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1.  INTRODUCTION

Time-locked changes in induced power within specific 
frequency bands, originally described in a number of 
seminal studies in motor neuroscience (Pfurtscheller, 
1981; Pfurtscheller & Berghold, 1989; Pfurtscheller & 
Lopes da Silva, 1999), have long influenced the way in 
which we interpret macroscale recordings of brain activ-
ity such as those provided by electroencephalography 

(EEG). These studies have revealed a gradual reduction in 

brain signal power during an ongoing movement or motor 

imagery (MI) task in the mu (~8–12  Hz) (Neuper et  al., 

2006; Pfurtscheller et  al., 1997, 2006; Pfurtscheller & 

Lopes da Silva, 1999) and beta (~13–30 Hz) (Pfurtscheller 

et  al., 1997; Pfurtscheller & Lopes da Silva, 1999) fre-

quency bands relative to baseline activity. This phenom-

enon is termed event-related desynchronization (ERD). 
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ABSTRACT

Our understanding of motor-related, macroscale brain processes has been significantly shaped by the description of 
the event-related desynchronization (ERD) and synchronization (ERS) phenomena in the mu and beta frequency bands 
prior to, during, and following movement. The demonstration of reproducible, spatially- and band-limited signal power 
changes has, consequently, attracted the interest of non-invasive brain-computer interface (BCI) research for a long 
time. BCIs often rely on motor imagery (MI) experimental paradigms that are expected to generate brain signal mod-
ulations analogous to movement-related ERD and ERS. However, a number of recent neuroscience studies has ques-
tioned the nature of these phenomena. Beta band activity has been shown to occur, on a single-trial level, in short, 
transient, and heterogeneous events termed bursts rather than sustained oscillations. In a previous study, we estab-
lished that an analysis of hand MI binary classification tasks based on beta bursts can be superior to beta power in 
terms of classification score. In this article, we elaborate on this idea, proposing a signal processing algorithm that is 
comparable to- and compatible with state-of-the-art techniques. Our pipeline filters brain recordings by convolving 
them with kernels extracted from beta bursts and then applies spatial filtering before classification. This data-driven 
filtering allowed for a simple and efficient analysis of signals from multiple sensors, thus being suitable for online appli-
cations. By adopting a time-resolved decoding approach, we explored MI dynamics and showed the specificity of the 
new classification features. In accordance with previous results, beta bursts improved classification performance 
compared to beta band power, while often increasing information transfer rate compared to state-of-the-art approaches.
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The same studies have, moreover, described a relative-
to-baseline increase in power in the beta band shortly 
following the end of the movement or MI (Alayrangues 
et al., 2019; Neuper et al., 2006; Pfurtscheller et al., 1996), 
known as event-related synchronization (ERS). These 
phenomena are especially marked over cortical areas 
contralateral to the real or imagined movement (Kobler 
et  al., 2020; Little et  al., 2019; Makeig et  al., 2000; 
Pfurtscheller & Berghold, 1989; Pfurtscheller & Neuper, 
1997; Seeber et  al., 2016; Zich et  al., 2023), and their 
topographies approximately match the somatotopic 
organization of the sensorimotor cortices (Gordon et al., 
2023; Natraj et al., 2022; Penfield & Rasmussen, 1950). 
Taken together, these observations have given rise to the 
hypothesis that the ERD is an indication of brain pro-
cesses pertaining to movement preparation and execu-
tion while the ERS is an indication of processes related to 
movement completion (Kilavik et al., 2013).

Given the reproducibility of the spatial and frequency 
specificity of the ERD and ERS, these neural markers are 
often exploited by non-invasive BCI applications, espe-
cially those that are based on MI paradigms (Jayaram & 
Barachant, 2018; Tangermann et  al., 2012). Such para-
digms, designed to reproduce consistent time-locked 
signal modulations, normally rely on transforming the 
recordings in the time-frequency domain (TF) (Brodu et al., 
2011; Bruns, 2004; Herman et al., 2008) and then applying 
spatial filtering, most commonly using the common spatial 
pattern algorithm (CSP) (Blankertz et  al., 2007; Koles, 
1991; Müller-Gerking et  al., 1999). This chain of signal 
transformations is expected to increase signal-to-noise 
ratio by extracting signal power in specific time windows 
and frequency bands of interest, and also to maximize the 
spatial disparity among different MI classes (e.g., “left” or 
“right” hand, or “feet”), thus improving classification 
results and/or allowing for decoding of multiple commands 
with distinct signal features (Lotte, 2014; Lotte et al., 2018).

Although the ERD and ERS are consistently observed 
across subjects and recording modalities, their nature is 
not clear. Based on the assumption of amplitude modula-
tion of sustained oscillations, these patterns are the result 
of signal power averaging in the TF domain over multiple 
trials. However, converging evidence suggests that, on 
the contrary, beta band activity occurs in short events 
termed bursts (Coleman et al., 2024; Jones, 2016; Little 
et al., 2019; Lundqvist et al., 2016, 2024; Shin et al., 2017; 
Torrecillos et al., 2018; Wessel, 2020; West et al., 2023) on 
the single-trial level, therefore questioning the functional 
role of ERD and ERS altogether, at least within the beta 
band. Beta burst rate has been shown to be more behav-
iorally relevant in motor processes (Enz et  al., 2021; 
Hannah et al., 2020; Little et al., 2019; Rayson et al., 2023; 
Soh et  al., 2021; Szul et  al., 2023; Wessel, 2020) than 

averaged beta band power. Additionally, recent studies 
have shown that beta bursts are not a unitary phenome-
non but rather constitute heterogeneous events (Szul 
et al., 2023) with different functions, alluded to by the dif-
ferential modulation of their rate and shape depending on 
task conditions (Langford et  al., 2023; Papadopoulos 
et  al., 2024) or movement phase (Rayson et  al., 2023; 
Szul et al., 2023). As such, beta bursts have the potential 
to be a more sensitive marker of brain processes during 
real or imagined movements on the single-trial level.

