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ABSTRACT: Analogs are similar states of a system, occurring at remote times within independent

numerical simulations or previous observations. This concept has been developed in atmospheric

sciences, and was further used in atmospheric and ocean sciences for forecasting, downscaling,

upscaling, extreme event attribution, and many other applications. The distance used to find and

rate analogs is a key feature of analog methods. Most studies are based on the Euclidean distance or

other pre-defined metrics. In this investigation, we leverage distance learning algorithms originally

designed for classification and regression and adapt them for statistical forecasting objectives, using

in particular the continuous-ranked probability score as a loss function. Our algorithm allows to

jointly optimize three key hyperparameters of analog methods: the feature space, the distance,

and the number of analogs used. In particular, this algorithm allows to reduce the feature space

dimension while keeping analog ensemble performances as high as possible, a key requirement

for small and medium-sized datasets. We test our algorithm on an idealized chaotic system and on

a small-size tropical cyclone dataset from meteorological agencies. Our experiments suggest that

the optimal distance strongly depends on the forecast horizon and the number of available data,

and that our algorithm allows for reasonable performances of analog ensemble methods even for

small-size datasets. Our approach is not limited to forecasting and can assist the search for optimal

hyperparameters of any analog method, enhancing exploration possibilities and improving overall

performances.
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SIGNIFICANCE STATEMENT: “History repeats itself.” Today’s weather is likely to be remi-30

niscent of past, already observed weather. This is the notion of “analog” weather. Analogs were31

introduced to study the atmosphere, but were also used recently to study the ocean. They are used32

in many applications, including forecasts, or to estimate whether extreme events are influenced by33

climate change or not. To decide whether two distant-time images of the atmosphere (or ocean)34

are “analogs” of each other, one must define a similarity criterion, the “distance”. The definition35

of the distance depends on the chosen application. This research aims at providing an algorithm to36

systematically tune the distance used in the definition of analogs, depending on the application.37

This Work has been submitted to Monthly Weather Review. Copyright in this Work may be38

transferred without further notice.39

1. Introduction40

Analog methods rely on the search for neighbours of any given query in a database, also called41

”catalog” or ”library”, such as a reanalysis (e.g. ERA5, Hersbach et al. 2020) or an ensemble42

simulation (e.g. CMIP5, Taylor et al. 2012). They have been used in a wide range of applications43

in atmosphere and ocean sciences, including downscaling (Zorita and Von Storch 1999), upscaling44

(Yiou et al. 2014), ensemble forecasts (Delle Monache et al. 2013; Yiou 2014), tropical cyclone45

forecasting (Neumann and Hope 1972), extreme events detection and attribution (Jézéquel et al.46

2018), importance sampling (Yiou and Jézéquel 2020), data assimilation (Tandeo et al. 2015;47

Lguensat et al. 2017), and interpolation (Zhen et al. 2020).48

In atmospheric science, the idea of looking in observational archives to find similar states dates49

back to the concept of “points of symmetry” used in weather forecasting at least since Weickmann50

(1924) and then by Krick (1942) and Elliott (1943). The term “analogs” can be attributed to the51

study of Lorenz (1969) on atmospheric predictability. This term refers to methods and concepts52

developed in atmospheric science and now also used in ocean science (e.g. Le Bras et al. 2024),53

while other terms such as “neighbours” are more general and may refer to other concepts from54

dynamical systems (Lucarini et al. 2016) or machine learning (Peterson 2009). In this paper,55

“analog methods” explicitly refers to the use of neighbours-based methods in the specific context56

of atmospheric and ocean science.57
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The popularity of analog methods is probably due to their simplicity of interpretation and58

implementation. One simply needs to define a feature space, a distance (and kernel if weighting59

is applied), and to choose a number of analogs to be used. Then, one can perform any statistical60

task (e.g. averaging, linear regression, ensemble forecast) on the analog ensemble. These 3 key61

hyperparameters of analog methods (feature space, distance, and number of analogs used) are often62

directly chosen by the user depending on the application. Therefore, experience with using analog63

methods is required to make suitable hyperparameters choices, which prohibits an even wider use64

of analog methods in the atmospheric and ocean science community. Moreover, the sensitivity of65

analog methods to such choices is usually little or not explored unless it is the sole purpose of the66

study.67

Empirical rules for the choice of these hyperparameters are as follows. First, the choice of features68

is based on the user’s understanding of the physical system and on the objective task. Knowledge of69

dimensionality issues for analog methods in the case of limited-size datasets (Van den Dool 1994;70

Nicolis 1998; Platzer et al. 2021a) encourages one to reduce the number of features used to define71

analogs. Empirical orthogonal functions (EOFs, see e.g. Lorenz 1956) are commonly chosen as72

a dimension reduction technique to be applied before using analog methods (e.g. Benestad 2010).73

However EOFs were not developed for the purpose of analog methods, and are therefore likely to74

be sub-optimal.75

Second, once features have been defined, one has to choose a distance between many available76

options (see, e.g., the ones explored by Toth 1991; Matulla et al. 2008). Note that even after77

choosing a distance family (e.g. Euclidian 𝑙2 vs. Manhattan 𝑙1), an infinite number of variations of78

distance definitions are possible within each family, for instance by giving different weights to each79

feature, or by performing any one-to-one transformation of the feature vectors before computing80

the distance. This allows for a lot of explorations in the definition of the distance, so much that81

one usually cannot afford to perform by hand. As a consequence, the Euclidean distance in its82

simplest form is usually chosen for simplicity of implementation. Note also that the choice of83

distance only matters in the case of finite-sized datasets, as all distance functions1 are equivalent84

in finite dimension (see, e.g., appendix A in Platzer et al. 2021a). Therefore, the choice of distance85

is expected to be more important when using datasets of small or medium size.86

1A distance function “dist(·, ·)” should be positive (dist[𝑥, 𝑥′] > 0), definite (dist[𝑥, 𝑥′] = 0 iff. 𝑥 = 𝑥′), symmetric (dist[𝑥, 𝑥′] = dist[𝑥′ , 𝑥]),
and satisfy the triangle inequality (dist[𝑥, 𝑥′′] ≤ dist[𝑥, 𝑥′] + dist[𝑥′ , 𝑥′′]).
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Third and finally, a near-optimal value of number of analogs is generally searched by trial-87

and-error, typically between O(10)−O(200). If one requires a probabilistic estimation with an88

ensemble of analogs, one will need a large number of analogs, while for a deterministic estimation89

one analog can be enough in theory. However, even for deterministic estimates, the bias-variance90

trade-off rule (Hastie 2009) encourages one to use several analogs. A rule-of-thumb can be used91

by setting an upper-bound for the typical analog-to-target distance. Indeed, Platzer et al. (2021a)92

showed that the distance 𝑟𝑘 to the 𝑘-th analog (ranked by growing distance) scales as 𝑟𝑘 ∼ (𝑘/𝑁)1/𝑑93

where 𝑁 is the number of independent samples in the catalog, and 𝑑 is the local dimension, the latter94

being upper-bounded by 𝑝, the number of features in the distance definition. Setting the condition95

𝑟𝑘 < 0.2 (the value 0.2 is arbitrary), we have a sufficient rule for 𝑘 which is 𝑘 < 𝑁 ×0.2𝑝. Using96

such a rule for the maximum number of analogs to be used allows to have analog-to-target distances97

that do not exceed roughly 20% of the typical distance between two points chosen randomly in98

the dataset. However, this is only an approximate statistical upper-bound, and finding the optimal99

number of analogs for a given objective task usually requires a lot of testing efforts.100

A typical meteorological system that was extensively studied with analog methods is the tropical101

cyclone (TC). In particular, analog methods have been used for the forecast of tropical cyclone102

tracks (e.g. Fraedrich et al. 2003; Langmack et al. 2012; Bonnardot et al. 2019; Bessafi et al.103

2002) and intensities (e.g. Fetanat et al. 2013; Elsberry and Tsai 2014; Tsai and Elsberry 2014;104

Chen et al. 2016; Alessandrini et al. 2018; Tsai and Elsberry 2019; Bonnardot et al. 2019; Lewis105

et al. 2021). The tropical cyclone dynamical parameters are compiled in global databases called106

best-tracks (IBTrACS, Knapp et al. 2010). However, because of their underlying extreme ocean107

and atmospheric states, the crucial physical parameters of these phenomenon are still today largely108

undersampled in space and time. Recent studies also suggested that high-resolution observational109

data, e.g from satellite synthetic aperture radar, is required when studying this dynamical system110

(Avenas et al. 2023, 2024b). Thanks to new satellite missions and new observation strategies111

along with increased performances of the sensors, both the spatio-temporal resolution (Jackson112

et al. 2021) and the quality (Combot et al. 2020) of these data to capture the storm wind structure113

are greatly increasing during these years, soon providing a dataset of a reasonable size, although114

still limited, to be combined with statistical approaches such as analogs. However, such methods115
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will face the issues of small-size dataset and dimensionality mentioned earlier, and will therefore116

require a fine-tuning of the number of features and of the distance used.117

Several authors have developed methodologies for the optimization of analog methods’ hyper-118

parameters. The kernels of Zhao and Giannakis (2016) are adapted to the local dynamics of119

the system under study and therefore provide optimal forecasts in the limit of large catalog size,120

as later demonstrated by Alexander and Giannakis (2020) using reproducing kernel Hilbert space121

theory. However, these methods do not tackle explicitly dimension reduction and small-size dataset122

issues. Also, they are targeted at forecasting of dynamical systems, while many other tasks can123

be performed with analog ensemble, and also require the optimisation of hyperparameters. Mc-124

Dermott and Wikle (2016) have given a Bayesian formulation of analog forecasting, allowing for125

optimisation of parameters through log-likelihood minimization. This approach yields a precise126

probabilistic formulation, and is flexible. Using a similar approach, Horton et al. (2017) perform127

optimization of analog methods through genetic algorithms, which allows to find global optimum128

and search through a wide range and number of hyperparameters. However, these two last methods129

require a thorough definition of hyperparameters to be optimised, while a more unifying framework130

would allow for a simpler representation and algorithmic implementation of the optimization of131

analog methods’ hyperparameters.132

Some authors have especially focused on the sensitivity of analog methods to the choice of133

distance. Toth (1991) compared nine different distances for the purpose of forecasting 700mb134

geopotential fields, and found some superiority for the root-mean-square difference between gra-135

dients of geopotential. Matulla et al. (2008) did a similar exercise for the purpose of precipitation136

downscaling, using five different distances and time-delayed embeddings in the space of EOFs.137

