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ABSTRACT Anatomical human models are extensively utilized for assessing induced electric fields due to 
low-frequency (LF) electromagnetic exposure. One difficulty in the LF dosimetry is that the results are often 
affected by numerical artifacts, which are attributable to the abrupt change at tissue interfaces for the 
segmented human models with discrete tissue conductivities. To overcome this difficulty, head models with 
continuous conductivities have been recently developed using deep learning networks, which directly map 
magnetic resonance images to volume conductivity without segmentation. To validate the effectiveness of 
this novel modeling method for electromagnetic dosimetry, a working group was established by the IEEE 
International Committee on Electromagnetic Safety Technical Committee 95 Subcommittee 6. The group’s 
initial study focused on intercomparison of computed fields using learning-based models across several 
laboratories. This paper extends the analysis considering the effect of conductivity variations on the computed 
electric field induced in learning-based continuous models and segmented discrete models. Six international 
research groups participated in this joint study. It is found that the electric field strengths decrease in grey 
matter (GM) and increase in white matter (WM) as GM conductivity increases. Electric field strengths in 
both GM and WM decrease as WM conductivity increases. The variation ranges of electric field strength, 
due to varying conductivity values, show comparability between discrete and continuous models. For the 
intercomparison, the highest relative differences (RDs) are 15.9% and 6.7% for the 100th and 99th percentile 
values of the induced electric fields for the discrete models, respectively, and 10.1% and 3.8% for the 
continuous models. The RDs for computations using the scalar-potential finite-difference method with 
different solvers are below 1.2%. 

INDEX TERMS Low frequency, electromagnetic safety, human protection, standardization, intercomparison 
study 

I. INTRODUCTION 
Concerns about human safety from electromagnetic (EM) 
exposure have long been prevalent. To address these concerns, 
the IEEE International Committee on Electromagnetic Safety 
(ICES) and the International Commission on Non-Ionizing 
Radiation Protection (ICNIRP) published standards [1] and 
guidelines [2], [3] establishing the exposure limits. These 

guidelines and standards are periodically updated to 
incorporate new scientific findings. 

For low frequency (LF) exposure, the limits are designed to 
avoid electrostimulation effects to central or peripheral 
nervous system. There are two types of limits: basic 
restrictions (ICNIRP) or dosimetric reference limit (IEEE), 
and reference levels (ICNIRP) or exposure reference level 
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(IEEE). For LF exposure, basic restrictions are defined in 
terms of the spatially averaged induced electric field strength, 
derived from the threshold of adverse effects, 
electrostimulation for peripheral nervous system or sensation 
for central nervous system (phosphene), considering the 
reduction (safety) factor [3]. Reference levels are defined as 
permissible external electric or magnetic field strength in free 
space, which facilitates compliance assessment.  

Reference levels are derived from basic restrictions to 
ensure that compliance with reference levels also ensures 
compliance with the basic restrictions. In the IEEE C95.l 
standard, the exposure reference level was derived using 
homogeneous ellipses models [1], whereas in the ICNIRP 
guideline, realistic voxel-based human body models were used 
[4], [5], and an additional reduction factor of 3 was deemed in 
consideration of the uncertainty in the computations. 

In many LF dosimetry studies [6]–[21], the utilized human 
models were developed based on tissue segmentation from 
medical images. A single conductivity value was then 
assigned to each tissue, so that the resulting volume conductor 
model is piecewise uniform. An important issue with the use 
of such discrete models for dosimetry modeling is the error 
caused by numerical artifacts, specifically the staircasing error 
[22]–[26]. Recently, head models with continuous 
conductivity have been developed using deep learning 
techniques and utilized for dosimetry [27], [28]. In these 
models, voxel conductivity was mapped from the gray levels 
of the original magnetic resonance images (MRIs), featuring 
smooth transition of conductivity across tissue interface [27]. 

Previous dosimetry studies primarily used conductivity 
values referenced in [4], [5], which were based on the 
Gabriel’s dataset [29]. As reported by [30], the uncertainty in 
the measurement maybe up to a factor of 2 or 3 due to the 
electrode polarization effect below 100 Hz. For example, 
studies in [31], [32] reported higher tissue dielectric properties 
in brain tissues, note that their measurement methods, 
conditions and tissue temperatures were different [33]. Given 
the measurement uncertainty and variability in estimated 
tissue conductivity values, it is crucial to understand the effect 
of these variabilities on dosimetry modeling results [34]. 
Reference [35] considered three conductivity sets using 25 
segmented head models, and the results showed that the 
maximum electric field strengths computed using the new 
tissue conductivities were lower than those obtained using 
commonly used conductivity values. Up to the best of authors’ 
knowledge, there is no study that has yet examined the effect 
of conductivity variability for learning-based continuous head 
models. This gap underscores the need for further research to 
validate the effectiveness of these new modeling techniques in 
accounting for tissue conductivity variations. 

