
HAL Id: hal-04841804
https://hal.science/hal-04841804v1

Submitted on 17 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-modal Upper Limbs Human Motion Estimation
From a Reduced Set of Affordable Sensors

Mohamed Adjel, Maxime Sabbah, Raphael Dumas, Nicolas Mansard, Samer
Mohammed, Bruno Watier, Vincent Bonnet

To cite this version:
Mohamed Adjel, Maxime Sabbah, Raphael Dumas, Nicolas Mansard, Samer Mohammed, et al.. Multi-
modal Upper Limbs Human Motion Estimation From a Reduced Set of Affordable Sensors. IEEE
IROS, Oct 2023, Detroit, United States. �hal-04841804�

https://hal.science/hal-04841804v1
https://hal.archives-ouvertes.fr


Multi-modal Upper Limbs Human Motion Estimation
From a Reduced Set of Affordable Sensors

Mohamed Adjel1,2, Maxime Sabbah3, Raphael Dumas4, Nicolas Mansard3,
Samer Mohammed1, Bruno Watier3,5, Vincent Bonnet3,6

Abstract— This study aims at developing a new affordable
motion capture system for human upper limbs’ joint kine-
matics estimation based on a reduced set of visual inertial
measurement units coupled with a markerless skeleton tracking
algorithm. The markerless skeleton tracking algorithm allows
to alleviate the kinematic redundancy that is observed if only a
single visual inertial measurement unit is used at the hand level
but it introduces undesired outliers. A Sliding Window Inverse
Kinematics Algoritm based on a biomechanical model is pro-
posed to filter out outliers. It has the advantage to constrain the
evolution of joint kinematics while being able to handle multi-
modalities. The proposed system was validated with five healthy
volunteers performing a popular rehabilitation pick and place
task. Joint angles estimated using our method were compared
with the ones obtained using a reference stereophotogrammetric
system. The results showed an average root mean square error
of 9.7deg along with an average correlation of 0.8. These results
compare favorably with literature results obtained with more
numerous and relatively costly sensors or more elaborated and
expensive markerless systems.

I. INTRODUCTION

Accurate estimation of human movement is necessary
in numerous robotics and rehabilitation applications. For
physical rehabilitation, a physiotherapist usually assess the
patient achievement of the prescribed physical exercises. To
do so, several clinical indexes such as the Frenchay arm
test are used [1]. However, giving a quantitative assessment
of a multi-segment motion from a visual assessment is not
an easy task. Moroever, the inter/intra-clinician variability
in the motion evaluation can be up to 9deg on average
[2]. This assessment can be done automatically if a reliable
joint angles estimate is available. When a human motion
analysis system is to be used outside of the laboratory,
its usability is as important as the minimum metrological
performance required to ensure the validity of the results
obtained. Nowadays, Stereophotogrammetric Systems (SS)
are considered as the reference in human motion analysis.
However, these systems are relatively expensive and non
portable, limiting de-facto the natural observation of humans
in real life situations.

The emergence of wearable sensors such as Inertial Mea-
surement Unit (IMU), depth cameras and markerless skeleton
tracking algorithm for RGB camera(s) has recently revived
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the research for personal monitoring outside the laboratory.
Numerous affordable and easy-to-use systems based on IMU
[3], RGB cameras [4], and RGB-D sensors [5] have been
developed. Each of these systems has some drawbacks, but
it is often possible to improve their accuracy by fusing
these different modalities. In this context, the next section
of this paper will focus on the literature related to IMU and
markerless systems for human motion estimation.