To test this hypothesis, in a previous study we exam-
ined six open, benchmark MI EEG datasets, which we 
also analyzed here. In that study, we analyzed the activity 
of channels C3 and C4 during binary classification tasks 
of hand MI, that is, “left” versus “right” hand under the 
assumption that beta burst activity modulations during 
MI should resemble those observed during real move-
ments of the upper limbs. We demonstrated that the 
waveform-resolved beta burst rate is superior to beta 
band power changes and alternative beta burst repre-
sentations in terms of classification (Papadopoulos et al., 
2024). Briefly, we adopted a nested cross-validation 
approach in order to identify the optimal waveforms for 
maximizing classification score. This was done by first 
iterating over different data samples, finding multiple 
beta burst waveforms from each sample, then treating 
each distinct waveform as a point process, and comput-
ing the corresponding burst rate. The best (in terms of 
classification score) combination of waveform-specific 
burst rates was then selected based on cross-validation, 
before being tested on a previously unseen validation 
sample in each iteration of the nested cross-validation. 
The major limitation of that study was the algorithm’s 
computational complexity, which was unsuitable to be 
potentially translated to real-time implementations, and 
also compelled us to restrict the analysis only to channels 
C3 and C4 assuming that they capture brain signal mod-
ulations that are relevant to the task.

In this article, we streamline our approach. We develop 
an algorithm that is computationally efficient and can ana-
lyze an arbitrary number of recorded signals, thus being 
comparable to state-of-the-art techniques. Beta burst 
waveforms, whose rate is expected to be maximally mod-
ulated during the trial period compared to baseline, are 
identified in calibration data. These bursts are used as 
data-driven kernels that filter the signals from all recording 
channels in the time domain. The convolved signals are 
then spatially filtered with CSP, and the spatial features are 
used as classification features. We re-analyze the activity 
during “left” and “right” hand MI of the same open EEG 
datasets and also a recently-published composite EEG 
dataset, now in a time-resolved fashion. We show that 
classification features based on waveform-resolved beta 
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burst rate offer better decoding performance and improve 
the decoding speed versus accuracy trade-off when com-
pared to standard band-limited, power-based classifica-
tion features.

2.  METHODS

2.1.  Datasets

We analyzed the recordings of six open EEG MI bench-
mark datasets available through the MOABB (Aristimunha 
et al., 2023; Jayaram & Barachant, 2018) project: BNCI 
2014-001 (Tangermann et  al., 2012), BNCI 2014-004 
(Leeb et al., 2007), Cho 2017 (Cho et al., 2017), Munich 
MI (Grosse-Wentrup 2009) (Grosse-Wentrup et al., 2009), 
Weibo 2014 (Yi et al., 2014), and Zhou 2016 (Zhou et al., 
2016), and the recordings of a composite open EEG 
dataset that became recently available (Dreyer et  al., 
2023) referred to hereafter as Dreyer 2023. All datasets 
comprise a number of subjects with recordings corre-
sponding to multiple trials of two or more randomly cho-
sen, sustained kinesthetic MI commands, each performed 
following the appearance of a visual cue on a screen 
(Table 1). For our analysis we only considered trials corre-
sponding to the “left hand” or “right hand” classes. No 
new data were collected in this work. Please refer to each 
study for details on approval of local authorities and 
informed consent of the participants.

2.2.  Pre-processing

The epoched recordings of each subject were loaded 
using the MOABB python package (v0.4.6, class 

LeftRightImagery; parameters: tmin and tmax as indicated in 
Table 1), and were filtered with a low pass cutoff of 120 Hz 
(parameters: fmin = 0, fmax = 120; default MNE (Gramfort 
et al., 2013) zero-phase FIR filter designed with the win-
dowed approach and transition bandwidth of 25% of the 
low pass frequency). Because the sampling frequency of 
the Weibo 2014 recordings is 200 Hz, we set the low pass 
cutoff to 95  Hz for this dataset. Finally, we used the 
autoreject python package (Jas et al., 2017) (v0.4.0, func-
tion get_rejection_threshold, default parameters) in order 
to remove noisy trials.

2.3.  Burst detection and kernel selection

In order to select kernels for convolving the data from all 
channels, we first detected bursts, after applying the pre-
processing steps described above within a dataset-
specific cluster of channels above the sensorimotor 
cortex (Papadopoulos et al., 2024). We applied a time-
frequency (TF) decomposition in the 1–43 Hz range on 
each selected channel separately, using the superlets 
algorithm (Moca et  al., 2021) (parameters: omin  =  1, 
omax = 40, c = 4) with a frequency resolution of 0.5 Hz. We 
noted narrow-band, high-power artifacts at approxi-
mately 25–30 Hz when inspecting the TF of the Cho 2017, 
Dreyer 2023 and Munich MI (Grosse-Wentrup 2009) 
datasets, possibly attributable to power-line sub-
harmonics or some other source of electronic interfer-
ence. This noise interferes with the burst detection step; 
therefore, we included an extra pre-processing step, 
prior to trial rejection, based on a custom implementation 
of the ZapLine algorithm (de Cheveigné, 2020) from the 

Table 1.  Dataset attributes.

Dataset # Subjects # Channels # Trials
Baseline  
period (s)

Task  
period (s)

Post-task 
period (s)

BNCI
2014-001

9 22 288
217 – 288 (243)

-1.0 – 0.0 0.0 – 4.0 4.0 – 5.5

BNCI
2014-004

9 3 680 – 760 (720)
269 – 621 (411)

-1.0 – 0.0 0.0 – 4.5 4.5 – 6.5

Cho
2017

49 64 200 – 240 (200)
38 – 237 (159)

-1.0 – 0.0 0.0 – 3.0 3.0 – 5.0

Dreyer
2023

87 27 160 – 240 (240)
23 – 240 (192)

-1.0 – 0.0 0.0 – 5.0 5.0 – 6.0

Munich MI
(Grosse-Wentrup 2009)

10 128 300
109 – 278 (200)

-1.0 – 0.0 0.0 – 7.0 7.0 – 9.0

Weibo
2014

10 64 140 – 160 (160)
31 – 160 (132)

-1.0 – 0.0 0.0 – 4.0 4.0 – 5.0

Zhou
2016

4 14 290 – 319 (295)
114 – 280 (150)

-1.0 – 0.0 0.0 – 5.0 5.0 – 7.0

The lines in the fourth column indicate the original number of trials per subject (or the range in case this number was different between 
subjects), and the range of remaining trials across all subjects following trial rejection. Numbers in parentheses indicate the median 
number of trials.
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meegkit python package (v0.1.3, dss_line function) to 
remove these artifacts (Supplementary Fig. 1).