International standardization bodies have highlighted the 
need for research on tissue conductivity assignment [36]. To 
address these issues, Subcommittee 6 of the IEEE ICES 
Technical Committee 95 launched a working group (WG7) 
focused on a novel modeling technique for LF dosimetry. That 

was the first study presenting an intercomparison using 
learning-based models to address computational uncertainties 
arising from different computational methods or codes. Seven 
worldwide institutions participated in that study. Five human 
head models were developed using CondNet [27], based on 
commonly used conductivity values. The induced electric 
fields were then computed using each group’s individually 
developed computational codes, and the results showed good 
agreement across the various computations [37]. 

Following this, WG7 coordinated a second research effort 
to investigate how conductivity variations influence the 
computed electric field in the learning-based models. In this 
study, multiple conductivity sets for eight head models, with 
grey matter (GM) conductivity varying from 0.08 S/m to 0.22 
S/m and white matter (WM) conductivity from 0.04 S/m to 
0.14 S/m were generated using CondNet [27]. The cubically 
averaged electric fields in GM and WM were then computed 
for 50-Hz uniform magnetic field exposure. Additionally, 
different conductivity scenarios for a single head model were 
shared with WG7 members for an intercomparison study to 
verify the dosimetry results. 

II. MODELS AND METHODS 

A. MODELS AND SCENARIO 
MRIs of eight subjects from the Brain Multimodality Dataset 
[38] were used to develop head models with a resolution of 1 
mm × 1 mm × 1 mm. CondNet [27] was used for the automatic 
generation of the head models with continuous conductivity 
distributions, referred to as continuous models hereafter. This 
study considered the variety of GM and WM conductivities. 
TABLE I lists the tissue conductivities used for network 
training [39], with GM conductivity ranging from 0.08 S/m to 
0.22 S/m and WM conductivity from 0.04 S/m to 0.14 S/m 
considering 0.02 S/m increments. Notably, GM conductivity 
was set to be higher than WM conductivity across the 
specified range. A total of 38 conductivity combinations were 
used for each head model, as shown in Table II. Additionally, 
segmented models with homogenous tissues were developed 
using ForkNet [40], referred to as discrete models hereafter. In 
summary, there are eight head models with a total of 608 
simulation cases. 
 

TABLE I 
THE CONDUCTIVITIES  OF THE MAJOR TISSUES USED FOR TRAINING 

CONDNET AT 50 HZ. 

Tissue Conductivity  
Blood 0.70 S/m 
Cancellous Bone 0.08 S/m 
Cortical Bone 0.02 S/m 
Cerebrospinal Fluid (CSF) 2.0 S/m 
Cerebellum 0.095 S/m 
Fat 0.04 S/m 
Muscle 0.23 S/m 
Skin 0.1 S/m 
Grey Matter (GM) 0.08 ~ 0.22 S/m 
White Matter (WM) 0.04 ~ 0.14 S/m 
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Figure 1 shows the conductivity distributions for one head 
model, showing that conductivity values varied smoothly in 
the continuous models compared to discrete head models. 
Figure 2 shows the distributions of the conductivity within two 
regions of interest (indicated by the red squares in Figure 1) 
for GM and WM. The medians, 0.122 S/m for GM and 0.042 
S/m for WM, are close to the target tissue conductivities 
shown in Table II for scenario 6 (Sc6). Unlike the discrete 
models, where a single conductivity value is assigned to all 
voxels of a tissue, the voxel conductivity in learning-based 
continuous models is distributed around the median, reflecting 
the natural variability of conductivity in human tissues.  
 

TABLE II 
THE 38 SCENARIOS (SC) OF GM AND WM CONDUCTIVITY COMBINATIONS.  

