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Abstract

For a particular class of planar dynamics that are linear with respect
to the control variable, we show that the feedback strategy ”null-singular-
null” is minimizing the maximum of a coordinate over infinite horizon,
under a L1 budget constraint on the control. Moreover, we characterize
the optimal cost as a function of the budget. The proof is based on an
unusual use of the clock form. This result generalizes the one obtained
formerly for the SIR epidemiological model to more general Kolmogorov
dynamics, that we illustrate on other biological models.
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1 Introduction

The synthesis of optimal solutions of control problems with maximum cost has
received relatively few attention in the literature, apart characterizations of
the value function in terms of Hamilton-Jacobi-Bellman variational inequality
[2, 6]. For concrete problems, it is often very difficult or merely impossible
to find analytical solutions, but these characterizations have led to dedicated
numerical schemes [3, 5]. On the other hand, necessary optimality conditions
cannot be provided by a direct application of the Pontryagin’s Maximum Prin-
ciple, because the maximum cost is not a criterion in Mayer or Bolza form.
However, several equivalent formulations in Mayer form have been proposed by
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augmenting the state dynamics and adding a state constraint (see [4, 12]) or as
a minimax problem [14]. In practice, dealing with the state constraint remains
an issue to derive analytical optimal strategies. The authors of the present
work have recently investigated in [11] the optimal control problem which con-
sists in minimizing the peak of an epidemic for the well-known epidemiological
SIR model (a model that has been formely proposed in [9]), and provided the
optimal solution when controlling the transmission rate under a budget or L1

constraint on the control. This problem, whose trajectories lie in the plane,
presents a singular arc and has been solved analytically by applying a clock
form. The clock form technique is well-known for planar optimal control prob-
lem with integral or minimal time criterion [8, 10] and fixed terminal state, as
a tool to compare a candidate optimal solution with any other admissible so-
lutions. Therefore, it cannot be applied in this way for comparing maximum
costs. However, for this particular epidemiological problem, the authors of [11]
(who are, moreover, the authors of the present work) have used the clock form in
reasoning by the absurd, showing that a possible better solution would require a
larger budget. While the proof has been derived for the particular dynamics of
the SIR model, the aim of the present work is to extend this technique to more
generic problems of minimizing the peak of one coordinate of planar dynamics
under a L1 constraint on the control. We characterize a class of problems for
which the optimal solution presents the same structure of the control strategy,
which consists in three phases: 1. go as fast as possible to the optimal peak
value 2. apply a control to maintain the peak value constant until the budget is
exhausted (singular arc), and 3. release the control when entering a domain of
the state space for which the peak cannot increasing applying the null control.
Moreover, we give conditions on particular Kolmogorov dynamics in plane, for
which this result generalizes the one obtained previously for the SIR epidemi-
ological model, which can be then regarded as a simple application of our result.

More precisely, we consider a controlled dynamics on an positively invariant1

domain D of R2{
ẋ = f1(x, y) + g1(x, y)u,
ẏ = f2(x, y) + g2(x, y)u,

(1)

where the maps f1, f2, g1, g2 are assumed to be smooth (at least C1). Given
a positive number K and an initial condition (x0, y0) ∈ D, we consider the
optimal control problem over infinite horizon

minimize sup
t≥0

y(t) over u(·) ∈ U , (2)

where U denotes the set of time measurable functions u(·) that takes values in
U := [0, 1], subject to the L1 constraint∫ +∞

0

u(t)dt ≤ K. (3)

1We recall that a domain is positively invariant for a controlled system if for any initial
condition in this domain, the solutions of the system remain in the domain for any future
time and any control.
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The problem consists then in minimizing the ”peak” of the variable y under a
”budget” constraint on the control. We shall say that a control u(·) is admissible
if it belongs to U and satisfy the constraint (3), and that a pair of absolutely
continuous functions (x(·), y(·)) with values in Ω is an admissible solution of (1)
if there exists an admissible control u(·) such that one has equations (1) are
satisfied for almost any t in [0,+∞). Note that the uniqueness of solution of
(1) for given initial condition in Ω and admissible control is guaranteed as the
maps f1, f2, g1, g2 are at least C1.

The paper is structured as follows. In the next section, we give assumptions
and some preliminary results, which ensure that the problem (2) under infinite
horizon and the control strategy that we consider later are well defined. Section
3 defines the control strategy that what we propose to name ”NSN”, and gives
a characterization of it. Section 4 proves our main result about the optimality
of the NSN strategy, under a flux-like condition. Finally, we consider in Section
5 a class of controlled Kolmogorov dynamics for which the former assumptions
are satisfied. As examples, we show how our result applies straightforwardly to
the SIR model and to more sophisticated biological models.

2 Assumptions and preliminaries

We shall consider the following assumptions to deal with infinite horizon, where
clo and proj2 denote respectively the closure and the second projection in the
(x, y) coordinates.

Assumptions 1. One has

i. For any initial condition in D, the solution of the uncontrolled dynam-
ics (that is with u = 0) is bounded, and any other admissible solution
with a cost supt y(t) lower than that for the uncontrolled dynamics is also
bounded.

ii. The strict sub and super level sets of the function f2:

D− := {(x, y) ∈ D ; f2(x, y) < 0}, D+ := {(x, y) ∈ D ; f2(x, y) > 0},

are non empty.

iii. The 0-level set of f2 is the graph of a function x̃ : proj2(D) 7→ R:

D0 := {(x, y) ∈ D ; f2(x, y) = 0} = {(x̃(y), y), y ∈ proj2(D)}. (4)

Note that the optimal control problem (2) over infinite horizon is well de-
fined (and finite) under Assumption 1.i.