Then, we detected bursts within the beta frequency 
range (15–30 Hz) from each TF matrix channel and used 
their temporal location to extract their waveforms from 
the raw time series within a fixed time window of 260 ms 
as described in detail in Szul et al. (2023) and adapted for 
the analyzed datasets in Papadopoulos et al. (2024). In 
summary, the burst detection algorithm iteratively identi-
fies the highest amplitude of a TF matrix and models it as 
two-dimensional Gaussian taking into account the full-
width at half-maximum (FWHM) of the peak amplitude 
along the dimensions of time and frequency. Then, the 
time point of the burst’s peak amplitude is used to look 
for the centering point of each waveform in the low-
passed EEG signal. This corresponds to the signal’s min-
imum phase point around the peak provided that it 
occurs within 30 ms prior to or following this peak. Based 
on the FHWM of the average lagged coherence value 
across the beta frequency band, a time window of 
260 ms is used to extract the burst waveform. Finally, the 
2D Gaussian is subtracted from the TF matrix and the TF 
residual is used in the next algorithm iteration. The pro-
cess stops when no amplitude peak exceeds the noise 
floor of two standard deviations across the whole TF 
matrix. For more details regarding the burst detection 
step, we refer the readers to previous work from our 
group (Szul et al., 2023).

As the number of detected bursts per subject is large, 
we randomly sampled 10% of the trials of each partici-
pant per dataset and created a matrix that contained the 
waveforms of all detected bursts regardless of the trial 
class (“left” or “right” hand) for a given dataset, corre-
sponding to approximately 100,000 to 2,000,000 bursts 
depending on the dataset. Due to the large number of 
subjects of the Dreyer 2023 dataset we restricted the 
random sample to 5% of each subject’s trials. The sam-
ple sizes were selected such that enough data were pro-
vided to the PCA in order for the selected kernels (see 
below) to be stable over multiple iterations of the ran-
dom sampling (Supplementary Fig.  2), while as many 
data as possible were retained for performing the rest of 
the analysis. Then, after robust scaling (scikit-learn 
package (Pedregosa et  al., 2011), v1.0.2), we reduced 
the time dimension of the waveforms using principal 
component analysis (PCA) (Shlens, 2014) (scikit-learn 
package, v1.0.2).

We used the PCA score of each waveform detected 
from electrodes C3 and C4 (or equivalently channels 43 
and 44 for the Munich MI (Grosse-Wentrup 2009) data-
set), which is a metric of the difference between any 
waveform and the average shape of all bursts contained 
in the matrix provided as input to PCA. We defined an 

index of lateralized modulation of the average-per-axis 
PCA score Im:

	

Im = uipsi
C3 − ucontra

C4( )− uipsi
C4 − ucontra

C3( ) ,m∈ 2,...,9{ }

u = score! trial  period − score!baseline
	

where ipsi (contra) refers to bursts recorded from chan-
nels C3 / C4 during a left / right (right / left) hand MI 
(Fig. 1a).

This index measures the inter-hemispheric difference 
of the average waveform shape between the baseline 
and trial periods. Its values span the range [0,∞) and 
higher values indicate greater discrepancies between 
hemispheres and the two recording periods.

Based on observations from our previous study 
(Papadopoulos et  al., 2024), we computed Im among 
components 2 to 9 in order to find three PCA axes that 
maximized this metric. We did not take into account the 
first component because it likely describes the temporal 
skew of the bursts (Papadopoulos et al., 2024; Szul et al., 
2023). Finally, we divided the score range of each of the 
three selected axes in seven equally spaced groups, 
each group corresponding to a set of “similarly shaped” 
bursts. We kept the two groups per axis that lie further 
away from the origin (score equal to 0) and, by computing 
the Euclidean-average waveform of bursts within each 
group, we identified two kernels per axis. As such, we 
identified six kernels per dataset corresponding to burst 
waveforms whose rates were expected to be maximally 
modulated during the task, compared to baseline.

2.4.  Feature extraction

For each subject we applied the pre-processing, burst 
detection, and kernel selection steps described above 
(pre-processing was applied to all available recording 
channels). Then, we convolved the EEG recordings with 
the corresponding kernels, thus computing a proxy of the 
waveform-resolved burst rate per kernel. The temporally 
convolved, epoched data were then spatially filtered 
using the CSP algorithm (MNE package, v1.5.1, function 
CSP, parameters: n_components  =  4, transform_into = 
“average_power”). Finally, we concatenated all 24 spatial 
features into a single vector for each trial (Fig. 1b).

To compare with, we also used standard approaches 
to compute spatial features of band-limited power mod-
ulations. After pre-processing, we independently filtered 
the epoched data in the mu (6–15 Hz), beta (15–30 Hz), or 
both the mu and beta (6–30 Hz) bands, using either a sin-
gle filter or a filter bank approach. Then, the filtered data 
served as inputs to the CSP algorithm (using the already 
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described parameters), resulting in four spatial features 
per filter in the former case. For the filter bank approach, 
we split either frequency range in non-overlapping filter 
banks with a frequency span of 3 Hz per filter. As such, 
we defined three filters for the mu band (6–9 Hz, 9–12 Hz, 
12–15 Hz), five filters for the beta band (15–18 Hz, 18–
21 Hz, 21–24 Hz, 24–27 Hz, 27–30 Hz), and eight filters 
for the mu-beta band (6–9 Hz, 9–12 Hz, 12–15 Hz, 15–
18 Hz, 18–21 Hz, 21–24 Hz, 24– 27 Hz, 27–30 Hz). Then, 

we again used CSP and concatenated all spatial features 
of each filter bank, resulting in 12, 20, and 32 spatial fea-
tures respectively per trial.

