
HAL Id: hal-04841805
https://hal.science/hal-04841805v1

Submitted on 17 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Multi-Language Tool for Generating Unit Tests from
Execution Traces

Gabriel Darbord, Nicolas Anquetil, Benoit Verhaeghe, Anne Etien

To cite this version:
Gabriel Darbord, Nicolas Anquetil, Benoit Verhaeghe, Anne Etien. A Multi-Language Tool for Gener-
ating Unit Tests from Execution Traces. SANER 2025, Mar 2025, Montréal, Canada. �hal-04841805�

https://hal.science/hal-04841805v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Multi-Language Tool for Generating Unit Tests
from Execution Traces

Gabriel Darbord
Univ. Lille, Inria, CNRS, Centrale Lille

UMR 9189 CRIStAL
F-59000 Lille, France
0000-0001-7364-7567

Nicolas Anquetil
Univ. Lille, CNRS, Inria, Centrale Lille

UMR 9189 CRIStAL
F-59000 Lille, France
0000-0003-1486-8399

Benoit Verhaeghe
Berger-Levrault

Limonest, France
0000-0002-4588-2698

Anne Etien
Univ. Lille, CNRS, Inria, Centrale Lille

UMR 9189 CRIStAL
F-59000 Lille, France
0000-0003-3034-873X

Abstract—Legacy software systems often lack extensive testing,
but are assumed to behave correctly after years of bug fixes
and stable operation. Migrating or modernizing these systems
is challenging because there is little support for preventing
regressions. Test carving addresses this problem by generating
unit tests based on the current behavior of the system, treating it
as an implicit oracle. In this paper, we present MODEST, a multi-
language tool that generates unit tests by carving them from
execution traces. MODEST processes method calls, including their
receivers, arguments, and results, to recreate these invocations
as unit tests. Its model-based approach allows it to support
multiple languages. We detail how it can be extended to handle
additional languages. MODEST aims to generate tests that are
human-readable and maintainable over time. To achieve this,
it reconstructs values as source code rather than relying on
deserialization. We evaluate MODEST by generating tests for both
Java and Pharo applications.

Index Terms—Test Carving, Unit Test Generation, Execution
Traces, Multi-language, Regression Testing

I. INTRODUCTION

Unit tests are commonly used by developers to verify code
functionality and prevent bugs, ensuring that the software
behaves as expected. However, despite the benefits, creating
and maintaining unit tests can be time-consuming, especially
for legacy systems that often lack comprehensive test cov-
erage. Legacy software systems have typically been in use
for decades. Over time, bugs are gradually discovered and
patched, resulting in a relatively stable system. However, when
such systems need to be migrated or modernized, development
teams are faced with the challenge of preventing regressions
without the benefit of comprehensive test suites.

Test carving provides a solution to this problem by gener-
ating unit tests that capture the behavior of the system during
execution. This technique uses execution traces to replay
method calls as unit tests that verify that the expected behavior
is maintained.

In this paper, we present MODEST, a test carving tool that
generates unit tests by treating the current system behavior
as an oracle. MODEST aims to be multi-language by using a

model-based approach that allows it to work with different
programming languages. However, it requires a parser to
generate a model for a language, and an exporter to generate
tests in the target language.

MODEST reconstructs the captured values as source code,
with the goal of improving the readability and maintainability
of the generated tests. We expect that this will help developers
to better understand and update the tests, ultimately supporting
long-term software evolution.

While there are similar approaches to test generation [1]–
[3], these often have limitations, such as being language-
specific and the tests suffer from a lack of readability. In
contrast, MODEST provides a language-agnostic solution that
aims to generate human-readable tests. This approach involves
the use of metamodels to facilitate the representation and
generation of unit tests. The use of metamodels provides a
solution that is independent of the programming language and
test framework, and allows for automated transformation and
code generation. MODEST has already been successfully used
to generate tests for Pharo [4], the language in which the tool
is implemented1.

We evaluate MODEST by generating tests for four real-
world software systems. To demonstrate the multi-language
capabilities of the tool, we chose two Java applications and
two Pharo applications. Execution traces were obtained from
existing tests or from scenarios provided by the developers.
A total of 417 unit tests were generated for the four case
studies. Of these, 163 tests were integrated into one of the
Java applications.

The remainder of this paper is structured as follows: Sec-
tion II presents related works, Section III details our approach,
Section IV presents how MODEST can be adapted to new
languages and test frameworks, Section V evaluates our tool

1Pharo is a pure object-oriented and dynamically typed language, see https:
//www.pharo.org.

1

https://www.pharo.org
https://www.pharo.org

by applying it to real-world software systems, and Section VI
concludes the paper and presents future work.

II. RELATED WORKS

Several approaches to generating unit tests by replaying
scenarios have been proposed recently. Most similar to ours,
Tiwari et al. [2] propose a solution for production monitor-
ing that generates unit tests by capturing values at runtime,
and Alshahwan et al. [3] capture values during end-to-end
tests to generate unit tests. Both of these approaches are
specialized for Java, and they recreate the captured values
by deserializing them within the tests. This deserialization
process, while functional, often degrades the readability of
the generated tests [5]. Wachter et al. [6] discuss the concept
of recreating serialized Java values in plain code, which is
consistent with our approach of promoting readability by
avoiding deserialization within the tests.

A significant challenge in generating relevant unit tests is
navigating the vast search space to identify values that trigger
correct or critical behavior. Tools such as Randoop [7], which
uses random testing, and EvoSuite [8], which uses evolution-
ary algorithms, often struggle to generate test cases for specific
scenarios due to the inherent complexity of efficiently finding
such values. Capturing runtime values during execution helps
address this challenge by ensuring that tests are generated with
values that are known to exercise meaningful behavior. Jaygarl
et al. [1] addressed this issue by capturing desirable values at
runtime to assist random testing tools such as Randoop in
generating more relevant unit tests. Similarly, Wang et al. [9]
introduce Replica, a technique to reduce the gap between tests
and real-world behavior by collecting field execution data to
cover untested code paths. Artzi et al. [10] propose ReCrash,
a technique that captures runtime values to generate unit tests
aimed at reproducing software failures. These contributions
highlight how incorporating runtime values can significantly
improve the relevance and effectiveness of generated tests.

