-source format.
Keywords: Hair microscopic segmentation, Radon transform, SEM segmentation, weakly-supervised
segmentation.

INTRODUCTION

One of the preliminary steps in the automatic
analysis of hair micrographs is the segmentation of
the Region of Interest (ROI) (Chu et al., 2020).
This serves as the foundation for subsequent studies
on morphological texture analysis and classification
of damage types, and is crucial for the accurate
assessment of hair properties (Chu et al., 2020; Shih,
2014; Lee et al., 2017; Kim et al., 2010; Tomes
et al., 2007; Lee et al., 2016). For example, due to
the 3D nature of hair, the same quantitative measures,
such as scale size, may be subject to significant
variation in close proximity to the boundary areas
(Chu et al., 2020; Tomes et al., 2007). Therefore,
segmentation represents an essential preliminary step
in this process. The objective is to remove the
background portion that contains noisy signals and
retain only the foreground portion. For humans, the
distinction between the foreground and background
in hair micrographs is readily apparent under ideal
Scanning Electron Microscope (SEM) acquisition
conditions. However, in the presence of low contrast
or boundary artefacts, the accurate distinction may

prove challenging. The foreground is delineated by
approximately parallel hair boundaries and contains
textured parts such as the cuticle and cortex, which
are usually brighter relative to the background. The
background is primarily comprised of the carrier plate
and the adhesive utilized to affix the hair in place. On
occasion, the adhesive may act as artefacts that present
a challenge for the delineation of boundaries.

Though user-defined ROI could be used for small-
scale image analysis (Tomes et al., 2007; Kim et al.,
2010; Chu et al., 2020; Lee et al., 2016), when
confronted with large-scale datasets (Zhang et al.,
2021; Man et al., 2021), blurred and dark boundaries
resulting from disparate acquisition conditions, and
irregular boundaries due to cuticle buckling, manual
annotation is inefficient, costly, and prone to subjective
errors. Consequently, it is imperative to identify
automated foreground segmentation methods that are
both efficient and accurate.

Deep learning based methods have been
extensively studied in recent years, and could provide
promising solution for such a problem. However, one
of the challenges commonly encountered in the field
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of deep learning is the necessity for a considerable
number of pixel-level ground-truth segmentation
labels for effective training. As the process of accurate
annotation can be time consuming, weakly-supervised
segmentation employs a reduced number of cost-
effective image-level, bounding box, click, or scribble
labels for the generation of pseudo-masks, which could
then be refined to obtain the final masks (Ahn and
Kwak, 2018; Huang et al., 2018; Li et al., 2022;
Kulharia et al., 2020; Chen et al., 2021; Lee and
Jeong, 2020). Besides, the recent advent of pre-trained
foundation models for segmentation tasks, exemplified
by the Segment Anything Model (SAM) (Kirillov
et al., 2023), have offered a promising solution to the
problem of zero-shot automatic hair microscopy image
foreground segmentation. SAM has demonstrated
excellent performance in our hair microscopic images
obtained under ideal acquisition conditions when a
single center point is used as the foreground prompt.
However, the segmentation performance of the single
centroid as the prompt is sensitive to texture changes
(e.g., cuticle partially detached and cortex partially
exposed). Furthermore, the mask generated under
the single centroid condition exhibits ambiguity that
may potentially be mitigated by incorporating a larger
number of prompt points in order to improve its
overall robustness. This issue will be addressed in the
subsequent sections.

This paper presents a novel weakly-supervised
pipeline for the segmentation of hair micrographs,
which necessitates only image-level boundary
existence annotations for training. The method
employs the Sobel operator, the Radon transform,
and a Convolutional Neural Network (CNN) based
Boundary Discrimination Module (BD-module) for
pseudo-mask generation. Furthermore, we show
how to use Unet (Ronneberger et al., 2015) and
SAM for boundary refinement and extension to
encompass curved boundary cases. The BD-module is
incorporated as the hair micrographs could comprise a
highly variable range of boundary cases. As illustrated
in Fig.1, the SEM images include cases of two edges
(a), one edge (b), hair occupying the whole image
(c), low light (d), multiple hairs (e) or artefacts at
boundaries (f).

The principal contributions of our work can be
summarized as follows:

– We propose a novel weakly-supervised hair
microscopic image segmentation pipeline that
combines classical image processing techniques
with a deep learning model, requiring only
image-level annotations. The proposed pipeline
was evaluated on a SEM hair dataset, with
benchmarks set with Unet and SAM. The results

demonstrated that the proposed method yielded
superior outcomes in terms of performance and
interpretability compared with benchmarks.

– A novel segmentation quality estimation metric
based on detected gradient map is put forth as
a means of automatically identifying erroneous
results.

– The microscopic SEM image dataset and the
corresponding ground truth foreground masks are
made available in an open-source format to allow
further research in the field.

Fig. 1. Examples of SEM microscopy images from the
dataset, including cases with two clear borders (a),
with a single (incomplete) border (b), without borders
(c), with a border of low contrast compared to the
background (d), with multiple hairs (e), with a border
containing artefacts such as glue (f).