Authors jointly studied the effect of truncation in EOF space, the length of time-embedding, and the138

choice of distance. These studies allow for a detailed analysis of the performance of each distance139

choice for a specified task. However, as pointed by the authors of these two studies, they cannot140

generalize to other tasks than the one studied (forecasting for the first study and downscaling for the141

second). Moreover, one can generally not afford to conduct such tedious studies when designing a142

given analog method.143

Other authors have introduced advanced methodologies for optimizing distances used in analog144

methods although this was not the direct topic of the study. This is the case of the tropical-cyclone145
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intensity analog forecasting scheme of Alessandrini et al. (2018). To find the best variables in more146

than 60 possible choices, the authors first searched for the best variable used alone, and then added147

new variables one-by-one, performing grid-search to find the best added variable and to define the148

respective weights of each new variable in the definition of the distance. Although it may prove149

efficient, the final solution given by such an algorithm is likely to be sub-optimal. Indeed, the fact150

that one predictor variable performs best alone does not guarantee that it should be retained when151

using several variables altogether. Furthermore, grid-search is a computationally intensive method152

to search for an optimum.153

Fraedrich and Rückert (1998) optimized the distance used in analog methods by acting iteratively154

on weights given to coordinates used in Euclidean distance. However, by defining their own155

optimization step-rule, which was not studied elsewhere in the literature, the authors deprive156

themselves from the wealth of knowledge available for other well-known methods such as gradient157

descent. Indeed, the latter has well-established convergence properties, efficient algorithms (e.g.158

Kingma and Ba 2014), and has been used extensively in other fields of research. Furthermore,159

the algorithm of Fraedrich and Rückert (1998) is limited to optimizing weights, and a natural160

generalization would be the optimization of any linear transformation of the feature vector. Finally,161

the algorithm of Fraedrich and Rückert (1998) does not allow to perform dimension reduction,162

which is especially important when using analog methods with limited-size datasets. On the163

contrary, gradient-descent algorithms include regularization techniques which can help perform164

dimension reduction through feature selection.165

In this paper, we focus on optimizing the distance used in analog methods. In particular, we166

leverage advances made in the field of machine learning through what is called “distance learning”167

or “metric learning” (Bellet et al. 2022). To our knowledge, distance learning algorithms have168

not been used before in analog methods for atmospheric and ocean sciences. We modified the169

”Metric Learning for Kernel Regression” algorithm (Weinberger and Tesauro 2007) by fixing the170

number of neighbors (here called “analogs”) and adding a regularization term, just as Yang et al.171

(2012) modified the “Neighborhood Component Analysis” algorithm (Goldberger et al. 2004).172

Also, we adapted these algorithms to allow for probabilistic estimates such as ensembles, widely173

used in the context of atmospheric and ocean sciences. To our knowledge, this is the first time174

that a metric learning algorithm is adapted to probabilistic forecasts. For this purpose, we replace175
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the mean squared error in the loss function by the continuous ranked probability score (CRPS,176

see Hersbach 2000), a score which is well suited for ensemble-based predictions such as the ones177

provided by analog methods. Most metric learning algorithms, including the one presented here,178

aim at optimizing a Mahalanobis-type distance, which can be understood as a Euclidean distance179

computed after normalization with a positive semi-definite matrix, or equivalently after applying180

a linear transformation to the data. Note that what is called here “Mahalanobis-type distance”181

is more general than the “Mahalanobis distance” per se in which the data is renormalized by its182

covariance matrix. Here, the normalization matrix (or, equivalently, the linear transformation) is183

not set in advance but must rather be optimized.184

Note that optimizing the distance includes optimizing the feature space: our algorithm allows185

to find optimal linear combination of any set of features, imposing sparsity if needed to perform186

dimension reduction, possibly removing irrelevant features. Furthermore, by adjusting the scale187

of the distance, we are able to adjust the bandwidth of analog methods, and therefore the number188

of analogs used. By adapting a simple, well-known algorithm from distance learning, we are189

therefore able to jointly optimize three key hyperparameters of analog methods: the feature space,190

the distance, and the number of analogs used. By basing our algorithm on one simple, well-known191

gradient-descent rule, we allow it to be applied to any existing analog methodology, in a unifying192

framework that simplifies the search for hyperparameters of analog methods and enables better193

overall performances.194

The three-variable dynamical system of Lorenz (1963) is widely used to mimic atmospheric195

and oceanic systems because it is chaotic. It was developed as a simplified, low-order model for196

atmospheric convection, by focusing on first-order large-scale Fourier modes. We will use it as a197

well-known toy model to test the effect of our distance optimization algorithm on analog forecasting,198

allowing to explore in particular the effect of forecast horizon and catalog size, as well as comparing199

the results of our lagorithm when using two different loss functions: the mean-squared error or the200

continuous-ranked probability score (CRPS).201

We also build a sub-dataset based on IBTrACS tropical cyclone data, used here to show that202

the proposed algorithm allows to select relevant variables for intensity forecasting. First, this203

should demonstrate that our algorithm can be used on small-size datasets, which is an interesting204

properties for tropical cyclone (TC) studies. Second, this should show that our algorithm allows205

8



to perform dimension reduction by removing variables, which is a very important requirement for206

analog methods, as they are sensitive to the curse of dimensionality.207

This paper is organized as follows. Basics of analog methods are recalled in section 2, before208

introducing the proposed algorithm and associated gradients. Experiments on the Lorenz system209

and on IBTrACS tropical cyclone data are reported in section 3 and 4. Conclusion and perspectives210

are drawn in section 5.211

2. Algorithm212

a. Analog methods213

We assume that analogs of a query (or target) x are sought for in a catalog {x1, . . . ,x𝑁 } of 𝑁214

independent 𝑑-dimensional vectors. The vectors x 𝑗 can be, for instance, the values of any variable215

(temperature, geopotential height) on a lon-lat grid, at a given time. The idea of analog methods216

is to search for analogues of a “common” situation x, in order to predict the associated output217

variable y, such as the precipitation at a given station.218

In general, analogs are given weights which are increasing functions of the similarity between x219

and x 𝑗 . Therefore, a statistical estimate of y is given by the weighted ensemble of values {y 𝑗 , 𝑗 ∈220

𝐼(x)} associated with the analogs. From there on, one can use either pure empirical ensemble221

prediction (Yiou 2014), or sample average and standard deviation assuming a Gaussian probability222

distribution for y, or weighted linear regression computed on the analog sample {(x 𝑗 ,y 𝑗 ), 𝑗 ∈ 𝐼(x)}223

(Platzer et al. 2021b).224

b. Gradient of MSE of analog ensemble average225

Our algorithm finds an optimal linear transformation of explanatory variables x before searching226

for analogs. The advantage of this algorithm is the simple computation of the gradient of the loss227

function. This is made possible by the use of Gaussian weights and a Mahalanobis-like distance.228

In our case, we will assume that the weights are of the following form:229

𝑝(x 𝑗 |x) ∝ exp
(
−∥A(x−x 𝑗 )∥2

)
(1)
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Fig. 1. Illustration of the process of making a linear transformation before applying analog ensemble methods.

On the left are shown the input variables (also called features), with target value x (blue cross) surrounded by

potential analogs x 𝑗 (blue circles). On the right are shown the output variables, with true output y (red cross)

and outputs y 𝑗 (red squares) associated with analogs x 𝑗 . The selection of analogs is performed in input space

(or feature space), where the grey circle corresponds to a level-curve of constant Euclidean distance to the target

value x, and the green circle corresponds to constant distance to x after applying a linear transformation A.
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238
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240

241

where A is a 𝑝 × 𝑑-matrix with 𝑝 ≤ 𝑑, and | |·| | is the Euclidean norm. After normalization over230

the set of analogs 𝐼(x), we find that each analog is given the empirical probability:231

𝑝(x 𝑗 |x) =
exp

(
−∥A(x−x 𝑗 )∥2

)∑
𝑘∈𝐼(x) exp

(
−∥A(x−x𝑘 )∥2

) . (2)

The procedure of applying a linear transformation before selecting and weighing analogs is232

illustrated in Fig. 1. In this example, applying the matrix A allows to select analogs x 𝑗 with233

associated outputs y 𝑗 that are closer to the true output y, compared to the result of using the234

original distances (with A replaced by the identity matrix).235

The objective is now to find the optimal 𝑝 × 𝑑-matrix A, which is a linear transformation of242

vectors x to a space in which the analogs are sought for using the simple Euclidean distance. This243

is equivalent to finding the optimal Mahalanobis-type distance dist(x,x 𝑗 ) = (x− x 𝑗 )𝑇A𝑇A(x− x 𝑗 )244

(where 𝑇-subscript stands for “transpose”) with positive symmetric matrix A𝑇A.245

It should be stressed again here that our use of the expression “Mahalanobis-type distance” differs246

from another common use, where the symmetric, positive, semi-definite matrix A𝑇A is replaced247

by the covariance of the data (McLachlan 1999), which would here be the catalog. Instead, we248

optimize the matrix A, and therefore we say that we optimize the distance within the family249

of Mahalanobis-type distances. Note that some distance learning algorithms choose to directly250
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estimate the symmetric, positive, semi-definite matrix, which can sometimes allow to define convex251

optimization algorithms (Globerson and Roweis 2005). However, optimizing A has the advantage252

to ease the interpretation, in particular in the context of dimension reduction.253

To keep the analogy with the algorithm of Goldberger et al. (2004), we optimize the mean-254

square error (MSE) of the analog prediction from the catalog, using a leave-one-out procedure.255

We compute the square error of analog average prediction of y𝑖 from the truncated catalog256