Several recent studies have explored the use of execution
traces for software testing, recognizing the valuable insight
they provide into the runtime behavior of a program. Paiva
et al. [11] propose a web testing approach that generates test
cases from user execution traces. To improve the test suite,
mutation operators are applied to these test cases to simulate
potential real-world failures. Tests that produce different re-
sults are retained because they reveal additional behavior in
the web application under test. Similarly, Salva et al. [12] focus
on testing service compositions by extracting traces from event
logs. These traces help identify recurring behaviors and create
generic test cases, which are then used to generate test scripts
and mock components for each service.

Other approaches to test generation include AI-based tech-
niques and test amplification methods. AI-based test gener-
ation, in particular using large language models, is still a
relatively new area of research. While they can generate tests
from scratch without requiring existing test suites, they face
challenges in terms of reliability. For instance, tests generated
by GPT-4 fail to compile more than 50% of the time [13],

and the generated tests often fail and require extensive human
intervention [14]. In addition, there are concerns about AI
frugality, where the resources required to train and run AI
models can be substantial [15].

Test amplification, on the other hand, enhances and extends
existing tests [16]. This inherently requires an existing set of
tests to be amplified, which can be a limitation in scenarios
where there are insufficient initial tests. While valuable, test
amplification methods highlight the need for pre-existing test
infrastructure, which MODEST aims to address by generating
tests from scratch based on execution traces.

Our approach is not intended to replace test-driven devel-
opment or traditional practices where developers write tests
during the development process. We aim to generate unit
tests on legacy software systems where tests are partially or
completely missing.

III. APPROACH

Test carving uses execution traces to automatically generate
unit tests by extracting relevant parts of the execution history.
This technique replays methods with the same arguments
and receiver, and ensures that the output matches what was
recorded in the trace. This assumes that the current version of
the software system under test is correct, allowing execution
traces to serve as an oracle for expected behavior.

MODEST is a test carving tool based on the Moose plat-
form2. Moose is a framework dedicated to software analy-
sis [17]. It relies on the use of models to abstract, analyze,
query, and navigate code. Abstracting from the specifics of
any target system allows us to be multi-language by general-
izing our test carving approach across different programming
languages and frameworks.

Our process relies on five steps and three interconnected
metamodels to generate unit tests, as shown in Fig. 1. The
Code metamodel represents the codebase under test, and
elements related to it are shown in green throughout this paper.
The Value metamodel specifies the values used to test the
codebase, with related elements shown in orange. The Unit
Test metamodel captures the structure of unit tests, with related
elements shown in blue. These metamodels abstract the key
aspects of our approach, allowing us to apply MODEST to a
wide range of contexts.

We will first describe the metamodels used by MODEST,
and then explain the process steps in detail.

A. Description of the Metamodels

In this section, we describe the Unit Test and Value meta-
models, and how they interact to represent unit tests. While the
Code metamodel is an important component of our approach,
it is already established within the Moose platform and has
been discussed in previous research [17].

1) Unit Test Metamodel: The Unit Test metamodel, shown
in Fig. 2, is a structured representation of the components that
make up unit tests in object-oriented programming. It provides

2https://www.modularmoose.org

2

https://www.modularmoose.org

Codebase Traces

Value
Model

Code
Model

Unit Test
Model

Test Suite

modeling parsing exporting

building

tracing

1

2

3

4

5

Fig. 1. The 5 steps of our approach. Elements representing the code under test
are shown in green (left column), elements representing runtime information
in orange (middle column), and elements representing the generated tests in
blue (right column).

TestSuite TestClass TestMethod

Fixture

SetUp

TearDown Assertion

before
beforeAll
beforeEach

cleanups

arrangements*

0..1
0..1
0..1

Value

0..1 0..1 0..1 0..1

0..1 0..1 0..1 0..1

*

* *

1..*

1

*

0..1

0..1

expected
arguments

valuesToHandle

Class Method*

testedClass testedMethod

1

1 1

* unitTests

Act

after
afterAll
afterEach

0..1
0..1
0..1

* *

*

Fig. 2. Class diagram of the Unit Test Metamodel. Test entities are shown
in blue, Code entities in green and Value entities in orange.

a way to represent, define, and generate unit tests by specifying
their inputs, expected outputs, and any necessary setup and
teardown fixtures.

The metamodel is built around the Arrange Act Assert
(AAA) pattern [18], a widely used approach to structuring
unit tests. The Arrange phase involves setting up the necessary
preconditions for the test, usually initializing the receiver,
arguments and expected values. The Act phase involves ex-
ecuting the method under test, using the values defined in the
Arrange phase if any. Finally, the Assert phase verifies that the
results of the Act phase are correct, typically by comparing
them to expected values.

The Act entity represents the “Act” phase of the AAA
pattern. This phase is responsible for executing the code under
test and producing the actual result. In the philosophy of unit
testing, each test method should verify one and only one
behavior of the system under test. Therefore, a test method
should have at most one Act to exercise the code under test
and produce the actual result for that specific behavior. This
ensures that each test method is focused on verifying a single
behavior and simplifies the process of identifying and fixing
issues that arise during testing.