RELATED WORK

HAIR MICROSCOPIC IMAGE ANALYSIS

The analysis of microscopic images of hair
represents a valuable non-invasive analytical method
for the rapid estimation of hair and scalp health and
damage levels, as well as changes in hair surface
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properties caused by external influences such as air
pollution (Coroaba et al., 2020; Tomes et al., 2007;
Kim et al., 2010; Lee et al., 2016; Chu et al., 2020;
Zhang et al., 2021; Man et al., 2021; Shih, 2014;
Galliano et al., 2017; 2023). Coroaba et al. (2020)
performed a variety of physicochemical treatments on
hair to obtain images for morphological analysis to
study the effects of baldness on the morphology and
nature of hair. To obtain information such as the height
of the cuticle scales, Tomes et al. (2007) analyzed a
reconstructed three-dimensional model of hair fibers
obtained from multiple 2D SEM images. In order
to establish a standard and objective scoring system
for the quantitative assessment of hair damage, Kim
et al. (2010) first proposed a classification system
with 5 damage scores on SEM and TEM images,
which was then further developed into a 12-point
scale system by Lee et al. (2016). Whereas previous
scoring methods are based on the presence/absence of
certain morphological features (i.e. lifting of cuticle
edges, exposure of cortex, etc.), Chu et al. (2020)
proposed a set of quantitative measures to assess hair
damage without the use of specific features, including
pixel brightness asymmetry histograms and surface
roughness. Although the proposed protocol aims to
automate the damage assessment process, it is based
on user-defined ROIs, which could act as a bottleneck
for the automatic analysis of large scale datasets. The
effects of particulate matter from air pollution on
hair surfaces have also been investigated using SEM
images (Galliano et al., 2017; 2023). Nevertheless,
the use of user-defined ROIs in the studies may still
present a challenge for subsequent research.

The accelerated advancement and extensive use
of deep learning in the domain of computer vision
in recent times have yielded novel conceptual
frameworks for the automated analysis of hair
microscopy images (Zhang et al., 2021; Man et al.,
2021). To automatically quantify the degree and
area of hair damage, Zhang et al. (2021) proposed
HDM-NET based on MobileNet and SVM to classify
SEM hair micrographs into three categories: low,
moderate and high damage. In the same line of
work, Man et al. (2021) further collected a larger
SEM microscopy image dataset containing in total
15,000 images, and proposed SACN-Net combining
convolutional neural network with an attention
mechanism module, which achieved 98% accuracy on
the three categories. Nevertheless, the classification
into weakly, moderately and highly damaged is coarse-
grain, which limits the ability to perform a more
precise classification of damage types (e.g., cortex
appearance ratio or cuticle lift degree).

Hair segmentation serves as an important step
for subsequent analysis of the hair (e.g. counting,

estimating hair width, etc.) (Shih, 2014; Lee et al.,
2017). More precisely, in the context of hair
micrograph segmentation and counting, Shih (2014)
proposed the use of multiscale Hough transform
and parallel line bundling algorithms to address
the issue of hair length variations, as well as the
presence of surface artefacts and the overlapping and
occlusion of multiple hairs. Still in the background
of hair segmentation, to solve the problem of loss
of contrast between hair and background colors and
artefact of background (skin) texture in micrographs,
Lee et al. (2017) proposed a method to generate
hair mask by calculating Edge Density and Mean
Branch Length with adaptive thresholds, and further
refining the mask by applying K-NN classification.
The aforementioned methods address the same hair
micrograph segmentation task but differ in their focus.

While the existing approaches concentrate on
hair segmentation and artefact processing at low
resolution (µm/pixel), to the best of our knowledge,
our work is the first to explore the intricacies of hair
SEM micrograph segmentation at higher resolution
(≤100 nm/pixel). For comparison, the occlusion and
overlapping of hair are less prevalent in our task.
However, the surface texture of the hair is more
visible. Additionally, our task is confronted with the
issues of blurred edges and low contrast resulting from
alterations in the light conditions during acquisition, as
well as the impact of artefacts such as glue used to fix
the hair on the supporting plate. An example of this
artifact is illustrated in the example (f) in Fig. 1.

WEAKLY-SUPERVISED SEGMENTATION
The creation of pixel-wise accurate mask labels

is a costly and error-prone process. The search for
cheaper and more efficient types of annotation has
therefore been widely investigated. Weakly-supervised
segmentation aims to reduce the dependence on pixel-
level labels. Existing methods include image-level
class labels based methods, bounding box labels based
methods, click (point) or scribbles annotations based
methods (Ahn and Kwak, 2018; Huang et al., 2018;
Li et al., 2022; Kulharia et al., 2020; Chen et al.,
2021; Lee and Jeong, 2020). Methods using image-
level class label-based methods typically generate
Class Activation Maps (CAMs) (Selvaraju et al.,
2017) through supervised training of a classification
network. Subsequently, the CAMs are refined to obtain
pseudo-masks which will be further used to train
the segmentation networks. Although class labels are
much less costly compared to pixel-level, the method is
an ill-posed problem since the class labels themselves
do not contain spatial location information and it is
difficult to obtain accurate pseudo-masks (Li et al.,
2022).
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In the field of microscopic image analysis, image-
level labels, point annotations and scribble labels have
been recently explored for cell, mitochondria, nucleus,
histopathological and brain neuron segmentations
(Bilodeau et al., 2022; Kniesel et al., 2023; Li
et al., 2023; Qiu et al., 2024; Zhao and Yin, 2020;
Obikane and Aoki, 2020; Dong et al., 2020; Lee and
Jeong, 2020). More precisely, Bilodeau et al. (2022)
proposed MICRA-Net, which addresses auxiliary
tasks including semantic segmentation, detection, and
enumeration through image-level annotations and
CAMs. Qiu et al. (2024) explored further reduction
of the point label number by proposed WDA-
Net, which needs only sparse points annotations
for a subset of the whole image. Li et al. (2023)
proposed a novel approach that integrates generative
models and point labels. The proposed method
demonstrated comparable performance to the baseline
method, which was trained with real images. Kniesel
et al. (2023) used domain specific image-level
labels (absence/presence of virus) to train a binary
classification network and used CAMs maxima in
order to initialize the detection center, which greatly
reduced the cost of labelling.