2.5.  Classification

We used a repeated (n = 10), 5-fold cross-validation pro-
cedure to estimate the decoding score using linear dis-
criminant analysis (LDA) (Tharwat et  al., 2017; Vidaurre 

Fig. 1.  Illustration of methodology for computing classification features based on the convolution of raw signals with  
beta burst waveform kernels. (a) After randomly sampling the recording trials of all subjects within any dataset, the beta 
burst waveforms are analyzed using PCA. This constructs a high-dimensional space whose origin corresponds to the 
shape of the average waveform or equivalently a score equal to 0, and each axis defines a different axis of waveform 
variation. By only considering the beta bursts of channels C3 and C4 that occur at any point in time, the lateralization 
modulation index Im dynamically identifies the expected deviation of the average waveform shape from the overall average 
shape for each PCA axis. The axes that maximize Im are identified, the bursts are projected on these axes, split in groups 
of similarly shaped waveforms and the average waveform shapes of the two extrema are computed. (b) The raw signals 
of all recording channels of each dataset are independently convolved with each selected waveform from (a), resulting in 
distinctly temporally filtered copies of the signals. Each copy is then spatially filtered using the CSP algorithm, and finally 
all spatial features are concatenated in a single matrix that is provided as input to the classifier.
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et al., 2011) (scikit-learn, v1.0.2) as a classifier. We adopted 
a time-resolved decoding paradigm, using both an incre-
mental and a sliding time window. In the first case, we 
started with a 100 ms time window and repeated the clas-
sification procedure by incrementing this window by 
100  ms at a time. The baseline period was considered 
separately from the trial period. In the latter case, we used 
1  second long sliding time windows which moved in 
50 ms increments. Decoding scores were based on the 
area under the curve (AUC) of the receiver operating char-
acteristic (scikit-learn, v1.0.2). All numeric computations 
were based on the numpy python package (v1.21.6; Harris 
et al., 2020) and an environment running python (v3.10).

2.6.  Information transfer rate

Information transfer rate (Arslan & Sinha, 2024; Sadeghi 
& Maleki, 2019) was defined as:

	

ITR = 1− H
T

H = −p(t)log2p(t) −  1− p(t)( ) log2 1− p(t)( ) 	

where the binary entropy function H depends on the 
average accuracy probability at any time window p(t), 
and T  corresponds to the maximum recording time 
required by each time window in seconds. T  was shifted 
such that all time values are positive, that is, using the 
absolute time starting from the beginning of the baseline 
period (Table 1) when using a sliding window and when 
considering the baseline period using an incremental 
time window. The values of this metric span the range 
0,10[ ] when using an incremental window decoding 

approach and 0,20[ ] when using a sliding window. Large 
values indicate a better trade-off between decoding 
accuracy and decoding speed.

2.7.  Statistical analysis

On the dataset level, we performed pairwise comparisons 
of the across-subject average decoding score correspond-
ing to the beta burst convolution spatial features and each 
of the spatial features of the band-limited power modula-
tions. These comparisons were based on threshold-free 
cluster-based permutation (n = 213) tests (MNE package, 
v1.5.1, function permutation_cluster_test, parameters: 
threshold = dict(start = 0, step = 0.2), tail = 1) that were 
subsequently thresholded at significance level of a = 0.05 
for visualization purposes.

To estimate, on the population level, any statistical dif-
ferences between the maximum classification scores 
obtained using different feature extraction pipelines 

during the trial period, we compared the scores of the 
beta burst convolution pipeline against those based on 
classical filtering pipelines. We used a linear mixed model 
with across-trials average classification score as the 
dependent variable setting the number of trials as prior 
weights, the type of classification feature as a fixed effect, 
and subject nested within dataset as random intercepts. 
We implemented similar models to compare the time 
required to achieve the maximum classification score per 
feature extraction pipeline, and also the maximum ITR 
and time needed to reach it. In the latter two cases, we 
first transformed the values to logarithmic scale in order 
to ensure normality of the residuals. Statistical analyses 
were conducted using R (v4.1.2) and lme4 (v1.1-31; 
Bates et  al., 2015). Fixed effects were assessed using 
type II Wald X 2 tests using car (v3.1-1; Fox & Weisberg, 
2019). Pairwise Tukey-corrected follow-up tests were 
carried out using estimated marginal means from the 
emmeans package (v.1,8,7; Lenth, 2023).

3.  RESULTS

3.1.  Classification

In summary, we have employed seven freely available 
datasets of EEG recordings from subjects performing left 
and right hand MI. Within each dataset, we detected beta 
bursts for each subject within electrode clusters over the 
left and right sensorimotor cortex and then randomly 
sampled 10% of the trials containing these bursts (the 
sample size was limited to 5% for the Dreyer 2023 data-
set). We applied PCA to the matrix of all burst waveforms 
and defined a modulation index Im in order to find burst 
waveform shapes whose lateralized rates were expected 
to be maximally modulated between the baseline and 
trial periods. These waveforms were then employed as 
kernels for convolving the EEG data in time domain 
before applying spatial filtering with CSP. Finally, all spa-
tial features were combined and served as input for LDA, 
in order to classify “left” versus “right” hand MI. We also 
performed classification by applying standard temporal 
filtering techniques before applying spatial filtering with 
CSP, using either a single filter or a filter bank in the mu 
(6–15 Hz), beta (15–30 Hz), and mu-beta (6–30 Hz) fre-
quency bands. We estimated the time-resolved decoding 
score per subject of each dataset for each classification 
feature using both an incremental and a sliding decoding 
window (see Section 2 for details).

Across all datasets, the average decoding accuracy 
obtained using the proposed methodology based on 
beta bursts outperformed the results based on standard 
beta band filtering irrespective of the filtering (single filter 
or filter bank) or the windowing (incremental or sliding) 
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technique during most of the recording time (Fig.  2a; 
Supplementary Fig. 3a). Within each dataset, the across-
subjects average score obtained by beta bursts was 
higher than that of any beta band filtering technique, usu-
ally shortly after the beginning of the trial or towards its 
end (Fig. 2b–h; Supplementary Fig. 3b–h). Exceptions to 
this finding when using an incremental window were the 
BNCI 2014-001 dataset, for which all features produced 
equivalent results (Fig. 2c; Supplementary Fig. 3c), and 
the Weibo 2014 dataset, for which mu-beta filtering out-
performed beta bursts (Fig. 2g; Supplementary Fig. 3g). 
Threshold-free cluster-based permutation tests (see Sec-
tion 2) revealed a significant cluster of increased accu-
racy for beta bursts compared to either beta filtering 
technique during most of the recording time or following 
the trial onset for each windowing (incremental or sliding) 
technique respectively (Fig. 2a; Supplementary Fig. 3a). 
Within each dataset, we found clusters similar to those of 
the population average for the Dreyer 2023 dataset 

(Fig.  2e; Supplementary Fig.  3e). The across-subjects 
average score obtained by beta bursts was higher than 
that of any beta band filtering technique shortly after the 
beginning of the trial for the BNCI 2014-001 and Cho 
2017 datasets (Fig. 2b, d; Supplementary Fig. 3b, d). For 
the rest of the datasets (BNCI 2014-004, Munich MI 
(Grosse-Wentrup 2009), Weibo 2014, Zhou 2016) no dif-
ferences were observed among the beta bursts and 
either beta band filtering method. Overall, in terms of 
classification accuracy, we observed an improvement 
with beta bursts over beta power on the population level 
and in 5/7 (4/7) datasets, with clusters of statistically sig-
nificant differences arising on the population level and in 
3/7 (2/7) datasets when using an incremental (sliding) 
window.