We shall require a certain behavior of the vector fields f and g on the sets
D+ and D0.

Assumptions 2. In D+, one has the properties

i. f1 is negative and strictly decreasing w.r.t. x and y,

ii. g1 is strictly increasing w.r.t. x and y and f1 + g1 is non positive,
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iii. ∂xf2 is positive,

iv. g2 is strictly decreasing w.r.t. x and y and f2 + g2 is negative,

and moreover on D0

v. f1 is negative,

vi. ∂xf2 is positive and ∂yf2 is non-positive.

Then, the following Lemma gives properties of the trajectories in D+ and
its complement in D, related to the infinite horizon.

Lemma 2.1. Under Assumptions 1 and 2,

1. With the control u = 0, the domain D \ D+ is positively invariant, and
from any initial condition (x0, y0) in D+, the solution of (1) reaches D0

in finite time.

2. For any initial condition (x0, y0) in D+ and optimal control u(·), the so-
lution of (1) reaches (possibly in infinite time) the domain D0.

Proof. 1. At a point (x, y) ∈ D0, the Lie derivative of the function f2 with
respect to the vector field of the dynamics with u = 0 is given by the expression

∂xf2(x, y)f1(x, y),

which is negative from Assumptions 2.v and 2.vi. We deduce that the sub level
set {(x, y) ∈ D ; f2(x, y) ≤ 0} = D \ D+ is positively invariant.

Let (x(·), y(·)) be a solution for an initial condition in D+ and the control
u = 0. As long as (x(t), y(t)) remains in D+, one has ẏ(t) = f2(x(t), y(t)) > 0.
Therefore, one has y(t) ≥ y0. Moreover, as f2 is strictly increasing w.r.t. x on
D+ ∪ D0 (Assumptions 2.iii and 2.vi), one gets

f2(x(t), y(t)) > 0 = f2(x̃(y(t)), y(t)) ⇒ x(t) > x̃(y(t)).

Then, f1 being strictly decreasing w.r.t. x and y on D+ (Assumption 2.i), one
has also

ẋ(t) = f1(x(t), y(t)) ≤ f1(x̃(y(t)), y0).

On the other hand, on D0 one has from the implicit function theorem

f2(x̃(y), y) = 0 ⇒ x̃′(y) = −∂yf2(x, y)
∂xf2(x, y)

≥ 0,

under Assumption 2.vi. The map x̃ is thus non decreasing and one has then
x̃(y(t)) ≥ x̃(y0), from which one obtains

ẋ(t) ≤ f1(x̃(y0), y0),

as long as (x(t), y(t)) remains in D+. From Assumption 2.v, one has also
f1(x̃(y0), y0) < 0. If (x(t), y(t)) belongs to D+ for any t ≥ 0, then x(·) is
unbounded, which contradicts Assumption 1.1. We deduce that (x(·), y(·)) has
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to escape D+ in finite time, and consequently y(·) reaches its maximum y0max
at finite time.

2. Let (x(·), y(·)) be an optimal solution, and ȳ := supt y(t) ≤ y0max < +∞.
Note that x(·) is non increasing in the domain D+, with Assumption 2.ii. Then,
with Assumption 2.iv, one has

ẏ(t) ≥ f2(x(t), y(t)) + g2(x0, ȳ)u(t),

as long as (x(t), y(t)) remains in D+. Therefore, one has

ȳ ≥ y(t) ≥ y0 +

∫ t

0

f2(x(t), y(t))dt+ g2(x0, ȳ)

∫ t

0

u(t)dt,

and as g2 < −f2 < 0 is negative, one obtains∫ t

0

f2(x(t), y(t))dt < ȳ − y0 − g2(x0, ȳ)K < +∞.

If (x(t), y(t)) remains in D+ for any t ≥ 0, this last integral converges when
t tends to +∞, the function f2 being positive in D+. The solution (x(·), y(·))
being bounded from Assumption 1.i, the function t 7→ f2(x(t), y(t)) is uniformly
continuous on [0,+∞) and thus tends to 0 when t tends to +∞ (from Barbalat’s
Lemma [1]). We conclude that any solution reaches the domain D0 possibly in
infinite time.

Remark 2.1. For initial conditions (x(0), y(0)) in D \D+, the control u iden-
tically null generates a trajectory that stays in D\D+, according to Lemma 2.1,
with ẏ = f2(x, y) ≤ 0. Therefore, this control is optimal with a peak of y reached
at initial time. In the following, we shall consider the nontrivial case of initial
condition in D+ only.

3 The NSN strategy

In this section, we shall assume that Assumptions 1 and 2 are fulfilled. Let us
fix an initial condition (x0, y0) in D+, and consider the uncontrolled dynamics,
i.e. with u = 0. We denote (x0(·), y0(·)) its solution. As long as (x0(t), y0(t))
belongs to D+, y

0(·) is strictly increasing. From Lemma 2.1, we know that y0(·)
reaches in finite time the domain D−, where it is strictly decreasing, and finally
remains in D−. Therefore y

0(·) reaches its maximum y0max < +∞ in finite time,
and for any ȳ ∈ [y0, y

0
max], we can define

x̄(ȳ) := x0(t̄ȳ) where t̄ȳ := inf{t ≥ 0; y0(t) = ȳ} < +∞. (5)

Note that x0(·) is strictly decreasing by Assumption 2.i, and therefore the map
ȳ 7→ x̄(ȳ) is smooth with x̄′ < 0.