The approach presented in this paper is aligned
with image-level labels based methods. It uses image-
level labels to produce a pseudo-mask and a refinement
network for further refinement. However, our
proposed pipeline does not use CAMs. It incorporates
instead the trained CNN into a classical image
processing pipeline, thereby employing domain-
specific knowledge and circumventing the inaccurate
pseudo-mask produced by CAMs.

DATASET

The dataset used in this study is a hair SEM image
dataset with corresponding ground truth foreground
mask1 annotated with VIA annotator (Dutta and
Zisserman, 2019) and a third part algorithm. The
dataset comprises a total of 429 micrographs2, divided
into two sub-datasets, denoted as Base1 and Base2.

The Base1 dataset comprises 240 microscopic
images acquired with a HITACHI S3400N SEM
microscope with a resolution of 1280x960 pixels
(99 nm/pixel). The Base2 dataset comprises 189
images acquired with an FEI QUANTA 400F SEM
microscope with a resolution of 2048 x 1887 pixels
(62 nm/pixel).

Both datasets encompass a variety of damage
types, hair foreground percentages, acquisition
conditions, and background artefacts, which are
illustrated in Fig. 1.

APPROACH

This section presents a novel pipeline for
foreground segmentation of hair microscopy images.
The input microscopic image I is primarily convolved
by the vertical Sobel operator, denoted as Gy, to
calculate the horizontal boundary image SI

h:

SI
h = Gy ∗ I (1)

The rationale for using horizontal boundary SI
h

as input is that all SEM images in the dataset
exhibit horizontal hair positions, and that this approach
yields superior performance compared to experiments
conducted with the original image I as input.

The pipeline applied on the SI
h comprises three

modules, as illustrated in Fig. 2.

– Step 1: Boundary Discrimination (BD) module:
One of the challenges associated with this dataset
is the occurrence of instances where the hair
is particularly thick, resulting in its overflow
beyond the confines of the image, or alternatively,
instances where the border is only partially
visible. The annotation process at the image
level is relatively straightforward. It involves the
application of binary labels to indicate the presence
or absence of borders along the upper and lower
edges. Subsequently, a CNN is trained to predict
this information.

– Step 2: Radon transform-based pseudo-
mask module: The lines corresponding to hair
boundaries (orientation and distance to center)
are determined through the Radon transform.
A pseudo-mask M̂ is generated by combining
the aforementioned predicted boundary existence
variables.

– Step 3: Refinement module: The pseudo-mask M̂
is employed for the purpose of further training a
deep learning model, such as Unet, in a supervised
manner or for randomly sampling prompt points
for the pre-trained Segment Anything model
(SAM). This process serves to further refine the
mask boundary to encompass cases where the
boundary is not straight.

1The ground truth masks are composed of two parts: 84 images are annotated with VIA annotator and the rest are from a third part
algorithm. All the ground truth masks are validated by experts in L’Oréal research center

2The dataset is available at: https://people.cmm.minesparis.psl.eu/files/databases/Loreal SEM Hair 2024/
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Fig. 2. Our proposed pipeline for hair SEM image foreground segmentation. The Boundary Discrimination
Module employs a CNN to estimate the existence of upper and lower boundaries (Step1). The Radon transform
based pseudo-mask module (Step2) generates straight line edge pseudo-mask based on the Radon transform and
the Sobel operator. The Refinement module (Step3) further refines the boundary details and extends the method
to non-linear boundary cases by employing SAM or Unet.

The following section provides a detailed description
of the three modules.

STEP 1: BOUNDARY DISCRIMINATION
(BD) MODULE
One of the key aspects of foreground segmentation

in hair micrographs is the identification of upper
and lower boundaries. This is evident when the
image acquisition conditions are optimal, allowing
for the clear delineation of boundaries through
simple image/signal processing. However, when the
conditions of image acquisition change (e.g., low
light, multiple hair segments at the same time,
the presence of impurities such as glue at the
boundaries, or incomplete hair boundaries of short
lengths), the simple approach fails. Recently, Liu et al.
(2024) demonstrated the effectiveness of incorporating
CNN in a traditional morphological pipeline for
adaptive parameters estimation. Inspired by this work,
we propose to integrate a CNN into a classical
image processing pipeline for boundary existence
discrimination to handle difficult cases where hair
boundaries are barely visible or have artefacts. The
details of the architecture of this module are detailed
in Section 5.1.

Fig. 3. Training stage of Boundary Discrimination
network.

Fig. 3 illustrates the flow of the BD-module
training. the vertical gradient image SI

h is processed by
the CNN to generate variables ŷu

I and ŷd
I representing

the estimated probabilities for the existence of the
upper and lower boundaries, respectively, after the
application of the sigmoid activation function:

ŷu,d
I = Sigmoid(CNNθ (SI

h)) (2)

Subsequently, the Binary Cross Entropy (BCE)
loss function is calculated with the manually annotated
ground truth labels denoted as yu

I and yd
I .

In the inference stage, for new microscopic images
that are not included in the training set, the pre-trained
network with fixed network parameters computes the
upper and lower boundary existence probabilities ŷu

I
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and ŷd
I through SI

h. The boundary is considered present
if probability is more than 0.5.

