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Abstract- This paper presents new sufficient conditions for state and fault estimation of nonlinear systems. A new approach is proposed 

to deal with unmeasured premise variables and corrupted outputs. The adopted observer strategy consists of a scheduled gain that 

depends only on the estimated outputs provided by the observer. The design of such scheduled gain follows from a technical rewriting 

of the state error and uses the Lyapunov framework to derive sufficient conditions written as linear matrix inequalities. Such conditions 

are less conservative than existing approaches that deal with unmeasured premise variables. The effectiveness of the developed approach 

is assessed through a numerical single-link robotic arm and on a real car based experimental setup available at the laboratory. 

 

Index Terms- Nonlinear observers, fault estimation, Takagi-Sugeno models, Linear Matrix Inequality (LMI). 

I. INTRODUCTION 

bservers are usually referred to estimate system states in presence of noise and of perturbations in both sensors and system [1]. 

Even though this task is made more difficult if the target system is nonlinear, different strategies are available in the literature to 

tackle such problem. For instance, the works of Mahony & al. [2], of Engel [3] or, more recently, of Bernard & Andrieu [4] adopt the 

so-called global approaches. Alternatively, as proposed in Shim & al [5], semi-global approaches can be also applied. Finally, local 

approaches exploiting quasi-linear parameter-varying (quasi-LPV) systems and Takagi-Sugeno (T-S) based models are discussed in 

Ichalal & Mammar [6], in Lendek & al [7] and in Bergsten & al [8]. 

 

As discussed in Perez & al [10], two fault-tolerant observer techniques are commonly referred in the literature. One relies on methods 

dedicated to deal with uncertainties and to ensure that the observer convergence is robust to the uncertainties caused by the mismatch 

between premise value and measurement. For example, Pourashgar & al [11] approximate the uncertainties (on premises and overall) 

to zonotopes and apply recursive approaches, under the assumption that the uncertainties are bounded. Also, Oliveira & Pereira [12] 

design discrete-time Unknown Input Observers (UIOs) to deal with uncertainties presenting a limited parameter variation. 

 

The second approach directly tackles corrupted or unmeasured premises and relies on the input-to-state stability property. It ensures 

bounded error convergence, regardless of a perturbation term and of a Lipschitz condition in the LMI expression related to the 

perturbation. In Quadros & al [13], the authors design a discrete-time fault hiding observer for T-S systems under actuator and sensor 

faults with unmeasured premise variables, considering the LMI framework and the differential mean value theorem. H
 performance 

is guaranteed for both virtual actuators and sensors. In Xie & al [14], unknown premise problems are handled with dedicated observers, 

under the assumption of a relaxed form of the separation principle. The proposed functional observer-based design is shown to be stable 

and robust to external disturbance. In Gómez & al [15], sliding mode UIOs are proposed for T-S systems with bounded uncertainties on 

premise variables. Sliding mode is also used in Zhang & al [16], in which the problem is rewritten as a system with uncertainties and 

unknown input, and gain scheduling feedback is synthesized to cope with the estimation error. Slack matrices are introduced to reduce 

conservatism of the LMI formulation. Specific Fault Detection and Isolation (FDI) are also investigated in T-S systems with unknown 

premise variables, as in Hassani & al [17]. Due to the convenient UIO form, the isolation and even the estimation of additive faults are 

addressed directly. In this work, type-2 fuzzy sets are used to improve the estimation with (some) unmeasured premise variables. 

 

Overall, the discussed research considers together a LMI constraints and Lyapunov frameworks under specific assumptions with respect 

to the premise uncertainties or faults. The results rely yet upon bounded uncertainties in the best case as in the well-known [16] or [24] 

for example. Also, the cited methods are not exhaustive: there exist other frameworks to tackle sensor faults in nonlinear systems under 

perturbation. For instance, Reppa & al [18] consider an adaptive approach and couple a neural network approximator with distributed 

sensor fault isolation. However, this research is focused in dealing specifically with unmeasured premises in T-S form. Adaptive neuro-

fuzzy inference technique called MANFIS was used in [36] along with zonotopic observers for wind turbine robust fault detection under 
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uncertainties. Zonotopes are used as bound for uncertainties. An adaptive NL approach was also investigated in [24] for fault diagnosis 

and accommodation under sensor bias. Bounds are assumed on the state, on the nonlinearity and on the rate of sensor bias. Considering 

a different topic, related to missing feedback information, and the necessity to estimate this missing information, Ajwad et al. [35] 

proposed a solution for lead-follow control problem for multiagent systems using continuous-discrete observers [40,41]. Leader model 

is considered unknown. The exponential consensus of the agents under partially missing information was achieved based on time-scale 

theory and results of [33]. In a similar context, interval observer-based coordination control was tackled for multiagent systems over 

directed networks in [34], with uncertainties, measurement noise, and unknown initial states. However, bounding information and output 

information are considered known. 

 

This paper investigates the design of fault-tolerant observers that rely on output estimates provided by the observer itself, both for 

premises and for the feedback injection. Theoretically and practically, the premise variables cannot be considered always measurable 

and moreover, even measured, they can include uncertainties and/or be corrupted, as in the case of sensors malfunction. Therefore, a 

dedicated fault-tolerant observer design is required. The feedback injection consists of a scheduled gain, which is obtained using the 

Lyapunov framework under specified conditions. The assumptions on the sensor faults (and subsequently on the unmeasured premises) 

are relaxed, provided that the faults are not considered strictly bounded, but expressed as a chain of integrators. It is an improvement 

over a previous work by the authors [19]. The approach is also different from recent works on the topic such as [29] or [30], where the 

scheduling variables are exogenous with assumed polynomial relationship with respect to the state. As in [30], the design doesn’t  require 

the preliminary design of a parameter-dependent observer and considers a broader range of uncertainties/perturbations. It is also 

necessary to emphasize the challenge of deriving observer design conditions for implicit premises over external scheduling parameters 

(see [10], [29], [30], [31]). Using the latter approaches implies to assume a bound (a measurement) of the uncertainty, contrary to the 

presented approach, where no such bound is assumed.  