We define the NSN (for ”Null-Singular-Null”) strategy as follows.

Definition 1. Under Assumptions 1 and 2, consider for ȳ ∈ [y0, y
0
max] the

feedback control

ψȳ(x, y) :=

k(x) := −f2(x, ȳ)
g2(x, ȳ)

, if y = ȳ and (x, ȳ) ∈ D+,

0, otherwise.
(6)
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This strategy consists in applying a null control until time t̄ȳ. Then, the
singular arc consists in keeping y constant equal to ȳ with the feedback control
k(x) until the solution exits the domain D+. Finally, the control is kept equal
to 0. Let us show that the solution with the discontinuous feedback ψȳ is well
defined.

Lemma 3.1. Under Assumptions 1 and 2, for any initial condition (x0, y0)
in D+ and number ȳ ∈ [y0, y

0
max], the exists an unique absolutely continuous

solution which verifies

d

dt

[
x(t)
y(t)

]
=

[
f1(x(t), y(t))
f2(x(t), y(t))

]
+

[
g1(x(t), y(t))
g2(x(t), y(t))

]
ψȳ(x(t), y(t)), a.e. t ≥ 0

where ψȳ(x(t), y(t)) is well defined and takes values in [0, 1] for any t ≥ 0.

Proof. With control u = 0, the solution is well defined, absolutely continuous
and unique as solution of an o.d.e. with Lipschitz right side, up to time t̄ȳ. In the
domain D+, note that one has g2(x, ȳ) < −f2(x, ȳ) < 0 with Assumption A2.iv.
Then, k(x) is well defined, C1 and takes values in [0, 1] for any x such that
(x, ȳ) belongs to D+. From time t̄ȳ, the solution with the control u = k(x) is
thus well defined, absolutely continuous and unique as solution of an o.d.e. with
Lipschitz right side, as long as it stays in D+. With this control, one can
straightforwardly check that one has ẏ(t) = 0 i.e. the solution verifies y(t) = ȳ
for t ≥ t̄ȳ. Therefore, the solution reaches a possible point of discontinuity of the
feedback ψȳ exactly when it exits the domain D+, say at a time t+. From that
time ,the solution with control u = 0 stays in D \D+, according to Lemma 2.1,
and thus never reaches again a locus of discontinuity of the feedback ψȳ. The
solution is thus unique and well defined for any future time. Finally, we obtain
by concatenation an unique absolutely continuous solution which satisfies the
right side of the closed loop system excepted a times t̄ȳ, t+.

We shall denote the L1 norm associated with the NSN control by

L(ȳ) :=
∫ +∞

0

uψȳ (t)dt, ȳ ∈ [y0, y
0
max],

where uψȳ (·) is the open-loop control generated by the feedback (6).

Let us now define the function

∆(x, y) := f2(x, y)g1(x, y)− f1(x, y)g2(x, y), (x, y) ∈ D.

Note that ∆ is necessarily negative on D+ under Assumption 2. We consider
the additional assumption.

Assumption 3. One has ∂
∂y (

f2
∆ ) ≥ 0 on D+.

Then, the function L can be characterized as follows.

Proposition 3.1. Under Assumptions 1, 2 and 3, one has

L(ȳ) =
∫ x̄(ȳ)

x̃(ȳ)

−f2(x, ȳ)
∆(x, ȳ)

dx, ȳ ∈ [y0, y
0
max], (7)

where x̃(ȳ) and x̄(ȳ) are defined in (4) and (5) respectively. Moreover, the map
ȳ 7→ L(ȳ) is strictly decreasing.
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Proof. Let (x(·), y(·)) be the solution generated by the feedback control (6), and
u(·) the corresponding open loop control. We consider the time function

γ2(t) := f2(x(t), ȳ), t ≥ t̄ȳ,

where t̄ȳ = inf{t ≥ 0; y(t) = ȳ} < +∞. As long as (x(t), ȳ) ∈ D+, one has
ẏ(t) = 0 with the control u(t) = k(x(t)) and

ẋ = h(x) := f1(x, ȳ) + g1(x, ȳ)k(x) = −∆(x, ȳ)

g2(x, ȳ)
,

which is negative by Assumption 2, and then

γ̇2 =
∂f2(x(t), ȳ)

∂x
h(x) < 0,

from Assumption 2.iii. The function γ2 is thus strictly decreasing and therefore
D0 is reached at a time T ≥ t̄ȳ (possibly equal to +∞). One has then

x(T ) = max{x ≤ x̄(ȳ); f2(x, ȳ) = 0} = x̃(ȳ).

If T < +∞, then u(t) = 0 for any t > T because the state cannot reaches again
D+ by Lemma 2.1. Therefore, T being finite or not, one has

L(ȳ) =
∫ T

t̄ȳ

k(x(t))dt.

Note that the map [t̄ȳ, T ] 7→ [x̃(ȳ), x̄(ȳ)] is onto, and one can then write

L(ȳ) = −
∫ x̄(ȳ)

x̃(ȳ)

k(x)

h(x)
dx =

∫ x̄(ȳ)

x̃(ȳ)

−f2(x, ȳ)
∆(x, ȳ)

dx.