STEP 2: RADON TRANSFORM BASED
PSEUDO-MASK MODULE

Investigated in macro-scale microscopy hair
segmentation (Shih, 2014), the Hough transform and
its counterpart, the Radon transform, are closely
related (or equivalent) (van Ginkel et al., 2004).
However, the Radon transform has been shown to
be more robust to noise than its Hough transform
counterpart (Bhaskar and Werghi, 2011) and has the
advantage of being more intuitive with a more solid
mathematical basis (van Ginkel et al., 2004). Thus we
use the Radon transform for better robustness when
dealing with background artefacts such as glue.

Given that the boundaries of hair micrographs are
predominantly straight (or nearly straight), integrating
the vertical gradient (assuming a horizontal hair pose)
in the same direction as the boundaries results in
the emergence of significant maxima and minima,
which correspond to the two boundary positions (if
they are present). From the sinogram’s extreme points,
the direction of the boundary and the distance from
the center point can be determined, allowing the
construction of a linear boundary pseudo-mask. The
procedure is depicted in Fig. 2.

The Sinogram3 RSI
h for image SI

h is given by:

RSI
h(α,s) =

∫
∞

−∞

SI
h(x(z),y(z))dz

=
∫

∞

−∞

SI
h
(
zsinα + scosα,

(−zcosα + ssinα)
)

dz (3)

where α is the projection angle and s the projection
pixel. As illustrated in Fig. 2, when the projection
angle is aligned with a hair boundary, an extremum is
obtained in the sinogram.Thus, the upper boundary can
be estimated by determining the position where RSI

h
achieves its maximum value:

αmax,smax =(α,s)∈[0,A ]×[S
2 ,S ] RSI

h (4)

where A and S denote the maximum range for
angle and projection pixel axis for RSI

h respectively.
The choice of the search range for s in [S2 ,S ] is linked
to the acquisition condition: the hair must contain the

center of the image. Therefore, the upper boundary is
located within the lower half of RSI

h.

However, the projection pixels smax are inadequate
for determining the distance of the boundary from the
center point. This is due to the potential influence
of artefacts, such as long physical damage gaps or
optical texture artefacts resulting from acquisition
conditions in the middle of the foreground with the
same orientation as the boundary. These factors could
easily compromise the precision of the measurement.
Therefore, we propose the use of the K-means
algorithm to separate local maxima (minima) clusters,
which contain candidate maxima with boundary
distances, and local noise clusters, which represent the
texture artefacts:

M̂ u
I =s∈[S

2 ,S ] (Gσ=2(RSI
h(αmax,s))) (5)

M u
I ,N

u
I ←− (M̂ u

I ) (6)

where Gσ=2 denotes Gaussian filter with σ set to
2. The final point will be selected as the one in the
cluster of maxima and minima points which is furthest
from the center point. The purpose of this selection is
to reduce the effect of texture and light artifacts:

wu =s∈M u
I
|s−S

2
|, θu = αmax (7)

The angle and distance from center for lower
boundary θl,wl are determined in a similar way, but
the search interval is constrained by αmax:

αmin,smin =(α,s)∈[αmax−δ ,αmax+δ ]×[0,S2 ]
RSI

h(α,s) (8)

The value of δ is set to 7◦, which represents
the degree of tolerance for parallelism observed
experimentally.

Ultimately, by combining the estimated boundary
existence variables ŷu

I and ŷd
I with the angles/distances

for the upper and lower boundaries θu,θl,wu,wl , we
can calculate the boundaries’ linear functions, which
determine the regions of the foreground mask.

STEP 3: REFINEMENT MODULE
The pseudo-mask obtained from the Radon

transform is capable of accurately representing a
straight boundary. However, this method is limited in
its ability to handle cases where the hair radius changes
or the boundaries are irregular. Consequently, further
refinement modules are proposed based on the Unet
and pre-trained SAM, with the objective of further
refining the boundary details of the aforementioned
method and extending it to the case where the
boundary is not straight.

3The angular resolution is set to be proportional to the SEM width, with a rescale factor of 0.4 for better calculation efficiency. This
results in an angular resolution of approximately 0.21°/pixel for Base1 and 0.35°/pixel for Base2.
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1) Unet-based refinement module

Following Bilodeau et al.; Kniesel et al.; Ahn
and Kwak; Huang et al.; Li et al., we take the
aforementioned pseudo-mask as labels to train a Unet
in a supervised manner, and use the inference output
as refinement. We applied a fill holes operator to the
resulting mask and only keep the largest connected
component.

2) SAM-based refinement module

As a foundational model for promptable
segmentation, SAM is capable of producing high-
quality masks by employing points, box regions, and
text as prompts. The pseudo-mask is employed as a
sampling region for the foreground and background
point prompt sampling.

Foreground prompt points sampling. The initial
step is to perform an erosion transform on the pseudo-
mask with a square structuring element4. This is
followed by a random sampling of the eroded pseudo-
mask to obtain the positive foreground points. The
rationale behind the erosion transform is to ensure that
the sampled intervals are included in the foreground.

Background prompt points sampling. In a
symmetrical manner, a dilation transformation is
applied to the pseudo-mask, and the dilated pseudo-
mask is inverted and randomly sampled to obtain the
background points.

Mask refinement and post-processing. Finally,
the foreground and background sampling points
mentioned above are fed into the pre-trained SAM as
prompts, as well as the original microscopic images, to
generate the refined masks. Same as Unet, a fill holes
operation is applied to the resulting mask and finally
only its largest connected component is kept.