In this paper, general conditions are provided for the estimation and convergence of the state and the fault signals. These conditions are 

transformed into LMI constraints using the so-called quasi-LPV, also called Takagi-Sugeno, framework for practicality (see discussion 

in [32]). This framework is efficient to deal with nonlinearities that can be described by the sector nonlinearity concept, which depends 

on the precise knowledge of premise variables [9]. The methodology proposed in the paper allows to give a solution to this hard problem 

of state observer convergence conditions for systems with corrupted premise variables; as these variables impede known LPV design 

approaches, like gain scheduling.  

The remaining of this paper is organized as follows: Section II gives some technical lemmas useful for the main result and formulates 

the problem presenting the considered class of nonlinear systems. Section III proposes a novel approach with LMI-based conditions to 

design a fault-tolerant nonlinear observer. Two illustrative examples, an academic one and one using real time experiments, are given 

in Section IV to illustrate the method. Section V concludes this paper and suggests possible future research topics. 

 

Notations. n  and n m denote the real n -dimension Euclidean space and the set of n m  real matrices, respectively. TX  is the 

transpose of X . If n nX  ,  He TX X X= +  represents the Hermitian operator. If TX X= , 0X  ( 0X ) implies that X  is 

positive (negative) definite. nS+
 is the set of matrices n nX   such that 0X . The Kronecker product operator is represented by  ; 

( )
0

diag ,
0

X
X Y

Y

 
=  
 

. ( )co   stands for the convex hull, nI  is the identity matrix of size n . n m0  is a null matrix of dimension n m . 

Dimensions and function arguments will be omitted whenever their understanding is straightforward.  

 

II. PRELIMINARIES 

II.A. SYSTEM DESCRIPTION 

Consider a class of continuous-time affine-in-the-control quasi-LPV systems described by 

 

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )

( ) ( ) ( )

,

,

x t A y t x t B y t u t

y t Cx t

z t y t Ev t

 = +


=


= +

 (1)  

where ( ) xn
x t  is the state, ( ) un

u t  is the input vector, ( ) yn
y t  is the output vector, ( ) yn

z t  is the measured output vector 

corrupted by the fault ( ) vn
v t  , with 

v yn n , and xn

x   is a given compact set. Systems (1) are supposed to satisfy to the 

following three assumptions. 
 

Assumption 1. The scheduling variable of (1) is composed by continuously differentiable functions of ( )y t . 
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Assumption 2. The pair ( )( )( ),A y t C  is observable. 

Assumption 3. The fault ( )v t  can be “captured” by a cascade of   integrators, such that ( ) ( )
( )

0
d v t

v t
dt





= = , with  . 

Of course, the last assumption will be helpful to derive a so-called PI-observer [37-38]. Note that there is no fault/perturbation bounding 

assumption. Also, with Assumption 2 and as ( ) zrank v n , this kind of observer can always be built. 

II.B. USEFUL TECHNICAL LEMMAS 

The first lemma recalls the Differential Mean Value Theorem (DMVT) [20]. 

Lemma 1. (Differential Mean Value Theorem [20]). Let a ,
nb  and ( ) : nf z →  be a differentiable function on  ,a b . There 

exists 
nc , with ( )co ,c a b , i.e., i i ia c b   for all  1i n , such that 

 ( ) ( ) ( )( )'f b f a f c b a− = −  (2) 

with ( )
( ) 1' n

z c

f z
f c

z



=


= 


.  

A second technical lemma, useful for the main result, is also introduced. Consider a matrix ( ) m nA y   whose entries depend linearly 

on the entries of a vector py , i.e., with  1i p  m n

iA  : 

 ( ) 0

1

p

i i

i

A y A A y
=

= +  (3) 

Considering any vector 
1nx  , the next lemma gives a rewriting of the vector ( ) 1mA y x  . First of all, notice that: 

 ( ) ( )0

1

p

i i

i

A y x A x A x y
=

= +  (4) 

Therefore, if some of the matrices m n

iA   are sparse-in-column, we may consider the matrices im n

iA


 , in n , for  1i p , 

that are extracted from m n

iA   removing the in n−  null columns. Thus, defining the corresponding vector 
1inix


  removing its 

corresponding in n−  rows: 

 ( ) ( )0

0

1

p
i

i i

i

A y x A x A x y
=

= +  (5) 

 

Lemma 2. Let ( ) m nA y   be a matrix whose entries depend linearly on the entries of a vector py  (3) (respectively (5)), define 

( )
1

m n p

pA A
 

 =  A  according to (4), (respectively 1

1

p

ii
m n

pA A =
 =  A  according to (5)), then:  

 ( ) ( )0 pA y x A x I x y= +   A  (6) 

 ( ) ( )0 1

0

pA y x A x diag x x y = +   A  (7) 

 
Proof of Lemma 2. (6) is direct considering that:  

 ( ) ( )
1 1

1 1 1 1

1

1 1

0 0

0 0

0 0

n n p

p p n n p i i

i

n n

x

I x y A A y A x A x y A x y

x

 

 

=

 

 
       =   =  =    
  

A  (8) 

which is exactly (4). The same way for (7): 

 ( ) ( )

1 1

2

1

1

1 1

2

11 1

1 1

11

1 1

0 0

0

0

0 0

p

p p

n n

p
np p i

p p i i

in

p

n n

x

x
diag x x y A A y A x A x y A x y

x

−

 



=

 

 
 
 

      =   =  =     
 
 
 

A  (9) 

which is exactly (5). This concludes the proof.  
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Example 1. Consider the vectors 
3x , 

1 2

2

y
y

y

 
=  
 

 and the matrix ( )
1 2

3 3

1

1 1 2

3 1 4

0 1 1 .