{x1, . . . ,x𝑖−1,x𝑖+1, . . . ,x𝑁 }. For simplicity, we note 𝐼(𝑖) = 𝐼(x𝑖) the indices of analogs of x𝑖 in257

the truncated catalog, and 𝑝( 𝑗 |𝑖) = 𝑝(x 𝑗 |x𝑖) is the probability given to value y 𝑗 associated with258

analog x 𝑗 of target x𝑖 using the truncated catalog. Note that 𝑝( 𝑗 |𝑖) ̸= 𝑝(𝑖 | 𝑗) is not symmetric,259

because of the normalization factor in Eq. (2). The MSE can then be written:260

MSE(A) =
1
𝑁

𝑁∑︁
𝑖=1
(ŷ𝑖 −y𝑖)𝑇 (ŷ𝑖 −y𝑖) , (3)

where we use the notation ŷ𝑖 = ∑
𝑗∈𝐼(𝑖) 𝑝( 𝑗 |𝑖)y 𝑗 for the average analog prediction of y𝑖. This MSE261

has the following gradient:262

𝜕MSE
𝜕A

=
2
𝑁

𝑁∑︁
𝑖=1
(ŷ𝑖 −y𝑖)𝑇

∑︁
𝑘∈𝐼(𝑖)

𝜕𝑝(𝑘 |𝑖)
𝜕A

y𝑘 . (4)

Note that what we call “gradient” for simplicity is actually a “sub-gradient”, because we neglect263

the discontinuities of MSE(A) due to changes in the the lists of analog indices 𝐼(𝑖) with the change264

of A. The computation of the sub-gradient however is simpler than the true gradient, and sufficient265

for convergence (Held et al. 1974). In the following we therefore only use the word “gradient”.266

Since we use exponential weights, the gradient can be computed easily. Indeed, the gradient of267

𝑝(𝑘 |𝑖) with respect to matrix A, which is a matrix of the same shape as A, is given by:268

𝜕𝑝(𝑘 |𝑖)
𝜕A

= A𝑝(𝑘 |𝑖)
( ∑︁
𝑙∈𝐼(𝑖)

𝑝(𝑙 |𝑖)x𝑖𝑙x𝑖𝑙𝑇 −x𝑖𝑘x𝑖𝑘𝑇
)
, (5)

where we use the notation x𝑖𝑘 = x𝑘 −x𝑖.269

After simplifications, similar to the ones of Goldberger et al. (2004), the gradient of the MSE270

can be rewritten:271
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𝜕MSE
𝜕A

= A
2
𝑁

𝑁∑︁
𝑖=1

(ŷ𝑖 −y𝑖)𝑇
∑︁
𝑗∈𝐼(𝑖)

𝑝( 𝑗 |𝑖)(ŷ𝑖 −y 𝑗 )x𝑖 𝑗x𝑖 𝑗𝑇 . (6)

where there are two independent products inside the sum: one dot product between vectors (ŷ𝑖−y𝑖)272

and (ŷ𝑖 − y 𝑗 ), and a tensor product between the vector x𝑖 𝑗 and itself. Applying the matrix A of273

shape (𝑝,𝑑) to the tensor product of shape (𝑑,𝑑) gives a matrix of the same size as A, which is the274

size of the gradient.275

The advantage of expressing the gradient in this way is that many terms are already computed276

during the analog average prediction step. Therefore, to compute the gradient of the MSE on the277

catalog, one must simply apply matrix A to a product of partly pre-computed terms.278

c. Gradient of CRPS of analog ensemble279

In atmospheric and ocean science, estimation of uncertainty is a key feature of any estimation280

algorithm. Also, the strength of analog methods is the cheap generation of ensembles. Therefore,281

using the MSE to assess analog methods is too restrictive and we propose to use the continuous-282

ranked probability score (CRPS), widely used in atmospheric sciences (Hersbach 2000).283

The CRPS of a one-dimensional probabilistic forecast with cumulative probability distribution284

𝐹, compared to a true scalar outcome 𝑦, can be expressed as :285

CRPS(𝐹, 𝑦) =
∫∞
−∞
[𝐹(𝑦′)−1(𝑦′ > 𝑦)]2 d𝑦′ , (7)

where 1(𝑦′ > 𝑦) is the indicator function which equals zero when 𝑦′ <= 𝑦 and equals one when286

𝑦′ > 𝑦. Another form of the CRPS which is more convenient to our purposes is the following :287

CRPS(𝐹, 𝑦) = E𝐹 |𝑌 − 𝑦 |−
1
2

E𝐹 |𝑌 −𝑌 ′| , (8)

where E𝐹 is the expectation and𝑌 and𝑌 ′ are random variables distributed according to 𝐹. The first288

term of this equation is the mean-absolute error of the forecast. The second-term is the negative289

half of the mean absolute difference between two variables distributed according to the forecast.290

When we have an ensemble forecast, this is the mean absolute difference between two forecast291

members. Using our notations, this allows to express easily the CRPS of the analog ensemble292

forecast of 𝑦𝑖 from the values
{
𝑦 𝑗

}
𝑗∈𝐼(𝑖) distributed according to {𝑝( 𝑗 |𝑖)} 𝑗∈𝐼(𝑖).293
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CRPS𝑖 =
∑︁
𝑗∈𝐼(𝑖)

𝑝( 𝑗 |𝑖)𝑦 𝑗𝑖 −
1
2

∑︁
𝑗 ,𝑘∈𝐼(𝑖)

𝑝( 𝑗 |𝑖)𝑝(𝑘 |𝑖)𝑦 𝑗 𝑘 , (9)

where we use the short notation for difference of absolute values 𝑦 𝑗𝑖 := |𝑦 𝑗 − 𝑦𝑖 |. This can be294

written more concisely as CRPS𝑖 = MAE𝑖 − 1
2MAD𝑖 with MAE𝑖 := ∑

𝑗∈𝐼(𝑖) 𝑝( 𝑗 |𝑖)𝑦 𝑗𝑖 and MAD𝑖 :=295 ∑
𝑗 ,𝑘∈𝐼(𝑖) 𝑝( 𝑗 |𝑖)𝑝(𝑘 |𝑖)𝑦 𝑗 𝑘 . Finally, we are interested in optimizing:296

CRPS =
1
𝑁

𝑁∑︁
𝑖=1

CRPS𝑖 . (10)

Following similar steps as in the previous section, we find the following expression for the297

gradient :298

(11)
𝜕CRPS
𝜕A

= A
1
𝑁

𝑁∑︁
𝑖=1

∑︁
𝑗∈𝐼(𝑖)

𝑝( 𝑗 |𝑖)
{

MAE𝑖 −MAD𝑖 −
(
𝑦 𝑗𝑖 −

∑︁
𝑘∈𝐼(𝑖)

𝑝(𝑘 |𝑖)𝑦𝑘 𝑗

)}
x𝑖 𝑗x𝑇𝑖 𝑗 .

This expression can be generalized to the case of vector-output y by performing a sum of CRPS299

over all coordinates.300

If one is interested in computing the CRPS or of a multi-dimensional output, then one simple301

possibility is to use the average of CRPS over all coordinates. The gradient of the coordinate-302

averaged CRPS is then given by the above formula, replacing MAE𝑖, MAD𝑖 and 𝑦𝑖 𝑗 terms by their303

coordinate-average.304

We provide modified formulas for the weighted-CRPS in appendix A, which could be used for305

applications in which specific values (such as extreme values) are of interest.306

d. Algorithm307

Goldberger et al. (2004) designed an algorithm which optimizes the matrix of a Mahalanobis-type308

distance for classification purposes in a smoothed version of a nearest neighbour algorithm. Yang309

et al. (2012) modified the algorithm of Goldberger et al. (2004), keeping only nearest neighbours310

for classification. Weinberger and Tesauro (2007) designed an algorithm similar to Goldberger311

et al. (2004), for optimizing a Mahalanobis-type distance for kernel regression. Here, we adapt312

the algorithm from Weinberger and Tesauro (2007) to the case of analog forecasting, by keeping313

only a finite number of nearest neighbours (analogs) in the computation, and possibly adding314

regularization terms. Therefore, our algorithm is a modified version of Weinberger and Tesauro315
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(2007) just as the algorithm of Yang et al. (2012) is a modified version of Goldberger et al. (2004).316

Furthermore, we adapt the algorithm to the case where the loss function is not a mean-square error,317

but a continuous ranked probability score, which is more suited to probabilistic ensemble-based318

estimators used in atmospheric and ocean sciences.319

One may be interested in sparse representation of the matrix A, for instance to perform feature320

selection as we demonstrate in section 4. To do so, we add the well-known 𝑙1/𝑙2 regularization321

term to the loss function (Yin et al. 2014) :322

Loss(A) = 𝜆
∥A∥1
∥A∥2

+


MSE(A)

CRPS(A)
(12)

with fixed parameter 𝜆 > 0, and ∥A∥1 and ∥A∥2 are the 𝑙1 and 𝑙2-norms of matrix A, namely the sum323

of its coefficients’ absolute values, and the square-root of the sum of its coefficients’ squared values.324

This additional term has sub-gradient 𝜕
𝜕A
∥A∥1
∥A∥2 = sign(A)

∥A∥2 −
∥A∥1
∥A∥32

A. This term has the advantage of325

being scale-invariant, which is a desired property of our algorithm because adjusting the scale of326

A allows to adjust the number of analogs used. If we had used a simple 𝑙1 Lasso regularization327

(Tibshirani 1996) or 𝑙2 Ridge regularization (Hoerl and Kennard 1970), then we would have biaised328

our algorithm towards low-scale A, i.e. towards a high number of analogs used. However, this329

choice could be useful in applications where one wants to force the analog method to use a large330

number of analogs, and therefore reducing variance at the cost of raising bias.331

Finally, the matrix A is updated at fixed learning rate 𝛼 > 0 with the gradient descent rule (Bottou332

2012):333

A𝑛𝑒𝑤 = A𝑜𝑙𝑑 −𝛼
𝜕Loss
𝜕A

(13)

Based on that updated matrix A𝑛𝑒𝑤, one can compute the new probabilities 𝑝( 𝑗 |𝑖) and associated334

MSE and gradient, and update again the matrix using Eq. (13).335

The algorithm is summarized in Algorithm 1. In this algorithm, the search for 𝑘 neighbors is336

denoted 𝑘NN. Particular cases of this algorithm include:337

• Weighting of coordinates: by imposing A to be diagonal.338

• Dimensionality reduction: by setting A to be of shape 𝑝× 𝑑 with 𝑝 small.339
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Note that when one imposes A to be diagonal, the tensor products x𝑖 𝑗x𝑖 𝑗𝑇 must be replaced by340

vectors of size 𝑑 and whose coordinates are the square of the vector x𝑖 𝑗 (this is the diagonal of the341

tensor x𝑖 𝑗x𝑖 𝑗𝑇 ). This has the advantage of begin much less computationally-intensive than 𝑑 × 𝑑342

tensors.343

Algorithm 1: Optimize Mahalanobis distance for Analog Prediction
Function OptimizeMahalanobis( A0, {x1, . . . ,x𝑁 }, {𝑦1, . . . , 𝑦𝑁 }, 𝛼, 𝜆 > 0, 𝑛, 𝑘)