QUALITY ESTIMATION METRIC

While our proposed methods show promising
performance at the dataset level, it is also interesting
to provide confidence scores at the instance level,
allowing for easy identification and prioritization of
cases with a higher propensity for error.

In this section, we propose a new metric for
automatic evaluation and uncertainty estimation based
on the detected hair boundary gradient map.

Upon disposal of ground truth masks, the
evaluation metrics like detection percentage (DP)
and quality percentage (QP) can be calculated for
the purpose of comparing disparate segmentation

results, as exemplified by Angulo et al. (2009) for
hyperspectral image segmentation. However, these
methods are constrained when applied to large-
scale datasets where ground truth masks are not
available. To this end, unsupervised quality assessment
methods have been investigated in the field of image
segmentation as a means of addressing this issue
(Wang et al., 2020). Especially, in recent times, the
estimation of uncertainty scores based on predicted
network entropy has been the subject of investigation
with a view to unsupervised automatic boundary
segmentation quality estimation (Martins da Cruz
et al., 2024). The method is based on the deep network
outputs, which limits the range of applications.
Therefore, we propose an alternative metric to directly
evaluate the quality of the detected boundary gradient.
A high contrast boundary, as well as a clear and clean
boundary, should have a high mean and a low variance
of gradient. Conversely, a low contrast boundary or a
boundary with artefacts could result in a discontinuity
of the gradient, leading to less homogeneous profiles.

Given that hair boundaries are typically not
perfectly straight and may exhibit cuticle warping, we
compute the mask boundaries Y of width N pixels
by calculating morphological gradient (Rivest et al.,
1992) of the prediction masks Ŷ . This is achieved by
subtracting the erosion result from the dilation result
of Ŷ . In order to eliminate outlier pixels with extreme
values and enhance robustness, we apply area opening
(Vincent, 1993) to both the original image and the
vertical gradient map. The filtered image Ĩ can be
obtained with:

Ĩ = γ
a
λ
(I) (9)

With γa
λ

denotes area opening operation with
area threshold λ . The area threshold λ is set as
128×128 pixels. The area size is chosen based on
image resolution and outlier regions. We then obtain
the estimated boundary gradient SĨ

h (Local contrast in
Fig.5) by computing the dot product with the dilated
vertical gradient image SĨ

h.

Y = Ŷ ⊕B− Ŷ ⊖B

SĨ
h = Y · γa

λ
(|SĨ

h|⊕B)
(10)

where ⊕ and ⊖ denote morphological dilation and
erosion respectively, B denotes the structuring element
with size W , thus N = 2W . In order to circumvent the
potential for irregular cuticles at boundaries to yield

4In the experimental sections, the size of the structuring element was tested at 40 pixels. The number of foreground and background
sampling points was set to 40 and 20, respectively.
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extreme values, a gradient profile along the x axis VPu
is obtained by averaging the gradient for each column
according to the following equation:

VPu(x) =
∑

H /2
i=0 SĨ

h(i,x)

∑
H /2
i=0 Y (i,x)

(11)

Assuming that the upper boundary is confined
to the upper half-plane of the SEM image, VPu is
computed for i ∈ [0,H /2].

By choosing the valid threshold as half of
maximum value, the valid percentage metric for the
upper boundary, denoted as VPu, can be formulated as
follows:

VPu =
∑

W
j=0 1

VPu≥max(VPu)
2

( j)

∑
W
j=0 1VPu>0( j)

(12)

where H denotes the height, W denotes the width of
Y respectively. 1 denotes indicator function. The VPu
is between 0 and 1, it represents the percentage of
valid vertical gradient pixels under the detected upper
contour along the x-axis.

The same metric for the lower boundary VPl
can be obtained by the same way, but change the
integration range to [H /2,H ].

The final metric VP can be obtained from the
minimum of VPu and VPl:

VP = min{VPu,VPl} (13)

The rationale behind the minimum approach is that
artefacts present in a single boundary can already
exert a significant influence on the quality of the
produced mask. The formulation with the average of
VPu and VPl was also tested, yet resulted in lower
Spearman correlation coefficients than the formulation
with minimum.

EXPERIMENTS

BD-MODULE TRAINING
For the boundary discrimination network, we use

the Resnet18 (He et al., 2016) network structure. For
the training data, each image was manually labelled
with the corresponding upper and lower boundary
presence labels yu,d

I . The total dataset is randomly
separated into 5 splits for 5-fold cross validation, and
for each split, we take the inference of each trained
model on their validation set for subsequent further
evaluations.

For data augmentation, each input vertical gradient
image was randomly flipped up and down and left and
right with a probability of 0.5 (the corresponding labels
were inverted accordingly), as well as subjected to
a contrast augmentation transform. The loss function
employed was the BCE (Binary Cross Entropy) loss
function between the predicted labels ŷu,d

I and the
true labels yu,d

I . For network optimization, the Adam
optimizer was used with a learning rate of 1e-5 and L2
regularization coefficient (weight decay) of 5e-2. The
batch size was set to 4 due to GPU memory constraint,
with the network trained for 200 epochs per split. The
model weights with the lowest validation loss were
saved and tested.