2 2

y y

A y y

y y y



− 
 

= + 
 
 + − 

 The matrix ( )A y  can be 

rewritten in the form  

 ( ) 2 1 20 1 1 2

0 1 4 3 0 0 0 1 0

0 1 1 0 1 0 0 0 0

0 0 2 1 1 0 0 2 0

A y A A y A y y y

−     
     

= + + = + +
     
     −     

. (10) 

Then, it follows that  

 2

3 6

1

3 0 0 0 1 0

0 1 0 0 0 0 .

1 1 0 0 2 0



 −    
    

= =     
        

A AA  

Removing the null columns in A  gives directly: ( )3 2 1

3 0 1

0 1 0

1 1 2

 +

 −    
    

=     
        

A  associated with 
11

2

x
x

x

 
=  
 

 as the 3rd column of 1A  is 

removed and  2

2x x=  as the 1st and 3rd columns of 2A  are removed, from where: 

 ( ) ( )
 

1

20 1 2
20

3

2

01 4 3 0 1

01 1 0 1 0

0 2 1 1 2 0

x
x

xA y x A x diag x x y y
x

x

  −        
            = +   = +             
         −        

A  (11) 

II.C. PROBLEM STATEMENT 

Following the assumptions, a PI-observer can be built from (1) to reconstruct the fault ( )v t . As usual, consider a cascade of integrators 

with 
( ) ( ) 0v t


= ,  , that captures the fault dynamics. Let us define ( ) vn
V t


  an expanded state vector 

( ) ( ) ( ) ( ) ( ) ( )1 1
T T

T TV t v t v t v t
 − =

  
. Then, using the extended vector 

( )

( )

x t

V t

 
 
 

, system (1) can be rewritten as  

 

( )

( )

( )( ) ( )

( )

( )( )
( )

( ) ( ) ( )
( )

( )

0

0 0

,

A y t B y tx t x t
u t

V t V tJ

x t
y t Cx t z t C

V t

       
= +       
         


 

= =  
 

 (12) 

with 
( )1

0

0 0

v v v
n n n

I
J

  − 
 

=  
  

 and   ( )
0

 +
=  y x vn n n

C C E . From (12), it is direct to design a PI-observer as 

 

( )

( )

( )( ) ( )

( )

( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )
( )

( )

1
ˆ ˆˆ ˆ0

ˆ
ˆˆ 0 0

ˆ
ˆ ˆ ˆ,

ˆ

−
      
  = + +  −    
            


 
= − =  

   

x t x tA y t B y t
u t P K z t z t

V tJV t

x t
y t z t Ev t z t C

V t

 (13) 

where x vn n
P S

+

+  and ( ) x v yn n n
K

+ 
   are matrices to be determined whose arguments will be defined later on.  

Remark 1. The form of (13) belongs to the family of the so-called non measurable premise variables, which appears to remain an open 

problem in the general nonlinear case. In comparison, classical approaches will define the observer using the measured variables, i.e., 

( )( )A z t , ( )( )B z t  instead of ( )( )ˆA y t , ( )( )ˆB y t , with the inherent problem that it will propagate the fault into the state of the observer. 

The interest of the form (13) can be seen directly from the relationship ( ) ( ) ( )ˆ ˆy t z t Ev t= − . On one side, it can resume to a no-fault 

case ( ) ( )ŷ t z t= , and on the other, it recovers the true output variable ( ) ( )ŷ t y t→  if the estimated fault converges: ( ) ( )v̂ t v t→ . In 

the following, conditions that enforce exponential convergence of the estimation are given in Theorem 1 and the related LMI formulation 

are in Theorem 2. 
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Remark 2. The gain ( )K   and its argument are undetermined at this stage. Lyapunov framework and LMI constraints are the way to 

determine the gain. Therefore, the argument of ( )K   can vary from parameter independent, i.e., constant K , to any variables that can 

depend on measured and/or internal observer variables only, i.e. x̂ , ŷ  and  V̂ , as examples, either ( )ˆK x  or ( )ˆK y , or ( )ˆ ˆ,K x y , or 

( )ˆˆ ˆ, ,K x y V . Generally, the more variables used the better the result is, as we use a polytopic description of ( )K   ( ( ) ( )i ii
K h K =

)  and a gain iK  is derived for each of its vertex i . This gain scheduling and/or LPV design is known to allow better performance for 

controllers/observers than robust LTI design when scheduling parameters are available [37]. One of the contributions of this article is 

to extend the classical approaches for cases where a part of the scheduling parameters is unavailable or corrupted (see Remark 1).  

 

Problem 1. Based solely on the corrupted measurements ( )z t , find an observer of form (13) capable to asymptotically estimate together 

the state ( )x t  and the fault vector ( )v t  of system (1). 

 

III. MAIN RESULTS 

In order to find a solution to Problem 1, consider the extended error ( ) x vn n
e t

+
  is defined as 

 ( )
( )

( )

( ) ( )

( ) ( )

ˆ
.