An Assertion is a fundamental concept in unit testing. It is
a condition that must be true for the test to pass and is used
to verify that the behavior under test produces the expected
outcome. Assertions are used to verify the outcome of a test
by comparing expected and actual results, often manifested

as return values. They can also be used to verify that a
particular exception is thrown by the code under test. This
can be particularly useful for testing error-handling code and
ensuring that the system responds appropriately to unexpected
conditions.

A Fixture ensures that the tests run in a consistent and
isolated environment. When associated with a TestMethod, it
corresponds to the code that is part of the “Arrange” phase
of the AAA pattern. This is where values from the execution
traces are reconstructed.

Finally, the Value entity is used to represent runtime data in
unit tests. The relationship between the Value and Assertion
entities represents the expected value of the assertion. When
a Value is associated with an Act, it represents the arguments
that will be passed to the method under test. When associated
with a subclass of Fixture, it represents the values to set up
or tear down.

Overall, the Value entity plays an important role in connect-
ing the various elements of the unit test framework. In other
approaches [2], [3], the setup of generated tests is achieved
by deserializing data directly, which makes it difficult for
developers to understand the tests. In this paper, we will
explain how we use the Value metamodel to recreate values
as code. The details of the Value metamodel are presented in
the following section.

Value

Dictionary Primitive

Collection Object

EnumValue

Association
key

value

*

1
1

*

*

*
references

*
* capturedValues

TypedEntity

Type

EnumValue

0..1

1

1

source

AttributeElement

Attribute
* *

**
1 1

*

1

Fig. 3. Class diagram of the Value metamodel. Value entities are shown in
orange and Code entities in green.

2) Value Metamodel: The Value metamodel, shown in
Fig. 3, is a representation of runtime data independent of
the programming language. It is inspired from the JSON
representation format, representing types of values such as
objects, primitives, collections, and dictionaries.

The Value entity serves as the root entity for all value
representations in the metamodel. It is associated with a
TypedEntity, which is a Code entity that represents a code
element such as a variable or a method.

The Value entity is also in a relationship with the Type code
entity, which is used to represent the type of the value. Even
when a value is associated with a typed entity, its runtime type
may differ from the static type due to polymorphism.

In the next section, we present how these metamodels are
used in the test generation process.

B. Test Generation Process

We now detail the five steps involved in generating unit tests
with MODEST.

3

Step 1: Obtain a model of the application. Using the
capabilities of the Moose platform, we create a model of the
application for which we want to generate tests. This model
captures the structural aspects of the application, such as its
classes and methods, and their relationships (invocations, ac-
cesses, references, inheritances). This step must be completed
before test generation can begin, and needs to be done only
once for any given version of the software. The following steps
can be repeated as many times as desired.

Step 2: Produce traces of the application. Data about
the execution of the software system is recorded as execution
traces. Each trace corresponds to a specific method execution
and must contain the following information: method identifier,
arguments, return value, and the receiver object. Any of those
can be omitted if there is no ground for it, for example
procedures do not return values, and functions do not have
a receiver. The method identifier is a way to know exactly
which method was executed. For example, in the case of Java,
this identifier consists of the fully qualified class name and
the method signature, including parameter types. Each method
execution results in a generated test. Thus, a method can have
multiple tests generated that differ in the value of the receiver,
arguments, or the return value.

Step 3: Import and parse trace data. The execution traces
are imported into MODEST for parsing. During this step, the
tool identifies and ignores duplicate traces that would end up
generating identical tests by comparing the values. The Value
metamodel, as described in Section III-A2, is instantiated.
When dealing with serialized data, an importer parses the
representation of method arguments, return value, and receiver.

The importer traverses the captured data, instantiates the
appropriate Value entities and associates them with their
corresponding Code entities. The method identifier is used to
determine the origin of the trace, which corresponds to the
method to test. Using the definition of the method, arguments
are bound to their respective parameter based on their index.
The return value is bound to the method. For methods, the
receiver object must be present in the trace along with its
actual type which can differ from the method class. For all
object values, their attributes are bound to their code definition
using the indications contained in the trace, such as their
identifier.

Step 4: Build a unit test model. This step is the core of
the approach and is independent of the language and the test
framework as it is based on metamodels. During this step,
the Unit Test metamodel, as described in Section III-A1, is
instantiated. This is when the tests are created. Given the trace
of a method execution, MODEST creates a TestMethod for the
executed method. Eventually, a TestClass is created to hold the
TestMethod. The SetUp, Act and Assertion entities are created
and associated with the TestMethod. The Value entities of the
arguments are associated with the SetUp and Act. Similarly, the
Value entity of the receiver is also associated with the SetUp
and Act. The Value entity of the return value is associated with
the SetUp and Assertion.

Step 5: Export the unit test model into concrete tests.

This step translates the unit test model into executable code.
This requires knowledge of the target language and framework.

Within the test method, we follow the AAA pattern to
organize the test logic clearly. First, the arrange phase recreates
the receiver, arguments, and return value, and stores them in
separate variables. The return value is stored in a variable
explicitly named “expected”. The exporter maps the Value
entities to their variable names. Then, the act phase exercises
the method under test using the variables for the arguments
and receiver. The return value is stored in a variable named
“actual”. Finally, the assert phase checks that the actual and
expected values are equal. The way to achieve this can vary
depending on the test framework or assertion library.

The Unit Test and Value entities each have their own
exporter. The test exporter is responsible for the test structure
and calls the value exporter when necessary, as illustrated
in Fig. 4. They can both generate an Abstract Syntax Tree
(AST) as a medium which will be transformed into source
code by a common AST exporter.