We did not observe such clear differences when com-
paring the beta bursts and mu-beta filtering decoding 
scores. On the population level, when using an incremen-
tal time window, average beta burst convolution results 

Fig. 2.  (a) Population average, time-resolved decoding score, and standard error for the beta burst convolution (red), 
beta band (yellow), and mu-beta band (purple) filtering pipelines using an incremental window. Due to the different 
duration of the task per dataset, we restricted the time to the minimum trial period corresponding to 3 seconds. (b–h) 
Average, time-resolved decoding score and standard error per dataset of the same features using an incremental window. 
For each panel, the left subplot depicts the decoding results obtained using a single filter, while the right subplot depicts 
the results based on a filter bank technique. The beta burst results are the same for the pair of each panel. The horizontal 
dashed line corresponds to the expected chance level. Vertical dotted lines represent the onset and end of the trial period 
of each dataset. The two horizontal lines on the top of each subplot show the results of the two pair-wise permutation 
cluster tests, that is, between the beta bursts and the beta band (bottom line) or mu-beta band (top line) filtering technique 
respectively, with correction for multiple comparisons at a significance level of 0.05. At any time point, each line is 
color-coded so as to indicate which feature produces, on average, better results. A lack of color at any given time point 
indicates no statistically significant differences between the compared features.
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outperformed the single filter and filter bank techniques 
early after the beginning of a trial (Fig. 2a). On the dataset 
level, this was true for the BNCI 2014-001 and Dreyer 
datasets (Fig. 2b, e). For the rest of the datasets, differ-
ences varied depending on the filtering technique. Nota-
bly, in the mu-beta band, both filtering techniques 
produced higher decoding scores than beta bursts for the 
Weibo 2014 dataset (Fig. 2g). A similar pattern was also 
observed when using a sliding window (Supplementary 
Fig. 3a–h). The permutation tests between the beta burst 
features and the mu-beta filtering techniques revealed 
only small clusters on the population level, as well for the 
Dreyer 2023 dataset. We found that beta bursts improve 
classification scores over the mu-band filtering techniques 
on the population level and 4/7 (2/7) datasets when using 
an incremental (sliding) window, with small clusters of sta-
tistically significant differences on the population level and 
one dataset only when using an incremental window.

Finally, comparisons between beta burst convolution 
and mu filtering results showed an improvement when 
using an incremental window. No clusters of statistically 
significant differences were revealed when comparing beta 
bursts to single-filter mu band power on the population 
level, but beta bursts slightly improved decoding on the 
population level and for datasets BNCI 2014-001, BNCI 
2014-004, and Zhoud 2016 (Supplementary Fig. 4a–c). No 
differences were found on the population level when 
comparing beta bursts to the filter bank technique, but on 
the dataset level the beta bursts score was better for the 
BNCI 2014-001 dataset (Supplementary Fig. 4b) and con-
versely worse for the Weibo 2014 dataset (Supplementary 
Fig. 4g) based on cluster permutation tests. Comparisons 
of results when using a sliding window approach did not 
reveal any differences (Supplementary Fig. 5).

3.2.  Information transfer rate

For all datasets we computed the information transfer 
rate (ITR) in order to quantify the difference between all 
classification features in terms of the decoding speed-
accuracy trade-off (see Section  2). On the population 
level, beta bursts provided a higher ITR than either beta 
band filtering technique across the whole trial (Fig. 3a). 
On the dataset level, the same pattern was observed for 
the Dreyer 2023 dataset (Fig. 3e). Moreover, beta bursts 
ITR was higher than any beta band filtering early after trial 
onset for the BNCI 2014-001, Munich MI (Grosse-Wentrup 
2009), and Zhou 2016 datasets, and later for the Cho 
2017 dataset. No differences between the features were 
observed in the case of BNCI 2014-004 dataset, whereas 
beta bursts resulted in the lowest ITR for the Weibo 2014 
dataset (Fig. 3b–h). Permutation cluster tests revealed a 
significant difference between beta bursts and either fil-

tering technique in the beta band on the population level, 
and for most of the time for the Dreyer 2023 dataset. A 
cluster after the trial onset was found for the BNCI 2014-
001 dataset, and no clusters were found for the rest of 
the datasets. When using a sliding window approach, 
beta bursts provided a higher ITR than either beta band 
filtering technique on the population level early after the 
beginning of the trial and toward its end highlighted by 
the presence of a cluster (Supplementary Fig. 6a). A sig-
nificant difference was also found for the Dreyer 2023 
dataset after the trial onset (Supplementary Fig. 6e). For 
datasets BNCI 2014-001, Cho 2017, Dreyer 2023, and 
Zhou 2016 we observed a higher ITR for beta bursts 
compared to beta band filtering mainly after the trial 
onset, whereas for the rest of the datasets either feature 
resulted in equivalent ITRs (Supplementary Fig. 6b–h). No 
significant clusters were found for any of these datasets. 
In summary, irrespective of the windowing method beta 
bursts resulted in higher ITR than beta power on the pop-
ulation level and for 5/7 datasets with clusters arising on 
the population level and 2/7 datasets.