ˆ
x

V

x t x te t
e t

e t V t V t

−  
= =   

−    

 (14) 

The time derivative of ( )e t  can be developed from (12) and (13) as follows: 

 ( )
( ) ( ) ( ) ( )

( )1
ˆˆ ˆ0 0

ˆ0 0 0 0

xxA y A y B y B y
e t u P K Ce

VJ J V

−
          

= − + − −             
           

 (15) 

Using ( ) ( ) ( )ˆ
xx t x t e t= − , (15) is equivalent to: 

 ( )
( )

( )
( ) ( ) ( ) ( )1

ˆ ˆ ˆ0

0 0 0

A y A y A y B y B y
e t P K C e x u

J

−
  − −     

= −  + +       
      

 (16) 

In (16) appear the two quantities ( ) ( )( )ˆA y A y x−  and ( ) ( )( )ˆB y B y u−  on which the DMVT and the technical lemma can be applied. 

Using the DMVT, trivially, each of the entries of ( ) ( )ˆA y A y−  and ( ) ( )ˆB y B y−  will linearly depend on the vector ˆy y− . For example, 

with ( ) 3

11 2

21

y
a y

y
=

+
, ( ) ( )

( )
( )

( )2 3

11 11 2 2
2

2
2

2 1
ˆ ˆ0

11
Ay c

y y
a y a y y y

yy
=

 
− − = −

 ++
 

. Thus, it exists ( )ˆco ,Ac y y  and ( )ˆco ,Bc y y  (both 

understood component wise) such that: 

  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

ˆ ˆ'

ˆ ˆ'

v

A

v

A

n

i ic i
i

n

i ic i
i

A y A y A y y

B y B y B y y

=

=

− = −

− = −





 (17) 

 

From (12) and (13), it follows that y z Ev= − , and ˆ ˆy z Ev= − , respectively. Therefore, using the previous notation (3) and introducing 

the faults error vector ( )ˆve E v v= − , it follows that  

 

( ) ( ) ( )

( ) ( ) ( )

1

1

ˆ '

ˆ '

v

A

v

B

n

vic i
i

n

vic i
i

A y A y A e

B y B y B e

=

=

− = −

− = −





 (18) 
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Expression (18) exhibits two matrices ( ) ( )ˆA y A y−  and ( ) ( )ˆB y B y−  whose entries depend linearly on the vector vie . Therefore, 

Lemma 2 can be applied to both terms ( ) ( )( )ˆA y A y x−  and ( ) ( )( )ˆB y B y u− . Defining ( ) ( ) ( )1
' ' '

A A
A c c p

c A A =
 

A  and 

( ) ( ) ( )1
' ' '

B B
B c c p

c B B =
 

B  in the same way as (5): 

 
( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

1

1

ˆ ' '

ˆ ' '

p

A v A x v

p

B v B u v

A y A y x c diag x x e c x e

B y B y u c diag u u e c u e

 − = −   = −   

 − = −   = −   

A A D

B B D
 (19) 

Example 2. Consider a vector 
1

2

y
y

y

 
=  
 

 and a matrix ( )

( ) ( )

( )

( ) ( )

1 1 3 1 2

3 3

2 1

2 1 14 2

3 1 , 4

0 1 2 1

, 2

f y f y y

A y f y

f y f y y



− 
 

= +  
 − 

, with ( )if  , for  1 4i , 

continuously differentiable scalar functions. Expression (17) corresponds to 

 ( ) ( )

( )( ) ( ) ( ) ( )

( )( )

( )( ) ( ) ( ) ( )

3 3

1 1 1 1

1 2

2 1 1 1

4 4

2 1 1 1

1 2

ˆ ˆ3 ' 0

ˆ ˆ0 2 ' 0

ˆ ˆ' 0

T

A A A

A

T

A A A

f f
f c y y c c y y

y y

A y A y f c y y

f f
f c y y c c y y

y y

   
 − − − 

   
 

− = − 
 

   − − 
    

 (20) 

And (18) to: 

 ( ) ( )

( ) ( )

( )

( ) ( )

( )

( )

3 3

1 1

1 2

2 1 1 2

4 4

2 1

1 2

3 ' 0 0 0

ˆ 0 2 ' 0 0 0 0

' 0 0 0

A A A

A v v

A A A

f f
f c c c

y y

A y A y f c e e

f f
f c c c

y y

    
− −    

   
   − = − −
   

    
       

 (21) 

Therefore, it is easy to build: ( ) ( ) ( )

( ) ( )

( )

( ) ( )

( )

( )

3 3

1 1

1 2

2 11 2

4 4

2 1

1 2

3 '

' ' ' 0 2 ' 0

'

A A

A A A

A Ac c

A A A

f f
f c c c

y y

c A A f c

f f
f c c c

y y

      
− −         

      = = −
      

     
         

A  by removing the empty columns 

of (21), thus 
11

2

x
x

x

 
=  
 

 and  2

2x x= . Finally, expression (19) writes 

 ( ) ( )( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )
 

3 3

1 1

11 2

11
22 1

2

4 4 2
2 1

1 2

3 '
0

ˆ 0' 0 2 ' 0

0
'

A A A

vp

A v A

v

A A A

f f
f c c c

xy y
e

xA y A y x c diag x x e f c
e

f f x
f c c c

y y

  
      
     
  − =   = −      
        
   

A  (22) 

Theorem 1. With 0 v v

v

n n

v nJ I
 =   , considering the matrices ( )' AcA , ( )x xD , ( )' BcB  and ( )u uD  defined in (19), given a 

scalar 0  , if there exist matrices x vn n
P S

+

+  and ( ) ( )+ 
  x v yn n n

K  such that 

 
( ) ( ) ( ) ( ) ( )( )

( )
ˆ ' '

0.
0


  −  +  

−  +  
    

A x B u vA y c x c u J
He P K C P

J

A D B D
 (23) 

Then, the observer (13) is able to estimate ( )x t  and the fault vector ( )v t  of system (1) with an exponential rate of convergence  . 

