
HAL Id: hal-04842116
https://hal.science/hal-04842116v1

Preprint submitted on 17 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast construction of self-avoiding polygons and efficient
evaluation of closed walk fractions on the square lattice

Jean Fromentin, P.-L Giscard, Yohan Hosten

To cite this version:
Jean Fromentin, P.-L Giscard, Yohan Hosten. Fast construction of self-avoiding polygons and efficient
evaluation of closed walk fractions on the square lattice. 2024. �hal-04842116�

https://hal.science/hal-04842116v1
https://hal.archives-ouvertes.fr

Fast construction of self-avoiding polygons and efficient evaluation of
closed walk fractions on the square lattice

Jean Fromentina, Pierre-Louis Giscarda, Yohan Hostena

aUniversité du Littoral Côte d’Opale, UR 2597, LMPA, Laboratoire de Mathématiques Pures et Appliquées Joseph
Liouville, 50 rue F. Buisson, F-62100, Calais, France

Abstract

We build upon a recent theoretical breakthrough by employing novel algorithms to accurately compute
the fractions Fp of all closed walks on the infinite square lattice whose the last erased loop corresponds
is any one of the 762, 207, 869, 373 self-avoiding polygons p of length at most 38. Prior to this work,
only 6 values of Fp had been calculated in the literature. The main computational engine uses efficient
algorithms for both the construction of self-avoiding polygons and the precise evaluation of the lattice
Green’s function. Based on our results, we propose two conjectures: one regarding the asymptotic
behavior of sums of Fp, and another concerning the value of Fp when p is a large square. We provide
strong theoretical arguments supporting the second conjecture. Furthermore, the algorithms we intro-
duce are not limited to the square lattice and can, in principle, be extended to any vertex-transitive
infinite lattice. In establishing this extension, we resolve two open questions related to the triangular
lattice Green’s function.
Keywords: Self-avoiding polygon, computational combinatorics, loop-erasing, discrete version of the
Schramm-Loewner Evolution, infinite resistor lattice

1. Introduction

In a series of seminal works on random generation of self-avoiding paths, G. Lawler introduced the
procedure of chronological loop-erasing from a random walk [? ?]. First conceived in the context
of percolation theory to randomly generate simple paths–walks where all vertices are distinct–from a
sample of random walks, the procedure consists of a chronological removal of cycles (called loops in
Lawler’s original work) as one walks along on the graph: consider for instance the complete graph on
4 vertices and label these with integers 1 through 4. Walking along the path 1 → 2 → 1 → 3 →
4 → 3 → 1 → 3 on the graph and removing cycles whenever they appear, we are left with the simple
path 1 → 3 after having successively ‘erased’ the cycles 1 → 2 → 1, then 3 → 4 → 3 and finally
1 → 3 → 1. Note how 1 → 3 → 1 does not appear contiguously in the original walk. Indeed, the
edges traversed by the last erased loop might be very far apart from one another in the original walk.
Once terminated, Lawler’s loop-erasing has eliminated a set of cycles, all of whose internal vertices are
distinct, leaving a possibly trivial walk-skeleton behind. If the initial walk was itself a cycle, this skeleton
is the empty walk on the initial vertex (also called length-0 walk) and otherwise it is a simple path
(also called self-avoiding path). This procedure yields a natural probability measure on self-avoiding
paths: it is the probability of obtaining such a path as the self-avoiding skeleton left after erasing all
loops from a random walk. For Brownian walks on infinite planar lattices under the continuum limit
where edge lengths are sent to 0, this procedure is now known to produce a well-defined, conformally

Email addresses: jean.fromentin@univ-littoral.fr (Jean Fromentin), giscard@univ-littoral.fr
(Pierre-Louis Giscard), yohan.hosten@math.cnrs.fr (Yohan Hosten)

invariant probability distribution on self-avoiding paths called the Schramm-Loewner Evolution (SLE)
with parameter κ = 2 [? ?]. Used on closed random walks (i.e. random walks with identical start
and end points) the same procedure leads again to SLE2 law on self-avoiding polygons. Here the
self-avoiding polygon generated from the closed random walk is the very last loop eliminated by the
procedure. While much effort has been expanded in the study of SLE, the equivalent discrete problems,
that is on infinite lattices with finite edge size have not been studied in nearly as much details and are
comparatively less understood.

Consider an infinite, vertex transitive lattice with edges of unit size. The quantity that plays the
role of SLE2 in this discrete setting is the fraction Fp of all closed walks whose last erased loop is a
chosen self-avoiding polygon p. By definition, 0 < Fp < 1. Furthermore, since the last erased loop of a
walk is unique, the sum of Fp over all self-avoiding polygons p is 1,∑

p: SAP

Fp = 1, (1)

confirming that the Fp have a probabilistic interpretation [?]. Note that in this sum polygon orientation
is retained and the starting point of a polygon is fixed so that, e.g., on the square lattice the 1×1 square
is counted 8 times. Beyond these basic assertions, very few results have been established concerning
the Fp numbers. In terms of explicit values, mappings to Abelian sand-pile models have permitted the
calculation of Fp for only the six shortest self-avoiding polygons on the infinite square lattice, owing to
the mapping’s complexity and ensuing lengthy computations [? ?]. Regarding sums of Fp values, it
is not known how fast the sum of Eq. (1) converges to 1 as the length ℓ of the self-avoiding polygons
p considered goes to infinity ℓ → ∞. Yet, one of the authors has shown in [?] that this question
is tied to the long open problem of determining the asymptotic growth of the number of self-avoiding
polygons of length ℓ→∞.

In this work, we build on a recently derived analytical formula for the fractions Fp [?], employing
advanced computational techniques and novel algorithms to explicitly construct all 762, 207, 869, 373
self-avoiding polygons of length at most 38 on the infinite square lattice and evaluate their corresponding
Fp. Additionally, we develop an algorithm to accurately compute individual Fp values for self-avoiding
polygons of length up to 1000. All source code is available for download [?]. Thanks to these progresses
we can conjecture that the sum in Eq. (1) converges to 1 as follows,∑

ℓ′≤ℓ

∑
p∈ SAPℓ′

Fp = 1− ℓ−3/5 +O(ℓ−1).

where SAPℓ′ is the set of self-avoiding polygons of length ℓ′ and starting from a fixed vertex O on
the infinite square lattice. In addition, we can also conjecture that the polygon of length 4L with the
largest Fp value among all polygons of the same length is the L × L square SqL×L. Furthermore we
present solid, though incomplete, analytical arguments supporting the conjecture that

FSqL×L
=
(√

2− 1
)4L

+O(polynom(L)),

which is also supported by numerical results. For the sake of concreteness we work on the square
lattice, but our methods are generally valid on all vertex-transitive lattices. In the final section, we
solve two open problems pertaining to the Green’s function of the triangular lattice.

1.1. Fraction Fp of closed walks with last erased polygon p

Let G be an infinite vertex-transitive lattice, AG its adjacency matrix and Λ its unique dominant
eigenvalue. Let p be a self-avoiding polygon (SAP) or self-avoiding walk (SAW) on G of length ℓ(p).

2

Let N (p) be the distance-one neighborhood of p, that is, the set of vertices of G that are at distance at
most one from any vertex visited by p on G (see Fig. 1). Let EN (p) be the set of all edges of G with both
ends in N (p). Let Bp be the adjacency matrix of the graph GN (p) := (N (p), EN (p)). This graph is finite
provided ℓ(p) <∞ and so its adjacency matrix is of finite size N (p)×N (p). In addition, the size of this
neighborhood cannot be too-large as compared to ℓ(p). Indeed, since G is vertex-transitive it is regular
and its dominant eigenvalue is the degree of all its vertices. This implies that |N (p)| ≤ (Λ− 1)ℓ(p).

Let R(z) := (I− zAG)
−1 be the resolvent of AG and let PΛ be the projector onto the eigenspace of

AG associated with eigenvalue Λ. Define [?]

C := lim
z→1/Λ−

(I− PΛ)R(z). (2)

This matrix is directly related with the matrix r describing the resistance between pairs of points on
the infinite resistor lattice with structure G and with each edge representing a resistor of 1 Ohm. On
infinite regular lattices we have the relation [?]