II. RELATED WORK

Markerless approaches are not yet adopted by the clinical
community as there is still a debate about the level of
accuracy that can be achieved using only markerless and
RGB camera(s) [6]. Indeed, several studies use only the Joint
Center Positions (JCP) to assess the quality of human motion
[7], [8], [6]. Nakano et al. [6] used 5 high-speed cameras
and OpenPose [9] to compare JCP estimation with respect
to SS. They showed that in the best condition the JCP can be
estimated with a RMSE of 30mm but also that the accuracy
dramatically decreases if the scene has object interacting with
the subject or in case of subject partial occlusion. Beside
the fact that JCP are not a clinical metric, it is difficult to
understand how the joint angles, required to build clinical
indexes, are impacted.
Better results are expected if markerless algorithms and
model-based approaches were to be used together [8]. This
was done by several studies using RGB-D skeleton tracking
algorithms. In this case, the JCP estimates were shown to
be not enough accurate for rehabilitation assessment due to
segment length variations [10], [11]. Thus, our group, among
others, proposed to use a multi-body inverse kinematics
approach with data measured using a RGB-D camera to
improve the joint angle estimates. It drastically reduced
outliers thanks to fixed segment lengths and joint limits
[12]. Nevertheless, even with a complex and cumbersome
optimal tuning of the IK process, the Root Mean Square
Error (RMSE) was often superior to 20deg for many tasks
and joints. In a recent study, Lahkar et al. [13] used an
expensive commercial markerless system with 10 high speed
cameras together with a multi-body IK optimization process
for studying the motions of a single boxer on a ring. Even
in this ideal setup, they reported large RMSE going from
6.3deg for the shoulder up to 20deg for the wrist. They
claimed that these errors were largely due to differences in
the calibration of the models used for the markerless and the
SS. Indeed, it is not possible to properly calibrate the model
used in any markerless algorithms. We believe that part of



this error is also due to the fact that the temporal relationship
between samples are not taken into account as most of the
markerless skeleton tracking algorithm use only a single
image to estimate the subject pose. Li et al. [8] proposed to
use an optimisation approach to determine the kinematics but
also the dynamics of several parkour tasks. Their original ap-
proach involved monitoring the JCP estimates obtained from
the OpenPose algorithm. To reduce the outliers impact, they
simultaneously minimized the dynamic biomechanical cost
functions while incorporating temporal relations between the
components of the state vector as constraints. Their approach
resulted in a more reliable outcome.. Unfortunately, they
reported solely JCP estimate compared to other markerless
methods. In a survey [14], it is suggested that merging RGB-
D and IMU data can improve joint angle estimates accuracy.
Unfortunately, Feng et al. [15], who proposed to fuse JCP
estimated from RGB-D camera with IMU measurement in
a Kalman filter, did not assess the accuracy of upper limb
joint kinematics. They only showed that fusing data reduces
the uncertainty of hand position and acceleration estimates.
Later on, for video gaming application it was proposed to use
one IMU per segment and RGB-D data to reduce markerless
outliers but again joint angle estimates were not reported
[16].

Low-cost IMU, measuring 3D angular velocity and linear
acceleration, are subjects to a large non-linear and low
frequency drift that is due to manufacturing inaccuracies,
temperature change or ageing of electronic components.
This drift jeopardizes time integration of raw IMU signals.
Adaptive filters and magnetometers can be used to reduce
the drift effects but the latter are sensitive to ferromagnetic
disturbances and thus the community in biomechanics tends
to limit their use. Nevertheless, following several recent
studies, it is possible to estimate joint angles of upper limbs
with a multi-body kinematics model and one affordable IMU
per investigated segments with an accuracy lower of 5deg
[17], [18], [19]. Obviously, equipping a patient with one IMU
per segment is very cumbersome and limit the usability of
the system while increasing its costs.

To allow a more natural motion of the wearer, while
solving the multiple possible IK solutions problem, this
study proposes to use a method based on a reduced set of
Visual Inertial Measurement Units (VIMUs) coupled with a
markerless skeleton tracking algorithm. The use of VIMUs
also offers the opportunity to perform an anatomical sensor
to segment calibration for a better clinical interpretation of
the joint angles.

III. METHODS

We proposed to fuse IMU data, from a reduced sensor
set, with markerless data. Markerless data was used to solve
the redundant IK problem but introduced rather noisy data.
To reduce markerless outliers, a kinematic model of human
upper limbs including anthropomorphic constraints was used
and temporal relations between the state variables were
taken into account with a Sliding Windows IK Algorithm
(SWIKA). The overall method is described in Fig. 1.