 

Proof: From (19), the error dynamics (16) can be rewritten as 

 ( )
( )

( )
( ) ( ) ( ) ( )1

ˆ 0 ' '

0 0

A x B u
v

A y c x c u
e t P K C e e

J

−
      + 

= −  −     
    

A D B D
 (24) 
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with ( ) ( )1 p

x x diag x x =  D  and ( ) ( )1 p

u u diag u u =  D . Now, considering that  ˆ 0
x

v v

V

e
e v v J

e

 
= − =  

 
 with 

0 v v

v

n n

v nJ I
 =   , the error dynamics (24) becomes 

 ( )
( ) ( ) ( ) ( ) ( )( )

( )1
ˆ ' '

0

A x B u vA y c x c u J
e t P K C e

J

−
  −  + 
 = −  
    

A D B D
 (25) 

Consider the quadratic Lyapunov function 

 ( )( ) ( ) ( ), 0.T TV e t e t Pe t P P= =  (26) 

Taking the time-derivative of ( )( )V e t  along the trajectory of (25) while considering a decay rate 0  , it follows that  

 ( )( ) ( )( ) ( ) ( ) ( ) ( )2 + = +T TV e t V e t e t Pe t e t Pe t  (27) 

which corresponds to (23). This concludes the proof.   

 

In order to derive a feasible LMI problem to condition (23), we define expressions via a polytopic formulation using compact sets 

respectively of the output, state and control variables, ˆ
yy , 

xx   and 
uu  . First, consider that the gain of the observer can 

only be based on measured variables, thus, ŷ  and u . Therefore, a polytopic representation of ( ) ( )
ˆ,

+ 
 x v yn n n

K u y  is given as   

 ( ) ( ) ( )
1 1

ˆ ˆ, . 
= =

=
yu

u y u y

u y

mm

i i i i

i i

K u y u y K  (28) 

where the matrices 
( )+ 

 x v y

u y

n n n

i iK , for  1, ,u ui m  and  1y yi m , are the vertices to be determined, and 

 ( ) ( ) ( ) ( )
1 1

ˆ ˆ0, 1, 0, 1.   
= =

 =  = 
y u

y y u u

y u

m m

i i i i

i i

y y u u  (29) 

Writing ( ) ( ) ( ) ( )' 'A x B uc x c u + A D B D  in a polytope can be done in many ways. Considering ( )ˆco ,Ac y y  and ( )ˆco ,Bc y y , 

a general writing is given by  

 ( ) ( ) ( ) ( ) ( ) ( )
1 1

' ' , , 
= =

 +  =
pu

u p u p

u p

mm

A x B u i i A B i i

i i

c x c u u c c xA D B D X  (30) 

with ( )
1

1
=

 =
p

p

p

m

i

i

, ( ) 0
pi

   ,  for  1, ,p pi m , and the vertices 
u pi iX , for  1, ,u ui m . 

Theorem 2. Consider 0 v v

v

n n

v nJ I
 =   , the compact sets 

y , 
x , 

u  such that ˆ
yy , 

xx  , 
uu   and considering the 

matrices 
u pi iX , with  1, ,u ui m , for  1, ,p pi m , defined in (30). Given a scalar 0  , if there exist matrices x vn n

P S
+

+  and 

( )+ 
 x v y

u y

n n n

i iK , for  1, ,y yi m , such that the LMI constraints 

 0
0

y u p

u y

i i i v

i i

A J
He P K C P

J


 −  
− +  

    

X
, ( ), ,u y pi i i  (31) 

are satisfied. Then, the observer (13) is able to estimate ( )x t  and the fault vector ( )v t  of system (1) with an exponential rate of 

convergence  . 

Proof: Using expressions (28) and (30) and considering that with the functions ( )ˆ
yi

y  defined for (28), ( ) ( )
1

ˆ ˆ
=

=
y

y y

y

m

i i

i

A y y A , condition 

(23) can be written as  

 ( ) ( ) ( )
1 1

ˆ , , 0
0

   
= =

  −  
 − +  
      


y pu

y u p

y u p u y

y u p

m mm
i i i v

i i i A B i i

i i i

A J
y u c c x He P K C P

J

X
, ( ), ,u y pi i i  (32) 

which obviously holds if conditions (31) are satisfied. This concludes the proof.   

 

Remark 3. LMI constraints can be added to achieve enhanced performances. For example, limiting the observer gain can be relevant 

and obtained using the following constraints, given a scalar 0  : 
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    0, 1, , , 1, ,
 

  
  

u y

u y

i i

u u y yT

i i

P K
i m i m

K I
 (33) 

Remark 4. Note that the observer (13) does not use any of the variables ( )ˆco ,Ac y y , ( )ˆco ,Bc y y  and x . These variables are only 

useful for deriving conditions that prove the convergence. In (23) they can be seen, and are treated like uncertainties, i.e., the conditions 

must hold in the full compact set, therefore in the domain defined by the vertices appearing in (31). 