A = A0;
for 𝑡 ∈ [1, 𝑛] do

Build tree for {Ax𝑖 , 𝑖 ∈ [1, 𝑁]}
for 𝑖 ∈ [1, 𝑁] do

𝐼(𝑖) := 𝑘NN 𝑗 | |A(x𝑖 −x 𝑗 )| |;
𝑤𝑖 𝑗 := exp

(
−||A(x𝑖 −x 𝑗 )| |2

)
;

𝑝( 𝑗 |𝑖) := 𝑤𝑖 𝑗∑
𝑘∈𝐼(𝑖) 𝑤𝑖𝑘

;
end
G := (6) or (11) or (A3)
G←G +𝜆

(
sign(A)
∥A∥2 −

∥A∥1
∥A∥32

A
)

A← A−𝛼G;

E𝑡←
{
MSE(A)
CRPS(A)

end
return A, (E1, . . . ,E𝑛);

3. Lorenz System experiments344

To analyze the behaviour of our algorithm, we first use the well-known chaotic, three-variable345

deterministic dynamical system of Lorenz (1963), in its usual setting, following the equations:346

d𝑥
d𝑡

=𝜎(𝑦− 𝑥) , (14)

d𝑦
d𝑡

=𝑥(𝜌− 𝑧)− 𝑦 , (15)

d𝑧
d𝑡

=𝑥𝑦− 𝛽𝑧 , (16)

with parameters 𝜎 = 10, 𝛽 = 8/3 and 𝜌 = 28. The equations are solved numerically using a347

fourth-order Runge-Kutta explicit scheme (Butcher 1996) with time-step 0.01 (non-dimensional348

time). This system of equation approximates the large-scale behaviour of atmospheric convection,349
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and bears properties of atmospheric and ocean circulation, in particular the sensitivity to initial350

condition.351

Note that the classical notation (𝑥, 𝑦, 𝑧) used here for the three coordinates of the system must352

not be confused with the notations x and y of the previous section, used to denote the predictor353

and predicted variables, respectively. In particular, this section will make the particular choice of354

x = [𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)] (three coordinates as predictor) and either y = [𝑥(𝑡+ℎ), 𝑦(𝑡+ℎ), 𝑧(𝑡+ℎ)] (forecast355

of all three variables at horizon ℎ) or y = [𝑧(𝑡 + ℎ)] (forecast of the last variable at horizon ℎ). For356

our numerical experiment, we choose to set A to be a 3x3 matrix, and therefore the transformed357

variables Ax are of the same number (3) as the original variables x. Note that other choices could358

have been retained for the shape of A, such as a 1x3 matrix to retain only one variable. We could359

also have included other input variables in the x vector by using delayed-coordinates (Sauer et al.360

1991). The only constraint is that the number of columns in A equals the size of x (i.e. the number361

of input variables). We chose this simple 3x3 setting with the original coordinates of the Lorenz362

system as input variables for illustrative testing of our method.363

In all the experiments involving the Lorenz system, we will use 𝑘 =200 analogs for each forecast364

ensemble, that is |𝐼(x)|= 200 for all x (using notations from section 2). The set of analogs will365

be defined by the 200 indices 𝑗 of nearest neighbors of x according to the Euclidean distance366

∥A(x 𝑗 −x)∥. We will use no regularization term in the algorithm (i.e. 𝜆 = 0 in Eq. (12)), because367

it is unnecessary for this low-dimensional system.368

The catalogs used in these experiments will be generated from long trajectories of the numerically-369

integrated Lorenz System. Elements of the catalog will comprise values of x𝑖 = [𝑥(𝑡𝑖), 𝑦(𝑡𝑖), 𝑧(𝑡𝑖)]370

along with corresponding values of either y𝑖 = [𝑥(𝑡𝑖 + ℎ), 𝑦(𝑡𝑖 + ℎ), 𝑧(𝑡𝑖 + ℎ)] or y𝑖 = [𝑧(𝑡𝑖 + ℎ)] at371

horizon ℎ > 0. The sequence of values {𝑡1 . . . , 𝑡𝑁 } will be of the type 𝑡𝑖 = 𝑡1 + (𝑖 − 1)Δ𝑡 where372

the time separating two elements, Δ𝑡 = 0.64 (non-dimensional time), is chosen so that they can be373

considered independent. At least, this value of Δ𝑡 = 0.64 is enough so that 𝑥(𝑡𝑖+1) and 𝑥(𝑡𝑖−1) are374

not part of the 200 analogs of 𝑥(𝑡𝑖) in our experiments.375

Before applying our algorithm, we standardize each variable, that is we divide the values of 𝑥 by376 〈
(𝑥− ⟨𝑥⟩)2

〉1/2, the values of 𝑦 by
〈
(𝑦− ⟨𝑦⟩)2

〉1/2, and the values of 𝑧 by
〈
(𝑧− ⟨𝑧⟩)2

〉1/2. Therefore377

the matrix A applies a transformation on standardized variables. For readability purposes, we will378

keep the notations 𝑥, 𝑦 and 𝑧 for the standardized variables.379
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We will first apply our algorithm to minimize the RMSE of the analog ensemble average380

prediction, and explore varying forecast horizons and forecasted variable, then we will investigate381

varying catalog sizes, and finally we will compare the results of minimizing the RMSE versus382

minimizing the CRPS of the analog forecast ensemble.383

a. Varying forecast horizon and variable384

In this subsection, we use a catalog of fixed size 105 generated from one long trajectory of the385

Lorenz System, and we vary the forecast horizon ℎ while keeping constant the values {𝑡1 , . . . , 𝑡𝑁 }386

as defined earlier.387

To begin with, we apply our algorithm to minimize the MSE of the analog forecast at horizon388

ℎ =0.01 (non-dimensional time), which is the time-step at which we perform the Runge-Kutta389

integration of the Lorenz system’s equations. Note that at this very small horizon, the ideal forecast390

is very close to a persistence forecast.391

Our algorithm requires an initial value A0 for the matrix A. Note that as we are solving a392

non-convex optimization problem, the choice of initial value influences the final result. We will393

start with a standard choice for A0 that we name “isotropic” (A0 = A𝑖𝑠𝑜), that is the identity matrix:394

A𝑖𝑠𝑜 =
©­­­­«
1 0 0

0 1 0

0 0 1

ª®®®®¬
. (17)

Therefore, our algorithm starts with a baseline of standardized variables. Then, to choose the395

learning rate 𝛼 (Eq. 13), we first compute the initial mean-squared error MSE0 of the analog396

ensemble average, using distances ∥A0(x𝑖 − x 𝑗 )∥ where A0 is set to A𝑖𝑠𝑜, and the leave-one-out397

methodology to compute the error, i.e. we make a forecast of y𝑖 using all the catalog without the398

element (x𝑖,y𝑖). Finally, we set the learning rate to be 60
MSE0

, and we run our algorithm through399

𝑛 =60 iterations, after which the algorithm is converged to a value that we note A𝑐𝑜𝑛(0.01) where400

“con” stands for “converged”. Note that MSE0 depends on whether we are learning a matrix for401

the forecast of the 𝑧-variable or of all three variables (𝑥, 𝑦, 𝑧). Fig. 2(a,b,d,e) allows to compare the402

distances ∥A𝑖𝑠𝑜(x𝑖 −x 𝑗 )∥ (Fig. 2.a,d) to the distances obtained after 60 iterations of our algorithm403

for the forecast of the 𝑧-variable at horizon ℎ =0.01 (Fig. 2.b,e). One can see that the optimized404
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distances are larger than the initial ones, this means that the probabilities given to the analogs 𝑝(𝑖 | 𝑗)405

are sharper: the selection of analogs is narrower. Also, one can witness a change in the relative406

weights given to each coordinate: the ellipsis around the red dot has rotated, so that distances grow407

faster with coordinate 𝑧 in Fig. 2(e) than in Fig. 2(d) compared to how they grow with coordinate408

𝑥. This shows that the optimal distance is anisotropic.409

Then, the algorithm is run again, but at horizon ℎ = 0.02, and starting from the previously410

converged value A0 = A𝑐𝑜𝑛(0.01). Again, we compute the initial MSE at horizon ℎ =0.02, and411

this time we set 𝛼 = 30
MSE0

and run only 𝑛 =20 iterations which is enough for the algorithm to412

converge. This allows the algorithm to move to the closest local minimum of MSE when changing413

slightly the forecast horizon. We then repeat this operation, raising the horizon by 0.01, running414

the optimization with 𝑛 =20 iterations after updating the value of A0 and recomputing 𝛼 = 30
MSE0

415

at each new horizon. Note that one succession of optimizations is run for the forecast of the416

variable 𝑧 and the other succession of optimizations is run independently for the forecast of the417

three variables (𝑥, 𝑦, 𝑧). The result of running this procedure until horizon ℎ = 0.32 is shown in418

Fig. 2(c,f). Comparing with Fig. 2(a,b,d,e) again shows a change in the orientation of the ellipsis419

of constant distances, so that in particular the relative weights of each original coordinate in the420

modified distance have changed. Also, all distances are larger indicating an even more selective421

choice of analogs (i.e. even sharper distributions 𝑝(𝑖 | 𝑗)).422

Fig. 3(a,b) shows the evolution of all coefficients of the optimized A𝑐𝑜𝑛𝑣 with forecast horizon,423

and depending on the choice of either y𝑖 = [𝑧(𝑡𝑖 + ℎ)] or y𝑖 = [𝑥(𝑡𝑖 + ℎ), 𝑦(𝑡𝑖 + ℎ), 𝑧(𝑡𝑖 + ℎ)]. To aid the424

interpretation, the 𝑙2-norms of A’s rows are also shown (i.e.
√︃
𝐴2
𝑥 𝑗

+ 𝐴2
𝑦 𝑗

+ 𝐴2
𝑧 𝑗

for 𝑗 ∈ {𝑥, 𝑦, 𝑧}),425

which allow to assess the relative importance of each original coordinate in the converged optimal426

distance. This shows in particular that for small forecast horizons (ℎ < 0.05) the 𝑧-variable is the427

most important variable when one is concerned with a forecast of the 𝑧-variable itself, which was428

expected. Also, one can notice the growth of coefficients (and thus of the overall norm of A) with429

horizon: this shows that a more selective choice of analogs must be done when concerned with a430

forecast at large horizon, which is also expected due to the chaotic nature of the Lorenz system.431

Note that the growth of the norm A’s rows with horizon concerns the 𝑥 and 𝑦 coordinates. We432

attribute this observation to the fact that these two coordinates are indicative of which “wing” one433

is in (see Fig. 2): each “wing” corresponds to one of the two unstable fixed points around which434
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(a) (b) (c)

(d) (f)(e)

Fig. 2. Visualization of distances to a random point (red) across the Lorenz attractor, comparing (a,d)

unoptimized, isotropic distance with (b,e) distances optimized to minimize the RMSE of the mean analog

forecast of 𝑧-variable at short horizon and (c,f) mean analog forecast of all three state variables at large horizon.