UNET TRAINING
For the Unet based refinement module, we take

the original implementation (Ronneberger et al., 2015)
with input channel 1 (SEM image converted to gray
scale and resolution 256×256), base feature channel
64 and 5 layers. The pseudo-mask M̂I resized to
resolution 256×256 is taken as label for each input
image I. Same as Section 5.1, the performance of the
model was evaluated using 5-fold cross-validation on
the entire dataset. For optimization, the same optimizer
configurations as in Section 5.1 are used, but with
batch size 16. For each split, model is trained for 1200
epochs, with early-stopping with patience 200 epochs
and min delta 1e-4 used.

EVALUATION METRICS
In order to assess the efficacy of our proposed

pipeline, we employed both Intersection Over Union
(IoU) and Hausdorff distance as evaluation metrics.
The IoU is based on overlapping regions, thus
providing a global evaluation. IoU between estimated
mask Ŷ and ground truth mask Y is defined as follows:

IoU(Y,Ŷ ) =

∣∣Y ∩ Ŷ
∣∣∣∣Y ∪ Ŷ
∣∣ (14)

The Hausdorff distance is based on the maximum
distance between two sets:

dH(Ŷ ,Y ) := max

{
sup
ŷ∈Ŷ

d(ŷ,Y ),sup
y∈Y

d(Ŷ ,y)

}
(15)

It is worth noting that all estimated masks are
resized back to the original SEM image resolution
prior to calculating the metrics, as the Hausdorff
distance depends on the resolution.
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Table 1. Quantitative results on the whole dataset (N=429 images). For learning-based methods, the metrics are
based on the validation results of the 5-fold cross-validation. SAM denotes pre-trained SAM model with center
point as prompt. RS denotes Radon transform (and Sobel operator) based pseudo-mask module. BD denotes
Boundary Discrimination module. GT denotes Ground Truth masks.

Methods IoU↑ Hausdorff Distance↓

SAM 0.981 (+-0.033) 24.002 (+-50.759)

Unet on GT∗ 0.993 (+-0.006) 16.973 (+-25.659)

RS+BD 0.992 (+-0.006) 11.447 (+-12.399)

RS+BD+SAMa 0.985 (+-0.006) 18.410 (+-14.632)

Unet on RS+BDa 0.987 (+-0.008) 20.709 (+-28.680)
aPseudo-mask based on RS+BD.
∗Fully supervised Unet trained with ground-truth mask labels.

RESULTS

This section presents the evaluation of our
proposed methods for hair SEM image segmentation,
with a focus on both quantitative experimental results
and qualitative examples. Furthermore, the discussion
will address the proposed auto-evaluation metric,
followed by Grad-CAM analysis, which aims at
enhancing the interpretability of the BD-module.

BD-MODULE RESULTS

The results of the five-fold cross-validation
experiments for the CNN in the BD-module are
presented as a weighted F1-score for the upper
and lower boundary classes. The weighted F1-score
achieved a value of 1.00 across all five splits.

QUANTITATIVE RESULTS

The test results on the whole dataset are presented
in Table 1. The SAM denotes pre-trained SAM
standalone with single center point as prompt5.
The RS+BD+SAM method employs an augmented
sampling point with a pseudo-mask based on the
RS+BD approach, as outlined in Section 4.3.2. Unet
on GT and Unet on RS+BD denote Unet trained with
ground truth masks and pseudo-mask from RS+BD
as labels respectively. Both are with same training
conditions in Section 5.2. The results of Unet on GT
can be used as a reference upper supervised bound for
comparison. For the purposes of an ablation study, we
separately report the RS+BD, RS+BD+SAM,Unet on
RS+BD to compare different refinement methods.

The Unet on GT method fully supervised trained
with ground truth mask labels achieves optimal test
results for IoU, while the improvement compared with
RS+BD is marginal. It is worth noting that RS+BD
get best mean and standard deviation for Hausdorff
distance compared with other methods, especially
significantly outperforming the SAM benchmark. This
is evidenced by a mean reduction of over 60% in
Hausdorff distance and an 80% reduction in standard
deviation for both IoU and Hausdorff distance. These
results demonstrate the effectiveness of our proposed
method based on the Radon transform, Sobel operator
and proposed BD-module.

Three following conclusions could be made after
analyzing results presented in Table 1.

Pseudo-mask for SAM. A comparison of the
RS+BD+SAM with the SAM benchmark method
reveals that the former achieves a superior mean value
while significantly reducing the standard deviation
with respect to the single center point prompt method.
This demonstrates that the use of a pseudo-mask based
on the existence and location of the boundary as a
priori knowledge through random sampling as prompt
improves robustness.

Pseudo-mask for Unet. By comparing Unet on
RS+BD (Unet trained with pseudo-mask) with Unet
on GT (Unet trained with ground truth mask), we
can observe that the latter gets both better IoU
and Hausdorff Distance, which could be explained
by the fact that the pseudo-mask labels, which
are composed of straight line boundaries, are less
precise as supervision signals compared with pixel-
level precise ground truth labels, and may provide

5The center point constraint is imposed by SEM acquisition condition.
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Fig. 4. Eight qualitative examples (a to h), from left to right: original SEM image, SEM overlapped with ground
truth contour (white), contour from RS+BD method (orange), contour from SAM with single point prompt mask
(red), contour from Unet trained with ground truth mask labels (magenta), contour from RS+BD with SAM as
refinement module (green), contour from Unet on RS+BD as refinement module (cyan).

erroneous supervision for cases where boundaries are
not straight. Whereas the margins between the two
methods are tight, the former requires much less
annotation (integer existential labels corresponding to
upper and lower limits) than the latter (pixel-accurate
masks).