 GM Conductivity (S/m) 

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 

W
M

 C
on

du
ct

iv
ity

 (S
/m

) 0.04 Sc1 Sc3 Sc6 Sc10 Sc15 Sc21 Sc27 Sc33 

0.06 Sc2 Sc4 Sc7 Sc11 Sc16 Sc22 Sc28 Sc34 

0.08  Sc5 Sc8 Sc12 Sc17 Sc23 Sc29 Sc35 

0.1   Sc9 Sc13 Sc18 Sc24 Sc30 Sc36 

0.12    Sc14 Sc19 Sc25 Sc31 Sc37 

0.14     Sc20 Sc26 Sc32 Sc38 

 

 
FIGURE 1. Distributions of the conductivity on the cross sections of 
continuous and discrete head model no. 4 at 50 Hz for conductivity 
scenarios 6 and 9. 

 

 
FIGURE 2. Boxplots showing voxel conductivity within regions of 
interest (6 × 6 × 6 voxels, indicated by the red squares in Fig. 1) for GM 
and WM. 

 

 
FIGURE 3. Illustration of the exposure scenario. 

 
As shown in Figure 3, a uniform magnetic field of 200 µT 

at 50 Hz was utilized as the source, aligning with reference 
levels specified in the ICNIRP guidelines for the general 
public. The magnetic field was oriented from top to bottom 
(TOP direction), corresponding to the largest cross-sectional 
area in the axial plane of the truncated head models.  

B. LF EM COMPUTATIONAL METHODS 
The induced electric fields in both continuous and discrete 
voxel-based head models were computed based on the 
quasistatic approximation [41]–[43]. The scalar potentials 
߶ for an external magnetic field were computed using the 
following equation: 

 
 ∇ ⋅ ߶∇−)ߪ] − [(݆߱ = 0, (1) 

 
where  and ߪ denoted the magnetic vector potential of the 
applied magnetic field and the tissue conductivity, 
respectively, ߱  was angular frequency. The electric field 
along the side of the voxel was obtained as follows: 
 

ࡱ  = −∇߶ −  . (2)݆߱
 

The scalar-potential finite-difference (SPFD) method was 
utilized by a team from South China Agricultural University 
(SCAU) for computation of the induced electric field strengths 
in eight head models (both discrete and continuous) with all 
conductivity scenarios.  

After computing the raw electric field at each voxel, the 8-
mm3 cubic spatial averaging was applied. Similar to the first 
study of WG7 [37], two averaging methods were considered. 
In method 1, all tissue types were allowed in the averaging 
cube, and averaging was performed over all voxels in the cube. 
In method 2, only the target tissue was allowed in the cube. If 
the averaging cube contained voxels from other tissues, 
averaging was not performed, and these voxels were excluded 
from the computations of percentile values. Then the 99th 
percentile values of the averaged electric field (E99) were 
obtained and compared. 

GM WM
Tissue of Model No. 4

0

0.05

0.1

0.15

0.2

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3514710

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 Author Name: Preparation of Papers for IEEE Access (February 2017) 

4 VOLUME XX, 2017 

C. INTERCOMPARISON OF RESULTS 
For the intercomparison, one head model (both continuous and 
discrete) with 38 conductivity scenarios were shared with WG 
members. The SPFD method [6] was utilized by teams from 
the Nagoya Institute of Technology (NITech), and SCAU, 
each using their individual solver. Politecnico di Torino 
(PoliTO) also used SPFD, but with an algebraic framework 
[44], [45]. The finite element method (FEM) was utilized by 
Aalto University, CNRS/University of Perugia (Ampère), and 
China Academy of Information and Communications 
Technology (CAICT).  

For FEM simulations, the same ܣ − ߶  formulation as 
shown in (1) was adopted, where the nodal scalar potential is 
the unknown variable and the magnetic vector potential is 
derived from the uniform magnetic flux density. First-order 
cubical elements were utilized. The geometric multi-grid 
method for FEM was used by Aalto [46], and the aggregation-
based algebraic multigrid solver was used by Ampère [45], 
[47]. The FEM solver of SEMCAD (version 19.2) [48] was 
used by CAICT for discrete models. The two averaging 
methods were implemented independently by each group.  

The relative difference (RD) across the results of different 
groups was calculated as follows: 

 
ܦܴ  = ቚିೝ

ೝ
ቚ × 100, (3) 

 
where ܣ denoted the results obtained by the ith group, and ܣ 
was the average of the results from all groups. 