A. Mechanical model

The mechanical model was composed of NL “ 4 rigid
links articulated with NJ “ 13 joints. The relative position
of successive segment Coordinates Systems (CS), as well
as the local VIMU position and orientation (pose) w.r.t
to segment CS, were determined through a wand based
anatomical calibration method [20], [21] (details about wand
anatomical pointing accuracy are discussed in Section V).
The successive segment CS of the kinematic chain as well
as the order of successive rotations were defined following
the International Society of Biomechanics recommendations
[22]. The upper-arm segment was linked to trunk through
three successive hinge joints, the lower-arm was linked to
upper-arm through two successive hinge joints and the hand
was linked to the lower-arm through two successive hinge
joints. The trunk floating base with respect to the camera
coordinate system Rc is defined through three prismatic and
three hinge joints. The Forward Kinematics Model is used
to calculate the position of joint centers p̂c

j , the orientation
R̂c

v and position p̂c
v of VIMU with respect to the camera

coordinate system Rc as follows:
”

p̂c
v R̂c

v p̂c
j

ı

“ FKM pθ,Pq (1)

where θ is the vector of joint angles and P is the vector
containing local VIMU pose and segment lengths. The first
and second differential models were used to estimate the 3D
angular velocities ω̂v

v and linear accelerations âvv measured
by the IMU, respectively:

ω̂v
v “ R̂c

v
TJR

9θ ` bω

âvv “ R̂c
v
T pJP

:θ ` 9JP
9θq ` ba

(2)

where 9θ and :θ are the joint velocity and acceleration
vectors, respectively. JP , JR, ba and bω are the positions
and orientation Jacobian matrices and the acceleration and
gyroscope bias, respectively.
The measurement function h was then defined as follows:

h “
“

p̂c
v, q̂c

v, p̂c
j , âvv, ω̂v

v

‰

(3)

The FKM and its derivatives were calculated with the
Pinocchio library [23] that efficiently implements state-of-
the-art rigid body algorithms for poly-articulated systems.

B. Affordable measurements

The vector of measurements y “

”

pc
v, qc

v, pc
j , avv, ωv

v

ı

was composed of the poses of the fiducal markers in the
camera frame, the JCP from markerless algorithm in the
camera frame and the acceleration and angular velocity of
the IMUs in their own frames. These data were gathered
using two VIMU attached to the trunk and the hand and
composed of 3.6cm fiducial markers located onto affordable
IMU (MPU6886, M5Stack MstickC-Plus1, 20C), see Fig.4.
The intrinsic parameters of the VIMU were estimated using
an already published self-calibration method [17]. The 3D

1https://shop.m5stack.com/
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Fig. 1: Overview of the proposed affordable and multi-modal Sliding Windows IK Algorithm (SWIKA).
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Fig. 2: VIMU and markerless measurements in the camera
frame (a). Representation of the joint configuration using the
proposed SWIKA during a pick and place task (b).
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Fig. 3: Mechanical model of human upper limbs and descrip-
tion of joint definition and technical CS.

pose of each VIMU with respect to the camera frame was
estimated using Aruco library [24] as shown in Fig. 2. VIMU
angular velocities and linear accelerations were measured
from the embedded IMU. The so-called markerless data, ie.
the shoulder, elbow and wrist 3D JCP are estimated using
Mediapipe pipeline [25]. The 2D estimate of JCP in both
camera images were obtained using BlazePose convolution-
nal neural network architecture. Then, the corresponding 3D
JCP expressed in camera CS were obtained thanks to a
triangulation2 calculated with a direct linear transform [26].
Fig. 2.a represents, as red dots, the 2D JCP estimates from
markerless data.