C = −1

2
r. (3)

The value CO,vi between a vertex vi of the lattice and the origin is the difference of potentials between the
origin and that vertex; while the resistance between these points is, by symmetry, half the potential
difference between them. Research on the infinite resistor lattice problem [? ? ?] together with
Equation (3) mean that C is known for most vertex-transitive lattices. On the square lattice, C is
explicitly given by

Cvi,vj = −
1

π

∫ ∞

0

1

τ

(
1−

(
τ − i

τ + i

)xij−yij (τ − 1

τ + 1

)xij+yij
)
dτ, (4)

where i
2 = −1, xij = |xvi − xvj | and yij = |yvi − yvj | are the distance along x and y between vertices

vi and vj, respectively. In this expression we have index entries of the matrix C by the lattice vertices
vi. While, in principle, this formula provides C explicitly, it is ill-suited to large scale numerical
computations owing to the integration. We will present a method to bypass this issue in Section 2.

Let Cp := C|N (p) be the restriction of C to the distance-one neighborhood of p. In other terms,
(Cp)vi,vj := Cvi,vj if and only if vi, vj ∈ N (p). The matrix Cp is, by definition, finite and of size
N (p)×N (p).

Theorem 1.1 ([?]). Let p be a self-avoiding polygon on G and let Id be the N (p) × N (p) identity
matrix. Let degp = diag(B2

p) be the column vector of vertex degrees on GN (p) and let 1 be the N (p)× 1
column vector full of 1. Then the asymptotic fraction 0 < Fp < 1 of all closed walks on the infinite
lattice G whose last erased loop is p is well defined and given by

Fp =
1

Λℓ(p)
× 1

Λ
degTp. adj

(
Id+

1

Λ
Cp.Bp

)
.1, (5)

where adj(M) designates the adjugate of a matrix M. Furthermore Fp ∈ Q[χ], with χ an irrational
number depending on the lattice (χ = 1/π for the square lattice).

Remark 1. In spite of G being infinite, Eq. (5) yields a well defined number as both the Cp and Bp

matrices are of finite size.

Remark 2. By Theorem 1.1, each Fp value is accessible only if both the matrix C and the self-avoiding
polygon p are known. In particular, we emphasize that since Bp is required to evaluate Fp, the self-
avoiding polygon p must be constructed explicitly. This represents far more information per polygon
than had been made available even by the best enumerating techniques [? ?].

3

19

18

9

7

6

17

10

1

8

5

16

12

2

3

4

15

11

13

14

Figure 1: A self-avoiding polygon on the square lattice and its distance-one neighbors. The matrix B is the adjacency
matrix of the graph on the right hand side.

As an illustrative example of the Theorem, consider the corner-shape self-avoiding polygon shown
in Figure 1. We have |N ()| = 19 so the sieving result providing the exact fraction F involves the
adjugate of a 19 × 19 matrix. By construction B and C are symmetric and C further presents the
same symmetries as the underlying square lattice G. This reduces the number of distinct entries of Cp

that need to be computed. In the concrete case of , labeling the vertices of GN () as in Fig. 1 (right),
the matrix C is given by

C =

C1 C2 C3

C2 C4 C5

C3 C5 C6

 ,

where the Cj matrices are

• C1 is the 9× 9 matrix given by

C1 =

0 −1 − 4
π

1− 8
π

8
π
− 4 1− 8

π
− 4

π
−1 −1

−1 0 −1 8
π
− 4 1− 8

π
− 16

3π
1− 8

π
− 4

π
8
π
− 4

− 4
π

−1 0 −1 − 4
π

1− 8
π

8
π
− 4 −1 1− 8

π

1− 8
π

8
π
− 4 −1 0 −1 8

π
− 4 1− 8

π
− 4

π
− 16

3π
8
π
− 4 1− 8

π
− 4

π
−1 0 −1 − 4

π
−1 1− 8

π

1− 8
π
− 16

3π
1− 8

π
8
π
− 4 −1 0 −1 − 4

π
8
π
− 4

− 4
π

1− 8
π

8
π
− 4 1− 8

π
− 4

π
−1 0 −1 −1

−1 − 4
π

−1 − 4
π

−1 − 4
π

−1 0 − 4
π

−1 8
π
− 4 1− 8

π
− 16

3π
1− 8

π
8
π
− 4 −1 − 4

π
0

;

• C2 is the 9× 1 vector given by

CT
2 =

(
−1 − 4

π
1− 8

π
8− 92

3π
48
π
− 17 8− 92

3π
1− 8

π
8
π
− 4 − 4

π

)
;

• C3 is the 9× 9 matrix

C3 =

8
π
− 4 − 4

π
1− 8

π
− 16

3π
8− 92

3π
48
π
− 17 8− 92

3π
− 16

3π
1− 8

π

−1 −1 − 4
π

1− 8
π

48
π
− 17 8− 92

3π
−1− 8

3π
−1− 8

3π
8− 92

3π

− 4
π

8
π
− 4 −1 − 4

π
8
π
− 4 1− 8

π
− 16

3π
8− 92

3π
48
π
− 17

1− 8
π

48
π
− 17 − 4

π
−1 −1 − 4

π
1− 8

π
48
π
− 17 8− 92

3π

− 16
3π

8− 92
3π

1− 8
π

8
π
− 4 − 4

π
−1 − 4

π
8
π
− 4 1− 8

π

−1− 8
3π
−1− 8

3π
8− 92

3π
48
π
− 17 1− 8

π
− 4

π
−1 −1 − 4

π

8− 92
3π

− 16
3π

48
π
− 17 8− 92

3π
− 16

3π
1− 8

π
8
π
− 4 − 4

π
−1

1− 8
π

1− 8
π

8
π
− 4 1− 8

π
1− 8

π
8
π
− 4 1− 8

π
1− 8

π
8
π
− 4

48
π
− 17 1− 8

π
8− 92

3π
−1− 8

3π
−1− 8

3π
8− 92

3π
48
π
− 17 1− 8

π
− 4

π

;

4

• C4 = 0;

• C5 is the 1× 9 vector

C5 =
(
1− 8

π
−1 − 16

3π
−1− 8

3π
49− 160

π
736
3π
− 80 49− 160

π
−1− 8

3π
− 16

3π

)
;

• C6 is the 9× 9 matrix

C6 =

0 − 4
π

−1 8
π
− 4 8− 92

3π
−1− 8

3π
− 92

15π
472
15π
− 12 49− 160

π

− 4
π

0 1− 8
π

8− 92
3π

736
3π
− 80 49− 160

π
472
15π
− 12 − 92

15π
−1− 8

3π

−1 1− 8
π

0 −1 1− 8
π

− 16
3π

−1− 8
3π

49− 160
π

736
3π
− 80

8
π
− 4 8− 92

3π
−1 0 − 4

π
1− 8

π
8− 92

3π
736
3π
− 80 49− 160

π

8− 92
3π

736
3π
− 80 1− 8

π
− 4

π
0 −1 8

π
− 4 8− 92

3π
−1− 8

3π

−1− 8
3π

49− 160
π

− 16
3π

1− 8
π

−1 0 −1 1− 8
π

− 16
3π

− 92
15π

472
15π
− 12 −1− 8

3π
8− 92

3π
8
π
− 4 −1 0 − 4

π
1− 8

π
472
15π
− 12 − 92

15π
49− 160

π
736
3π
− 80 8− 92

3π
1− 8

π
− 4

π
0 −1

49− 160
π
−1− 8

3π
736
3π
− 80 49− 160

π
−1− 8

3π
− 16

3π
1− 8

π
−1 0

.

Now the fraction F is given by Eq. (5) as

F =
1

576π6
(3π − 8)2(8− π)(4− π)(−23π2 + 120π − 128

)
≃ 3.36× 10−4,

that is, 0.0336% of all closed walks on the infinite square lattice have as their last erased loop.

1.2. Sums of fractions over families of self-avoiding polygons
Fix a vertex O on the infinite square lattice and denote dSAPℓ the set of self-avoiding polygons of

length ℓ from O to itself. In this set, self-avoiding polygons that differ only through their orientations
or through a translation (i.e. changing the starting point) are considered distinct. Let SAPℓ be the
set of self-avoiding polygons of length ℓ, up to orientation and translation. Let π(ℓ) = |SAPℓ|, then
|dSAPℓ| = 2ℓ×π(ℓ) since a self-avoiding polygon has 2 orientations and ℓ possible starting points. Let
F (ℓ) be the sum of Fp values for all p ∈ dSAPℓ, that is

F (ℓ) :=
∑

p∈ dSAPℓ

Fp = 2ℓ
∑

p∈ SAPℓ

Fp.

Of particular interest are the cumulative sums,

S(ℓ) :=
∑
ℓ′≤ℓ

Fℓ′ .