III. RESULTS 

Figure 4 shows the maximum E99 in GM and WM across 
eight head models with varying GM and WM conductivities. 
The results obtained using averaging method 1 are shown in 
the upper four subfigures. For the continuous models, the 
maximum E99 in GM is 4.2 mV/m, and for the discrete 
models, it is 4.4 mV/m when ீߪெ = 0.08 S/m and ߪௐெ = 
0.04 S/m. In WM, the maximum E99 for the continuous model 
is 5.6 mV/m with ீߪெ = 0.2 S/m and ߪௐெ = 0.04 S/m. The 
maximum E99 in WM for the discrete model is 5.6 mV/m but 
is observed with ீߪெ = 0.22 S/m and ߪௐெ =0.04 S/m.  

The E99 values of averaged electric field using method 2 
are shown in the lower four subfigures. As expected, 
averaging method 2 produced slightly lower E99 values in 
both GM and WM. This reduction is due to the exclusion of 
more voxels in the computation of percentile values. Figure 5 
presents the distributions of the mean E99 values across the 
eight head models, displaying similar trends to those in Figure 
4, but with overall lower values.  

A. Difference between Continuous and Discrete Models 
As seen in Figures 4 and 5, the E99 values exhibit smooth and 
monotonic trends for the discrete models. However, for the 
continuous models, while the general tendencies are similar, 
some fluctuations can be observed, primarily due to the 
continuous distribution of tissue conductivity, especially near 
tissue interfaces.  

The variation ranges for the continuous models are similar 
to or slightly narrower than those for the discrete models. For 
example, in the discrete models using averaging method 1, the 
maximum E99 values in GM across the eight head models 
range from 3.6 mV/m to 4.4 mV/m. In contrast, the E99 in GM 
for continuous models ranges from 3.6 mV/m to 4.2 mV/m, as 

 E99 in GM E99 in WM 
Continuous model Discrete model Continuous model Discrete model 
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FIGURE 4. Heatmaps of the maximum 99th percentile values of the electric field strengths across eight head models with varying GM and WM 
conductivities. 
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shown in Figure 4. This trend is also evident in Figure 5, which 
shows the mean E99 values across the eight head models. 

 Figure 6 shows the RDs in the E99 in GM and WM 
between continuous and discrete models, calculated as the 
difference of E99 in the continuous model from the discrete 
model, divided by their average value. As seen, the mean RDs 
for E99 in GM are below approximately 1% for both 
averaging methods, while those for  E99 in WM are below 6%. 
The standard deviations of the RDs are about 2.4% for E99 in 
GM and 6.0% for WM, and these values are comparable 
across both averaging methods. The maximum RDs between 
the two types of models are approximately 9% for GM and 
24% for WM, respectively. The E99 in WM of the continuous 
models are generally higher than those of the discrete models, 
likely due to the smoothing of conductivity contrast between 
GM and WM, resulting from the gradual transition of 
conductivity across the tissue interfaces in the continuous 
models. 
 

 

FIGURE 6. Boxplot of the relative differences in E99 in GM and WM 
between continuous and discrete models across all head models and 
scenarios. Horizontal bar in the box indicates the median, and the cross 
indicates the mean value. 

B. Effect of GM Conductivity Variations 
The general trends for the maximum and mean values of the 
electric field across the eight head models are illustrated in 
Figures 4 and 5. It was observed that E99 decreases in GM and 
increases in WM as GM conductivity increases. Conversely, 
E99 in both GM and WM decreases as WM conductivity 
increases.  

Figure 7 specifically shows the changes in E99 in GM and 
WM as GM conductivity varies, with WM conductivity fixed 
at 0.06 S/m. It is observed that increasing GM conductivity 
leads to a slight decrease in E99 in GM. The reductions are 
approximately 6% and 11% for continuous and discrete head 
models, respectively, when GM conductivity increases from 
0.08 S/m to 0.22 S/m. The effect on E99 in WM for continuous 
models is marginal, which is less than 3%. However, for 
discrete models, the effect leads to an increase of 
approximately 15% and 19% for averaging methods 1 and 2, 
respectively. 

C. Effect of WM Conductivity Variations 
Figure 8 illustrates the variation in E99 in GM and WM with 
changing WM conductivity, while maintaining GM 
conductivity at 0.16 S/m. An increase in WM conductivity 
results in a minor decrease in E99 values in GM, with 
reductions of less than approximately 10%. This effect is 
slightly more pronounced in continuous models compared to 
discrete models. In contrast, the effect of GM conductivity 
variation on E99 in WM is substantial for both model types. 

 E99 in GM E99 in WM 
Continuous model Discrete model Continuous model Discrete model 
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FIGURE 5. Heatmaps of the mean 99th percentile values of the electric field strengths across eight head models with varying GM and WM 
conductivities. 
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Specifically, E99 in WM decreases by approximately 30% in 
the continuous models and 40% in discrete models as WM 
conductivity increases from 0.04 S/m to 0.14 S/m.  