The function ȳ 7→ x̃(ȳ) is not necessarily differentiable. However, the integrand
in the above expression of L is null at x̃(ȳ) for any ȳ. Therefore, L is differen-
tiable with

L′(ȳ) =

(
−f2(x̄, ȳ)
∆(x̄, ȳ)

)
x̄′ −

∫ x̄

x̃

∂

∂y

(
f2(x, ȳ)

∆(x, ȳ)

)
dx.

By Assumptions 2 and 3, one has − f2
∆ < 0 and ∂

∂y (
f2
∆ ) ≥ 0 on D+, and as x̄′ is

negative, we deduce that one has L′(ȳ) < 0.

Remark 3.1. When applying the feedback (6), it generates only one discon-
tinuity point of the open loop control u(·), when the solution y(·) reaches ȳ in
D+, but not when y(·) leaves the singular arc y = ȳ as the control is null when
reaching D0. Consequently, the trajectory tangentially leaves the singular arc.

4 An optimal synthesis

In this section, we give our main result about the optimality of the NSN strategy,
which is expressed in terms of positivity of a certain flux on the domain D+. The
proof is using the clock form but in an unusual way (compared for instance to
[10, 8]), which requires some assumption about the dynamics on the boundary
of the domain D+, given below.
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Assumption 4. D0 is connected and has g2 < 0, ∇f2.(f + g) ≥ 0 on D0.

Proposition 4.1. Under Assumptions 1, 2, 3 and 4, let (x0, y0) be an initial
condition in D+ such that L(y0) ≥ K. If one has

∂

∂y

(
f2(x, y)

∆(x, y)

)
+

∂

∂x

(
f1(x, y)

∆(x, y)

)
> 0, (x, y) ∈ D+, y ≤ y0max, (8)

then the feedback ψȳ∗ , with ȳ
∗ ∈ [y0, y

0
max] such that L(ȳ∗) = K, is optimal.

Proof. Note first that one has L(y0max) = 0 as the NSN control is identically
null for ȳ = y0max. As the map L is strictly decreasing by Proposition 3.1, we
deduce that there exists an unique ȳ⋆ ∈ [y0, ymax] such that L(ȳ⋆) = K when
L(y0) ≥ K.

For a fixed initial condition (x0, y0) in D+, we denote by (x⋆(·), y⋆(·)) the
solution generated by the NSN strategy with ȳ = ȳ⋆ (which is unique according
to Lemma 3.1), and u⋆(·) its open loop control. Consider the curve C⋆ in the
plane

C⋆ := {(x⋆(t), y⋆(t)) ; t ∈ [0, t⋆h]} ,

where t⋆h > 0 is such that x⋆(t⋆h) = x̃(ȳ⋆). C⋆ is the part of the orbit for which
y⋆(·) is non decreasing, and its extremity belongs to D0.

Let t̄⋆ ∈ [0, t⋆h] be such that x⋆(t̄⋆) = x̄(ȳ⋆) ≤ x0. For any t ∈ [0, t̄⋆], the
control u⋆(t) is null. Then, at any (x, y) ∈ C⋆ with x > x̄(ȳ⋆), the curve C⋆
admits an upward normal in the (x, y) plane given by

n⃗(x, y) =

[
f2(x, y)
−f1(x, y)

]
.

Let (x, y) 7→ v⃗(x, y, u) be the vector field in the plane for the control u. For any
(x, y) ∈ C⋆ with x > x̄(ȳ⋆), one has

n⃗(x, y).v⃗(x, y, u) = ∆(x, y)u ≤ 0.

Therefore, the forward orbit with any other control u(·) lies below the curve C⋆
in the (x, y) plane for x ∈ [x̄(ȳ⋆), x0].

Assume that there exists another solution (x(·), y(·)) with (x(0), y(0)) =
(x0, y0) ∈ D+, generated by an optimal control u(·) such that supt y(t) < ȳ⋆.
From Lemma 2.1, we know that (x(·), y(·)) reaches the level set D0 at a time t0

(possibly infinite). The trajectory being bounded, by Assumption 1.i, the point
(x(t0), y(t0)) ∈ D0 is finite, with y(t0) < ȳ⋆. Let us now consider the curve in
the plane

C := {(x(t), y(t)) ; t ∈ [0, t0]},

that has to be below the curve C⋆, according to the above.
From the point (x⋆(t⋆h), y

⋆(t⋆h)) ∈ D0, there exists an admissible trajectory
that stays in the level set D0 if for any (x, y) ∈ D0 there is a control u in [0, 1]
such that

∇f2(x, y).(f(x, y) + g(x, y)u) = 0.
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On the set D0, one has ∇f2.f = ∂xf2f1 which is negative by Assumptions 2.v-vi.
Then the function

ψ†(x, y) := −∇f2(x, y).f(x, y)
∇f2(x, y).g(x, y)

> 0, (x, y) ∈ D0,

is well defined and belongs to [0, 1] by Assumption 4. Let (x†(·), y†(·)) be
the solution of (1) with (x†(t⋆h), y

†(t⋆h)) = (x⋆(t⋆h), y
⋆(t⋆h)) ∈ D0 and the feed-

back control ψ†. We denote u†(·) the corresponding open loop control. The
trajectory remains in D0, and as g2 is negative on D0 (Assumption 4) and
u† is positive, one has ẏ† = g2(x, y)ψ