Remark 5. The numerical complexity of LMI-based optimizations can be evaluated by the number of scalar decision variables varN and 

the number of rows rowN  of all considered LMI conditions (number of LMI constraints x number of rows of each constraint). For 

Theorem 2, these numbers are given as follows: 

 
( ) ( )( )
( )

var 0.5 1

.

x v x v y u y

row x v p u y

N n n n n n m m

N n n m m m

 



= + + + +

= +
 (34) 

These numbers characterizing the numerical complexity of LMI constraints are illustrated in Section IV for the proposed quasi-LPV 

observer design of two physical-motivated applications. Note that different LMI solvers may exhibit varying numerical complexities 

with respect to varN  and rowN . However, such a numerical complexity accounts only for the offline computations. Hence, in comparison 

to a non-fault tolerant PI observer, the practical use of the proposed quasi-LPV observer (13) just corresponds to an increase of 

computation due to the polytope based on (28). 

IV. ILLUSTRATIVE RESULTS 

This section presents two physical-motivated examples to show the effectiveness of the proposed fault tolerant observer design. The 

LMI-based constraints in Theorem 2 are solved using the MOSEK [22] and YALMIP [23] packages alongside MATLAB 2021b. 

IV.A. NUMERICAL EXAMPLE (SINGLE-LINK ROBOTIC ARM) 

The dynamics of a single-link robotic arm with a revolute elastic joint can be described by [24]: 

 
( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( ) ( )

1 1 1 2 1

2 2 1 2

sin 0,

,

l l

m m

J q t q t k q t q

u

F t mgh q

tJ F

t

q q t k q t q t k t





+ + − + =

+ − − =
 (35) 

in which ( )1q t  and ( )2q t  are respectively the angular positions of the link and of the motor of the robot, and ( )u t  is the armature 

current flowing through the robot motor. The robot parameters are constant and set as [24]: link inertia 24.5 kgmlJ = , motor rotor 

inertia 21 kgmmJ = , elastic constant Nm2 k = , link mass 4 kgm = , gravity constant 2.8 9 m/sg = , distance to the center of mass 

 m0.5h = , torque coefficient 1 Nm/Ak = , viscous friction coefficients s0.5 NmlF =  and 1 NmslF = . 

Let ( ) ( ) ( ) ( ) ( )2 2 1 1

T

x t q t q t q t q t=     and ( ) ( ) ( ) ( )2 1 1

T

y t q t q t q t=    . The validity region of (35) is defined as: 

( ) ( ) ( ) ( ) 1 1 2 2, 10, , 10x q t q t q t q t   =   . The nonlinearity is taken into account using ( )( ) ( )

( )
1

1

sin
,

q t

q t
f y t f f = 

  , with f  

and f  being the minimum and maximum values of ( )( )f y t  inside the compact set 
x . Thus, the model (35) can be represented in 

the state-space form (1), with 

 ( ) ( )( )0 1 0 1

0 0 0 0 0
0 1 0 0

0 0 0 01 0 0 0 0
, , , , 0 0 1 0 .

0 0 00 0
0 0 0 1

0 0 0 0 00 0 1 0

 − −   
     
     = + = = = =     −−               

m

m m m

l
l

m

l

l l

F k k

J J J

mgh
Fk

k

k
J

J J J

J

A y A f y t A A A B C  (36) 

Then, it is direct that ( ) ( )( ) ( ) ( )( )1 1 4
ˆ ˆ0 0 0

l

T
mgh

J
A y A y x f q f q x − = −

  . With ( )
( ) ( )1 1 1

1 2

1

cos sin
'

q q q
f q

q

−
=  and considering 

notations (19), with ( )1 1̂co ,Ac q q , it corresponds to 

 ( ) ( )' 0 0 ' 0
l

T
mgh

A AJ
c f c = −

 
A  and ( )1

4 1

pdiag x x x q  = =   (37) 

It turns out that ( ) ( )( )ˆA y A y x−  has only one nonlinearity ( ) ( )  1 1, ' ,A Ac q f c q  =  − , with 1.37 = , the maximum value 

computed over the set ( ) ( ) 1 1,q t q t  . Therefore, expression (30) corresponds to 
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 ( ) ( ) ( )
2

1

1

' ,
p p

p

A x i A i

i

c x c q
=

 =A D X  (38) 

with ( )
( )

( )1

1 1 2 1

,
, 1 ,

2

A

A A

c q
c q c q

 
 



+
= = − , 1 0 0 0

l

T
mgh

J
 =

 
X  and 2 0 0 0

l

T
mgh

J
 = −

 
X . We consider the faults 

possibly impacting 13x q=  and 14x q= , thus 
0 1 0

0 0 1

T

E
 

=  
 

 and a cascade of two integrators is used, i.e., 2 = . Considering 10 =  

(Remark , gain limitation (33)) and a decay rate 10 = , the gains of observer (13) are given by  

 
1 1

1 2

178.79 2.75 0.89 177.96 -11.49 -0.06

20.75 0.20 -0.49 20.71 -0.83 -0.57

9.88 177.70 286.88 12.11 17

330.19 7.07 48.38
,

-11.02 -0.18 -291.92

-329.67 -6.07 -25.49

0.08 0.01 -5.99

-3.69 -0.07 0.16

− −

 
 
 
 
 
 = =
 
 
 
 
 
  

P K P K

2.35 286.65

328.19 -24.68 46.47
.