D. Intercomparison Results 
Figure 9 illustrates the computed maximum averaged electric 
field strength (E100) and E99 in GM and WM across five 

 E99 in GM E99 in WM 
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FIGURE 7. Effect of the varying GM conductivity on the E99 in GM and WM for both averaging methods, with WM conductivity fixed at 
0.06 S/m. 
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FIGURE 8. Effect of the varying WM conductivity on the E99 in GM and WM for both averaging methods, with GM conductivity fixed at 
0.16 S/m. 
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selected scenarios for one head model. Good agreement 
among the six research groups is evident from the scatter 
points in the figure. The electric field strengths computed 
using the FEM are slightly higher than those calculated using 
the SPFD method, particularly in some cases for discrete 
models with the averaging method 1. These figures indicate 
that the RDs for E99 are generally lower than those for E100. 
Additionally, the RDs for the averaged electric fields using 
method 2 are consistently lower than those using method 1.  

Tables III and IV list the maximum RDs of the computed 
E100 and E99 for all six groups. For averaging method 1, the 
maximum RDs are 15.9% and 6.7% for E100 and E99, 
respectively, both observed in the discrete models. The 
corresponding maximum RDs are 10.1% and 3.8% for the 
continuous models. For averaging method 2,  the maximum 
RDs are 3.9% and 2.9% for E100 and E99, respectively, for 
discrete models. And they are 1.6% and 0.8% for continuous 
models.  

Tables V and VI list the maximum RDs for three groups 
using the SPFD method with their individual solvers. 
Excellent agreement is observed, with RDs below 1.2% for 
E100 and below 0.5% for E99. The maximum RDs in electric 
fields in WM are slightly higher than those in GM. Differences 
in the electric fields computed using the SPFD method and 
FEM are primarily due to variations in the nodal schemes.  

 
TABLE III 

MAX RD IN E100 IN GM AND WM FOR ALL GROUPS.  

Avg. Method Model E100 in GM E100 in WM 
1 Continuous 5.78% 10.11% 
1 Discrete 9.58% 15.93% 
2 Continuous 0.77% 1.59% 
2 Discrete 3.90% 2.39% 

 
TABLE IV 

MAX RD IN E99 IN GM AND WM FOR ALL GROUPS. 

Avg. Method Model E99 in GM E99 in WM 
1 Continuous 1.23% 3.75% 
1 Discrete 3.46% 6.69% 
2 Continuous 0.67% 0.77% 
2 Discrete 2.93% 2.81% 

 
TABLE V 

MAX RD IN E100 IN GM AND WM FOR SPFD RESULTS. 

Avg. Method Model E100 in GM E100 in WM 
1 Continuous 0.74% 1.19% 
1 Discrete 0.82% 0.73% 
2 Continuous 0.37% 1.19% 
2 Discrete 0.46% 0.73% 

 
TABLE VI 

MAX RD IN E99 IN GM AND WM FOR SPFD RESULTS.  

Avg. Method Model E99 in GM E99 in WM 
1 Continuous 0.22% 0.32% 
1 Discrete 0.14% 0.16% 
2 Continuous 0.36% 0.43% 
2 Discrete 0.14% 0.25% 

 

IV. DISCUSSION AND CONCLUDING REMARKS  
Learning-based head models have recently been utilized in 
dosimetry studies for human protection from electromagnetic 
fields. To confirm the usability of such models for dosimetry 
analysis, the WG7 of IEEE ICES TC95 SC6 coordinated a 
study to investigate how conductivity variations influence the 
computed electric field in learning-based models. CondNet 

 GM WM 
Continuous model Discrete model Continuous model Discrete model 

E1
00

 

 

E9
9 

 

FIGURE 9. Intercomparison of the E100 and E99 in GM and WM computed using different codes from six research groups. The square and 
circular markers represent the results computed using FEM and SPFD methods, respectively. 
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was trained to generate eight head models with different tissue 
conductivity combinations. Specifically, GM conductivity 
ranged from 0.08 S/m to 0.22 S/m, and WM conductivity 
ranged from 0.04 S/m to 0.14 S/m. The other tissue 
conductivities were fixed, as reported in [35], the effect of 
non-brain tissues was marginal. A total of 38 tissue 
conductivity scenarios were created for each of the eight 
continuous and discrete head models. Additionally, an 
intercomparison study involving six research groups was 
conducted to validate computations using different 
computational methods or programs. To the best of our 
knowledge, this is the first study to investigate the effect of 
tissue conductivity variations for learning-based head models.  