C. Sliding Windows Inverse Kinematics Algorithm (SWIKA)

The use of markerless skeletal tracker allows for alle-
viating the redundancy in solving the IK problem for the
given mechanical model. However, this comes at the price of
introducing noisy and discontinuous data in the IK process.
To solve IK within such context, the SWIKA is introduced
to take into account the whole time history of data evolution.
Doing so, the frequent outliers observed in markerless data
can be smoothed on a whole given trajectory. Moreover, a
sliding window has the advantage of imposing continuity
constraints for velocity and acceleration estimate unlike
classical multi-body kinematics optimisation approach that
are solving IK at a single sample. In addition, it seems
relevant to consider velocities and accelerations due to use
of IMU data. A sliding window was set for 1s of data of
NS “ 30 samples with a sampling time interval Ts “ 1

30 s.
The state vector of the SWIKA was defined as follows:

X “ rθ, 9θ, :θ,bω,bas (4)

where θ, 9θ, :θ P RNJˆNS are the respective trajectories
for joint configurations, velocities and accelerations on a
whole window. bω P R6ˆ1 and ba P R6ˆ1 are the bias
associated to each axis of gyroscope and accelerometer
sensors, respectively.

2https://github.com/TemugeB/bodypose3d



Hence, the formulation of the total optimisation problem
boils down to determine X˚ that allows to track the mea-
surement vector y as follows:

min
X˚

F pX˚q “ }rpX˚q}2 (5a)

subject to θ´
j ď θj ď θ`

j , @j “ 1..NJ , (5b)

θt`1 “ θt ` Ts
9θt, @t “ 1..NS (5c)

where rpXq is the function mapping the residuals between
the measurement vector y and its estimate by the model h
on the whole window as follows:

rpXq “ Ωpy a hpXqq (6)

Ω is the weight associated to the measurement (i.e. diagonal
covariance matrix). a is a retraction operator that allowed to
subtract 3D elements such as position, angular velocities and
linear accelerations but also elements from the Lie algebra
such as orientations using the log function [27], defined as :

y a h “

»

—

—

—

—

–

ppc
v ´ p̂c

vqT

ppc
j ´ p̂c

j qT

plog3pRc
v
T R̂c

vqqT

pavv ´ âvvqT

pωv
v ´ ω̂v

vqT

fi

ffi

ffi

ffi

ffi

fl

(7)

The physiological lower and upper joint limits θ´
j and

θ`
j are enforced by constraints (5b). (5c) embody an Euler

representation between some elements of the state vector and
their derivatives. They ensure that the solution is dynamically
consistent.

IV. EXPERIMENTAL SETUP

Three healthy male and two healthy female participants
(72˘13kg, 25˘1years, 1.78˘0.02m) were asked to perform
three repetitions of a pick and place task that is the core of
several rehabilitation exercises for upper arm. As shown in
Fig.5.a, the proposed approach was experimentally validated
using a SS as a gold standard reference system. Reflective
markers of the SS were placed on 10 anatomical land-
marks : processus xiphoideus, acromion, incisura jugularis,
C7 cervical vertebra, lateral epicondyle, medial epicondyle,
radial styloid, ulnar styloid, the second metacarpal head and
the fifth Metacarpal Head. Reference SS joint angles were
calculated using this marker template, the mechanical model
described in Section III.A and a classical extended Kalman
filter [28].

A. Affordable visual system setup and alignment

Two rolling shutter cameras (ELP-usbfhd08s, 1920 x 1080
MJPEG, 30fps, 70C) were placed in a static pose in front
of the subject. The intrinsic parameters, i.e. the projection
matrix and the distortion parameters, of each camera were
estimated prior the experiment using 50 chess-board static

48 mm 36 mm

17 mm

0T1
0T2

X

Z
Y

0TIMU

(a) (b)

(c)

Fig. 4: Figure representing (a) the affordable Visual Inertial
Measurement Unit (VIMU), (b) the transformation matrix
from IMU CS to fiducial marker CS and (c) the transforma-
tion matrices from lateral fiducial markers to central one.

poses and OpenCV3 camera calibration function. A repro-
jection error inferior of 0.8pixel for each camera calibration
was obtained. The homogeneous transformation matrix from
camera 1 to camera 2 CS c1Tc2 was estimated using the
fiducial markers positions, estimated from both camera im-
ages during the participant’s pick and place motion, in an
overdetermined system of equations [29] solved with a SVD.
The resulting residual was of 6.0 ˆ 10´3m.