The chosen forecast horizon can be interpreted as ∼ 1 hour and ∼ 1 day in atmospheric time scale.

442

443

444

445

solutions of the Lorenz system orbit before an eventual transition to the other wing. Finally, one435

can see that even at large forecast horizon, the optimal distance found when trying to minimize the436

RMSE of the forecast of only one variable differs from the optimal distance that is found when437

trying to forecast all three variables of the Lorenz System. This indicates that there is no universal438

distance that could be used for any analog method. Fig. 3(e,f) shows that the gain in RMSE after439

optimization when compared to the RMSE found with A𝑖𝑠𝑜 is constant throughout the range of440

forecast horizons.441

b. Varying catalog size449

In this section, we will build catalogs of different sizes using the same long trajectory of 6×106
450

non-dimensional time steps. From this trajectory, we will extract catalogs of different sizes,451

and for each catalog size we extract 10 different catalogs to get variability in the results when452

fixing only the catalog size. To do so, we first take regular sampling times {𝑡∗1 , . . . , 𝑡
∗
10𝑁 } of the453

whole trajectory, separated by 𝑡∗
𝑖+1− 𝑡

∗
𝑖

= 𝑡∗10𝑁−𝑡
∗
1

10𝑁Δ𝑡 where 𝑁 is the desired catalog size, Δ𝑡 = 0.64 (non-454

dimensional time), and 𝑡∗1 and 𝑡∗10𝑁 are the first and last time of the whole trajectory. Then, we take a455

permutation Perm: [1,10𝑁] ↦→ [1,10𝑁], and build 10 catalogs from indices {𝑡Perm(1) , . . . , 𝑡Perm(𝑁)},456

{𝑡Perm(𝑁+1) , . . . , 𝑡Perm(2𝑁)}, {𝑡Perm(2𝑁+1) , . . . , 𝑡Perm(3𝑁)}, up to {𝑡Perm(9𝑁+1) , . . . , 𝑡Perm(10𝑁)}. This457

procedure allows to generate 10 catalogs from a single long trajectory for each chosen catalog size458
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. (a,b) Coefficients of matrix A (see Fig. 4 for the color-to-coefficient correspondence) versus forecast

horizon. (c,d) Norm of rows of transform matrix A versus forecast horizon. (e,f) Analog forecast RMSE versus

forecast horizon. (a,c,e) Forecast of 𝑧-variable. (b,d,f) Forecast of whole state-space vector.

446

447

448

𝑁 . We use this procedure for 30 values of the catalog size 𝑁 in the range 𝑁 ∈ [4× 103,4× 105]459

with regular sampling in log-scale within this interval.460

In this experiment, we run our algorithm for the objective of minimizing the RMSE of the forecast461

of all three variables at horizon ℎ = 0.32 (non-dimensional time). The algorithm was run for each462

catalog constructed as explained above, with the linear transformation always initialized with the463

identity matrix as A0 = A𝑖𝑠𝑜. The algorithm is run for 60 iterations, with a learning rate set to464

50
MSE0

(which depends on the catalog used) similarly to the previous experiment. The results of this465

experiment are shown in Fig. 4. The ratio between optimized RMSE (with the final value of A) and466

unoptimized RMSE (with A𝑖𝑠𝑜) is nearly constant throughout the tested values of catalog size. The467

values of coefficients of the final optimized matrix A show a very strong dependency with catalog468

size for small catalog sizes (below 104), also with greater variability of the coefficients for a fixed469

catalog size. For larger values of the catalog size, the dependency of coefficients with catalog size470

is much weaker, as well as the variability within a given value of catalog size. In particular, for471

catalog sizes below ∼ 104, the diagonal coefficients acting on the the 𝑥 (blue lines) and 𝑧 (yellow472
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lines) variable are decreasing functions of catalog size, suggesting the need for a more rigorous473

selection of analogs when the catalog size is small. We interpret this result as the consequence474

of the fact that when the catalog size is small, the chance to find poor quality analogs in the 200475

nearest neighbors is higher, and therefore analog selection must be more meticulous. Moreover,476

this behaviour is not observed for the diagonal coefficient acting on 𝑦, which suggests that when477

changing the catalog size, one must not only adapt the number of analogs used, but also the very478

definition of the distance, such as the importance given to specific variables (or features) in the479

definition of the distance.480

A striking property of Fig. 4(b) is the change of slope of the almost convex black curve of481

optimized RMSE around catalog size ∼ 104. In particular, for catalog sizes above 104, the black482

curve has a flatter slope than the red curve. This convexity of the black curve indicates that our483

optimization allows to approach faster the properties of an analog ensemble with large catalog size.484

In other words, the necessity to have a large catalog is less critical when optimizing the properties485

of analog methods. Our algorithm thus allows to (moderately) compensate for small-sized datasets.486

Note that the behaviour observed for low values of the catalog size shows signs of the beginning487

of overfitting: coefficients are becoming large and highly variable. However, to check whether we488

are truly witnessing overfitting, we have computed the RMSE of the analog ensemble forecasts489

using the same catalogs as in the previous experiment, the same coefficients as fitted on these490

catalogs using our algorithm, but making forecasts on an independently generated test set of 104
491

elements from a long trajectory, with elements separated by 0.64 non-dimensional time intervals.492

This independent test gives indistinguishingly (not shown) the same values as the RMSE shown in493

Fig. 4(b) and computed on the catalog (i.e. on the training set with leave-one-out methodology).494

This shows that the high values of the coefficients (1,1) and (3,3) of the fitted matrix A really help495

to improve the performances of analog forecasting for small catalog size.496

c. Minimizing CRPS vs. minimizing RMSE503

Finally, we investigate the difference in the results of our algorithm when used with the same504

catalog, the same forecast objective (forecast of the 𝑧 variable at horizon ℎ = 0.04), but with different505

loss function, either the RMSE or the CRPS.506
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(a)

(b)

Fig. 4. Matrix coefficients (a) of optimized linear transformation A for average analog forecast of the Lorenz

system at horizon 0.32 (1 day), as a function of catalog size. RMSE is also shown (b) for both optimized (black)

and unoptimized (red) analog forecast. An example of optimized matrix A is shown on top for catalog size 10

826. For each catalog size, 10 optimizations are run for 10 independent catalogs to account for variability in

the optimization process. Optimization is run at constant learning rate and fixed number of iterations, initialized

with the identity matrix. 200 analogs are retained for forecast.

497

498

499

500

501

502

We use the same catalog as in section 3.a), and we take the result of the experiment described507

in the same section to obtain the matrix A optimized for the RMSE of the average analog forecast508

of the 𝑧 variable at horizon ℎ =0.04. To compare with the results for the CRPS, we use a similar509

procedure to find the optimized matrix A, starting by running our algorithm to minimize the CRPS510

of the forecast of the 𝑧-variable at horizon 0.01, with A0 = A𝑖𝑠𝑜, 200 iterations, and a learning rate511

of 103

CRPS0
, where CRPS0 is defined analogously to MSE0 using the initial value of A0. Then, we512

optimize the CRPS for the forecast of the 𝑧-variable ot horizon ℎ = 0.02 initializing the matrix513

with the previous optimized value A0 = A𝑐𝑜𝑛(0.01) is was done for the RMSE. The algorithm is514

run for 100 iterations at rate 1.5×103

CRPS0
. The operation is repeated to go from horizon 0.02 to 0.03, for515

100 iterations at a rate 1.5×103

CRPS0
, and then for 40 iterations at a four times smaller rate to finalize the516
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convergence, a method called “step-decay schedule” for the learning rate (Ge et al. 2019). Finally,517

to go up to horizon 0.04, we repeat the procedure with 60 iterations at rate 1.5×103

CRPS0
and then 40518

iterations at a rate four times smaller.519

One thing that we expect from our algorithm is that the analog ensemble with the distance520

optimized to minimize the average CRPS would have a better representation of uncertainties.521

Indeed, when optimizing the RMSE, it is not necessary that the ensemble spread corresponds522

to the actual uncertainty of the forecast. In particular, other studies have reported RMSE-based523

optimization of machine-learning algorithms to give over-confident ensemble forecasts (Frion et al.524

2024). In our case, we observe the opposite behaviour: the RMSE-based optimization is under-525

confident: the ensemble spread is larger than the actual uncertainty of the forecast. We interpret526

this fact as the consequence of a linear properties of the Lorenz System at this small forecast527

horizon and over the 200 selected analogs for this catalog size. In the case of linear dynamics, the528

average value is closer to the truth when including more members.529

To evaluate the goodness of uncertainty quantification between the two types of optimization, we530

investigate first the prediction error, noted 𝑧𝑎𝑛𝑎(𝑡 + ℎ)− 𝑧𝑡𝑟𝑢𝑡ℎ(𝑡 + ℎ) in Fig. 5.a, where the subscript531

“ana” refers to “analogs”. This notation can be reconciled with the previous notations through the532

following identity:533

𝑧𝑎𝑛𝑎(𝑡 + ℎ)− 𝑧𝑡𝑟𝑢𝑡ℎ(𝑡 + ℎ) = 𝑦 𝑗 − 𝑦𝑖 . (18)

This variable would be zero ideally. In particular, the probabilities 𝑝( 𝑗 |𝑖) should be highest534

when this variable is close to zero. To evaluate this, we compute the empirical histograms of this535

variable 𝑦 𝑗 − 𝑦𝑖, weighted by 𝑝( 𝑗 |𝑖), for all values of 𝑖 in the catalog and 𝑗 ∈ 𝐼(𝑖), and comparing536

the results of the three distances (unoptimized, optimized for RMSE, optimized for CRPS) in Fig.537