S(ℓ) gives the proportions of closed walks on the infinite square lattice whose last erased loop is a self-
avoiding polygon of length at most ℓ. The behavior of S(ℓ) as ℓ→∞ on the infinite discrete lattices is
a determinant signature of the probability law on self-avoiding polygons resulting from loop-erasing. In
practice, evaluating the sums S(ℓ) is a major computational challenge because they stem from hundreds
of billions of individual Fp values, each of which, as noted in Remark 2, requires accessing the matrix
C and knowing the self-avoiding polygon p in full details. In other terms, a numerical study of the
behavior of S(ℓ) as ℓ grows requires explicitly constructing all self-avoiding polygons of length ℓ as well
as an efficient and accurate method to evaluate the lattice Green’s function.

5

2. Efficient computation of the C matrix

Because of its definition by Eq. (2), the C matrix shares many properties with the resolvent R(z) =
(I − zAG)

−1 also known as the lattice Green’s function. In particular, this implies the existence of
recurrence relations between entries of C, which we use to calculate C in a computationally efficient
and numerically stable way.

2.1. Recurrence relations
Let O := (0, 0) denote the origin of the square lattice. For every vertex v, let the pair (iv, jv) ∈ Z2

(or (i, j) if there is no possible confusion) denote its coordinates and ṽ the vertex of coordinates
(jv, iv) that is, the symmetric of v with respect to the first bisector. First, observe that R(z) satisfies
R(z).(zAG) = R(z)− I and so, by Eq. 2,

C.

(
1

Λ
AG

)
= lim

z→1/Λ−
(I− PΛ)R(z).(zAG), (6)

= lim
z→1/Λ−

(I− PΛ)R(z)− (I− PΛ),

= C− (I− PΛ).

Since G is regular, (PΛ)v,v′ = 1/N → 0 as N → ∞, then the above yields the following recurrence
relation between entries of C,

1

Λ

∑
v′′∈N (v′)

Cv,v′′ = Cv,v′ − δv,v′ , (7)

here N (v′) denotes the set of neighbors of vertex v′ on G, that is the set of vertices at distance 1 of v′.
Multiplying by A on the left of C in Eq. (6) we obtain the symmetric relation

1

Λ

∑
v′′∈N (v′)

Cv′,v = Cv,v′ − δv,v′ ,

confirming that C = CT , as expected from Eq. (4). As the lattice G is vertex transitive, we may
choose v to be fixed at the origin O and have v′ move throughout the lattice to determine C entirely.
Furthermore, Cv,v′ = Cv′,v, CO,v = CO,ṽ, CO,O = 0 and all CO,(i,i) are well known (see below). Therefore,
Eq. (7) is sufficient to determine all entries of C by solving linear equations and without computing
any integral [? ?]. In the sequel, the coefficient CO,v with v := (i, j) will be denoted by ci,j, so that
we have:

Proposition 2.1. On the square lattice we have c0,0 = 0, c0,1 = −1,

ci,i = −
4

π

i∑
k=1

1

2k − 1
= − 4

π

i−1∑
k=0

1

2k + 1
for i ≥ 1 (8a)

c0,j = 4c0,j−1 − c0,j−2 − 2c1,j−1 for j ≥ 2 (8b)
ci,j = 4ci,j−1 − ci,j−2 − ci−1,j−1 − ci+1,j−1 for j > i ≥ 1 (8c)

As shown by Eq. (8a), the ci,i values are known exactly and are easily computable. Due to the
symmetry ci,j = cj,i, we only need establish that it is possible to compute ci,j above the first bissector
of the plan to obtain all entries of C.

Lemma 2.2. For 0 ≤ i < j, it is possible to compute ci,j.

Proof. We proceed by induction on j ≥ 1.

6

• If j = 1 then i = 0 and c1,0 = c0,1 = −1.

• Let j ≥ 1 and assume that for 0 ≤ i < j, it is possible to compute ci,j. We show that for
0 ≤ i < j + 1, it is possible to compute ci,j+1. There are 3 possibilities.

1. Either i = 0 then c0,j+1 can be computed using Equation (8b) since j + 1 ≥ 2.

2. Or 1 ≤ i ≤ j − 1 then ci,j+1 can be computed using Equation (8c).

3. Or i = j then we use Equation (8c) and the symmetric relation to obtain 2cj,j+1 = 4cj,j −
cj,j−1 − cj−1,j.

Graphically, this iteration implements the following traversal of the square lattice:

i

j i = j

Figure 2: Direction of computations for the calculation of all ci,j on the square lattice.

While C is an infinite matrix, for any given self-avoiding polygon p we need only compute its finite
submatrix Cp to calculate Fp via Eq. (5). Instead of doing this calculation anew for every p, in practice,
we compute a finite submatrix of C only once over the finite grid that contains all the self-avoiding
polygons to be constructed (see §3.3 for details). The required Cp matrices are then extracted from
this.

2.2. Implementation
Firstly remark that two vertices belonging to the distance-one neighborhood N (p) of a polygon p of

length ℓ, stand at a distance of at most ℓ/2+2 from each other. Thus, computations of the Fp fractions
for all self-avoiding polygons of length up to ℓ only necessitates coefficients ci,j for 0 ≤ i < j ≤ ℓ/2+ 2.
Secondly, by Proposition 2.1, the computation of any ci,j involves a recursion with many intermediate
steps and, consequently, is prone to an accumulation of rounding errors. This leads to a poor overall
approximation of ci,j, even when working with double precision floating point, i.e. with a precision
of 10−16. To bypass this issue, observe that since ci,j ∈ Q[1/π], there is a unique way to write
ci,j = ai,j + bi,j × 1

π
, where ai,j and bi,j are two rationals numbers. Computing these rationals exactly

is possible so no accumulation of rounding errors can occur. Adapting Proposition 2.1, the rational
coefficients are obtained through the following recursion:

1. Set a0,0 = 0, b0,0 = 0, a0,1 = −1 and b0,0 = 0;

2. For i from 1 to n set ai,i = 0 and compute bi,i = bi−1,i−1 − 4/(2i− 1);

7

(a) Compute a0,j = 4 a0,j−1 − a0,j−2 − 2 a1,j−1 and b0,j = 4 b0,j−1 − b0,j−2 − 2 b1,j−1;
(b) For i from 1 to j− 2, compute ai,j = 4 ai,j−1− ai,j−2− ai−1,j−1− ai+1,j−1 and bi,j = 4 bi,j−1−

bi,j−2 − bi−1,j−1 − bi+1,j−1;
(c) Compute aj−2,j = 2 aj−1,j−1 − aj−1,j−1 and bj−2,j = 2 bj−1,j−1 − bj−1,j−1.

Once coefficients ai,j and bi,j are so obtained, we get a numerical approximation of ci,j:

ci,j ≈
(
ai,j +

1725033

5419351
× bi,j

)
+ bi,j × 2.27595720048157× 10−15,

which follows from
1

π
≈ 1725033

5419351
+ 2.27595720048157× 10−15.

Combining these observations and results, and given a maximum length ℓ, we proceed as above to
compute ai,j and bi,j with 0 ≤ i < j ≤ ℓ/2 + 2 once and for all. In a second stage specific to each
polygon p, the Cp matrices are constructed from the stored rational coefficients. Rational numbers
are given by irreducible fractions p/q of integers, each of which is coded using 64 bits and so must
belong to {−263, . . . , 263− 1}. If integers outside of that range are needed, an overflow occurs resulting
in a missed computation of ci,j. In practice, we observed that integers coded on 64 bits are enough
when computing coefficients ai,j and bi,j with 0 ≤ i < j ≤ 12. This means that we can only deal with
self-avoiding polygons of length at most 20. For longer self-avoiding polygons, we must instead use
integers coded on 128 bits, allowing for valid computations of ci,j with 0 ≤ i < j ≤ 510, thanks to
which we can reach self-avoiding polygons of length at most 1016.

3. An algorithm for constructing self-avoiding polygons

Once C is obtained, the second difficulty of Theorem 1.1 is that Fp depends on the adjacency matrix
Bp of the distance-one neighborhood of the self-avoiding polygon p. In order to compute large number
of Fp values, we must therefore construct self-avoiding polygons as efficiently as possible.

Let us fix a point O of the square lattice and a length ℓ ≥ 2. The set of all finite path on the square
lattice starting at O will be denoted P . To each element of P corresponds a finite sequence of steps
Down, Left, Right and Up. More precisely there is a bijection between elements of P and the set S∗ of
finite words on the alphabet S = {D, L, R, U}, where D, L, R and U denote steps Down, Left, Right and
Up respectively. From now on, paths on the square lattice starting at O will be identified with finite
words on the alphabet S. The set P is then equipped with a tree structure T , inherited from that
of S∗. The root of T is the empty word ε and the sons of a path w are wD, wL, wR and wU. In order
to construct each member of the set SAPℓ of all self-avoiding polygons of length ℓ, we will pick out a
subtree Tℓ of T whose leaves at depth ℓ are in bijection with SAPℓ.