B. Biomechanical models calibration and alignment

A calibration wand was designed with a fiducial marker of
0.18m width, and three reflective markers as represented
in Fig. 5.b. The position of the wand tip with respect to
wand fiducial marker CS and reflective markers CS were
estimated using a spherical motion of the wand, centered on
the wand tip, and performing a sphere fitting. The resulting
residual was of 1.0ˆ 10´4m with the reflective markers and
of 3.0ˆ 10´3m with the fiducial marker. The 10 anatomical
landmarks were pointed with the wand tip during an anatomi-
cal calibration phase [20], [17], constructing thus the segment
anatomical CS [22] as well as their successive local positions.
Doing so, the segments lengths were estimated. The local
position of reflective markers as well as the local pose of
VIMU with respect to the constructed segment anatomical
CS were calculated using their respective measurements
during the wand pointing phase.

V. EXPERIMENTAL VALIDATION

A. Cartesian space comparison

The raw 3D JCP estimated from the markerless skeleton
tracking algorithm and the ones when using the SWIKA were
compared to those obtained from the gold standard SS. This
comparison required the determination of the homogeneous
transformation matrix SSTcam expressing the position and
orientation of camera CS with respect to the SS one. We
propose to use directly the 3D positions of the 10 pin-pointed

3https://opencv.org/



RGB camerasSS cameras

VIMU

SS reflective 
markers

Calibration 
wand(a)

(b)

Fig. 5: Experimental setup (a) and anatomical calibration
process performed with the wand (b).

TABLE I: Comparison of the JCP estimated from the mark-
erless algorithm and from the proposed SWIKA approach
with the JCP estimated with the reference SS.

RMSE [m] PC
- Markerless JCP SWIKA JCP Markerless JCP SWIKA JCP

Shoulder 0.017 ˘ 0.01 0.013 ˘ 0.005 0.60 ˘ 0.23 0.50 ˘ 0.20
Elbow 0.024 ˘ 0.009 0.016 ˘ 0.007 0.83 ˘ 0.11 0.89 ˘ 0.05
Wrist 0.023 ˘ 0.007 0.019 ˘ 0.01 0.83 ˘ 0.11 0.93 ˘ 0.04
Mean 0.021 ˘ 0.009 0.016 ˘ 0.007 0.76 ˘ 0.15 0.77 ˘ 0.1

anatomical landmarks expressed in both camera and SS CS
to solve an overdetermined system of equations [29]. The
estimated matrix resulted in a RMSE of 0.006 ˘ 0.004m
between the SS wand tip positions and the fiducial marker
wand tip positions expressed in SS CS. Using the identi-
fied SSTcam matrix, the comparison of the markerless and
SWIKA obtained JCP is presented in Table I. Surprisingly,
the markerless JCP displayed a relatively low RMSE of
0.021 ˘ 0.009m and a Pearson Correlation coefficient (PC)
of 0.76 ˘ 0.15. When using the SWIKA, the RMSE was
23% inferior but with a similar PC. Fig. 6 shows a typical
comparison between JCP estimated with the SS, with the
markerless algorithm and with the SWIKA.

B. Joint space comparison

The reference joint angles obtained from the SS were used
as a reference to compare the joint angles obtained with the
SWIKA based on different modalities. Modality 1 refer to
the use of markerless data solely. Modality 2 refers to the
use of VIMU measurements only and Modality 3 refers to
the use of the SWIKA with both markerless and VIMU
data. Table II shows that the joint angles estimated with
VIMU only have the larger RMSE. This is most likely due
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Fig. 6: Shoulder, Elbow and Wrist JCP estimated from the
SS (black), from the markerless data (dashed green) and from
the SWIKA with VIMU and markerless data (red)