5.a. We can see that all distributions are centered, and the CRPS is giving the sharpest distribution,538

indicating a better uncertainty quantification.539

Finally, in Fig. 5.b, we show the following variable:540

𝐹𝑎𝑛𝑎(𝑧𝑡𝑟𝑢𝑡ℎ(𝑡 + ℎ)) =
∑︁
𝑗∈𝐼(𝑖)

𝑝( 𝑗 |𝑖)1(𝑦 𝑗 < 𝑦𝑖) , (19)
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(a)

(b)

Fig. 5. Verifying statistics of analog forecasting ensembles for the case of the forecast of the 𝑧-variable of the

Lorenz system at horizon ℎ =0.04, computed on 104 points. (a) Empirical distribution of the difference between the

analog forecast and the truth, for different distances : unoptimized (grey, full), optimized for RMSE minimization

(red, full) and optimized for CRPS minimization (green, empty). Each value of 𝑧𝑎𝑛𝑎(𝑡 + ℎ)− 𝑧𝑡𝑟𝑢𝑡ℎ(𝑡 + ℎ) is given

a weight 𝑝(x𝑎𝑛𝑎 |x𝑡𝑟𝑢𝑡ℎ in the empirical density estimate. (b) Probability-probability plot (P-P plot) between the

reference cumulative probability distribution of a uniform random variable (vertical axis) and the cumulative

probability distribution of the analogue forecasts applied to the true value 𝑧𝑡𝑟𝑢𝑡ℎ(𝑡 + ℎ). The dashed line indicates

what a perfect forecast distribution would give.

555

556

557

558

559

560

561

562

which is the empirical cumulative distribution of the analog forecast applied to the true outcome541

value. Ideally, if the true outcome was drawn from the analog forecast distribution, the variable542

𝐹𝑎𝑛𝑎(𝑧𝑡𝑟𝑢𝑡ℎ(𝑡 + ℎ)) would be uniformly distributed, which would mean that the true outcome value543

is exactly 𝑄% of the time above the 𝑄-percentile of the analog ensemble forecast distribution. In544

practice, the uncertainty estimation from the analog ensemble forecast distribution is not perfect,545

however one aim of our CRPS-oriented algorithm is to optimize the distance in order to improve546

uncertainty quantification from the analog ensemble. This is verified in Fig. 5.b which plots the547

quantiles of 𝐹𝑎𝑛𝑎(𝑧𝑡𝑟𝑢𝑡ℎ(𝑡 + ℎ)) versus the quantiles of a uniform distribution. In the ideal case,548

the empirical line would lie along the diagonal. In this figure it is clear that the empirical results549

from the RMSE-based optimization is closer to the diagonal line than the results with unoptimized550

isotropic distance, and that the results are even more satisfying with the CRPS-based optimization.551

However, further improvement is needed, as the figure still indicates an overdispersive ensemble:552

the uncertainty estimate from the analog ensemble is greater than the true uncertainty of the553

forecast.554
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4. Tropical cyclone intensity forecasting563

a. Intensity forecasting564

In this section we apply our algorithm to the study of the tropical cyclone, a meteorological565

system for which actual datasets, even at the global scale, are of a limited size. In such a context,566

we evaluate whether our method overcomes the typical dimensionality issues encountered in most567

tropical cyclone forecasting applications.568

We use data from the International Best Track Archive for Climate Stewardship (IBTrACS, Knapp569

et al. 2010), a global compilation of best-track datasets from multiple international meteorological570

agencies which includes estimates of the storm location, intensity, and size in four geographical571

quadrants, on a six-hourly basis. IBTrACS suffers from spatio-temporal heterogeneities, especially572

concerning 𝑅𝑚𝑎𝑥 , a critical parameter for the system dynamics (Avenas et al. 2024a), but it remains573

the most global dataset on tropical cyclones. In addition, statistical relationships have been recently574

developed to backup 𝑅𝑚𝑎𝑥 estimates from better known parameters included in this global dataset575

(Avenas et al. 2023) and are used here.576

For our experiment, we use only parts of the IBTrACS dataset. First, we restrict to the North-577

Atlantic ocean basin, to ensure a unified data treatment and definition from American agencies.578

Second, we use data from years 2003-2022, as we want to use a specific variable (𝑅34, see definition579

in appendix B) which is not included before 2003. Also, we consider solely tropical cyclones (TC)580

with a maximum wind speed𝑉𝑚𝑎𝑥 greater than 33m/s (see definition in appendix B) at least once in581

its lifetime. After this selection, we are left with 110 TCs re-sampled at 3h-time step (see appendix582

B).583

The output variable to be estimated with analogs is defined as the difference in maximum584

sustained wind speed :585

𝑦 := Δ𝑉𝑚𝑎𝑥(𝑡, ℎ) :=𝑉𝑚𝑎𝑥(𝑡 + ℎ)−𝑉𝑚𝑎𝑥(𝑡) , (20)

while the 15 input variables used to find and rate analogs are:586
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(21)

x ≔

{
𝑉𝑚𝑎𝑥(𝑡) , 𝑅𝐼𝐵𝑇

𝑚𝑎𝑥(𝑡) , 𝑅34(𝑡) , 𝑓𝐶𝑜𝑟(𝑡) , 𝑢𝑡𝑟𝑎𝑛𝑠(𝑡) ,

𝑣𝑡𝑟𝑎𝑛𝑠(𝑡) , 𝑅𝐴23
𝑚𝑎𝑥(𝑡) ,

d𝑉𝑚𝑎𝑥

d𝑡
(𝑡) ,

d𝑅𝐼𝐵𝑇
𝑚𝑎𝑥

d𝑡
(𝑡) ,

d𝑅34
d𝑡

(𝑡) ,
d 𝑓𝐶𝑜𝑟

d𝑡
(𝑡) ,

d𝑢𝑡𝑟𝑎𝑛𝑠
d𝑡

(𝑡) ,

d𝑣𝑡𝑟𝑎𝑛𝑠
d𝑡

(𝑡) ,
d𝑅𝐴23

𝑚𝑎𝑥

d𝑡
(𝑡) , 𝑇18(𝑡)

}
.

See appendix B for a description of these variables. As in the Lorenz-63 experiments, all587

variables are normalized by their standard-deviation. In the present work, we use our algorithm588

to minimize the CRPS of the analog ensemble forecast of 𝑦 = Δ𝑉𝑚𝑎𝑥(𝑡, ℎ), imposing the linear589

transform matrix A to be square-diagonal. Note that we make use of regularization terms only in590

the next section. Our algorithm is used here for the purpose of weighting the (normalized) input591

variables in x, with 15 weighting coefficients corresponding to each diagonal element of A.592

Note that we do not wish to compete with state-of-the-art forecasting algorithms as this would593

require a whole dedicated study, in particular for the definition of the dataset and input variables.594

Rather, our interest is in evaluating the behaviour of our algorithm on a reanalysis and reduced595

dataset describing a real-life physical problem. Also, we wish to demonstrate the ability of596

our algorithm to fine-tune the weighting of variables, without prior physical knowledge, for the597

challenging task of tropical cyclone intensity forecasting (Emanuel and Zhang 2016; Cangialosi598

et al. 2020).599

From the 110 TCs in our dataset, we use 73 TCs for training (2/3 of the dataset) and 37 TCs for600

test. The train/test splitting is random, and we repeat the experiment with 10 random splittings to601

assess the sensitivity of the results to the splitting choice. In the training phase (i.e., the optimisation602

of A), we use all the training dataset to evaluate the average CRPS and its gradient. We use a603

special type of leave-one-out methodology: to forecast Δ𝑉𝑚𝑎𝑥(𝑡, ℎ) of a given TC, we search for604

analogs in other TCs, but we also allow the use of analogs from the same TC only with a minimum605

separation of ±3 days. This allows to raise the number of potential analogs and simplifies the606

algorithm structure. However, to assess the algorithm’s performance on the test set, analogs are607

only searched within the training set, and therefore a given TC cannot be used as an analog of itself.608
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The good performances of the algorithm on the test set justify the reliability of this procedure (see609

below).610

First, we run our algorithm without regularization (i.e. 𝜆 = 0, see Eq. 12), and for forecast611

horizons ℎ = 12h, 24h, 36h, ... , 120h. For each horizon ℎ, the transformation matrix is initialized612

with the identity matrix A = A𝑖𝑠𝑜, and we use a constant learning rate of 10
CRPS0

where CRPS0 is613

defined as previously as the average CRPS on the training set with A = A𝑖𝑠𝑜. The algorithm is run614

for 50 iterations, which is enough to reach convergence. Note that the algorithm is run 10 times615

for each horizon as we use 10 random train/test splittings. We note CRPS𝑐𝑜𝑛 the average CRPS616

obtained with A = A𝑐𝑜𝑛 the converged matrix, and we define the CRPS gain as:617

%CRPS𝑔𝑎𝑖𝑛 ≔ 100
CRPS0−CRPS𝑐𝑜𝑛

CRPS0
. (22)

Note that this definition can be used for the average CRPS on the training set (using analogs618

from the training set to forecast TCs in the training set) and for the average CRPS on the test set619