Regarding the comparison between beta bursts and 
the mu-beta filtering techniques, ITR was higher for  
the former on the population level as well as datasets 
BNCI 2014-001, Cho 2017, Dreyer 2023, Munich MI 
(Grosse-Wentrup 2009), and Zhou 2016 shortly after the 
trial onset, especially when adopting the filter bank 
method. No differences were observed for the BNCI 
2014-004 dataset. The mu-band filter bank technique 
produced higher ITR than beta bursts period in the case 
of the Weibo 2014 dataset (Fig. 3a–h). The results were 
similar when using a sliding window (Supplementary 
Fig. 6a–h). On the population level, cluster-based permu-
tations tests revealed a significant difference between the 
beta bursts features and the filter bank in the mu-beta 
band using either an incremental or a sliding window 
approach, but no significant clusters when comparing 
the beta bursts to the single filter in the mu-beta band 
(Fig. 3a; Supplementary Fig. 6a). Similar clusters of signif-
icant differences between the features were found only 
for the Dreyer 2023 dataset with an incremental window 
(Fig.  3e; Supplementary Fig.  6e). Overall, beta bursts 
yielded higher ITR than mu-beta power on the population 
level and 4/7 datasets regardless of the windowing tech-
nique. Permutation cluster tests revealed improvements 
attributable to beta bursts compared to the filter bank 
technique on the population level, and for one dataset 
when using an incremental time window.

3.3.  Statistical analysis

We used linear mixed models to quantify the differences 
in maximum decoding score, latency to achieve the 
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maximum score, maximum ITR, and latency to the maxi-
mum ITR per feature (see Section 2) using both the incre-
mental and sliding windows (Fig. 4; Supplementary Fig. 7).

On the population level, the maximum classification 
scores for the beta bursts technique, filtering in the beta 
band using a single filter, filtering in the mu band using a 
single filter, and filter bank in the beta or mu and beta bands 
using an incremental time window were 0.832 ± 0.066, 
0.755  ±  0.065, 0.827  ±  0.066, 0.734  ±  0.066, and 
0.819 ± 0.066 (Fig. 4a). The time required to reach each of 
these decoding scores (latency) was 2.26 ± 0.91, 3.04 ± 
0.90, 2.96 ± 0.90, 2.50 ± 0.90, and 2.44 ± 0.91 seconds 
(Fig. 4c), respectively. The maxima of the ITR before apply-
ing the logarithmic transformation (see Section 2) per fea-
ture were 0.6443 ± 0.207, 0.0554 ± 0.207, 0.3531 ± 0.0206, 
0.0667  ±  0.206, and 0.5241  ±  0.207 bits per second 
(Fig. 4b). The corresponding average latencies before the 
logarithmic transformation were 0.827  ±  0.203, 1.316 
±  0.204, 1.182  ±  0.203, 1.064  ±  0.201, and 0.945 
± 0.203 seconds (Fig. 4d). Regarding the analysis based on 

a sliding window, the maximum classification scores were 
0.816 ± 0.050, 0.753 ± 0.050, 0.810 ± 0.050, 0.753 ± 0.050, 
and 0.818 ±  0.050 respectively (Supplementary Fig.  7a). 
The latencies were 2.03 ± 0.23, 2.45 ± 0.22, 2.19 ± 0.23, 
2.49  ±  0.24, and 2.22  ±  0.23  seconds (Supplementary 
Fig.  7c). Before applying the logarithmic transformation, 
the ITR maxima were 0.694 ± 0.180, 0.170  ±  0.178, 
0.413 ± 0.177, 0.206 ± 0.182, and 0.533 ± 0.179 bits per 
second (Supplementary Fig.  7b), and the corresponding 
latencies were 0.575 ± 0.162, 0.840 ± 0.161, 0.796 ± 0.160, 
0.743 ± 0.161, and 0.701 ± 0.162 seconds (Supplementary 
Fig. 7d).

Across all datasets, the maximum classification accu-
racy of the beta bursts technique when using an incremen-
tal window was significantly higher than that of the beta 
band single filter and filter bank pipelines (X2(4) = 326.81, 
t(24587436) = 10.697, p < 0.001 and t(24548972) = 13.705, 
p < 0.001 respectively), but did not differ significantly from 
either technique exploiting both the mu and beta bands 
(t(24904394) = 0.637, p = 0.9691 and t(24049399) = 1.777, 

Fig. 3.  (a) Population average, time-resolved information transfer rate (ITR), and standard error for the beta burst 
convolution (red), beta band (yellow), and mu-beta band (purple) filtering pipelines using an incremental window. Due 
to the different duration of the task per dataset, we restricted the time to the minimum trial period corresponding to 
3 seconds. (b–h) Average, time-resolved information transfer rate (ITR), and standard error per dataset of the same 
features using an incremental window. For each panel, the left subplot depicts the ITR results obtained using a single filter, 
while the right subplot depicts the results based on a filter bank technique. The beta burst results are the same for the pair 
of each panel. Vertical dotted lines represent the onset and end of the trial period of each dataset. The two horizontal lines 
on the top of each subplot show the results of the two pair-wise permutation cluster tests, that is, between the beta bursts 
and the beta band (bottom line) or mu-beta band (top line) filtering technique respectively, with correction for multiple 
comparisons at a significance level of 0.05. At any time point, each line is color-coded so as to indicate which feature 
produces, on average, better results. A lack of color at any given time point indicates no statistically significant differences 
between the compared features.
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p = 0.3873). The latency to achieve the maximum score 
was significantly lower for the beta burst convolution pipe-
line compared to both the single filtering techniques in the 
beta and mu-beta bands (X2(4)  =  62.508, t(24698263) = 
-6.361, p < 0.001 and t(25032435) = -5.769, p < 0.001), but 
did not differ significantly compared to the corresponding 
filter bank techniques (t(24649522) =  -1.926, p = 0.3034 
and t(24151454)  =  -1.488, p  =  0.5703). The logarithmic 
transform of the maximum ITR for the beta bursts tech-
nique was significantly higher than the single filtering and 
filter bank techniques in both the beta and mu-beta  
bands (X2(4) = 309.58, t(24722157) = 14.0967, p < 0.001, 
t(24671284) = 12.904, p < 0.001 and t(25060057) = 5.127, 
p < 0.001, t(24173608) = 2.909, p = 0.0298). The logarith-
mic transform of the latency to achieve maximum ITR was 
significantly lower for the beta bursts technique compared 
to either single filtering pipeline in the beta and mu-beta 
bands (X2(4) = 40.75, t(24777354) = -5.863, p < 0.001 and 
t(25130735) = -3.885, p = 0.001), but did not significantly 
differ compared to the filter bank method in either band 
(t(24721433) = -2.071, p = 0.2329 and t(24227058) = -1.545, 
p = 0.5329).