Refinement modules. A comparison of the results
of the last three rows of Table 1 reveals that the
addition of the refinement module (either Unet or
SAM) has a negative impact on performance metrics.
This is due to the introduction of additional artefacts

by both SAM and Unet, which will be illustrated in
Section 6.3.

QUALITATIVE RESULTS

We showcase the effectiveness of our proposed
method by qualitative examples as shown in Fig 4. The
selected examples encompass the principal categories
of difficult cases within the dataset: multi-hair (a), low
boundary contrast (b, c and h), minor boundary (e),
no boundary (d), texture change (e), and non-linear
boundary (f and g).
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Fig. 5. Boundary gradient-based valid percentage (VP) calculation process. From left to right: 1. Original SEM
image and output mask boundary 2. Vertical gradient under contour 3. Boundary contrast of upper and lower
detected boundary gradients, with horizontal coordinates in pixels. The horizontal dot lines represent thresholds
for each case (maximum divided by 2). The calculated VP values are in the title of each figure.
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In more precise terms, case a) illustrates the case
of multi-hair, due to the constraint of SEM acquisition
conditions, when multi-hair occurs at the same time in
one image, the one pass center point will be taken as
principle one. This is also consistent with the limitation
of the search range to the upper and lower half-planes
of the sinogram, as described in Section 4.2, and thus
the method RS+BD is able to successfully segment the
main hair.

Examples c) and e) show that the SAM method
with centroid prompt is prone to artefacts when the
texture inside the image changes locally (cuticle and
cortex texture region in e), or when the contrast of the
same hair boundaries is too low (c). After increasing
the number of prompt points by pseudo-mask (method
RS+BD+SAM), these artefacts were corrected.

The effectiveness of the refinement modules (Unet
or SAM) is demonstrated in examples f) and g). In
example f), the radius of the hair changes, while in
example g), a cuticle warping at the boundary results
in an irregular boundary. Consequently, the method
(RS+BD) that predicted the boundary of the mask to
be a straight line both yielded inaccurate results in the
lower left corner of f). However, following refinement
modules, the predicted mask underwent a further post-
hoc correction. However, the refinement modules also
introduce new artefacts, as in the example h) in Unet
on RS+BD, and additional post-processing steps may
improve the results.

QUALITY ESTIMATION METRIC
RESULTS

Fig. 5 illustrates examples of applying boundary
gradient valid percentage (VP) as quality estimation
metric. Cases a) and b) represent the same SEM
image, but with two different masks derived from
RS+BD and SAM respectively. The first mask exhibits
a superior fit to the boundary details (lifted cuticles),
thereby yielding higher VPs than the second. The
same results are evident in cases c) and d): it is
notable that a portion of the lower boundary in d)
is erroneous due to the straight line boundary, in
contrast, such an error is absent in c), thus resulting
in a larger VP for the lower boundary than in d). Cases
e) and f) illustrate instances of failed segmentations.
In case e), no effective boundary is identified, while
in case f), a background artefact in the lower portion
is incorrectly detected. As a result, these two cases
exhibit comparatively low VP values.

Fig. 6. Scatter plots of IoU-VP and Hausdorff
distance-VP for RS+BD. The VP, IoU and Hausdorff
distance thresholds are set to 0.99, 0.97 and 50
respectively for illustration.

To quantitatively evaluate the VP metric in terms
of self-quality estimation on the whole dataset, we
show the scatter plots of IoU-VP and Hausdorff
distance-VP for method RS+BD in Fig. 6. The
objective of VP is to accurately identify the produced
masks with significant errors. Therefore, the evaluation
process is formulated as a classification problem. By
setting a threshold for VP, the samples with a VP
inferior to the threshold can be estimated as having
significant errors (estimated positive). Concurrently,
the application of an additional threshold for IoU
(or Hausdorff distance) enables the delineation of
instances exhibiting genuinely substantial errors (true
positive).

In accordance with the established convention, the
F1 scores, along with the AUC curves, can be depicted
in Fig. 7 as a function of varying IoU (or Hausdorff
distance) thresholds.

270



Image Anal Stereol 2024;43:259-275

Fig. 7. AUC curves obtained by varying IoU and
Hausdorff distance thresholds, as illustrated in Fig. 6,
for different methods.

For the IoU threshold smaller than 0.95, all the 4
methods get AUC greater or close than 0.9. Especially,
Unet on RS+BD get AUC close to 0.98. These show
the effectiveness of VP in identifying problematic
cases when taking IoU as quality indicator. For
Hausdorff distance threshold greater than 75, RS+BD
and Unet on RS+BD get AUC around 0.95, but the
other two methods get worse AUC.

A comparison of the four methods revealed that the
Unet on RS+BD method yielded the most favorable
AUC values when evaluated on IoU thresholds ≤ 0.95
and Hausdorff distance thresholds ≥ 50 compared
with other methods. This demonstrates the high
applicability of using VP as a quality assessment
metric in this case. It is also noteworthy that for
relatively strict thresholds, e.g., IoU thresholds ≥
0.975 or Hausdorff distance thresholds ≤ 30, RS+BD
get superior AUC compared with other methods. This
can be attributed to the fact that the hairs exhibit
predominantly straight boundaries. Furthermore, the
ground truth data from the third part algorithm (which
represents approximately 80% of the total counts)
also displays straight lines, indicating that the results

derived from RS+BD could potentially be biased. In
addition, the results obtained with the RS+BD method
exhibited fewer irregular artefacts than those derived
from the other methods.