(using analogs from the training set to forecast TCs in the test set). Ideally the two gains would620

be nearly identical, which would indicate that the weights optimized on the training set generalize621

well to the test set. This is confirmed in Fig. 6(b), where we show for each horizon ℎ the median622

and percentiles of the CRPS gain on the 10 random train/set splittings. The CRPS gain is slightly623

higher on the training set, which is the sign of a slight overfitting, however the gains on the training624

and test sets are similar for every horizon and follow the same tendency of a growth of the gain with625

horizon. Gains are substantial, ranging from 7% to 20%, showing the interest of our methodology626

compared to the use of a brute-force unoptimized distance.627

To assess the competitiveness of the analog methodology, we also compute the CRPS of two628

benchmarks: persistence and climatological forecasts. Here, we define persistence forecast as a629

deterministic forecast (i.e. a one-member ensemble) with Δ𝑉𝑚𝑎𝑥 = 0, and its average CRPS is given630

by its mean absolute error. We define the climatological forecast as an ensemble forecast where631

all the elements of the dataset are used to build an ensemble forecast, and each element is given632

equal weights. The climatological forecast is therefore given by the whole empirical distribution633

of Δ𝑉𝑚𝑎𝑥 , and therefore depends on the forecast horizon ℎ. These benchmarks are evaluated on634

the whole dataset (110 TCs), and compared to the (optimized and unoptimized) analog ensemble635

forecasts on the whole dataset (train and test) using the leave-one-out methodology described636
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earlier. The corresponding average CRPS are shown as a function of horizon in Fig. 6(a). Note637

that several black lines correspond to 10 different values of A𝑐𝑜𝑛 for each horizon ℎ, associated638

with the 10 random train/test splittings. The analog forecasts outperform the persistence and639

climatological forecasts, especially for large forecast horizons, which is also where the CRPS gain640

due to optimization is largest. The gain in CRPS for an horizon of 5 days thanks to our optimization641

is of ∼1.5m/s, which is close to the difference between the climatological forecast and the analog642

forecast with unoptimized distance (∼2m/s). Note that the climatological forecast can be viewed643

as an analog ensemble forecast, where the number of analogs equals the size of the catalog, and644

all distances are equal (i.e. 𝑝(𝑖 | 𝑗) is flat, using notations from section 2a). This means that our645

algorithm allows for a gain in CRPS from a “naı̈ve” (unoptimized) distance which is comparable646

to the gain obtained when passing from a “flat” distance (climatology) to a naı̈ve (unoptimized)647

distance.648

b. Variable selection655

Then, we assess the ability of our algorithm to perform variable selection, using the regularization656

term introduced in Eq. (12). We do so for forecast horizon ℎ = 1 day, and for regularization657

coefficients 𝜆 = 0, 0.001, 0.002, 0.003, ..., 0.015. For each value of 𝜆, we take 10 random train/test658

splittings as previously. We run our algorithm on each training set with constant learning rate659

equal to 10
CRPS0

where CRPS0 is defined as previously as the average CRPS on the training set with660

A = A𝑖𝑠𝑜. The algorithm is run for 100 iterations this time, as the addition of the regularization661

term requires more iterations to converge.662

To see which variable is selected by the algorithm as we vary 𝜆, we show in Fig. 7 the average663

of each coefficient of A𝑐𝑜𝑛 over the 10 randomly selected training sets for each value of 𝜆. This664

shows that as 𝜆 grows, the smallest coefficients are drawn to zero, while the largest grow as a665

compensation. For these experiments, the algorithm has selected 𝑉𝑚𝑎𝑥 , as well as the Coriolis666

frequency 𝑓𝐶𝑜𝑟 although with a smaller weight. The meridional translation velocity is also selected667

as a statistically relevant feature. The value of d𝑉𝑚𝑎𝑥

d𝑡 is also statistically significant for the selection668

of analogs, which seems reasonable as the local 3h-velocity growth rate is likely to be informative669

of the short-term evolution.670
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(a)

(b)

Fig. 6. (a) Average CRPS (meters per second) of the forecast of Δ𝑉𝑚𝑎𝑥 for different methods: persistence

(deterministic forecast with Δ𝑉𝑚𝑎𝑥 = 0), climatology (using the whole empirical distribution of Δ𝑉𝑚𝑎𝑥 as an

ensemble), and unoptimized and optimized analog ensemble forecasts. (b) Gain in average CRPS of analog

forecast after optimizing the distance, on the training set used to optimize the distance (blue, full line) and on the

independent test set (orange, dashed line). The lines show the medians, while the shaded areas show the 25%

and 75% percentiles.
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However Fig. 7 shows an average over 10 realizations of the training set, but the results for each674

set can differ. Also, in practice, when doing variable selection, one is not interested in a particular675

value of 𝜆 but in a fixed number of variables. To take this practical point of view, we take all676

the values of converged A𝑐𝑜𝑛 from this experiment, and rank them by the number of coefficients677

of A which are above 0.15, an arbitrary threshold which gives an idea of the number of variables678

selected by the algorithm. This allows to compute what is the average weight given to each variable679

when fixing the number of non-negligible coefficients (Fig. 8(a)), as well as the probability to pick680

a given variable when the number of non-negligible coefficients is fixed (Fig. 8(b)).681

Although Fig. 8(a) mostly reproduces the behaviour of Fig. 7(a), some other features can be682

extracted from this figure. One first striking fact is that the algorithm never selects more than683

11 variables out of 15, even when the regularization parameter is set to zero. This shows that684
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Fig. 7. Weighting coefficients after optimization for the ℎ = 1day-forecast of Δ𝑉𝑚𝑎𝑥 , as a function of regular-

ization parameter 𝜆 > 0. The coefficients are averaged over 10 random splittings of the dataset into training and

test sets.

671

672

673

the algorithm is able to discard statistically irrelevant features without having to impose scarcity685

through regularization. Also, we witness some nontrivial behaviour, in particular the fact that686

d𝑢𝑡𝑟𝑎𝑛𝑠
d𝑡 is always selected when using 10 variables, but never when using 11. This goes against the687

idea of the iterative algorithm of Alessandrini et al. (2018), described in the introduction. This688

other algorithm goes from right to left in our Fig. 8, starting by adjusting the coefficients of the689

most relevant variables used alone, and then adding new variables iteratively. Here, we show that690

a variable which is relevant when used with a certain number of variables may not be relevant691

when using a larger number of variables. From a methodological standpoint, this means that one692

should in principle select all relevant variables at once and not iteratively, one-by-one as proposed693

by Alessandrini et al. (2018).694

Finally, note that the CRPS of the analog ensemble forecast with converged A𝑐𝑜𝑛 is a decreasing695

function of 𝜆: a higher regularization induces a larger error. For horizon ℎ = 1 day, the decrease696

of CRPS(A𝑐𝑜𝑛) with 𝜆 is significant (at most a loss of 4.6% in CRPS𝑔𝑎𝑖𝑛 for 𝜆 = 0.015, while697

the CRPS𝑔𝑎𝑖𝑛 has values ∼9%, not shown). We also do not witness a better generalization when698

applying regularization: the ratio between the CRPS evaluated on the test set and the one evaluated699

on the training set is not higher when raising 𝜆. This shows that the number of variables selected by700
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(a)

(b)

Fig. 8. (a) Average weighing coefficient for each input variable, when aggregating converged values of A𝑐𝑜𝑛

for which the number of coefficients > 0.15 is fixed. (b) The horizontal axis is the same as in the top panel, while

the vertical axis corresponds to the input variables. The radius of the red disks is proportional to the number of

times that this variable is selected with a coefficient > 0.15 in all aggregated values of A𝑐𝑜𝑛. When the red disk

is as large as the grey disk, this indicates that the variable is always selected. In contrary, when there is no red

disk in front of the grey disk, the variable is never selected.
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the algorithm with 𝜆 = 0 is already sufficiently small for the analog ensemble forecast to generalize701

well, and imposing to use a lower number of variables is detrimental for forecast horizon ℎ = 1 day.702

Note that several input variables are redundant here. For instance, the rate of change of the709

Coriolis frequency d 𝑓𝐶𝑜𝑟

d𝑡 can be expressed as a function of 𝑓𝐶𝑜𝑟 and of the meridional translation710

velocity. Also, 𝑅𝐴23
𝑚𝑎𝑥 is statistically determined from 𝑉𝑚𝑎𝑥 , 𝑓𝐶𝑜𝑟 and 𝑅34. The fact that these711

variables are still selected some times by the algorithm indicates that creating new variables out712

of existing ones for the definition of the distance may be useful in the case of analog forecasting,713

in particular if these variables are non-linear functions of the initial variables that are based on714
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previous physical or empirical analysis showing their relevance. This is typically the case of 𝑅𝐴23
𝑚𝑎𝑥715

(see Eq. B3 in appendix B). Note also that this last variable is selected much more often than the716

𝑅𝐼𝐵𝑇
𝑚𝑎𝑥 from the IBTrACS dataset, although 𝑅𝐴23

𝑚𝑎𝑥 is a statistical approximation for the true radius717

of maximum wind speed. This confirms both the limitations of this parameter in the IBTrACS718

database (Combot et al. 2020) and the utility of empirical approaches to overcome this issue when719

studying the tropical cyclone dynamics (see also the discussion in Avenas et al. 2023). However,720

these experiments on IBTrACS data show that defining relevant variables is not enough, and should721

be complemented by an approach such as the one proposed here to systematically, at least, tune the722

weights given to each variable and the overall scale of the distances used to rate analogs.723

5. Conclusion and perspectives724

We have shown algorithms originally developed in the field of “distance learning”, which is a725

sub-field of machine-learning, can be adapted to allow for the optimization of the distance used in726

analog methods. To our knowledge, this is the first time that the gap between distance learning and727

analog methods is bridged. Our algorithm learns a linear transformation of the feature variables728

that is applied ahead of a classical Euclidean-distance-based analog ensemble methodology. This729

is equivalent to learning a “Mahalanobis-like” distance, but differs from using the Mahalanobis730

distance where the data’s covariance matrix is used directly. Distance learning algorithms were731

initially designed for classification purposes, with little interest in quantify uncertainties. On the732

contrary, our algorithm is designed for continuous estimation purposes (regression), such as the733

forecasting or downscaling of scalar variables. Furthermore, our algorithm tunes the distance so734

that the analog ensemble gives an accurate estimation of uncertainty while staying as close as735

possible to the ground truth. This is done in particular through the use of the continuous-ranked736

probability score as a loss function.737

Our tests of the algorithm on analog forecasts of the three-variable chaotic Lorenz System show738

a non-trivial dependency of the optimal distance with forecast horizon, as well as catalog size. For739

low-size datasets, we observe strong variations of the optimal distance with catalog size, followed740

by stabilization above a given threshold and eventually convergence. We also observe the growth741

of the scale of the optimal distance with forecast horizon, indicating that a more severe selection742

of analogs is needed for long-term forecasts. These examples show that the optimal distance743
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strongly depends on the system under study, the objective task, and the number of available data.744

Finally, we show that a CRPS-based optimization allows to have better uncertainty quantification745

from analog ensembles compared to RMSE-based optimization that were developed previously in746

distance learning algorithms. This demonstrates the benefit of our adapted algorithm for the case747

of analog methods in atmospheric and ocean science.748

To investigate the behaviour of our algorithm on a real system, we use IBTrACS tropical cyclone749

data, and test the ability of our algorithm to weight input variables in the case of intensity forecasting.750