Test
Exporter

Value
Exporter

Value Model

Test Model

Value Reconstruction AST

Test Structure AST

Fig. 4. Representation of interconnected test and value models and their
export to AST

To promote readability and shorter tests, we propose to
generate helper methods to recreate objects, collections, and
dictionaries. Each helper method has no parameters and is
specialized for a specific object, collection, or dictionary.
Helper methods follow a naming pattern based on the role
of the value they recreate and the associated test method. The
name consists of:

• the prefix “given”;
• if for an argument, the name of the associated parameter

followed by “argument”; if for a receiver, the string “re-
ceiver”; if for the expected value, the string “expected”;

• the string “for”;
• the name of the test method

For example, the name of the helper method could be
“given_lastName_argument_for_testSaveUser()”. We also pro-
pose to export these methods into a dedicated class, one for
each test class. This organization keeps the test methods clean
and focused on the test logic, while the helper class handles
the complexity of object creation and initialization.

We have described the five steps of our test generation
process. We now detail the requirements for this process to
work.

4

Listing 1
EXAMPLE INPUT FOR MODEST.

1 [
2 {
3 "class": "com.example.User",
4 "method": "hasActiveSession()",
5 "receiver": "...",
6 "arguments": "[]",
7 "result": "true"
8 }
9]

C. Process Requirements

We now detail the requirements for the input given to
MODEST. This section lists the requirements of each step.

Step 1: Obtain a model of the application. When model-
ing the application, MODEST requires information about user-
defined types. Specifically, we require their structural defini-
tion: namespace, modifiers (especially visibility), inheritance,
attributes and method signatures. Most of those information
are needed for step 5, see below. To create the tests, the
namespace of the class is required to put the test class in
the same namespace. A method signature is used as a unique
identifier needed to associate a trace to the method that
produced it.

Step 2: Produce traces of the application. The second
step in our process is to collect the runtime execution data
necessary to generate tests that accurately replay methods. The
actual mechanism is irrelevant to MODEST, as long as the
required data is accurately extracted. For example, in Java,
bytecode instrumentation is a convenient approach that allows
instructions to be injected at runtime, enabling the output of
execution data without requiring any changes to the source
code. Alternatively, instrumentation can be hard-coded directly
into the target methods, although this is a more intrusive
approach.

While the mechanics of data collection can vary widely
between languages, the essential requirement remains the
same: for each invocation of a target method, we capture
its identifier and serialize its receiver, arguments, and result.
An example input for MODEST is shown in Listing 1. When
capturing runtime values, the traces are typically exported in
a serialized format. Any serialization format can be used, as
long as a suitable importer can deserialize it and instantiate
the Value model. The serialized values must contain two key
data points to recreate structured objects:

• the runtime type, if it differs from the static type;
• field identifiers that are mapped to their value.
Let us illustrate a possible serialization format that is sup-

ported by MODEST. JSON with metadata is a format produced
using configurable serialization features of the Jackson library
for Java. This format is designed to handle cyclic references
and class identification, ensuring that complex data structures

Listing 2
EXAMPLE JAVA OBJECTS WITH A CIRCULAR DEPENDENCY SERIALIZED

WITH JACKSON.

1 {
2 "@type": "com.example.User",
3 "@id": 1,
4 "name": "John Doe",
5 "session": {
6 "@type": "com.example.Session",
7 "@id": 2,
8 "active": true,
9 "user": 1

10 }
11 }

can be properly serialized and reconstructed. An example
of two serialized Java objects with a circular dependency is
shown in Listing 2. The @id field is used to uniquely identify
objects, and the @type field specifies their runtime type. The
example shows an instance of the User class with the id 1, and
a Session instance with the id 2. The session references the
user in its user field by its id. In a statically typed language,
we can infer that an object is expected for this field, so finding
an integer indicates that we are dealing with a reference.

As input, MODEST expects a list of execution traces.
MODEST is flexible: in case a trace is missing any information
among the receiver, arguments or result, it is still able to gen-
erate a test. Only the method identifier is absolutely required.
For example, functions do not have a receiver, and procedures
do not return a result. Currently, if the method does not return a
value (declared void), or if the result is missing from the trace,
MODEST generates a test without an assertion. Such tests are
still useful as smoke tests, which focus on verifying basic
functionality and stability. If the receiver is missing, MODEST
will create a new empty instance of the tested method class
by default.

In case the serialized data does not specify runtime type
information for non-primitive values, MODEST will try to
use the declared type of the value to reconstruct the object.
For collections, it is only possible to infer the type of their
elements if the collection is parameterized (eg. “List<User>”).

Step 5: Export the unit test model into concrete tests. To
promote readability, MODEST recreates values as code. This
is a difficult problem [6], and therefore has deep implications
for the requirements. To reconstruct objects, MODEST looks
for constructors and setters. Class inheritance information can
be used to look up these methods, which may be declared in
superclasses. However, there may be no obvious constructor
or setter. It is also possible that the visibility of a method
(for example, “private” in Java) prevents its use in test code.
In both cases, a reflexive language helps to get around these
restrictions.

In the next section, we will explain how to adapt MODEST
to a new language or test framework.

5

IV. ADAPTING MODEST TO NEW CONTEXTS

MODEST is designed to be adaptable to the language, test
framework, and serialization format. The import process is
affected by the language and the serialization format. The
export process is affected by the language and the test frame-
work. To achieve this, MODEST provides the adaptation points
necessary to translate between specific constructs and the
metamodels. These adaptation points allow it to map concrete
language constructs, such as method signatures and object
states, to the generalized metamodels. They are also used when
the models are exported back into concrete test code.

MODEST can be adapted for the modeling of the application,
import of the execution traces, and export of the tests. The
fourth step, building the test model (the core of our approach),
is based on models which are agnostic to the language and
test framework. Moose’s modeling capabilities are based on
a system of traits [19] that serve as abstractions for common
programming concepts. For example, an entity representing a
method in any language would always use the generic concept
of a Method, which encapsulates common properties such as
being named, having parameters, and so on. The use of traits
is essential to our approach because it allows us to manipulate
entities based on their roles rather than their language-specific
implementations. By associating concrete language constructs
with abstract traits, we can process and analyze different
programming languages in a unified way. This trait-based
system allows the generalization of our test carving approach
across languages.