3.1. Self-avoiding polygon to word
A self-avoiding polygon of length ℓ can be seen as a path starting from one of its vertices. Yet, this

correspondence is not one-to-one. For instance, the 1 × 1 square can be represented by 8 words on S
depending on the starting vertex and the chosen orientation, as depicted on Figure 3,
To avoid multiple constructions of the same self-avoiding polygon, we must fix the starting point and
the orientation of the path. Let p be a self-avoiding polygon. The base line of p is the horizontal line
containing the furthest south edge of p. The base point of p is then the furthest west vertex of p on
its base line, see Figure 4. For the rest of this part, self-avoiding polygons will be drawn on the square
lattice in such a way that their base point will be a fixed point O of the square lattice.
At this point a self-avoiding polygon can be represented by two paths of P , depending of the chosen
orientation. By construction of the base point these words are of the type R . . . D and U . . . L. Hence,
forcing the first letter to be a right R, we fix the polygon orientation. This leads to:

8

RULD

URDL

ULDR

LURD

LDRU

DLUR

DRUL

RDLU

Figure 3: The 1× 1 square can be represented by eight different words depending on the chosen starting point (in gray).

O

Figure 4: Base line and base point O, of self-avoiding polygon. The arrow denotes chosen path orientation.

Proposition 3.1. Each self-avoiding polygon p of length ℓ ≥ 2 with base point at O, is described by a
unique word w(p) = R . . . D of length ℓ on the letters S.

For example, the word corresponding to the polygon shown in Figure 4 is RUULLDRD.

3.2. The tree Tℓ of ℓ-admissible words
We obtain the tree Tℓ from T by cutting the latter. More precisely, a node of T is retained in Tℓ if

and only if it is ℓ-admissible.

Definition 3.2. A word w on the alphabet S is ℓ-admissible if the following properties are satisfied:
– (P1) w is of length at most ℓ;
– (P2) whenever w is not empty, its first letter is R;
– (P3) w is the empty word or its father is itself ℓ-admissible;
– (P4) w admits O as base point;
– (P5) whenever w has length ℓ, it correspond to a closed path
– (P6) w has no self intersection;
– (P7) w has a chance to be completed as a self-avoiding closed path of length ℓ.

Properties (P1) and (P2) are immediate to check. As we will construct the tree Tℓ by induction from
the empty word, property (P3) causes no particular difficulties. For property (P4), we have to define
the base point of a word w, corresponding of a path p starting at O. As explained in the preceding
section, the base line of a polygon p is the furthest south horizontal line containing an edge of p and
the base point of w is then the furthest west vertex of p on its base line.

O

a)

O

b)
O

c)

Figure 5: Three words that are not admissible. In a), property (P2) is unsatisfied as the first letter is U. In b) and c)
this is property (P4). Base points of drawn paths are in grey.

9

Since we aim at constructing hundred of billions of self-avoiding polygons, we need a process to check
properties (P4) to (P7) as efficiently as possible.

3.3. The game board
We construct our ℓ-admissible paths on a game board, which can be seen as a finite part of the dual

lattice of the square lattice with extra decorations on each cell. The cell containing the base point O
is the termed the base cell and denoted O. We first determine the optimal size of our game board.
Denote by Eℓ, Nℓ, and Wℓ the ℓ-accepting words that goes furthest east, north and west from the base
point O, respectively. We verify immediately that these words are of the form

Eℓ = R · · · R︸ ︷︷ ︸
aℓ

U L . . . L︸ ︷︷ ︸
aℓ

D with aℓ = ℓ/2− 1,

Nℓ = R U · · · U︸ ︷︷ ︸
aℓ

L D . . . D︸ ︷︷ ︸
aℓ

Wℓ = RUUL L . . . L︸ ︷︷ ︸
bℓ

D R . . . R︸ ︷︷ ︸
bℓ

D with bℓ = ℓ/2− 3,

where we consider only even lengths ℓ, since there are no polygon of odd length on the infinite square
lattice. It follows that the game board must have at least aℓ cells east of the base cell, aℓ cells north
of it and bℓ − 1 cells west of the cell that is immediately north of the base cell. It will be useful to
make a border of forbidden cells to our game board. By definition of base point, any cells west of it are
forbidden. Thus the game board has width wℓ = aℓ + bℓ + 3 = ℓ− 1 and height hℓ = aℓ + 3 = ℓ/2 + 2,
see the illustration of Figure 6.

a) b) c)

Figure 6: Game board for ℓ = 8. The base cell is depicted with a gray dot. Forbidden cells are in gray. Paths Eℓ, Nℓ

and Wℓ are drawn on a), b) and c) respectively.

We identify each cell c of the game board by a unique integer nc in {0, . . . , hℓ × wℓ − 1}: we have
nc = wℓ× y+ x for a cell c at position (x, y) with the convention that the left-bottom cell has position
(0, 0) and the right-top one has position (wℓ − 1, hℓ − 1). Consider a non forbidden cell c and denote
by cD, cL, cR and cU the cells visited after a D, L, R and U steps from c, respectively. Then,

ncD = nc − wℓ, ncL = nc − 1, ncR = nc + 1, and ncU = nc + wℓ.

3.4. Cell data
In order to check that a path satisfies property (P7), we add information to the game-board cells

as follows. Let w be a word of length t on S. Starting from the base cell O, we construct a sequence
of cells ϕw of length ℓ(w) accordingly to w : for i ∈ {1, . . . , ℓ(w)} the cell κw(i) is the adjacent cell of
κw(i−1) with respect to wi. Let 0 ≤ t < ℓ be an integer. In order to be able to complete w into a closed
path of length ℓ, we must complete it with ℓ− t steps linking the cell κw(ℓ(w)) to the base cell O. This is
only possible if the length of the minimal sequence of steps linking κw(ℓ(w)) to O is smaller than ℓ− t.

10

For each non forbidden cell c of the game board, we thus define d(c) to be the minimal number of
steps needed to reach the base cell from c. This quantity is the Manhattan distance between c and
the base cell O: if we denote by (0, 0) and (x, y) positions of the base cell O and c, respectively, we have
d(c) = |x| + |y|. By convention, we set d(c) = +∞ for each forbidden cell (in gray in Figure 6). We
can now give a precise formulation of (P7) :

Definition 3.3. A word w of length t on S satisfies (P7) whenever t+ d(cw(t)) ≤ ℓ holds.

Thus, to each cell c of the game board we attach two pieces of information:

• the Manhattan distance d(c) between c and the base cell O;

• an integer t(c), 1 ≤ t(c) ≤ ℓ, that depends on the current word w being constructed. For i ∈
{1, . . . , ℓ(w)}, the value of t(κw(i)) is set to i. Roughly speaking, t(c) specifies when the cell c is
reached by the word w.

3.5. Initialization
We now describe the main algorithmic engine for the construction of the self-avoiding polygons of a

fixed length ℓ. Recall that this is based on the exploration of the tree Tℓ, whose leaves are in bijection
with SAPℓ. We begin by constructing the game board G as described above in § 3.3. We then compute
the Manhattan distance d(c) from the base cell O to each cell c of G. In addition of the game board G,
we use

1. an array word of size ℓ storing the word w under construction, word[i] being the ith letter of w;

2. an array kappa of size ℓ containing integers in {0, . . . , hℓ × wℓ − 1} or +∞ (in practice we can
replace +∞ by any integer greater than hℓ × wℓ);

3. a stack stack of triple (c, k, s), where c is a cell, k an integer between 0 and ℓ, and s ∈ S is a
step.

We give a complete description of the initialization steps in Algorithm 1.

Algorithm 1 Initialization for the construction of SAPℓ.
1: procedure InitEnumSap
2: Construct the game board G
3: for each cell c of G do
4: if c is on the border then
5: d(c)← +∞
6: else
7: d(c)← Manhattan distance between c and O
8: t(c)← −1
9: end if

10: end for
11: word ← array steps of length ℓ
12: kappa ← array of cells of length ℓ
13: stack ← empty stack
14: stack.push(O, 0, R) ▷ Start with a step R from the base cell O, to ensure (P2) and (P4)
15: end procedure

11

3.6. Exploration of the tree Tℓ
We perform a depth-first exploration of tree of Tℓ using the stack stack which is a container equipped

with four operations:

• stack.empty() testing if the stack is empty;

• stack.push(...) putting an element at the top of the stack;

• stack.top() returning the element at the top of the stack;

• stack.pop() removing the element at the top of the stack.