†(x, y) < 0. Then, when t tends to
+∞, either y†(t) tends to −∞ or y†(t) converges to some finite limit y†∞ with
limt→+∞ ẏ†(t) = 0. In this last case, one has g2(x

†(y†∞), y†∞)ψ†(x†(y†∞), y†∞) = 0
(x̃ being continuous) i.e. (x†(y†∞), y†∞) /∈ D0, and as D0 is connected one gets
y†∞ = inf proj2(D). Therefore, there exists t† < +∞ such that y†(t†) = y(t0),
with x†(t†) = x̃(y(t0)) = x(t0). Let us finally consider the curve in the plane

C† := {(x†(t), y†(t)) ; t ∈ [t⋆h, t
†]}.

We consider now the concatenation of the three curves C⋆, C† and C (see
Figure 1), which defines a simple closed curve Γ = {(x̃(τ), ỹ(τ)) ; τ ∈ [0, t†+t0)}
with

(x̃(τ), ỹ(τ)) =


(x⋆(τ), y⋆(τ)), τ ∈ [0, t⋆h),

(x†(τ), y†(τ)), τ ∈ [t⋆h, t
†),

(x(t0 − t† − τ), y(t0 − t† − τ)), τ ∈ [t†, t† + t0),

that is anti-clockwise oriented in the (x, y) plane by τ ∈ [0, t† + t0) (see Figure
1). Let E be the region bounded by Γ, which belongs to D+. By Assumption 2,
∆ is non null on D+ and one can then write from equations (1) the 1-form in E

u(t)dt =
f2(x, y)

∆(x, y)
dx− f1(x, y)

∆(x, y)
dy.

Applying Green’s Theorem, one obtains∮
Γ

u(t)dt =

∫∫
E

∂

∂x

(
−f1(x, y)
∆(x, y)

)
− ∂

∂y

(
f2(x, y)

∆(x, y)

)
dxdy,

which is negative by condition (8). Consequently, one has∮
Γ

u(t)dt =

∫ t⋆h

0

u⋆(t)dt+

∫ t†

t⋆h

u†(t)dt−
∫ t0

0

u(t)dt < 0,

that is∫ t0

0

u(t)dt > K +

∫ t†

t⋆h

u†(t)dt > K,

which contradicts the optimality of the control u(·) under the constraint (3).

9
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x (y)h

Figure 1: Application of the Green’s Theorem on the closed domain (in gray)
delimited by the curves C⋆ (in blue), C† (in red) and C (in green). The curve (in
black) represents the level-set D0 which delimits the domain D− on the right.

Remark 4.1. When K > L(y0), the budget K is large enough to ensure y(t) ≤
y0 for any t ≥ 0. One can apply for instance the feedback strategy ψy0 , which is
optimal with a L1 norm of the control less than K, equal to L(y0).

Let us illustrate our results on an example for which the optimal control can
be determined analytically.

Example 1.{
ẋ = −(x+ 1)2y + (x+ 1)2yu,
ẏ = xy − (x+ 1)yu,

u ∈ [0, 1].

Whatever is the control u, one has ẋ = 0 at x = −1 and ẏ = 0 at y = 0.
Therefore the domain

D = {(x, y) ∈ R2; x > −1, y > 0},

is positively invariant. Note that any solution (x(·), y(·)) in D verifies ẋ ≤ 0.
Therefore, x(·) is always bounded. Consider now the control u = 0 and the
function V (x, y) = x + 2y. One has d

dtV = −x2y − y2 < 0. The function V
is thus strictly decreasing along the solutions in D, from which one deduces the
inequalities −1 ≤ x(t) ≤ x(0) + 2y(0) and 0 ≤ y(t) ≤ (x(0) + y(0)− 1)/2. The
solutions in D with u = 0 are thus bounded.

The sub and super sets of the function f2 are D− = {(x, y) ∈ D; x < 0},
D+ = {(x, y) ∈ D; x > 0} = {(x, y) ∈ R2; x > 0, y > 0} and the function x̃ is
simply the null function. Assumption 1 is satisfied.

In D+, the function f1(x, y) = −(x+1)2y is negative and strictly decreasing
with respect to x and y, while the function g1(x, y) = −f1(x, y) is strictly in-
creasing with respect to x and y with f1+g1 = 0 ≤ 0. The function f2(x, y) = xy

10



verifies ∂xf2 = y > 0, while the function g2(x, y) = −(x+1)y is strictly decreas-
ing with respect to x and y with f2 + g2 = −y < 0. In D0, one has f1 = −y < 0
and ∂xf2 = y > 0, ∂yf2 = 0 ≤ 0. Assumption 2 is thus fulfilled. One has

f2
∆

= − x

(x+ 1)2y
⇒ ∂

∂y

(
f2
∆

)
=

x

(x+ 1)2y2

which is positive on D+. Assumption 3 is satisfied.

In D0, g2 = −y is negative and ∇f2.(f + g) = 0 ≥ 0. Assumption 4 is
satisfied.

Finally, one has

∂y

(
f2
∆

)
+ ∂x

(
f1
∆

)
=

x

(x+ 1)2y
,

that is positive on D+.