When using a sliding window, across all datasets the 
maximum classification accuracy of the beta bursts tech-
nique was significantly higher than that of the beta band 
single filter and filter bank pipelines (X2(4)  =  237.95, 
t(24582761) = 10.072, p < 0.001 and t(24544732) = 10.055, 
p  <  0.001 respectively), but did not differ significantly 
from either technique exploiting both the mu and beta 

bands (t(24898964)  =  0.956, p  =  0.8748 and 
t(24045211) = -0.418, p = 0.9936). Similarly, the latency 
to achieve the maximum score was significantly lower for 
the beta burst convolution pipeline compared to either 
filtering technique in the beta band (X2(4)  =  25.552, 
t(24736767) = -3.890, p < 0.001 and t(24684274) = -4.281, 
p < 0.001), but did not differ significantly compared to the 
mu-beta band (t(25086359)  =  -1.467, p  =  0.5840 and 
t(24189739) = -1.762, p = 0.3961). The logarithmic trans-
form of the maximum ITR for the beta bursts technique 
was significantly higher than both filtering techniques in 
the beta band and the single filtering in the mu-beta band 
(X2(4)  =  162.26, t(24732475)  =  10.236, p  <  0.001, 
t(24680636) = 9.172, p < 0.001 and t(25072582) = 4.499, 
p < 0.001) but did not significantly differ from the mu-beta 
filter bank (t(24183763) = 1.665, p = 0.4559). The logarith-
mic transform of the latency to achieve maximum ITR 
was significantly lower for the beta bursts technique 
compared to either single filtering pipeline in the beta and 
mu-beta bands (X2(4)  =  13.151, t(24808114)  =  -3.069, 
p = 0.0183 and t(25164334) = -3.029, p = 0.0207), but did 
not significantly differ compared to the filter bank method 
in either band (t(24749694)  =  -1.796, p  =  0.3756 and 
t(24255336) = -1.296, p = 0.6937).

4.  DISCUSSION

Standard techniques for analyzing meso- and macro-
scale neural signals recorded during the execution or 

Fig. 4.  Population-level statistical analysis based on linear mixed models when using an incremental window per feature. 
(a) Average maximum decoding score. (b) Average maximum ITR. (c) Average latency to reach the maximum decoding 
score. (d) Average latency to reach the maximum ITR. Error bars show 95% confidence intervals. Hatches indicate the use 
of a filter bank technique. Asterisks indicate statistically significant differences among pairwise comparisons of the beta 
bursts and the rest of the features (*p < 0.05. **p < 0.01, ***p < 0.001). A lack of asterisks implies no statistically significant 
differences. Note that the log transform of the maximum ITR and latency to maximum ITR were used for the statistical 
analysis (see Section 2), but panels (b and d) depict results before applying the transformation for ease of comparisons 
with panels (a and c) respectively.
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imagination of movements typically rely on signal power 
metrics assuming that relevant changes in brain signals 
are reflected in amplitude modulation (Alayrangues 
et  al., 2019; Kilavik et  al., 2013; Pfurtscheller, 1981; 
Pfurtscheller et al., 1996, 1997; Pfurtscheller & Lopes da 
Silva, 1999). However, there has recently been a consid-
erable paradigm shift toward considering transient sig-
nal features on the single-trial level (Chen et al., 2021; 
Coleman et  al., 2024; Jones, 2016; Little et  al., 2019; 
Lundqvist et al., 2016, 2024; Rayson et al., 2023; Shin 
et al., 2017; Soh et al., 2021; Szul et al., 2023; Torrecillos 
et al., 2018; Vigué-Guix & Soto-Faraco, 2023; Wessel, 
2020). Therefore, considering that computational mod-
els describing the neuronal generators of specific burst 
waveform shapes (Bonaiuto et al., 2021; Sherman et al., 
2016; Szul et  al., 2023) offer an improved theoretical 
interpretability of the observed signal modulations, 
applications leveraging such signal characteristics, like 
beta bursts, could potentially benefit from incorporating 
recent neuroscience findings (Papadopoulos et  al., 
2022).

In this work, we analyzed the activity of seven open 
EEG MI datasets and focused on developing a stream-
lined process for incorporating beta bursts into a BCI 
pipeline. We used a simple pre-processing algorithm in 
order to reject noisy trials based on amplitude thresholds 
before detecting beta bursts, but the impact of more 
sophisticated algorithms like independent component 
analysis on burst detection could be explored in the 
future. Then, we defined a modulation index Im which 
allowed us to identify beta burst waveforms whose rate is 
expected to be modulated due to task demands. This 
was based on the assumption that maximal modulations 
of the average waveform shape along specific PCA com-
ponents are the result of a net imbalance of the rates of 
bursts with different shapes driven by task demands. 
PCA constitutes a mathematically tractable and interpre-
table way of analyzing the diversity of beta burst wave-
form shapes. However, by definition it imposes, to some 
extent, orthogonality in the frequency content of the ker-
nels, a property which may not be desirable. Other super-
vised dimensionality reduction algorithms, especially 
those designed for analyzing time series, could better 
disentangle the waveforms by imposing different con-
straints, for example, taking into account trial labels, and 
their potential advantages remain to be studied. We also 
note that this index only used beta burst waveforms orig-
inating from channels C3 and C4 (or equivalent). Our 
assumption was that the channels localization should 
allow for signals which are sufficiently informative of the 
binary “left hand” versus “right hand” MI task. Future 
work can explore a more principled way to include data 
from multiple channels.

We used these waveforms as kernels to convolve the 
raw signals in the time domain. We chose to keep the num-
ber of kernels and the method for extracting them fixed 
based on insights from a previous study (Papadopoulos 
et al., 2024), but future work could employ a formal hyper-
parameter search so as to maximize classification accu-
racy. Similarly, we did not check for any redundancy in the 
convolved signals due to selection of similarly shaped ker-
nels, a point which could be addressed by another dimen-
sionality reduction algorithm. The implementation of the 
convolution is virtually as computationally efficient as any 
filtering technique. However, we note that the proposed 
methodology assumes the existence of data that can be 
analyzed offline in order to first find the relevant beta burst 
waveforms to use as kernels. Moreover, these data need to 
be clean of artifacts as the beta burst detection algorithm 
may fail to detect transient activity in the presence of high-
power oscillations, instead detecting only the latter. For 
this reason, we believe that the superlets algorithm is the 
only time-frequency decomposition technique providing 
adequate time and frequency resolution in order to deter-
mine if the data are clean and to extract burst waveforms.