-11.93 2.89 -291.95

-327.55 25.52 -23.57

0.06 0.04 -5.99

-3.67 0.28 0.19

 
 
 
 
 
 
 
 
 
 
 
  

 (39) 

The numbers characterizing the numerical complexity for this example are computed as 
var

84N =  and 32
row

N = , which represent a 

low level of computational burden for an LMI-based optimization problem. The robot model (36) is simulated with the application of 

the observer gains (39), as shown in Figure 1–Figure 5. Initial conditions are chosen as  0 5 0 4 0
T

x =  and the input 

( ) ( )sin 22u t t= . Different types of fault ( )v t  corrupting the output ( )y t  are considered: steps (Figure 1b), sinuses (Figure 2b), 

trapezia (Figure 3b) and white noises (Figure 4b). For the sake of space, only the state ( )x t  for the step fault ( )v t  are depicted in 

Figure 5. Apart from the case of white-noise fault ( )v t , notice that the estimated output ( )ŷ t  and state ( )x̂ t  converge respectively to 

( )y t  and to ( )x t , even in the presence of fault ( ) 2v t  . The fault ( )v t  is also accurately estimated. On the other hand, Figure 4 

illustrates a drawback of the observer design approach presented in this paper: as white-noise fault ( )v t  cannot be captured by a cascade 

of integrators with   finite (ideally,  → ), the observer proposed in (13) is unable to properly estimate the fault ( )v t . As a result, 

there is an inherent gap between the estimated output ( )ŷ t  and the system output ( )y t . 

 
(a) 

 
(b) 

Figure 1. (a) Output ( )  1 1

T
y t q q=  (blue solid line), measured output ( )z t  (green solid line), estimated output ( )ŷ t  (red dashed 

line), estimated measured output ( )ẑ t  (black dashed line), (b) Step fault ( )v t  (blue solid line) estimated fault ( )v̂ t  (red dashed line). 
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(a) 

 
(b) 

Figure 2. Same as Figure 1, but considering sinusoidal fault ( )v t  corrupting output ( )y t  of system (36). 

 

 
(a) 

 
(b) 

Figure 3. Same as Figure 1, but considering trapezoidal fault ( )v t  corrupting output ( )y t  of system (36). 

 

 
(a) 

 
(b) 

Figure 4. Same as Figure 1, but considering white-noise fault ( )v t  corrupting output ( )y t  of system (36). 
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Figure 5. State ( )x t  (blue solid line) and estimated state ( )x̂ t  (red dashed line) responses applying the observer gains (39) for system 

(36), with step fault ( )v t  corrupting its output ( )y t . 

IV.B. REAL DATA EXAMPLE: VEHICLE DRIVING 

A real car-based experimental setup is proposed to validate the approach. The idea is to use real data coming from real experiments and 

show that with a “simple” bicycle model as core of the observer, it is possible to estimate together the state and the faults. It means that 

despite the inevitable errors due to the modeling, the approach is sufficiently robust to give good results. The experimental data is 

recorded from a car available at our Lab LAMIH UMR CNRS 8201 in Valenciennes (France) and shared with the engineering school 

INSA Hauts-de-France, Figure 6(a). The car is fully equipped and has two modes, manual and autonomous. A description of the plant, 

with links to videos demonstrating the maneuvering of such vehicle, is available in [28]. The yaw rate ( )ry t  and the longitudinal speed 

( )xv t  are measured. The system is equipped with dSPACE MicroAutoBox where the control/observation algorithms are embedded. 

LMI constraints were computed on a desktop computer as in the previous example for convenience. 

 

 
(a) 

 
(b) 

Figure 6. (a) Vehicle for experimental tests (INSA HdF and LAMIH). (b) Schematic of the vehicle model in (40). 

 

Figure 7 (blue lines) shows an example of experimental data. The first goal is to use a model to recover in normal situations the non-

measured variable ( )yv t . We consider a bicycle model under regular driving conditions, with small angles assumption and no 

longitudinal slip that is represented Figure 6(b) and corresponds to the nonlinear model [25][26]: 
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

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




= − + − + −

= − +

= − +


 (40) 

The parameters corresponding to the vehicle model (40) are given in Table 1, which are taken from  [27]. Let us define

( ) ( ) ( ) ( )
T

y r xx t v t y t v t =   , ( ) ( ) ( )
T

r xy t y t v t=     and ( ) ( ) ( )
T

wu t t T t=    . Following vehicle physical limitations under 

normal driving conditions [25], the validity region ( ) xx t   for system (40) is defined as    
2

1.5,1.5 1.5,20x = −  . To derive a 
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polytopic representation of (40), we consider the 2 following functions ( )1 1 2
,

20 3
xv t−  

 
 

 and ( )  1.5,1.5ry t − . As a result, the model 

(40) can be recast as 

 
( ) ( )( ) ( ) ( ) ( )

( ) ( )

, = + +


=

x t A y t x t Bu t g x y

y t Cx t
 (41) 

where ( ) 1

1 2

−= + rxvA y A A y , and  
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I I I

C A y t

m R m

A A B g x y C  (42) 

Table 1. Vehicle parameters for system (40). 

Parameter Description Value 

( )yv t  Lateral speed – [m/s] 

( )ry t  Yaw rate – [rad/s] 

( )xv t  Longitudinal speed – [m/s] 

( )t  Front wheel steering angle – [rad] 

( )T t
w

 Longitudinal wheel torque force – [Nm] 

vm  Vehicle mass 1077 [kg] 

fC  Front cornering stiffness 47135 [N/rad] 

rC  Rear cornering stiffness 56636 [N/rad] 

fl  Distance between front axle and gravity center 1.08 [m] 

rl  Distance between rear axle and gravity center 1.24 [m] 

tR  Tire radius 0.26 [m] 

a  Air density 1.23 [kg/m3] 

dyC  Lateral drag coefficient 0.35 [–] 

dxC  Longitudinal drag coefficient 0.32 [–] 

fyA  Lateral frontal area 2.01 [m2] 

fxA  Longitudinal frontal area 1.97 [m2] 

 