Now, from Proposition 3.1, one can determine the function L as follows.
Firstly, the solution of the system with u = 0 for an initial condition (x0, y0) in
D+ can be parameterized by x as the map t 7→ x(t) is strictly decreasing, that is

y(t) = y0 −
∫ x(t)

x0

x

(x+ 1)2
dx,

which gives∫ x̄(ȳ)

x0

x

(x+ 1)2
dx = y0 − ȳ, (9)

and

y0max = y0 −
∫ 0

x0

x

(x+ 1)2
dx = y0 −

[
1

x+ 1
+ log(x+ 1)

]x0

0

=
1

x0 + 1
+ log(x0 + 1)− 1 + y0.

(10)

Secondly, one has

L(ȳ) =

∫ x̄(ȳ)

0

−f2(x, ȳ)
∆(x, ȳ)

dx =
1

ȳ

∫ x̄(ȳ)

0

x

(x+ 1)2
dx

=
1

ȳ

(∫ x0

0

x

(x+ 1)2
dx+

∫ x̄(ȳ)

x0

x

(x+ 1)2
dx

)
,

which gives with (9) and (10) the expression

L(ȳ) = y0max − y0 + y0 − ȳ

ȳ
=
y0max
ȳ

− 1,

that is defined for ȳ ∈ [y0, y
0
max]. Finally, from Proposition 4.1, we obtain that

for a budget K ≤ y0max

y0
− 1, the NSN strategy (6) with

ȳ = ȳ⋆ :=
y0max
K + 1
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is optimal. Therefore, the feedback

ψ⋆(x, y) :=

{
x
x+1 , if y = ȳ⋆ and x > 0,

0, otherwise,

is optimal. An example of optimal solution is drawn on Figure 2, where one
can see that the optimal trajectory leaves tangentially the singular arc and the
optimal control is continuous at that point, as underlined in Remark 3.1.

Figure 2: Optimal solution of Example 1 for initial condition (x0, y0) = (2, 2)
and budget K = 0.1. Singular arc is depicted in red.

5 The case of Kolmogorov dynamics

In this Section we particularize the results of Proposition 4.1 to a class of Kol-
mogorov dynamics [13] in R2

+, for which it is easier to verify the required as-
sumptions.{

ẋ = −
(
ϕ1(x, y)− ϕ2(x, y)u

)
x,

ẏ =
(
ϕ3(x, y)− ϕ4(x, y)u

)
y,

u ∈ [0, 1], (11)

where ϕi are smooth maps. The positive orthant D = {(x, y) ∈ R2; x > 0, y >
0} is clearly positively invariant by (11).

Hypotheses 5. On D, one has

i. ϕ1 and ϕ2 are positive, with ϕ2 − ϕ1 ≤M < +∞,

ii. ∂xϕ3 is positive and ∂yϕ3 is non positive, with ϕ3(0, y) < 0 < limx→+∞ ϕ3(x, y)
for any y > 0,
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iii. ϕ1 ≥ ϕ2 with ∂yϕ1 ≥ ∂yϕ2 > 0 when ϕ3 ≥ 0, and ϕ1 = ϕ2 when ϕ3 = 0.
The maps x 7→ ϕ1(x, y)x, x 7→ ϕ2(x, y)x are strictly increasing for any y,

iv. When ϕ3 > 0, ϕ4 is strictly increasing with respect to x with ϕ4 > ϕ3
and [ϕ3, ϕ4]y := ϕ3∂yϕ4 − ϕ4∂yϕ3 ≥ 0. The map y 7→ ϕ4(x, y)y is strictly
increasing for any x.

Lemma 5.1. Under Hypotheses 5, Assumptions 1, 2, 3, 4 are fulfilled.

Proof. From Hypothesis 5.ii, there exists a unique function y 7→ x̃(y) > 0 such
that ϕ3(x̃(y), y) = 0 for any y > 0, which is moreover non decreasing with
respect to y (by the implicit function theorem). The sub and super level sets
D−, D+, are thus non empty and defined as

D− = {(x, y) ∈ D; x < x̃(y)}, D+ = {(x, y) ∈ D; x > x̃(y)},

and the level set D0 is {(x, y) ∈ D; x = x̃(y)}.
From Hypothesis 5.i, one has ẋ ≤

(
ϕ1(x, y)(u− 1) +Mu

)
x from which one

can write for any admissible solution the inequality

x(t) ≤ x0e
MK exp

(∫ t

0

ϕ1(x(τ), y(τ))(u(τ)− 1) dτ

)
≤ x0e

MK < +∞,

for any t ≥ 0. For the uncontrolled dynamics, one has ẋ = −ϕ1(x, y)x < 0
i.e. x(·) is strictly decreasing. Let us show that D \ D+ = D0 ∪ D− is reached
in finite time. If not, one has x(t) ≥ x̃(y(t)) for any t ≥ 0 and y(·) is strictly
increasing. Then, one should have ẋ(t) ≤ −κx(t)) for any t ≥ 0, where κ =
minξ∈[x̃(y0),x(0)] ϕ1(ξ, y(0)) > 0. Therefore, x(·) converges to 0, while x̃(y(t)) ≥
x̃(y(0)) > 0 for any t ≥ 0, and thus a contradiction. On D0, one has

d

dt
ϕ3(x, y) = −∂xϕ3(x, y)ϕ1(x, y)x < 0,

with Hypotheses 5i. and ii. The domain D \ D+ is thus positively invariant.
Moreover one has ẏ ≤ in D \ D+. We conclude that the solutions for the
uncontrolled dynamics are such that y(·) is either non decreasing, or strictly
increasing up to a finite time and then non decreasing (and thus bounded).
Moreover, any other controlled solution with a lower peak value of y is also
bounded, as x(·) is always bounded. Assumption 1 is verified.