Consider for instance the set SAP8 of length 8 self-avoiding polygons and suppose that at some point
of the exploration of T8 we pop the 8-admissible word w = RURU from the stack stack. As a word, w
can be completed as w1 = wD, w2 = wL, w3 = wR or w4 = wU.

2

3

4

1

2

3

3

4

2

5

3

4

5

6

4

3
2

1
0

Figure 7: Depth first exploration of the tree T8. The 8-admissible word w = RURU of length 4 is represented by the solid
black line on the game board. The base cell is that with the gray bullet, while cell κw(4) is highlighted with a black
bullet. Black numbers in cells c stand for d(c), red numbers give t(c). Shaded cells are those immediately reachable
from w by adding one step. They yield words w1 = wD, w2 = wL, w3 = R and w4 = wU.

Using the game board as depicted in Figure 7, we check whether these four words are 8-admissible. Let
us denote by c1, c2, c3 and c4 the cells reached by w1, w2, w3 and w4 respectively, i.e., ci = κwi

(5). In the
case of w1, noting that t(c1) = 3 is lower than the length of w1, this word may self-intersect. Remark
that t(c1) = 3 < 5 is not sufficient to immediately conclude that w1 self intersects because, for the sake
of speed and efficiency, the game board information is not systematically cleared. As a consequence
many cells c’ could share the same value t(c′) = t(c1), the values taken by t being correct only for cells
visited by the current word. So, to decide if w1 self intersects the algorithm checks whether cell c1 is
indeed the third one visited by w1. This is what kappa is used for: given that κw1(3) = κw(3) = c1, c1
is really visited twice and w1 is rejected because it violates property (P6). Words w2, w3 and w4 are
checked similarly and found to satisfy (P6). There remains to verify property (P7) for them. These
words are of length 5 leaving only three steps to reach back to the base cell. As the distance information
contained in cells c3 and c4 is 5, which is strictly greater than the three remaining steps, the algorithm
rejects words w3 and w5 for violating (P7). Hence w2 = wL is the sole 8-admissible word that can be
built from w and (c2, 5, L) is pushed on the stack stack. The exploration of T8 continues in this fashion
until the stack stack is empty.

The algorithm for the complete exploration of Tℓ is presented in Algorithm 2.

12

Algorithm 2 Construction of SAPℓ.
1: procedure EnumSap
2: while stack not empty do
3: (c, k, s) ← stack.top()
4: stack.pop()
5: Apply(c, k, s)
6: c’ ← the cell adjacent to c with respect to s
7: if k = ℓ then
8: Treat(word)
9: else

10: for s′ in {D, L, R, U} do
11: if canAdd(c’, k + 1, s′) then
12: stack.push(c’, k + 1, s′)
13: end if
14: end for
15: end if
16: end while
17: end procedure

▷ In line 5, the current word is augmented with step s, which corresponds to exploring an edge of Tℓ.
The updates performed by the code on that occasion are presented in Algorithm 3.
▷ In line 8, the algorithm has reached a leaf of Tℓ at depth ℓ. At this point, word codes for a valid self-
avoiding polygon p of length ℓ. The function treat is called and it implements any desired computations
on p, stores it for future use, etc.
▷ In line 11, the algorithm checks whether the current word augmented with step s’ is ℓ-admissible, a
task performed by Algorithm 4. If the answer is positive we push this future exploration on the stack.

Algorithm 3 Apply a new step to the on construction path.
1: function Apply(c, k, s)
2: t(c)← k
3: word[k] ← s
4: kappa[k] ← c
5: kappa[k + 1] ← +∞
6: end function

Algorithm 4 Test if we can add the letter s at position k in the word under construction
1: function CanAdd(c, k, s)
2: c’ ← the cell adjacent to c with respect to s
3: if k + d(c’) ≥ ℓ then ▷ Checks (P7) and whether a game board boundary is reached
4: return false
5: end if
6: if t(c’) ≤ k and kappa[t(c’)] = c’ then ▷ Checks (P6)
7: return false
8: end if
9: return true

10: end function

13

R

R

R

U

L

L

L

D

U

L

L

L U

U

L

D

D

R

D

U

L

D

L

D

L

L

D

U

L

L

U

R

U

L

D

R U

R

D

R

R

D

L

U

L

L

D

D

U

L

D

L

L

D

L

D

U

R

D

D

U

L

D

D

D

Figure 8: The complete tree T8. To each node n corresponds the 8-admissible word made of the letters met going from
the root of the tree down to node n. The seven elements of SAP8 are the seven leaves at depth 8 of T8.

4. Computational results

Our experiments were carried out on the shared computational platform Calculco [?]. This
platform is equipped with 28 nodes for a total of 1852 cores and is designed for distributed computation.
In this section we detail the construction of a suite of programs to take advantage of Calculco to
carry out the computation of the sums S(ℓ) of §1.2 up to ℓ = 38.

4.1. Memory usage and parallelization
Our first task is to construct and store the self-avoiding polygons of a given length ℓ. The process

is fully described in Section 3 so we here focus on the storage method. As a self-avoiding polygons of
length ℓ is given by a word which we code as an array of steps {D, L, R, U} of length ℓ. Each step can
be encoded with two bits :

D→ 00, L→ 01, R→ 10, U→ 11. (9)

With this methods a self-avoiding polygons of length ℓ needs 2ℓ bits to be stored. Since there are
2 895 432 660 self-avoiding polygons of length 38, this method requires 5.6 Tb to store all the elements of
SAP38. To decrease this enormous quantity of data, remark that thanks to the depth-first exploration of
the tree Tℓ, elements of SAPℓ are constructed in lexicographic order. This implies that two consecutive
self-avoiding polygons likely share a long prefix. As a consequence, to store two consecutive self-avoiding
polygons p1 and p2, we store p1, then store the length of the common prefix between p2 and p1 as well as
the suffix of p2 with respect to this prefix using the previous encoding. Since we consider SAPof length
at most 38 ≤ 64, we need no more than 6 bits to store the length of the prefix, considerably reducing
the memory requirement for p2. Finally, we use the Lempel–Ziv–Markov chain algorithm (LZMA) [?
] to perform on the fly compression. The following table summarize space needed to store SAPℓ using
basic encoding Eq. (9); prefix encoding; and LZMA compression on prefix encoding. Empirically, we
found that LZMA compression employed directly on basic encoding takes much time and gives terrible
results in terms of storage.

ℓ 20 22 24 26 28 30 32 34 36 38 40
basic 400Kb 2.4Mb 4.4Mb 89Mb 556Mb 3.4Gb 21.6Gb 137Gb 877Gb 5.6Tb 35.4Tb
prefix 148Kb 809Kb 4.4Mb 25.1Mb 145Mb 849Mb 4.9Gb − − − −

+ lzma 516Kb 524Kb 884Kb 1.8Mb 4.4Mb 14Mb 66Mb 350Mb 1.5Gb 8Gb 43Gb

We can parallelize the exploration of the tree Tℓ by selecting nodes w1, . . . , wk such that the leaves
of maximal depth in Tℓ are in bijection with leaves of maximal depth in the subtrees of Tℓ rooted at

14

ℓ π(ℓ) Fℓ S(ℓ)
2 1 0.50000000000000 0.50000000000000
4 1 0.14727245910375 0.64727245910375
6 2 0.06204664274521 0.70931910184896
8 7 0.04001566383131 0.74933476568027
10 28 0.02805060444094 0.77738537012121
12 124 0.02102490313204 0.79841027325325
14 588 0.01644695527417 0.8148572285274199
16 2 938 0.01329675992709 0.8281539884545099
18 15 268 0.01102242742254 0.8391764158770499
20 81 826 0.00931937541569 0.8484957912927399
22 449 572 0.00800628886867 0.8565020801614099
24 2 521 270 0.00696952442824 0.8634716045896499
26 14 385 376 0.00613458465224 0.8696061892418899
28 83 290 424 0.00545085547657 0.8750570447184599
30 488 384 528 0.00488288725692 0.8799399319753799
32 2 895 432 660 0.00440520148051 0.8843451334558899
34 17 332 874 364 0.00399907262190 0.88834420607779
36 104 653 427 012 0.00365046770131 0.8919946737790999
38 636 737 003 384 0.00334868856902 0.89534336234812

Table 1: Number π(ℓ) of self-avoiding polygons of length ℓ constructed by the code (see also [? , Table C.3]), corresponding
Fℓ =

∑
p∈SAPℓ

Fp values and cumulative sums S(ℓ) of the Fℓ.

w1, . . . , wk. The difficulty here is to find a selection of nodes such that the times needed to explore
the corresponding rooted subtrees are balanced. Using empirical experiments on T28, we were able to
parallelize the exploration of Tℓ for ℓ ≥ 28 using 64 threads. As our ultimate goal is the computation
of the fractions Fp for all elements of SAPℓ, the constructed self-avoiding polygons are stored in many
different files, typically several thousands.