to the fact that the IK on the 7 DoF arm is redundant when
using only a VIMU at the end effector. Indeed, even within
joint limits, there are several possible shoulder/elbow/wrist
configurations for a given pose of the hand. Shoulder in-
ternal/external rotation and elbow pronation/supination are
also impossible to compute when the arm is fully extended.
The markerless algorithm shows a better RMSE but was
not able to estimate elbow pronation/supination and wrist
joint angles. Thus the corresponding average RMSE can
not be fully compared with the Modality 3. Modality 3, as
expected, displays the lowest RMSE and the significantly
higher PC of 0.8 compared to other modalities. This is due
to the fact that the markerless algorithm provides a relatively
correct measurement of the elbow JCP, with an accuracy of
0.024 ˘ 0.009m. Thus, it can can be used to overcome the
redundancy of the IK.

VI. CONCLUSIONS

This study introduces a multi-modal IK method based on
an affordable and reduced set of sensors for a rehabilitation
pick and place task. Using an anatomical calibration method
and the proposed SWIKA, it was possible to estimate joint
angles of the upper limbs with an average accuracy of



TABLE II: Joint angles comparison between the ones obtained from the reference SS and the ones calculated with the
SWIKA based on different modalities.

RMSE [deg] RMSE without offset [deg] PC
- Mod3 Mod2 Mod1 Mod3 Mod2 Mod1 Mod3 Mod2 Mod1

Shoulder flex./ext. 10.0 35.7 20.2 2.8 22.3 5.7 0.85 0.33 0.56
Shoulder int./ext. rot. 11.7 16.9 7.5 4.4 14.0 7.1 0.87 0.50 0.54
Shoulder abd./add. 4.9 37.9 10.9 2.0 28.2 3.8 0.89 0.31 0,78

elbow flex./ext. 6.0 8.9 6.7 3.7 4.4 5.9 0.80 0.76 0.62
elbow pro./sup. 9.4 29.3 - 3.4 26.5 - 0.98 0.58 -
wrist flex./ext. 18.3 20.7 - 4.2 16.6 - 0.98 0.63 -

wrist radial/ulnar dev. 7.3 14.58 - 3.4 10.7 - 0.57 0.50 -
Average 9.7 23.4 11.3 3.4 17.5 5.7 0.8 0.5 0.63

Time [s]0 26
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Fig. 7: Upper limb joint angles estimated from the SS
(black), and the SWIKA using solely the markerless data
(dashed green), the VIMU (dashed blue) and the VIMU and
markerless data (red).

9.7deg including the calibration offset and 3.4deg when the
calibration offset at the joint level was removed. This result
is comparable to state-of-the art studies that were using one
IMU per segments [17], [18] or very expensive and cum-
bersome multi-camera markerless algorithm [6]. The DoFs
with the largest errors were the shoulder internal/external
rotation and the wrist flexion/extension. In the literature
reporting results from IMUs or markerless system, shoulder
internal/external rotation is generally the joint angle with the
least estimation accuracy. This is due to complexity of the
shoulder joint composed of three bones and 2 joints leading
to large shoulder instantaneous joint centre misplacement,
indeterminacy when the arm is fully extended, and soft
tissue artefact affecting both the orientation of sensors and
position of reflective markers. Wrist flexion/extension may
be specifically affected, in the present study, by errors in
the pose of the fiducial marker placed on the hand. As

represented in Fig.5 our approach preserves the natural
motion of the participants and is easy to setup as only
a single VIMU was located on the hand. In general it is
commonly accepted that below 5deg of RMSE without the
calibration offset the joint angle estimates are considered
accurate enough for functional rehabilitation purpose [17].
The sensor to segment calibration method has a major impact
on the results [30] and this step, of the proposed method,
could be further improved including functional axes or the
use of the JCP obtained by fusing VIMU and markerless
data in the calibration process. Future works will typically
focus on using functional calibration for improving the self-
usability of patient for in home applications. We also would
like to assess the proposed approach in the context of
human-robot interaction and for more rehabilitation tasks as
described in clinical context [1], [17].
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