Clearly, the map f1 = −ϕ1x is negative in D+ ∪ D0 and strictly decreasing
with respect to x and y from Hypotheses 5.i. and iii. The map g1 = ϕ2x
is strictly increasing with respect to x and y also from Hypothesis 5.iii, and
f1 + g1 = (ϕ2 − ϕ1)x ≤ 0 in D+. The map f2 = ϕ3y verifies ∂xf2 = ∂xϕ3.y
which is positive on D from Hypothesis 5.ii, and ∂yf2 = ϕ3 + ∂yϕ3y is non
positive on D0. The map g2 = −ϕ4y is strictly decreasing with respect to x and
y from Hypothesis 5.iv, and f2 + g2 = (ϕ3 − ϕ4)y < 0 in D+. Assumption 2 is
verified.

One has ∆ = (ϕ3ϕ2 − ϕ1ϕ4)xy and with inequality ϕ1 ≥ ϕ2, one obtains
∆ ≤ (ϕ3 − ϕ4)ϕ1xy on D+, which is negative by Hypothesis 5.iv. One gets

f2
∆

=
ϕ3

(ϕ3ϕ2 − ϕ1ϕ4)x
⇒ ∂

∂y

(
f2
∆

)
=
ϕ3(ϕ4∂yϕ1 − ϕ3∂yϕ2) + ϕ1[ϕ3, ϕ4]y

(ϕ3ϕ2 − ϕ1ϕ4)2x
.
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With Hypotheses 5.iii. and iv., one has [ϕ3, ϕ4]y ≥ 0 and ϕ4∂yϕ1 − ϕ3∂yϕ2 > 0
on D+, which implies that ∂y(f2/∆) is positive on D+. Assumption 3 is thus
verified.

From Hypothesis 5.iv, one has ϕ4 > 0 on D0. Then, the map g2 = −ϕ4y is
negative on D0. Moreover, one has

∇f2 =

[
∂xϕ3
∂yϕ3

]
y, (x, y) ∈ D0,

which gives

∇f2.(f + g) = ∂xϕ3(ϕ2 − ϕ1)xy + ∂yϕ3(ϕ3 − ϕ4)y
2,

that is non negative on D0 with Hypotheses 5.ii, iii and iv. Assumption 4 is
fulfilled.

Let us posit

δ(x, y) = ϕ3(x, y)ϕ2(x, y)− ϕ1(x, y)ϕ4(x, y), (x, y) ∈ D.

The application of Propositions 3.1 and 4.1 gives the following result.

Proposition 5.1. Under Hypotheses 5, one has

L(ȳ) =
∫ x̄(ȳ)

x̃(ȳ)

−ϕ3(x, ȳ)
δ(x, ȳ)x

dx.

For initial conditions (x0, y0) in D+ such that L(y0) ≥ K and

(ϕ3(ϕ4∂yϕ1 − ϕ3∂yϕ2) + ϕ1[ϕ3, ϕ4]y)y +
(ϕ3[ϕ1, ϕ2]x + ϕ1[ϕ2∂xϕ3 − ϕ1∂xϕ4])x > 0, (x, y) ∈ D+, y ≤ y0max

(12)

(where [ϕ1, ϕ2]x := ϕ1∂xϕ2−ϕ2∂xϕ1), then there exists y∗ ∈ [y0, y
0
max] such that

L(y∗) = K and the feedback

ψy⋆(x) =


ϕ3(x, y

⋆)

ϕ4(x, y⋆)
, if y = y⋆ and x > x̃(y⋆),

0, otherwise,
(13)

is optimal.

Proof. One has

f1
∆

=
−ϕ1

(ϕ3ϕ2 − ϕ1ϕ4)y
⇒ ∂

∂x

(
f1(x, y)

∆(x, y)

)
=
ϕ3[ϕ1, ϕ2]x + ϕ1[ϕ2∂xϕ3 − ϕ1∂xϕ4]

(ϕ3ϕ2 − ϕ1ϕ4)2y
,

and then condition (8) amounts exactly to have (12).

Let us underline that the first term in (12) is necessarily positive, under
Hypotheses 5.i, iii and iv. A simple way to guarantee condition (12) to be
fulfilled is to have the second term non-negative, which can be obtained for
instance as follows.
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Corollary 5.1. Under Hypotheses 5 with ϕ1 = ϕ2 and ϕ4 = ϕ3 + α (α > 0) in
D, the feedback (6) is optimal for any initial condition in D+ with L(y0) ≥ K.

We present below some concrete examples within the biological field, which
satisfy the conditions of Corollary 5.1 and allow to conclude directly about the
optimality of the NSN strategy.