4.2. Computation of Fp

At this point, a self-avoiding polygon p is given as a word w of steps. From this word, we draw
the polygon back onto the square grid. This yields the graph of the distance one neighborhood N (p),
the adjacency matrix of which is Bp (see Figure 1). The matrix Cp is similarly constructed from the
pre-computed coefficients ci,j, see §2. We then form Mp = Id + Λ−1Cp · Bp and use a Gauss–Jordan
elimination to compute the adjugate of Mp. To speed up computations, we use the FMA instruction
set [?] to perform fused multiply–add operations on vector of four doubles. Typically, if a, b and a
are arrays of four double floats then the computation of a[i]× b[i] + c[i] for i = 0, 1, 2, 3, is done with
only one CPU instruction.

4.3. Numerical results
All the algorithms presented here were implemented in C++. Source codes are available on GitHub

[?]. We present the final numerical results in Table. 1, showing the computed values for Fℓ and their
accumulation S(ℓ). These results are also plotted in Fig. 9. These observations lead us to conjecture
that S(ℓ) = 1− ℓ−3/5 +O(ℓ−1) and, from there, Fℓ = ℓ−8/5 +O(ℓ−2).

We wrote a second numerical code that can evaluate Fp for one given p of length less than ℓ(p) ≤
1400. Using this code, we present on Table. 2 computed FSqL×L

values for the family of L× L squares
on the infinite square lattice as a function of the square’s side length L. Such results were hitherto

15

2 6 10 14 18 22 26 30 34 38
0.0

0.2

0.4

0.6

0.8

1.0

ℓ

Σ
(ℓ
)

2 6 10 14 18 22 26 30 34 38

-2.0

-1.5

-1.0

-0.5

0.0

ℓ

lo
g
ϵ(
ℓ)

Figure 9: Left figure: S(ℓ) (red dots), the proportion of closed walks on the infinite square lattice whose last erased loop
is a self-avoiding polygon of length at most ℓ, as a function of ℓ. The solid blue line is the conjectured fit by 1− ℓ−3/5,
which is supposed to hold asymptotically as ℓ→∞. Right figure: logarithm of the error ϵ(ℓ) := S(ℓ)− (1− ℓ−3/5) (red
dots) and fit by the function 0.323/ℓ (solid blue line). Data from Table 1.

completely impossible to access: Theorem 1.1 was unknown until 2021 and only for the six shortest
self-avoiding polygons had the fractions Fp been evaluated [? ?]. The family of squares offers an
interesting testing ground for two reasons: we can conjecture the asymptotic growth FSqL×L

from both
numerical observations and analytical arguments (see below); and empirically we found that FSqL×L

is the maximum of Fp values over the set of all self-avoiding polygons of length 4L. If the length
considered is not a multiple of 4, the self-avoiding polygon with maximum Fp value is a rectangle
with a ratio width/height as close to one as possible. At the opposite, the self-avoiding polygons with
smallest Fp value are found to be highly winding with 0 interior area.

The results presented in Table. 2 were also calculated analytically by a symbolic program in Sage
up to and including Sq7×7 and by a code for Mathematica up to Sq30×30, confirming the numerical
results. The analytic formulas are far too cumbersome to be systematically reported here, for example,

FSq3×3
=26576424− 295147905179352825856

12301875π11
+

191384969764736598016

2460375π10
− 156074021897315024896

1366875π9

+
136878648694447013888

1366875π8
− 8851794332131262464

151875π7
+

3588749561696485376

151875π6

− 38289042343284736

5625π5
+

870420275786752

625π4
− 24779053698384

125π3
+

467156948616

25 π2
− 5246537184

5π
.

And the formulas quickly get more involved as the square’s side-length increases!

4.4. Analytical considerations
Consider the asymptotic behavior of the fraction of closed walks whose last erased loop is the L×L

square as L→∞. Going back to the roots of the sieve of Theorem 1.1 we have that, on a finite lattice
GN with dominant eigenvalue Λ, the fraction of all closed walks from a vertex • to itself whose last
erased loop is a self-avoiding polygon p visiting • is

Fp =
1

Λℓ(p)

det(Id− 1
Λ
AGN\p)

det(Id− 1
Λ
AGN\•)

.

Here AGN\• is the adjacency matrix of the finite lattice GN with vertex • removed. Similarly, AGN\p is
the adjacency matrix of the finite lattice GN with all vertices visited by p removed. Since the vertices

16

L FSqL×L
L FSqL×L

1 1.8409057387969413× 10−2 20 7.234313040400423× 10−32

2 4.462339923059934× 10−4 30 3.2283875735110397× 10−47

3 1.192983879778077× 10−5 40 1.4793787629654915× 10−62

4 3.2824487567509144× 10−7 50 6.877846988396231× 10−78

5 9.174122974521936× 10−9 60 3.226927117230214× 10−93

6 2.5893979305184303× 10−10 70 1.523552585714086× 10−108

7 7.3577883524995755× 10−12 80 7.226423170276898× 10−124

8 2.1009188710297932× 10−13 90 3.4396489661899583× 10−139

9 6.0210656056096115× 10−15 100 1.6417501872360198× 10−154

10 1.730587034739647× 10−16 120 3.763918325436204× 10−185

Table 2: Numerically computed fraction FSqL×L
of closed walks on the infinite square lattice whose last erased loop is

the L× L square SqL×L. These numbers were also calculated analytically up to L = 30. See Fig. 10 for a plot of these
values.

0 20 40 60 80 100 120
10-200

10-150

10-100

10-50

1

Square side length L

F
S
q
L
xL

Figure 10: Log-plot of the fraction FSqL×L
of closed walks on the infinite square lattice whose last erased loop is the

L×L square as a function of the side length L (red dots); and fit based on analytical considerations §4.4 by the function
(
√
2− 1)4L (solid blue line). Data from Table 2.

located in the interior of the self-avoiding polygon p are completely disconnected from those outside of
it, the graph GN\p is disconnected and Fp simplifies to

Fp =
1

Λℓ(p)

det(Id− 1
Λ
Aout(GN\p))

det(Id− 1
Λ
AG\•)

det(Id− 1

Λ
Ain(GN\p)). (10)

where in(GN\p) and out(GN\p) designate the set of vertices in the interior and outside of p on GN ,
respectively. The induced subgraph of GN with vertices in(GN\p) remains a finite graph under the
limit N →∞ so det(Id− Λ−1Ain(GN\p)) is well defined and usually known exactly. For instance on the
square lattice and with p the L× L square, in(GN\SqL×L) is the L− 2× L− 2 square, so

log det
(
Id− 1

4
ASqL−2×L−2

)
=

∏
1≤i,j≤L−2

1− 1

2
cos

(
πi

L− 1

)
− 1

2
cos

(
πj

L− 1

)
.

17

The asymptotic behavior of this when L → ∞ is known. Denote LSqL×L
the Laplacian of the L × L

square, then

det
(
Id− 1

4
ASqL−2×L−2

)
=

4−(L−2)2

(L− 1)2
det0(LSqL−1×L−1

),

where det0 is the product of the non-zero eigenvalues. It follows [? , Section 6] [? ?],

log det
(
Id− 1

4
ASqL−2×L−2

)
=

(
4C

π
− log(4)

)
A(SqL−1×L−1) +

1

2
log(4

√
2− 4)P(SqL−1×L−1) +O(logL),

where C is Catalan’s constant, A(SqL−1×L−1) = (L−1)2 and P(SqL−1×L−1) = 4(L−1) are the area
and perimeter of SqL−1×L−1, respectively. The area and perimeter are quantities that are invariant
under conformal transformations of the lattice under the continuum limit, leading to the conformal
invariance of SLE measures. Unfortunately, neither of the other two determinants in Eq. (10) make any
sense under the limit where N := |GN | → ∞ where GN → G becomes infinite. The behavior of their
ratio is also very difficult to control. Instead of attempting to do so exactly, as Theorem 1.1 achieved,
we may only seek an asymptotic description of these determinants as N →∞. To do so, observe that
the two ill-defined determinants’ contents can be transformed so as to make graph Laplacians appear.
Indeed,

det(Id− Λ−1Aout(GN\p)) = Λ−N det(IdΛ− Aout(GN\p)),

which looks like a graph Laplacian, except that all vertices are effectively given a degree Λ. But vertices
of N (p) have a strictly smaller degree on GN\p, by virtue of the removal of the vertices visited by p.
Let Dp be a diagonal matrix accounting for this, that is, for any vertex i, define Dp through