Further illustrations of the application of the
proposed VP metric in diverse methodologies can be
illustrated in Fig. 8.

The notable decline in the VP is attributed to the
failure detection of boundaries. Masks with higher
VP values demonstrate an enhanced identification of
the interface between the background and the hair
regions, indicating an improved quality of the mask.
For instance, such VP drop can be found in the
considerable erroneous mask area resulting from inner
cortex texture alterations in cases a) and c), the
mask irregularities caused by deep model prediction
artefacts in case d), and external errors caused by
artefacts in boundaries in cases b), f), g) and h). In
the case e) of method SAM, the lower boundary is
severely failed, resulting in an extremely low VP (0.36)
compared to VPs with other normal error-free masks
(close to 1.00). It is noteworthy that for case h), the
values of the VPs derived from the four methods are
comparatively low in relation to the other cases. This is
due to the fact that, as a consequence of the acquisition
conditions, the boundaries of the hair in case h) exhibit
relatively low contrast. Consequently, the VP metric,
which is based on the detected gradient map, is more
susceptible to obtaining low values in such conditions.

It is also worth noting that the low VP values
observed under such conditions are aligned with the
objective of quality estimation: when the boundaries
of hair are of sub-optimal quality, the low VP
values should be capable of revealing the associated
uncertainties. One of the limitations of the VP metric
can be demonstrated in the SAM method of case i) and
the Unet on RS+BD method of case f). In both cases,
the masks achieve the optimal VP values through the
incorporation of well-fit boundary artefacts (adhesive
in both instances). However, from a strict standpoint,
these artefacts should not be regarded as components
of the hairs to be identified. As the VP values only
consider gradient information, they are unable to
account for semantic aspects.

Consequently, the segmentation quality
differences caused by lifted cuticles (which belong to
hair) and adhesives (which do not belong to hair) are
challenging to distinguish based solely on VP values.
Therefore, it would be beneficial for future research to
consider the development of a quality metric that also
takes semantic meaning into account.
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Fig. 8. Nine segmentation examples with the proposed VP (valid percentage) auto-evaluation metric, which are
shown in the title for each image. IoUs are calculated with the ground truth masks. The colors of the contours are
the same as in Fig4. The examples are obtained with structuring element size W=20 (cf. Section. 4.4).
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Fig. 9. Grad-CAM examples on validation set for
trained CNN, from left to right: original image,
saliency map for upper boundary, saliency map
for lower boundary. The predicted probability for
existence of upper/lower boundaries are indicated at
title for each CAM image.

GRAD-CAM ON BD-MODULE

We further illustrate the effectiveness and improve
the interpretability of BD-module by means of Grad-
CAM (Selvaraju et al., 2017) results of the trained
CNN on validation set, as shown in Fig. 9.

In Fig.9, example a) illustrates a scenario where the
SEM image comprises two boundaries and the SEM
acquisition low-light condition at the same time. In
this instance, the CNN’s attention for the presence of
the upper and lower boundaries is distributed between
the boundaries themselves and the background. This
aligns with human perception. However, the activation
regions in the lower part of the upper border presence
column and in the upper part of the lower border
presence column are not fully expected.

Examples b) and c) illustrate cases with a single
boundary or partial boundaries. In these instances, the
focus is concentrated at the boundary locations, which
ultimately yields probability values that lead to the
correct results.

It is noteworthy that in case d), the upper boundary
is not visible, yet in the corresponding plot, the
network attention is still focused on the region of the
plot where this boundary is most likely to be present.

The presented examples in Fig.9 demonstrate that
the CNN network has been effectively trained and
enhance the interpretability of the proposed BD-
module.

CONCLUSION

This paper presents a novel weakly supervised
pipeline for hair SEM image segmentation. The
proposed method is based on the Radon transform and
the Sobel operator, with an integrated CNN module
to estimate the presence/absence of upper and lower
boundaries, and a refinement module based on Unet or
SAM to further cope with cases where boundaries have
significant changes in diameter.

We also benchmark our SEM hair dataset with
other methods such as Unet and SAM. Experimental
results show that although our proposed method uses
only image-level annotations, it achieves comparable
performance on IoU, as well as more than 30%
improvement in mean and more than 50% in standard
deviation on Hausdorff distance compared to Unet
trained in a fully supervised way. Furthermore,
ablation studies show the effectiveness of each
proposed component.

Furthermore, our proposed pipeline, which
is mainly based on classical image processing
techniques, has better interpretability than end-to-
end deep learning based methods such as Unet and
SAM, with the Grad-CAM results improving the
interpretability for the BD-module.

For automatic quality evaluation and to improve
the applicability of our proposed methods to other
SEM microscopic hair images, we further propose a
quality estimation metric based on detected boundary
gradient map (VP). The quantitative results and
qualitative examples demonstrate the effectiveness
of the proposed metric in identifying instances of
significant segmentation error, thereby enabling the
automatic assessment of segmentation quality for
large-scale datasets.

One of the limitations of this work is
the refinement modules, as deep learning-based
refinement modules (Unet or SAM) simultaneously
refine the boundaries and introduce new artefacts.
Therefore, exploring alternative refinement methods
could be promising avenues for future research.
Another limitation is the proposed VP metric, which
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currently only uses the homogeneity of the detected
boundary gradient, but doesn’t take into account
the semantic information, which could be useful
for accurately identifying boundary details and
eliminating artefacts.

The SEM hair microscopy dataset of 429 images
will be made open source to further benefit the research
community.
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