In the following, we outline the possible adaptations for
the other steps. These adaptations show how MODEST can be
extended to support new contexts.

Step 1: Modeling an application. The first step in our
test generation process is to model the target application
with the Code metamodel. MODEST is part of the Moose
platform which models programming languages in a generic
way. Languages currently supported by Moose include C/C++,
Java, Pharo, Python, and TypeScript.

In practice, MODEST does not need a complete model of
the application. The metamodel only needs to contain the
requirements listed for the first step in Section III-C.

Step 3: Importing and parsing execution traces. The third
step is to import the execution traces obtained in the previous
step into MODEST. Before processing the traces, MODEST
performs an initial pass to filter out duplicates, ensuring that
no equivalent tests are generated by comparing the recorded
values. The remaining execution traces are then processed to
create new tests.

Currently, MODEST supports importing data in the Jackson
format (JSON with metadata) and the XStream format (XML).
Other formats could be used, provided an appropriate importer
is implemented.

Step 5: Exporting the unit test model. The final extensible
step in our process is the export of the unit test model into
actual tests. At this stage, two key extension points come into
play to handle new target languages and environments: the unit

Listing 3
CODE RECREATING TWO JAVA OBJECTS.

1 User user = new User();
2 user.setName("John Doe");
3 Session session = new Session();
4 session.setActive(true);
5 session.setUser(user);
6 user.setSession(session);

test exporter and the value exporter. These components work
together to generate the final output in the form of executable
tests.

The unit test exporter is responsible for generating the
structure of the test cases. It is dependent on the language and
test framework. This includes creating the test class, defining
methods, and following the AAA pattern that is standard
in unit testing. During this process, the unit test exporter
interacts with the value exporter, asking it to recreate values
for each step in the test that requires them. This includes the
initialization of the receiver, the arguments, and the expected
result.

The role of the value exporter is to generate the source code
necessary to recreate each value. It is only dependent on the
language. This ensures that the values used in the tests are
the same as those captured during execution, to faithfully re-
produce the recorded behavior. If the execution trace captured
a structured object, the value exporter must produce the code
that would generate an equivalent object in the target language.
As explained in the requirements (Section III-C), this means
finding the constructors and setters, or using the reflective
capabilities of the language. Listing 3 shows an example of
the Java code to recreate the serialized value of Listing 2.

It is interesting to note that some objects may have a
representation in the trace that differs from their implemen-
tation. This may require knowledge of specific reconstruction
schemes. For example, we may have a date represented by a
“yyyy-mm-dd” string, and the only way to reconstruct it from
the string is to use a factory. For such cases, the exporter can be
specialized to include the necessary knowledge to reconstruct
these special cases.

This modular design allows our approach to remain flex-
ible and adaptable to new languages. By implementing new
exporters tailored to the specific requirements of the target
language and test framework, MODEST can be extended to
generate unit tests in new contexts.

V. EVALUATION

In this section, we present the validation experiment for
MODEST. We first describe the experimental protocol we
used, before presenting and commenting on the results of the
experiments.

6

A. Protocol

We want to apply MODEST on software systems in multiple
languages to demonstrate the multi-language capabilities of the
tool. The software systems should be used in the real world,
not toy projects, to show the applicability of MODEST in real
scenarios. We do not limit ourselves to open-source projects
because some industrial projects are closed-source, and they
may have different characteristics. The study subjects should
be of varied size and application domains.

Execution traces are a type of dynamic analysis that extracts
runtime data during an execution scenario. This affects which
methods are executed, thus traced, and consequently tested. We
do not want to introduce a bias in the choice of the scenarios.
Therefore we will rely on existing scenarios for each project.

We will evaluate the number of generated tests, the per-
centage that pass, and the readability of the generated tests.
We want to test public methods in public classes that are not
constructors or accessors.

To apply MODEST to different languages, we chose Java and
Pharo. Both languages are object-oriented, Java is statically
typed and Pharo is dynamically typed. In Java, developers
can declare specific class and method visibility. In Pharo,
developers have no control over visibility: all classes and
methods are public, and fields are protected. The dynamic
nature of Pharo highlights the importance of including type
information in the execution traces. This is because the lack
of declared types does not allow us to infer the types of
parameters, return values, and object fields.

We selected two software systems developed in each lan-
guage as our study subjects:

• Omaje, a customer subscription management project with
a three-tier architecture used internally by an industry
partner;

• Traccar3, an open-source GPS tracking system, that also
uses a three-tier architecture. It has been studied by
Verhaeghe et al. [20], a multi-language GUI migration
approach;

• Cormas4, a standalone agent-based modeling platform
with a graphical user interface. It is used by CIRAD for
modeling real-world problems [21];

• DataFrame5, a tabular data structure library for data
analysis in Pharo.

The number of classes and methods in these projects is given
in Table I. The two Pharo projects are smaller than the two
Java projects, especially in the number of classes. However,
the number of methods in each project is still significant.

To generate the necessary execution traces, we used an agent
built with OpenTelemetry6. All values are serialized using the
Jackson format. For Traccar and DataFrame, we did not select
which methods to trace: we instrument all public methods,
except constructors and accessors, in public classes. For Omaje

3https://github.com/traccar/traccar/tree/v6.5
4https://github.com/cormas/cormas/tree/v0.95
5https://github.com/PolyMathOrg/DataFrame/tree/pre-v3
6https://opentelemetry.io/

TABLE I
CHARACTERISTICS OF THE STUDY SUBJECTS

PROJECT LANGUAGE #CLASSES #METHODS
DataFrame Pharo 29 1161
Cormas Pharo 59 2036
Traccar Java 1346 4688
Omaje Java 1198 7006

and Cormas, we consulted with the developers who provided
a list of classes and methods to target for testing.