Λ = deg(iout(GN\p)) + (Dp)i,i,

where deg(iout(GN\p)) designates the degree of vertex i on the subgraph of GN induced by the vertex
set out(GN\p). By construction, (Dp)i,i = 0 whenever i /∈ N (p), i.e. Dp is a "small-rank and localized"
correction, the extent of which does not increase as the lattice size is increased. This leads to

det(Id− Λ−1Aout(GN\p)) = Λ−|out(G\p)| det0(Lout(G\p) + Dp), (11)

and similarly, det(Id− 1
Λ
AG\•) = Λ|GN |−1 det(LG\•+D•). The determinant of Eq. (11) can be expanded

around the dominant Lout(G\p). Here unfortunately we could not complete that step of the proof by
showing that the contribution from Dp was O(log ℓ(p)) in log det(Id−Λ−1Aout(GN\p)), where ℓ(p) is the
length of p. If we accept that this true we would have

log(Fp)
?
= (−ℓ(p) + |in(GN\p)|+ P(p) + 1) log Λ + log det0(LGN\p)− log det0(LGN\•)

+ log det(Id− Λ−1Ain(GN\p)) +O(log ℓ(p)).

Here we used |out(G\p)| = |GN | − |in(G\p)| − P(p). The two terms involving graph Laplacians are
available asymptotically thanks to the remarkable results of Finski [?], Greenblatt [?] and [?]. For
example, on the square lattice and in the case of the L×L square, we have [? , Eq. (1.4) and Theorem
1.2],

log det0(LGN\SqL×L
)− log det0(LGN\•) =

4C

π
×−A(SqL−1×L−1) +

1

2
log(
√
2− 1)P(SqL×L) +O(logL).

Since |in(G\p)| = (L− 1)2 and P(SqL×L) = 4L, putting everything together yields

log(FSqL×L
)

?
= −4L log(4) + 4L log(4

√
2− 4) +O(logL). (12)

18

v
u

(i, j)

(i+1, j+1)(i, j+1)

(i−1, j)

(i−1, j−1) (i+1, j−1)

(i+1, j)

Figure 11: Coordinate system on triangular lattice.

Note how all terms proportional to L2 stemming from areas have canceled each other out. It cannot be
otherwise: if something proportional to Lα with α > 1 were to remain, then FSqL×L

would diverge as
L→∞, in sharp contradiction with the basic combinatorial requirement of Eq. (1). Overall, Eq. (12)
allows us to conjecture that

FSqL×L

?
= (
√
2− 1)4L +O(polynom(L)).

This prediction is borne out by the numerical results, see Fig. 10.
The analytical reasoning for the −3/5 exponent appearing the sums S(ℓ) is much weaker. If

indeed localized corrections can be neglected, then the sum of Fp values could possibly be estimated
asymptotically using asymptotic determinants of discrete Laplacians. The problem may then be related
to that solved by Kenyon [?] as one of the authors of this work had adventurously proposed in [?].

5. Generalization to other lattices

The computational procedure described in the case of the square lattice in Sections 2 and 3 extends
to other lattices, provided a suitable recursion formula can be found on the entries of the C matrix.
Indeed, while explicit formulas are known for C via its relation to lattices’ Green’s functions in all
cases [? ? ? ?], these formulas involve integrals of complicated functions and, as such, are ill-suited
to fast, large-scale numerical computations requiring high numerical precision. Instead, it is much
easier to implement a direct reconstruction of C exploiting lattice relations [?] and known values for
some family of its entries (in the spirit of Proposition 2.1 and Fig. 2 for the square lattice). In this
respect the triangular lattice plays a special role since many relations are known relating entries of its
resistance matrix to entries of the resistance matrices of other lattices including the Kagomé and dice
ones [?]. Unfortunately, as noted by the author of [?], while an explicit integral formula is known
giving all resistances on the triangular lattice, no recurrence relation is known between these values.
Consequently, these cannot be efficiently reconstructed by a computational procedure similar to that
presented here for the square lattice. We remove this roadblock by not only providing such a recurrence
but also solving it explicitly thus obtaining a novel expression for the resistance on the triangular lattice.
We also solve the open problem of determining the asymptotic behavior of the resistance between two
points of this lattice when their distance d grows to infinity d → ∞. This results not only answer
existing question on the infinite resistor triangular lattice but they also establish the validity of our
computational approach for the calculation of fractions Fp to a vast array of lattices.

We first recall the analytical results concerning the resistance values on the triangular lattice:

19

Proposition 5.1 ([?]). Let R(n,m) be the resistance from the origin O to the point with coordinates
(n,m) on the triangular lattice (see Fig. 11). Then

R(n,m) =
1

π

∫ π/2

0

1− e−|n−m|s cos
(
(n+m)s

)
sinh(s) cos(x)

dx,

where cosh(s) = 2 sec(x)− cos(x). In particular for n = m this simplifies to

R(n, n) =
2

π

∫ π/2

0

sin(nx)2

sin(x)
√
4− cos(x)2

dx.

Of central importance in the computational procedure for the evaluation of C is the determination of
these R(n, n), ideally without integrals, since from these all R(n,m) can be recursively calculated using
sum rules and lattice symmetries [?]. The following Proposition identifies a recurrence (conjectured
to exist by [?]) to bypass the integral formulation altogether; identifies its explicit solution in terms
of hypergeometric functions and proves the conjectured [?] logarithmic divergence of R(n, n):

Proposition 5.2. Let rn := R(n, n) and define r−1 = 0 for convenience. Then, on the triangular
lattice we have r0 = 0, r1 = 1/3 and for n ≥ 2,

rn =
15n− 22

n− 1
rn−1 −

15n− 23

n− 1
rn−2 +

n− 2

n− 1
rn−3 −

4
√
3

π(n− 1)
. (13)

It follows that rn is available exactly from a finite number of sums, ratios and products of rational
numbers and a single multiplication by the irrational

√
3/π. The solution of this is, for n ≥ 0,

rn =
n

3
H(n)− 4

√
3

π

n∑
m=1

(n−m)H(n−m)H(m),

where H(n) := 3F2

(
1
2
,−n+ 1, n+ 1; 1, 3

2
;−3

)
∈ Q. Here 3F2 designates a generalized hypergeometric

function [?]. Finally we have, asymptotically as n→ +∞,

rn =
1√
3π

log(n) +
γ + log(2

√
3)√

3 π
+O(1/n),

where γ is the Euler–Mascheroni constant.

Proof. First we prove the recurrence. Observe that, since 2 cos2(x) − cos(2x) = 1, we have rn =
2
√
2

π

∫ π/2

0
sin(nx)2

sin(x)
√

7−cos(2x)
dx. Let fn(x) :=

sin(nx)2

sin(x)
√

7−cos(2x)
. We claim

fn(x) =
15n− 22

n− 1
fn−1(x)−

15n− 23

n− 1
fn−2(x) +

n− 2

n− 1
fn−3(x)

+
1

n− 1

d

dx

{√
7− cos(2x) cos

(
(2n− 3)x

)}
.

Actually, it suffices to show that

(n− 1) sin(nx)2 = (15n− 22) sin((n− 1)x)2 − (15n− 23) sin((n− 2)x)2 + (n− 2) sin((n− 3)x)2

+ cos((2n− 3)x) sin(2x) sin(x)− (2n− 3)(7− cos(2x)) sin(x) sin((2n− 3)x).

20

However, since 2 sin(θ)2 = 1− cos(2θ), it is equivalent to

(n− 1) cos(2nx) = (15n− 22) cos(2(n− 1)x)− (15n− 23) cos(2(n− 2)x) + (n− 2) cos(2(n− 3)x)

+ cos((2n− 3)x) sin(2x) sin(x)− (2n− 3)(7− cos(2x)) sin(x) sin((2n− 3)x).

This relation is clear using the Product to Sum identities (2 cos(θ) cos(µ) = cos(θ−µ)+ cos(θ+µ) and
2 sin(θ) sin(µ) = cos(θ − µ) + cos(θ + µ)) on the the RHS of the relation.