Note that ( ),g x y  is very small in comparison to other data and is therefore considered as an uncertainty and will not be included in the 

observer (13). Since ( ) ( ) ( ) ( ) ( )2

1 1 2

1 11 2
ˆ ˆˆ

rxr rx x x v yA y A y A A y y Av e ev Av c− − −−− = + − = − + , it follows that 

 ( ) ( )( ) ( )2

211
ˆ

rxx yvA v c xy A y x eA A xe−− = − +  (43) 

Moreover, using the notations from (19) and (43), it follows that 

 ( ) ( )( ) ( ) ( )

( ) ( )

( ) ( )
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( )

( )

2 2

2 2

22 2
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1 00 0
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t e
v

v t

v t

e

+ −

+− −

     
      
        

− = −   = −                         
   

−

−

 

−

A D  (44) 

 

The faults impact the lateral speed on 1 yy v= , thus  1 0
T

E =  and a cascade of two integrators is used, i.e., 2 = . Considering 

100 =  (Remark , gain limitation (33)) and a decay rate 5 = , the gains of observer (13) are given by  
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 1 1 1

1 2 3

7.29 -1.69 7.29 1.69 36.67 -1.13

17.99 0.29 17.99 -0.29 -44.87 -0.04

, ,-0.22 35.18 0.22 35.18 -0.08 35.08

35.81 -0.33 35.81 0.33 53.10 -0.36

19.76 -0.18 19.76 0.18 28.83 -0.20

− − −

    
    
    
   = = =
   
   
   
    

P L P L P L 1

4

36.67 1.13

-44.87 0.04

, .0.08 35.08

53.10 0.36

28.83 0.20

−

  
  
  

   =
   
   
   

  

P L  (45) 

The numbers characterizing the numerical complexity for this example are computed as 
var

55N =  and 320
row

N = , which also represent 

a low level of computational burden for observer design of this real-world application. To show that the assumptions made are valid, 

i.e., a bicycle model and ( ),g x y  excluded from the observer, the first trial Figure 7 is a scenario without fault, i.e., ( ) 0v t = . Therefore, 

Figure 7 shows the inputs left side (a), the outputs (real data and estimated ones) and fault signals on the right side (b). Despite a 

(voluntarily) shaken input torque ( )wT t  and the simplified observer, it shows a good capability of estimating the outputs. The estimated 

fault signal ( )v̂ t  “absorbs” all the uncertainties with low values and a signal centered on 0. For the second trial, a fault ( )v t  consisting 

of a series of step functions, is impacting the output ( )ry t . Figure 8 shows a comparison of the system output ( )y t , fault ( )v t , system 

state ( )x t  responses and their corresponding estimations. Figure 8(b) bottom right shows the corrupted output ( )ry t . The figures 

illustrate that the observer (13) has good capabilities to estimate together the state ( )x t  and the fault ( )v t  using real data experiments. 

For the sake of comparison, Figure 9 shows an approach using measured premise variables, where the observer is designed without the 

presented novelties. It can be seen that the estimation is worse (Figure 9 (b)) for both the output (red dashed signal top curve) and the 

fault (bottom curve). 

 
(a) 

 
(b) 

Figure 7. (a) Inputs ( )t  and ( )wT t  (b) (Above) Output ( )ry t  (blue solid line), and estimated output ( )ˆ
ry t  (red dashed line), (Below) 

Fault ( )v t  (blue solid line) and estimated fault ( )v̂ t  (red dashed line). Scenario with fault ( ) 0v t = . 
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(a) 

 
(b) 

Figure 8. States ( ) ( ) ( ) ( )
T

y r xx t v t y t v t =    (blue solid line) and estimated state ( )x̂ t  (red dashed line) (b) (Above) Output ( )y t  

(blue solid line), measured output ( )z t  (green solid line), estimated output ( )ŷ t  (red dashed line), and estimated measured output 

( )ẑ t  (black dashed line), (Below) Fault ( )v t  (blue solid line) and estimated fault ( )v̂ t  (red dashed line). 

 
(a) 

  
(b) 

Figure 9. States ( ) ( ) ( ) ( )
T

y r xx t v t y t v t =    (blue solid line) and estimated state ( )x̂ t  (red dashed line) (b) (Above) Output ( )y t  

(blue solid line), measured output ( )z t  (green solid line), estimated output ( )ŷ t  (red dashed line), and estimated measured output 

( )ẑ t  (black dashed line), (Below) Fault ( )v t  (blue solid line) and estimated fault ( )v̂ t  (red dashed line). 

 

V. CONCLUSION 

A novel approach has been proposed to the fault-tolerant observer design for continuous-time nonlinear systems based on a new 

formulation that allows to rewrite the extended state error without using classical Lipschitz assumptions. Moreover, this kind of problems 

belongs to the difficult class of problems with unmeasured premise variables, problem that remains, in its general form, open both for 

quasi-LPV and Takagi-Sugeno models. The fault is supposed to be captured by a cascade of integrators, which may concern nearly all 

kind of faults excepted high frequency ones. The nonlinear PI-observer based on this new writing gives rise to new conditions that can 

be written directly as LMI constraints that can be efficiently solved. 

Two illustrative examples have been presented to assess the validity of the given approach. The first one is academic and presents the 

capabilities of the design and the second one shows that with data from real experiments for car control, even with uncertainties and a 

simplified model, the approach is able to deliver good results. Future works will focus on (i) coupling the observer together with a 

control design and deriving conditions and bounds for the convergence of the estimations and the stability and performances of the 
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closed loop architecture, (ii) designing nonlinear fault-tolerant PI-observers for nonlinear systems, in an attempt to reduce the complexity 

and the conservatism of the optimization problem. 
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