It was found that the increasing GM conductivity leads to a 
slight decrease in E99 in GM, but an increase in E99 in WM, 
due to the higher conductivity contrast between GM and WM. 
The effects of GM conductivity on E99 in brain tissues were 
less than 10% for both continuous and discrete head models. 
Conversely, E99 in GM and WM decreased as WM 
conductivity increased, with a reduction of 30 to 40% 
observed in WM, when WM conductivity changes from 0.04 
S/m to 0.14 S/m.  

The results show smoother changes of the E99 values for 
discrete models. However, for continuous models, 
fluctuations were observed, as shown in Figs. 4 and 5. This is 
because the CondNet needs to be trained separately for each 
conductivity scenario, making it challenging to harmonize the 
stop criterion for all scenarios. Nonetheless, the E99 values for 
the continuous models were comparable to or slightly lower 
than those for the discrete models, with mean RDs for E99 in 
GM being below 1% and those in WM below 6%. While 
continuous models show some fluctuations due to the smooth 
distribution of tissue conductivity, the variation ranges appear 
to be slightly narrower than those of discrete models. Overall, 
the choice between continuous and discrete models may not 
significantly affect the dosimetry results. 

Considering all cases, the highest induced E99 in brain 
tissues were 28 mV/m and 27.5 mV/m per mT for averaging 
methods 1 and 2, respectively, in continuous models. In 
discrete models, these values were 28 mV/m and 26.5 mV/m, 
respectively. These values are observed at the highest GM to 
WM conductivity ratio. Compared to Sc2, which are similar 
to Gabriel’s values, the highest increase was approximately 
20% for continuous models and approximately 30% for 
discrete models. The value reported in [4] for magnetic field 
in TOP direction is 25.1 mV/m, thus the observed increase 
relative to this reference value is 12%. 

For intercomparison of the results obtained by different 
methods and codes, the highest RD was found to be 15.9% 
between the use of the SPFD method and FEM, for E100 
results obtained using averaging method 1. A possible 
explanation for this discrepancy is that the employed FEM 
formulation is equivalent to a minimization problem for the 
system’s total coenergy, which must be numerically 
approximated. Due to unavoidable discretization errors, the 

computed coenergy is an approximation that tends to 
overestimate the true coenergy. This has also been observed in 
our previous study [37]. Another source of the RD might be 
attributable to staircasing artifacts associated with the 
implementation of the averaging methods. Because of the 
conductivity contrast between neighboring tissues, the electric 
field vectors are discontinuous across the tissue interface. 
Therefore, the RD in maximum electric field, which mainly 
appears in the voxels adjacent to tissue interfaces, might be 
amplified when different numerical solvers were used. For 
E99, the maximum RD was reduced to less than 7%. 
Furthermore, the RDs in the electric field computed using the 
SPFD method with different programs were reduced to below 
1.2%. 

In contrast, the RDs in the results caused by source and head 
modeling are marginal, since we have harmonized model and 
scenario parameters as much as possible. The stop criterion in 
terms of the residual norm may also affect the numerical 
computational accuracy. However, for head models with 
different resolutions, the relative error, defined in terms of the 
localized maximum electric field strength, is below 1% when 
the relative residual norm was set to be smaller than 10-5 for a 
localized exposure scenario [46], [49]. In our intercomparison, 
all groups were therefore asked to utilize a stop criterions of 
residual norm being smaller than 10-6, this criterion has also 
been utilized in previous literature [12], [21], [50]. 

Based on the computational results, averaging method 2 
seems to be more reliable than method 1, as it appears to be 
unaffected by the numerical methods. As illustrated Tables III 
to VI, the RDs in both E99 and E100 using method 2 are 
typically smaller than those computed using method 1, as the 
latter included electric field strengths in voxels belonging to 
other tissues. Additionally, the differences between the 
continuous and discrete head models (Fig. 6) are smaller for 
method 2 than for method 1.  

In summary, these RDs reported in this study are 
substantially smaller than the reduction factor of 3 used before. 
The results of this study could be informative for future 
revisions of the international guidelines or standards. 

 

APPENDIX 
The source code of CondNet is available in Mathematica 
(https://github.com/erashed/CondNet) and Python 
(https://github.com/rrwabina/condnet). 
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