Second we establish the solution. We begin by considering the homogeneous recurrence equation
in hn for n ≥ 2,

hn =
15n− 22

n− 1
hn−1 −

15n− 23

n− 1
hn−2 +

n− 2

n− 1
hn−3, (14)

and with h−1 = 0, h0 = 0 and h1 = 1/3. Define for n, k,∈ N,

c(n, k) :=
1

(2k + 1)(k!)2
(n+ k)!

(n− k − 1)!
,

and observe that for all integers n, k ≥ 2,

c(n, k) =
3n− 4

n− 1
c(n− 1, k)− 4n− 6

n− 1
c(n− 1, k − 1) (15)

− 3n− 5

n− 1
c(n− 2, k) +

4n− 6

n− 1
c(n− 2, k − 1) +

n− 2

n− 1
c(n− 3, k),

noting that c(−1, k) = 0 for all k ≥ 1. Since furthermore

nQn(z) :=
n∑

k=0

c(n, k)zk = n 3F2

(
1

2
, 1− n, n+ 1; 1,

3

2
; z

)
,

then Eq. (15) implies

Qn(z) =

(
−4n− 6

n− 1
z +

3n− 4

n− 1

)
(n− 1)Qn−1(z)

+

(
4n− 6

n− 1
z − 3n− 5

n− 1

)
(n− 2)Qn−2(z) +

n− 2

n− 1
(n− 3)Qn−3(z).

This becomes Eq. (14) for z = −3, showing that the solution of the homogeneous recurrence relation
Eq. (14) is hn = nQn(−3) and H(n) = Qn(−3).

The solution to the inhomogeneous equation has a similar origin. Eq. (15) implies that Pn(z) :=∑n
m=1(n−m)Qn−m(z)Qm(z) satisfies

Pn(z) =

(
−4n− 6

n− 1
z +

3n− 4

n− 1

)
Pn−1(z) +

(
4n− 6

n− 1
z − 3n− 5

n− 1

)
Pn−2(z) +

n− 2

n− 1
Pn−3(z) +

1

n− 1
,

implying that −(4
√
3/π)Pn(−3) = −(4

√
3/π)

∑
m(n − m)H(n − m)H(m) is a particular solution to

the inhomogeneous equation.
Finally, we prove that rn diverges logarithmically as n→ +∞. Observe that

1

sin(x)
√

4− cos(x)2
=

1√
3x

+
4x3

45
√
3
− 2x5

63
√
3
+O

(
x6
)
,

21

thus
2

π

∫ π/2

0

1√
3x

sin(nx)2dx ≤ rn ≤
2

π

∫ π/2

0

(
1√
3x

+
4x3

45
√
3

)
sin(nx)2dx.

Evaluating both integrals and multiplying everything by
√
3π for ease of presentation we get

− Ci(nπ) + γ + log(π) + log(n) ≤
√
3π rn ≤ −Ci(nπ) + γ + log(π) + log(n)

+
24 ((−1)n − 1)

720n4
− 12π2(−1)n

720n2
+

π4

720
.

Here γ is the Euler–Mascheroni constant and Ci(.) is the cos-integral function for which we have
limn→+∞ Ci(nπ) = 0. It follows from the above that asymptotically as n→ +∞, rn ∼ log(n)/(

√
3π) +

c+O(1/n). The value of c is determined by the observation that for q ≥ 0,

lim
n→∞

∫ π/2

0

xq sin(nx)2dx =
1

2
× (π/2)q+1

q + 1
.

Given that
∫
xqdx = xq+1/(q + 1) and since

F (x) :=

∫ (
1

sin(x)
√

4− cos(x)2
− 1√

3x

)
dx =

− log(x)√
3
− 1√

3
tanh−1

(√
3 cos(x)√

4− cos(x)2

)
,

then we have

lim
n→∞

∫ π/2

0

(
1

sin(x)
√

4− cos(x)2
− 1√

3x

)
sin(nx)2dx =

1

2

(
F (π/2)− F (0)

)
,

where we understand F (0) as the limit F (0) := limx→0 F (x) = − log(
√
3)/
√
3 while F (π/2) =

− log (π/2) /
√
3. Gathering everything we get

c =
γ + log(π)√

3π
+

2

π
× 1

2
×

(
− log (π/2)√

3
+

log(
√
3)√

3

)
,

which simplifies to the promised result.

Acknowledgements

P.-L. G. and Y. H. are supported by the French National Research Agency ANR-19-CE40-0006
project ALgebraic COmbinatorics of Hikes On Lattices (Alcohol). Y. H. is further supported by an
Université du Littoral Côte d’Opale postdoctoral grant.

References

[1] FMA instruction set. https://en.wikipedia.org/wiki/FMA_instruction_set, 2024.

[2] Github code, project “square_sap”. https://github.com/jfromentin/square_sap, 2024.

[3] Lempel–Ziv–Markov chain algorithm. https://en.wikipedia.org/wiki/Lempel-Ziv-Markov_
chain_algorithm, 2024.

22

[4] Calculco platform, Université du Littoral Côte d’Opale. https://www-calculco.
univ-littoral.fr, 2024.

[5] D. Atkinson and F. J. van Steenwijk. Infinite resistive lattices. American Journal of Physics,
67(6):486–492, 1999.

[6] W. N. Bailey. Generalized hypergeometric series. Cambridge University Press, 1935.

[7] A. R. Conway, I. G. Enting, and A. J. Guttmann. Algebraic techniques for enumerating self-
avoiding walks on the square lattice. Journal of Physics A: Mathematical and General, 26(7):1519,
apr 1993.

[8] J. Cserti. Application of the lattice Green’s function for calculating the resistance of an infinite
network of resistors. American Journal of Physics, 68(10):896–906, 2000.

[9] J. Cserti, G. Széchenyi, and G. Dávid. Uniform tiling with electrical resistors. Journal of Physics
A: Mathematical and Theoretical, 44(21):215201, apr 2011.

[10] B. Duplantier and F. David. Exact partition functions and correlation functions of multiple
Hamiltonian walks on the Manhattan lattice. Journal of Statistical Physics, 51(3):327–434, May
1988.

[11] S. Finski. Spanning trees, cycle-rooted spanning forests on discretizations of flat surfaces and
analytic torsion. Math. Z., 301(4):3285–3343, 2022.

[12] P.-L. Giscard. Counting walks by their last erased self-avoiding polygons using sieves. Discrete
Mathematics, 344(4):112305, 2021.

[13] R. L. Greenblatt. Discrete and zeta-regularized determinants of the Laplacian on polygonal do-
mains with Dirichlet boundary conditions. Journal of Mathematical Physics, 64(4):043301, 04
2023.

[14] A. J. Guttmann. Lattice Green’s functions in all dimensions. Journal of Physics A: Mathematical
and Theoretical, 43(30):305205, jun 2010.

[15] I. Jensen and A. J. Guttmann. Self-avoiding polygons on the square lattice. Journal of Physics
A: Mathematical and General, 32(26):4867, jul 1999.

[16] R. Kenyon. The asymptotic determinant of the discrete Laplacian. Acta Mathematica, 185(2):239–
286, 2000.

[17] D. J. Klein. Resistance-distance sum rules*. Croatica Chemica Acta, 75:633–649, 2002.

[18] D. J. Klein and M. Randić. Resistance distance. Journal of Mathematical Chemistry, 12(1):81–95,
Dec 1993.

[19] G. F. Lawler. A self-avoiding random walk. Duke Mathematical Journal, 47(3):655–693, 09 1980.

[20] G. F. Lawler. Loop-Erased Random Walk, pages 197–217. Birkhäuser Boston, Boston, MA, 1999.

[21] G. F. Lawler, O. Schramm, and W. Werner. Conformal invariance of planar loop-erased random
walks and uniform spanning trees. The Annals of Probability, 32(1B):939 – 995, 2004.

[22] N. Madras and G. Slade. The Self-Avoiding Walk. Modern Birkhäuser Classics. Springer New
York, 2012.

23

[23] S. N. Majumdar and D. Dhar. Height correlations in the Abelian sandpile model. Journal of
Physics A: Mathematical and General, 24(7):L357–L362, apr 1991.

[24] S. S. Manna, D. Dhar, and S. N. Majumdar. Spanning trees in two dimensions. Physical Review
A, 46:R4471–R4474, Oct 1992.

[25] T. Morita. Use of a recurrence formula in computing the lattice Green function. Journal of Physics
A: Mathematical and General, 8(4):478–489, apr 1975.

[26] C. Pozrikidis. An Introduction to Grids, Graphs, and Networks. OUP USA, 2014.

[27] O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel
Journal of Mathematics, 118(1):221–288, Dec 2000.

24