This data-driven, neurophysiology-informed filtering of 
the signals resulted in a proxy of waveform-resolved burst 
rate per kernel. We also performed a standard filtering in 
the mu (6–15 Hz) band, beta (15–30 Hz) band, or a wider 
frequency range encompassing both the mu and beta (6–
30 Hz) bands. Finally, we used CSP to extract spatial fea-
tures for classification. We showed that classification 
scores can be improved compared to a standard power-
based analysis of the beta band activity, requiring briefer 
recordings to do so and that, without explicitly consider-
ing the mu (6–15 Hz) band activity in our beta bursts pipe-
line, the corresponding classification scores are equivalent 
to scores of state-of-the-art approaches again needing 
shorter recordings. Further, the filter bank-based analysis 
allowed us to verify that the decoding improvements were 
not simply the result of an increase in number of spatial 
features used for classification. Instead, beta burst wave-
forms are more informative of the underlying MI task on 
the population level than beta band power, and equally 
informative to standard power-based techniques that 
take into account mu activity modulations.

A possible explanation for this result is that beta burst 
kernels also capture slower modulations of the underly-
ing activity. Beta and mu band modulations during MI 
tasks involve overlapping cortical networks and have 
equivalent time horizons (Neuper et al., 2006; Pfurtscheller 
& Neuper, 2001; Seeber et al., 2016). The actual signal 
properties and/or underlying mechanisms that would 
explain why beta burst waveforms perform similarly to 
oscillatory mu band power remain to be studied. As such, 
we have opted not to perform a formal comparison of the 
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beta burst features to mu band power. However, one 
hypothesis is that our definition of the mu band frequency 
range overlaps—at least partially—with what has been 
described as lower beta frequency (Kilavik et al., 2012; 
Lotte, 2014; Lotte & Rimbert, 2022; Schmidt et al., 2019). 
Future work could explore the incorporation of novel mu 
band features that characterize time-resolved oscillatory 
waveform changes (Cole & Voytek, 2019; Giehl & Siegel, 
2024; Vigué-Guix & Soto-Faraco, 2023), or a combination 
of mu power and beta burst features using more sophis-
ticated classifiers or ensemble methods. We also note 
that the use of alternative classifiers can potentially affect 
the beta burst results reported here. Although the combi-
nation of CSP and LDA is known to produce reliable 
results (Carrara & Papadopoulo, 2024; Jayaram & 
Barachant, 2018), a formal comparison of multiple classi-
fiers would be necessary in order to optimize perfor-
mance and/or ITR, especially for online applications.

By employing both an incremental and a sliding win-
dow strategy for classification, we can speculate on the 
observed differences of decoding scores across classifi-
cation features and datasets. First, it appears that MI 
does not begin right after the go cue in all datasets but 
can be delayed possibly due to differences in the task 
design or the instructions given to the participants. Sec-
ond, relatively sustained decoding performances when 
using a sliding window were translated into slow increases 
of those performances when using an incremental win-
dow. In contrast, a drop in performance when using a 
sliding window was reflected in a plateau when using an 
incremental window. Taken together, these observations 
imply that finding an optimal decoding time window, 
especially for online paradigms, is not trivial and depends 
not only on the selected classification features or algo-
rithm but also on experimental design variables.

In order to assess the trade-off between decoding 
accuracy and speed, we used the classification scores 
obtained by implementing each pipeline and computed 
the corresponding ITR. By definition, given a fixed num-
ber of classes ITR increases either by reducing recording 
time or by increasing decoding score (or a combination of 
the two). This means that when comparing different fea-
tures and/or algorithms, ITR will indicate which one is 
faster assuming equivalent classification scores, or which 
one performs best assuming equivalent recording times. 
We showed a statistically significant increase of the max-
imum ITR achieved using the beta burst kernel filtering 
compared to any other method, and a statistically signifi-
cant decrease of the time needed to achieve this value 
compared to single filters. These results are in accor-
dance with previous studies that have showed the speci-
ficity of waveform-resolved burst rate which captures 
subtle changes on the single-trial level not necessarily 

reflected in signal power and overall burst rate 
(Papadopoulos et  al., 2024; Rayson et  al., 2023; Szul 
et  al., 2023), due to slower amplitude modulation and 
averaging over distinct processes respectively. The results 
suggest that, by retaining or improving the precision of 
command issuing while increasing its speed, beta bursts 
could be particularly relevant for BCI applications that aim 
to minimize the recording time required before issuing a 
command like in the case of real-time decoding of a 
switch control, although the self-paced nature of such 
applications still poses a considerable challenge (Carrara 
& Papadopoulo, 2024).

Among the datasets analyzed in this study, decoding 
and ITR results of the Weibo 2014 were noticeably differ-
ent. This dataset is to some degree contaminated by 
high-frequency noise even following pre-processing and, 
compared to what we have observed for the rest of the 
datasets, is characterized by a smaller number of 
detected bursts the majority of which last longer (more 
than 5 cycles) and have higher amplitude. The reduced 
variability in the detected bursts is also reflected in the 
smaller number of PCA components that explain at least 
90% of the variance. We presume that these recordings 
are mostly composed of oscillatory rather than burst 
activity. Therefore, the proposed, burst-based approach, 
despite being able to capture and quantify modulations 
of signal amplitude, is sub-optimal for this dataset.

This study focused on incorporating recent neurophys-
iology insights, specifically task dependent waveform-
specific modulation of beta burst rates, in a pipeline for 
decoding EEG signals during imagined movements. We 
proposed a simple and computationally efficient algo-
rithm that leverages beta burst waveforms and transforms 
brain recordings in a way that is compatible with other 
widely adopted algorithms. We demonstrated that classi-
fication results based on beta bursts are superior to 
results based on beta band power alone, and are on-par 
with power-based results that take into account the mu 
band. By computing the information transfer rate, we 
showed that, often, features based on beta bursts signifi-
cantly improve the decoding speed-accuracy trade-off. 
We also verified this finding using a sliding window decod-
ing technique, a fact which further suggests the feasibility 
for online decoding with this approach. Taking everything 
into account, we believe that these findings can serve as 
an important step in the direction of improving online BCI 
decoding paradigms.
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the results of this article are available at the following 
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