To trace Traccar and DataFrame, we ran the existing unit
tests. Using existing unit tests to generate the traces does not
make much sense in real-world conditions, since MODEST
should be used to generate tests where coverage is lacking.
However, this approach allowed us to collect traces without
prior knowledge of the projects, since execution was driven
by the tests themselves, independent of our input.

For Omaje and Cormas, there is a notable lack of unit
tests, so traces had to be obtained through scenarios provided
by the developers. For Cormas, we executed a demonstration
of the project. For Omaje, the developers obtained traces by
running functional tests and using the tool to generate the tests
themselves. Using functional tests to generate traces makes
perfect sense compared to using unit tests, because it allows
generating tests with a lower granularity.

For both trace generation and test generation, we followed
a defensive strategy, stopping the process when a problem
occurred to avoid generating tests that would not compile.
During trace generation, errors can occur for example due to
serialization. During test generation, errors can occur when
trying to recreate objects that require special handling that
is not possible or has not yet been implemented, such as
recreating a private inner class in Java.

B. Results

We show the results of our evaluation in Table II. For each
study subject, we show the methods for which tests were
generated. For each tested method, we show how many tests
were generated, and how many passed or failed. Note that
since Omaje is proprietary software, we cannot disclose any
information about the tested methods.

We have successfully generated 417 tests for all projects,
and most of them pass (86%). For DataFrame and Omaje,
100% of the tests pass.

Looking at the failing tests, we can see that there are 50
for Cormas and 8 for Traccar. These failing tests are for four
different methods, and all the tests generated for them fail.
This indicates a problem with the methods themselves. We
investigated the cause of these failures. It is due to incomplete
serialization, which results in recreated objects that are missing
necessary information. This can be due to transient fields or
null fields that were ignored but were actually different from
the default values. Without complete data, MODEST cannot
accurately reproduce the state of the objects required by the
test. This is the case for the tests in rows 16, 17, 22 and 27.

7

https://github.com/traccar/traccar/tree/v6.5
https://github.com/cormas/cormas/tree/v0.95
https://github.com/PolyMathOrg/DataFrame/tree/pre-v3
https://opentelemetry.io/

TABLE II
EXPERIMENTAL RESULTS OF TEST GENERATION WITH MODEST ON THE STUDY SUBJECTS. FOR THE TOTALS, WE GIVE THE PERCENTAGE OF PASSING

AND FAILING TESTS.

CLASS_METHOD #TESTS #PASSING #FAILING
1 DataFrame_asArrayOfColumns 4 4 0
2 DataFrame_calculateDataTypes 4 4 0
3 DataFrame_columnNames 27 27 0
4 DataFrame_columns 4 4 0
5 DataFrame_dataTypes 10 10 0
6 DataFrame_initialize 2 2 0
7 DataFrame_initializeColumns 1 1 0
8 DataFrame_initializeRows 1 1 0
9 DataFrame_numberOfColumns 10 10 0

10 DataFrame_numberOfRows 5 5 0
11 DataFrame_privateRowNames 5 5 0
12 DataFrame_rowNames 1 1 0
13 DataFrame_setDefaultRowColumnNames 4 4 0

DATAFRAME TOTAL 78 78 (100%) 0 (0%)
14 CMEntity_delete 9 9 0
15 CMEntity_init 5 5 0
16 CMEntity_initId 27 0 27
17 CMSpatialEntity_addOccupant 5 0 5
18 CMSpatialEntity_allOccupants 18 18 0
19 CMSpatialEntity_destroyed 9 9 0
20 CMSpatialEntity_initOccupants 18 18 0
21 CMSpatialEntity_neighbourhood 18 18 0
22 CMSpatialEntity_neighbourhoodWithNils 18 0 18

CORMAS TOTAL 127 77 (60.6%) 50 (39.4 %)
23 GeofenceCircle_containsPoint 2 2 0
24 GeofenceCircle_distanceFromCenter 2 2 0
25 GeofenceCircle_fromWkt 1 1 0
26 GeofenceCircle_toWkt 1 1 0
27 GeofencePolyline_containsPoint 8 0 8
28 GeofencePolyline_fromWkt 4 4 0
29 GeofencePolyline_toWkt 1 1 0
30 Network_addCellTower 10 10 0
31 Network_addWifiAccessPoint 10 10 0
32 Position_addAlarm 10 10 0

TRACCAR TOTAL 49 41 (83.7%) 8 (16.3%)
OMAJE TOTAL 163 163 (100%) 0 (0%)
TOTAL 417 359 (86.1%) 58 (13.9%)

Another known cause that may arise is when a method
depends on external state that is not captured in the execution
traces. In such cases, MODEST cannot recreate the required
state. For example, if execution depends on the state of a global
variable that is not referenced by the receiver, arguments, or
result, that state will not be recreated, usually resulting in a
test failure.

These causes are consistent with the findings of Tiwari
et al. [2]. However, they found two additional causes that
did not affect us in this case study. One is that a class can
define its own serialization behavior, which can result in an
incomplete or incorrectly serialized object, similar to the issue
with transient fields. The other cause is due to the use of
ASSERTEQUALS, which relies on the EQUALS method. By
default, this method uses object identity unless it is redefined.
This can lead to assertion failures when two objects are
structurally equivalent but not identical. We can avoid this
problem by using an assertion library to enable structural
equality. It is worth noting that since we have the data
necessary to reconstruct objects, we could generate methods to
verify structural equality without relying on external libraries.

Regarding the readability of generated tests: some of the

tests generated for Omaje were modified by the developers.
For example, one modification was to change a test to check
only the filename in an absolute path string instead of the
entire path. These modifications hint at the good readability
and maintainability of the generated tests. We show examples
of generated tests in Listing 4, Listing 5 and Listing 6, as
well as in our replication package7. These can be compared
to tests that recreate values using deserialization, for example
in listings 7 and 8 of Tiwari et al. [2].