Example 2. We consider the SIR model [9] which is very popular in epidemi-
ology. With non-pharmaceutic interventions which consist in reducing the con-
tact between susceptible and infected populations (by means of reducing social
distance for human disease for instance), the model writes:{

ẋ = −β(1− u)xy,
ẏ = β(1− u)xy − αy,

u ∈ [0, 1],

where x and y stand for the density of susceptible and infected populations, re-
spectively, and u is the control variable (naturally subject to a budget constraint).
Parameter β is the infection rate (without intervention), and α is the recovery
rate. Without control (i.e. u = 0), it is well known that the condition for an
epidemics outbreak is given by the reproduction number

R0 :=
β

α
,

that has to be larger than one. Then, the size of the infected population y(·)
increases up to a peak value that could be very high. The objective of the control
is to reduce this peak value. Here the domain D is

D = {(x, y) ∈ R2; x > 0, y > 0, x+ y ≤ 1},

and one has the following expressions of the functions ϕi (i = 1 · · · 4)

ϕ1(x, y) = ϕ2(x, y) = βy, ϕ3(x, y) = βx− α, ϕ4(x, y) = βx.

The separatrix D0 between D− and D+ is a vertical segment

D0 =

{
(x, y) ∈ D ; x =

1

R0

}
.

One can straightforwardly check that Hypotheses 5 and conditions of Corollary
5.1 are fulfilled when R0 > 1. We can then conclude that the NSN strategy is
optimal under a L1 budget control on the control u(·), as in [11]. Let us underline
that when the initial density y0 of the infected population is very low (which is
often the case in face to a new epidemics), the time to reach the minimum peak
can be very large, justifying the consideration of an unbounded time horizon. In
[11], it is shown that the optimal control can be determined analytically for the
limiting case of of an arbitrary small y0 with an initial density of the susceptible
population equal to 1− y0.

Example 3. We consider the classical resource-consumer (or ”batch” bio-process)
model, which is very popular in microbiology (see e.g. [7]) ẋ = − 1

Y
µ(x)y(1− u),

ẏ = µ(x)y(1− u)−my,

u ∈ [0, 1],
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where x and y are the concentrations of the resource and the consumer, respec-
tively. The function µ is the specific growth rate, that is assumed to follow the
well-known Monod’s expression

µ(x) :=
x

K + x
.

The parameter Y is the yield coefficient of the transformation of the resource
into consumer growth, while the parameter m > 0 is the mortality rate of the
consumer (supposed to be relatively low compared to the growth term). Here the
control u is an isolation factor (by biological or physical means) which limits the
access to the resource for the consumer. When the consumer is a living species
that proliferates on the resource in an undesirable way (e.g. bacteria presenting
some health risks), an objective is to reduce its peak value for a given budget on
the control. For this model, the domain D is

D = {(x, y) ∈ R2; x > 0, y > 0},

with the functions

ϕ1(x, y) = ϕ2(x, y) =
1

Y

y

1 + x
, ϕ3(x, y) =

x

1 + x
−m, ϕ4(x, y) =

x

1 + x
,

for which can easily check that Hypotheses 5 and conditions of Corollary 5.1 are
fulfilled for a mortality rate m < 1. Here also, the level set D0 which splits the
domain D into between D− and D+ is a vertical line

D0 =

{
(x, y) ∈ D ; x =

m

1−m

}
.

Then, we can conclude that the NSN strategy is also optimal for this problem.

Example 4. We consider here the same resource-consumer model as in Exam-
ple 3 but with a ratio-dependent growth rate (see e.g. [7]) ẋ = − 1

Y
µ(x, y)y(1− u),

ẏ = µ(x, y)y(1− u)−my,

u ∈ [0, 1],

where µ is the Contois function

µ(x, y) =
x

x+ y
.

This model aims to take into consideration a crowding effect when the popula-
tion of consumers is high, or equivalently that the growth is driven by the ratio
”resource by consumer” x/y rather than simply the level of the resource x. Here
also, one can easily check that the corresponding functions

ϕ1(x, y) = ϕ2(x, y) =
1

Y

y

x+ y
, ϕ3(x, y) =

x

x+ y
−m, ϕ4(x, y) =

x

x+ y
,

satisfy Hypotheses 5 and conditions of Corollary 5.1 for m < 1. Let us underline
that the function ϕ3 depends on both variables, differently to Examples 2 and
3, and consequently the function x̃(·) is not constant here. The NSN strategy
is again optimal for m < 1 and the level set D0, which gives to the end of the
singular arc, is no longer a vertical line:

D0 =

{
(x, y) ∈ D ; x =

m

1−m
y

}
.

16



6 Conclusion

In this work, we have provided a method for solving a class of optimal control
problems with L∞ cost under L1 budget for planar nonlinear dynamics with
control appearing linearly. It uses Green’s Theorem as a comparison tool, gen-
eralizing a method formerly developed for problems with a prescribed terminal
state and integral cost. Differently to such problems, two admissible solutions
do not have necessarily the same terminal condition, which necessitated a sig-
nificant modification of the method in order to obtain a closed curve on which
Green’s Theorem is informative.

For the class of problems under investigation, we showed the structure of the
optimal solutions as ”bang-singular-bang”, with a geometrical characterization
of the locus of the singular arc. The price to pay to obtain such a nice structure
required a set of hypotheses on the data of the problem. Future directions of
improvement and extension of the results could be to relax these hypotheses.
In particular, our conditions are related to the existence of a singular arc whose
control is not saturated (i.e. which does not take extreme values in the con-
trols set). The possibility of having saturated singular arcs would significantly
change the structure of the optimal solutions, but we believe that the compari-
son method in the plane could be some how extended. Considering dynamics of
higher dimensions is another challenge. Particular ”cascade” structures could
be investigated in view of using comparison argumentation in two-dimensional
subspace.
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