For the Traccar test shown in Listing 4, we also show
the generated helper method in Listing 5. The helper uses
the simplest constructor it could find, which is the empty
constructor. Then MODEST tried to find setters for the fields
that are not set by the constructors but did not find any. For
this reason, it uses reflection (using our SETFIELD method)
to initialize the fields. In this particular case, a different
constructor would have been more appropriate. Reconstructing
objects as plain code is a difficult problem discussed by
Wachter et al. [6]. Improving MODEST on this topic is part of
our future work.

7TO BE PROVIDED

8

The Pharo test for DataFrame shown in Listing 6 also
follows the AAA structure, with clear separation of phases.
Again, helper methods are used to make the arrangement phase
concise and readable. The assertion is handled by a Pharo
library for structural equality to support test reliability.

C. Threats to Validity

Internal validity is the extent to which we can draw a
causal link between the treatment in the experiment and the
response.

We have used a consistent methodology across all of the
study subjects to ensure that differences in results are not due
to different experimental procedures. All execution scenarios
used to generate traces are provided by the projects them-
selves. There may be a bias in what the scenarios exercise,
because they are created by the developers who are influenced
by their own familiarity with the projects. We believe that this
bias is toward what is important to test. We also believe that
this bias is consistent with real-world use of MODEST.

External validity is the extent to which we can apply the
findings of the study to a broader context.

We tried to ensure a diversity of study subjects by selecting
projects projects in different languages, domains, sizes, closed
or open source. A possible bias is that we only experimented
with object-oriented languages. In the future, we would like
to experiment with languages in other paradigms, especially
procedural.

Construct validity discusses the extent to which the results
really measure what they are supposed to measure.

We acknowledge that our evaluation of readability is some-
what subjective. We are not aware of any automated solution
for evaluating readability. In the future, we would have to
ask developers to evaluate it manually. Despite of all this, the
developers of the Omaje application were still willing and able
to modify the generated tests themselves. We see this as an
indication that they were able to read and understand the tests.

Reliability considers the extent to which the results can
be reproduced when the research is repeated under the same
conditions.

We made sure there was no bias in the scenarios we ran by
using existing scenarios from each of them. Only for Omaje
we are unable to provide the source code and scenarios due to
its proprietary nature. We provide a replication package with
the generated tests and instructions on how to replicate the
experiment, detailing which versions of the study subjects to
use.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present MODEST, a language-agnostic test
carving tool designed to generate unit tests from execution
traces. Our primary goals are to ensure broad applicability
across different programming environments, and to focus on
the readability and maintainability of the generated tests.
Recreating values as code is pivotal to achieving this goal.

To validate MODEST, we applied it to four real-world
software systems. The multi-language aspect was validated by

applying it in the context of the Java and Pharo programming
languages. We have also demonstrated the ability of MOD-
EST to recreate values as code, which improves readability.
Furthermore, the tool was used by the developers of Omaje,
an industrial Java software system, to generate 163 tests that
were then integrated. Some of the tests were edited manually,
confirming that the developers found the tests human-readable
and maintainable.

To acknowledge some of the limitations of MODEST, it
currently does not implement mechanisms to handle most side
effects, making methods without side effects the preferred
targets for testing. Side effects include file system interac-
tions, network operations, global state changes, elements of
randomness, and so on.

Looking ahead, several avenues for future work have been
identified. We plan to explore object pruning techniques based
on call graphs to minimize test size without sacrificing cov-
erage. Given our access to the application and its values,
it is possible to prune unused values in objects, which is
especially critical for industrial use cases that can involve
enormous amounts of data. By minimizing the size of the
tests, we aim to improve both their readability and their
debugging capabilities. Additionally, we intend to evaluate
developer feedback regarding the readability of generated tests,
specifically comparing the approaches of deserializing values
versus recreating them as source code. Finally, we intend to
present the use of MODEST in collaboration with our industry
partner to improve their testing processes and support the
integrity of their migration to newer technologies.

9

Listing 4
JAVA TEST GENERATED FOR TRACCAR

1 @Test
2 public void testDistanceFromCenter() {
3 /* ARRANGE */
4 GeofenceCircle receiver = given_receiver_for_testDistanceFromCenter();
5 /* ACT */
6 double actual = receiver.distanceFromCenter(55.75545, 37.61921);
7 /* ASSERT */
8 assertThat(actual).isEqualTo(163.77736255543593);
9 }

Listing 5
JAVA HELPER GENERATED FOR THE TEST OF LISTING 4

1 public static GeofenceCircle given_receiver_for_testDistanceFromCenter() {
2 GeofenceCircle geofenceCircle32 = new GeofenceCircle();
3 setField(geofenceCircle32, GEOFENCECIRCLE_CENTERLATITUDE, 55.75414);
4 setField(geofenceCircle32, GEOFENCECIRCLE_CENTERLONGITUDE, 37.6204);
5 setField(geofenceCircle32, GEOFENCECIRCLE_RADIUS, 100.0);
6 return geofenceCircle32;
7 }

Listing 6
PHARO TEST GENERATED FOR DATAFRAME

1 testRowNames
2 | actual expected anArray receiver |
3 "ARRANGE"
4 expected := self given_expected_for_testRowNames.
5 anArray := self given_anArray_argument_for_testRowNames.
6 receiver := self given_receiver_for_testRowNames.
7 "ACT"
8 actual := receiver rowNames: anArray.
9 "ASSERT"

10 self assert: actual deepEquals: expected

10

REFERENCES

[1] H. Jaygarl, S. Kim, T. Xie, and C. K. Chang, “OCAT: object capture-
based automated testing,” in Proceedings of the 19th International
Symposium on Software Testing and Analysis, ser. ISSTA ’10. New
York, NY, USA: Association for Computing Machinery, 2010, pp.
159–170. [Online]. Available: https://doi.org/10.1145/1831708.1831729

[2] D. Tiwari, L. Zhang, M. Monperrus, and B. Baudry, “Production
monitoring to improve test suites,” IEEE Transactions on Reliability,
vol. 71, no. 3, pp. 1381–1397, Sep. 2022. [Online]. Available:
http://dx.doi.org/10.1109/TR.2021.3101318

[3] N. Alshahwan, M. Harman, A. Marginean, R. Tal, and E. Wang,
“Observation-based unit test generation at Meta,” 2024.

[4] G. Darbord, F. Vandewaeter, A. Etien, N. Anquetil, and
B. Verhaeghe, “Modest-Pharo: Unit test generation for Pharo
based on traces and metamodels,” in IWST 2024: International
Workshop on Smalltalk Technologies, Jul. 2024. [Online]. Available:
https://hal.science/hal-04622256

[5] S. Afshan, P. McMinn, and M. Stevenson, “Evolving readable string
test inputs using a natural language model to reduce human oracle
cost,” in 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation, 2013, pp. 352–361.

[6] J. Wachter, D. Tiwari, M. Monperrus, and B. Baudry, “Serializing java
objects in plain code,” 2024.

[7] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed random test-
ing for Java,” in Conference on Object-Oriented Programming Systems,
Languages, and Applications, 2007.

[8] G. Fraser and A. Arcuri, “Evosuite: Automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ser. ESEC/FSE ’11. New York, NY, USA:
Association for Computing Machinery, 2011, pp. 416–419. [Online].
Available: https://doi.org/10.1145/2025113.2025179

[9] Q. Wang and A. Orso, “Improving testing by mimicking user behavior,”
in 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2020, pp. 488–498.

[10] S. Artzi, S. Kim, and M. D. Ernst, “ReCrash: Making software failures
reproducible by preserving object states,” in ECOOP 2008 – Object-
Oriented Programming, J. Vitek, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 542–565.

[11] A. C. R. Paiva, A. Restivo, and S. Almeida, “Test case generation
based on mutations over user execution traces,” Software quality journal,
vol. 28, no. 3, pp. 1173–1186, 2020.

[12] S. Salva and J. Sue, “Automated test case generation for service
composition from event logs,” in 2023 38th IEEE/ACM International
Conference on Automated Software Engineering Workshops (ASEW).
Los Alamitos, CA, USA: IEEE Computer Society, sep 2023, pp.
127–134. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/ASEW60602.2023.00022

[13] Z. Yuan, Y. Lou, M. Liu, S. Ding, K. Wang, Y. Chen, and X. Peng,
“No more manual tests? Evaluating and improving chatgpt for unit test
generation,” arXiv preprint arXiv:2305.04207, 2023.

[14] R. A. Poldrack, T. Lu, and G. Beguš, “Ai-assisted coding: Experiments
with gpt-4,” arXiv preprint arXiv:2304.13187, 2023.

[15] A. S. George, A. H. George, and A. S. G. Martin, “The
environmental impact of AI: A case study of water consumption
by Chat GPT,” Partners Universal International Innovation Journal
(PUIIJ), vol. 01, no. 02, Apr. 2023. [Online]. Available: https:
//doi.org/10.5281/zenodo.7855594

[16] B. Danglot, O. Vera-Perez, Z. Yu, A. Zaidman, M. Monperrus, and
B. Baudry, “A snowballing literature study on test amplification,” Jour-
nal of Systems and Software, vol. 157, Nov. 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121219301736

[17] N. Anquetil, A. Etien, M. H. Houekpetodji, B. Verhaeghe, S. Ducasse,
C. Toullec, F. Djareddir, J. Sudich, and M. Derras, “Modular Moose:
A new generation of software reengineering platform,” in International
Conference on Software and Systems Reuse (ICSR’20), ser. LNCS, no.
12541, Dec. 2020, pp. 119–134.

[18] K. Beck, Test Driven Development: By Example. Addison-Wesley
Longman, 2002.

[19] N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black, “Traits: Com-
posable units of behavior,” in Proceedings of European Conference on
Object-Oriented Programming, ser. LNCS, vol. 2743. Springer Verlag,
Jul. 2003, pp. 248–274.

[20] B. Verhaeghe, A. Shatnawi, A. Seriai, A. Etien, N. Anquetil, M. Derras,
and S. Ducasse, “From GWT to Angular: An experiment report on
migrating a legacy web application,” IEEE Software, 2021.

[21] P. Bommel, N. Becu, C. Le Page, and F. Bousquet, “Cormas: an
agent-based simulation platform for coupling human decisions with
computerized dynamics,” in Simulation and gaming in the network
society. Springer, 2016, pp. 387–410.

11

https://doi.org/10.1145/1831708.1831729
http://dx.doi.org/10.1109/TR.2021.3101318
https://hal.science/hal-04622256
https://doi.org/10.1145/2025113.2025179
https://doi.ieeecomputersociety.org/10.1109/ASEW60602.2023.00022
https://doi.ieeecomputersociety.org/10.1109/ASEW60602.2023.00022
https://doi.org/10.5281/zenodo.7855594
https://doi.org/10.5281/zenodo.7855594
https://www.sciencedirect.com/science/article/pii/S0164121219301736

	Introduction
	Related Works
	Approach
	Description of the Metamodels
	Unit Test Metamodel
	Value Metamodel

	Test Generation Process
	Process Requirements

	Adapting Modest to New Contexts
	Evaluation
	Protocol
	Results
	Threats to Validity

	Conclusion and Future Work
	References