First, analog methods outperform simple methods such as persistence or climatological forecasts at751

all forecast horizons in terms of CRPS. Second, our algorithm allows for significant improvement752

with respect to a baseline of analog forecast where all input variables are given equal weights.753

Third, even without regularization our algorithm already removes some unrelevant input variables,754

allowing for a first dimension reduction. To further reduce the number of variables used we add a755

regularization term, allowing to reveal which variables contribute the most to the optimal definition756

of distance for analog ensemble forecasting of tropical cyclone intensity. This demonstrates that757

our algorithm can be used on small-size datasets, which is an interesting property for TC studies,758

and that our algorithm allows to perform dimension reduction which is a key requirement of analog759

methods.760

We note here that extensions of this algorithm were tried but not retained. These include the761

definition of a state-dependant distance, where the matrix A is itself a (smooth) function of x. This762

is one possible way of having a non-linear transformation, which is a generalization of our linear763

(constant) transformation A. We have also tried to optimize several distance used at once, building764

several analog ensemble for each forecast, each with a different weight that is also optimized in the765

algorithm. Although feasible in practice, these extensions of our algorithm were computationally766

more intensive and did not yield remarkable improvements.767

Our algorithm could still be modified in several ways to deal with existing problems in atmo-768

spheric and ocean science. First, note that the experiments conducted for this study were all769

performed on a personal laptop, but memory issues would arise in the case of both high number770

of features (>100) and large number of training samples, which could be the consequence of using771

gridded fields of geophysical variables as features. These memory issues would be due to the prod-772

ucts x𝑖 𝑗x𝑇𝑖 𝑗 which is as large as the square of the number of features (unless A is diagonal). However,773
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there are memory-optimal ways to estimate such products, such as low-rank matrix approximations774

(Kumar et al. 2012). Also, in the experiments performed here we have used batch-gradient descent,775

which means that we use the whole training sample to compute the gradient (the whole sums over776

𝑁 in sections 2.b and 2.c), but other techniques such as stochastic gradient descent (Bottou 2012) or777

mini-batch gradient descent (Khirirat et al. 2017), which compute the gradient over subsets of the778

training set, would allow to diminish the memory requirements of the method. These techniques779

could also help escaping sub-optimal local minima, since we are facing a non-convex optimization780

problem. More generally, routines available from machine-learning libraries allow to compute781

gradients very efficiently, which already enabled us to perform experiments on feature vectors of782

size exceeding 103 on a personal laptop (not shown).783

The case of extreme events could be tackled by using our algorithm for weighted-CRPS mini-784

mization and giving more weights to the large values. This has potential applications for statistical785

downscaling of extreme precipitation, for instance.786

Finally, note that there are numerous distance learning algorithms that are different from the787

ones we have used and could also be modified to meet the requirements of analog methods in788

ocean and atmospheric science. In particular, some algorithms have the property of solving convex789

optimization problems, including for instance Globerson and Roweis (2005). We are currently790

working on such adaptations.791
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APPENDIX A797

Generalization to weighted CRPS798

An interesting feature of the CRPS is the possibility to weight the CRPS, and therefore give more799

importance to specific outcome (e.g., extreme values). The weighted CRPS is defined as:800

wCRPS(𝐹, 𝑦) =
∫∞
−∞
[𝐹(𝑦′)−1(𝑦′ > 𝑦)]2𝑤(𝑦)d𝑦′ , (A1)

for any non-negative function 𝑤(𝑦), and can be further expressed as (Taillardat et al. 2023):801

wCRPS(𝐹, 𝑦) = E𝐹 |𝑊(𝑌 )−𝑊(𝑦)|−1
2

E𝐹 |𝑊(𝑌 )−𝑊(𝑌 ′)| , (A2)

where 𝑊(𝑦) =
∫ 𝑦
−∞𝑤(𝑦′)d𝑦′ is any primitive of 𝑤. Using our notations, rewriting 𝑊𝑖 𝑗 :=802

|
∫ 𝑦 𝑗

𝑦𝑖
𝑤(𝑦′)d𝑦′|, noting wMAE𝑖 := ∑

𝑗∈𝐼(𝑖) 𝑝( 𝑗 |𝑖)𝑊 𝑗𝑖 and wMAD𝑖 := ∑
𝑗 ,𝑘∈𝐼(𝑖) 𝑝( 𝑗 |𝑖)𝑝(𝑘 |𝑖)𝑊 𝑗 𝑘 , we803

find that such a weighted CRPS has gradient:804

(A3)
𝜕wCRPS

𝜕A
= A

1
𝑁

𝑁∑︁
𝑖=1

∑︁
𝑗∈𝐼(𝑖)

𝑝( 𝑗 |𝑖)
{

wMAE𝑖 − wMAD𝑖 −
(
𝑊 𝑗𝑖 −

∑︁
𝑘∈𝐼(𝑖)

𝑝(𝑘 |𝑖)𝑊𝑘 𝑗

)}
x𝑖 𝑗x𝑇𝑖 𝑗 .

APPENDIX B805

Variables used for tropical cyclone forecasting806

Variables used in this paper for the tropical cyclone forecasting experiment come directly or807

indirectly from the IBTrACS database. IBTrACS is a compilation of the best-track data prepared808

by the different Regional Specialized Meteorological Centers (RSMCs) and Tropical Cyclone809

Warning Centers (TCWCs). Based on their area of responsibility, these regional agencies provide810

analyses of the TC location, intensity and structure on a regular time basis using the available data.811
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IBTrACS variables used in this study are the following:812

• 𝑉𝑚𝑎𝑥 , the “maximum sustained wind speed”;813

• 𝑅𝐼𝐵𝑇
𝑚𝑎𝑥 (we use the 𝐼𝐵𝑇 -superscript to distinguish from 𝑅𝐴23

𝑚𝑎𝑥 introduced below) is the radius814

of maximum sustained wind speed, defined as the distance between the TC center and the815

position at which 𝑉𝑚𝑎𝑥 is measured;816

• 𝑅34, the radius at which the velocity reaches 34 knots (1 kt ≈ 0.51 m/s) in four geographical817

quadrants (NE, SE, SW, and NW);818

• 𝑙𝑎𝑡, the latitude of the TC center;819

• 𝑠𝑡𝑜𝑟𝑚 𝑠𝑝𝑒𝑒𝑑, the storm translation speed;820

• 𝑠𝑡𝑜𝑟𝑚 𝑑𝑖𝑟 , the storm translation direction.821

Because of varying definitions of the maximum sustained wind speed across the different agen-822

cies, we selected only USA agencies (i.e National Hurricane Center, Joint Typhoon Warning Center,823

and Central Pacific Hurricane Center) which all provide the 1-minute maximum sustained wind824

speed.825

Furthermore, to focus on the strongest storms, and to ensure well-defined 𝑅34 values, we removed826

all storms with a lifetime maximum intensity lower than 17.5 m/s. We also considered storms for827

which 𝑅𝐼𝐵𝑇
𝑚𝑎𝑥 was defined for at least 72 consecutive hours. Lastly, we cropped all storm time series828

to select the part of each events for which 𝑉𝑚𝑎𝑥 was comprised between 17.5 m/s and the lifetime829

maximum intensity, to investigate the intensification period.830

In IBTrACS, some storm tracks are given on a six-hourly basis, while others are interpolated831

and thus given on a three-hourly basis. After applying the procedure mentioned above, the 111832

remaining storm tracks were all given on a three-hourly basis, except one, that was removed for833

consistency.834

Then, the selected IBTrACS parameters have been directly used or transformed into other835

variables more relevant for the present study. The transformed variables include:836

• 𝑅34, whose nonzero values were averaged over the four geographical quadrants;837

• 𝑓𝐶𝑜𝑟 , the Coriolis frequency, defined as 𝑓𝐶𝑜𝑟 = 2Ωsin(𝑙𝑎𝑡), where Ω = 7.292𝑥10−5 𝑠−1 is the838

Earth angular velocity and 𝑙𝑎𝑡 is the latitude of the TC center;839
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• 𝑢𝑡𝑟𝑎𝑛𝑠 and 𝑣𝑡𝑟𝑎𝑛𝑠, the TC translation speed in the zonal and meridional directions, computed840

with 𝑠𝑡𝑜𝑟𝑚 𝑠𝑝𝑒𝑒𝑑 and 𝑠𝑡𝑜𝑟𝑚 𝑑𝑖𝑟;841

• 𝑇18(𝑡), the number of hours after which 𝑉𝑚𝑎𝑥 has reached 17.5 m/s. By definition, for each842

element of our dataset, 𝑇18(𝑡) > 0.843

• 𝑅𝐴23
𝑚𝑎𝑥 , the radius of maximum wind speed estimated using the procedure described in Avenas844

et al. (2023) and detailed below.845

The procedure to estimate 𝑅𝐴23
𝑚𝑎𝑥 can be summarized in three steps. An estimate of the TC846

maximum sustained wind speed that would correspond to an azimuthal average of the wind field,847

is first performed, using848

𝑉𝑚𝑎𝑥,1𝐷 = 0.6967𝑉𝑚𝑎𝑥 + 6.1992. (B1)

Second, the absolute angular momentum that an air parcel loses between 𝑅34 and 𝑅𝑚𝑎𝑥 is849

estimated with the statistical relationship850

𝑀𝑚𝑎𝑥,1𝐷

𝑀34
= 0.531exp{−0.00214(𝑉𝑚𝑎𝑥,1𝐷−17.5𝑚𝑠−1)−0.00314(𝑉𝑚𝑎𝑥,1𝐷−17.5𝑚𝑠−1)(

1
2
𝑓𝐶𝑜𝑟𝑅34)},

(B2)

where 𝑀34 is defined as 𝑀34 = 𝑅34 ∗ 17.5𝑚/𝑠 + 1
2 𝑓𝐶𝑜𝑟𝑅

2
34. Lastly, 𝑅𝐴23

𝑚𝑎𝑥 is estimated using the851

absolute angular momentum definition852

𝑅𝐴23
𝑚𝑎𝑥 =

𝑉𝑚𝑎𝑥,1𝐷

𝑓𝐶𝑜𝑟

(√︄
1 +

2 𝑓 𝑀𝑚𝑎𝑥,1𝐷

𝑉2
𝑚𝑎𝑥,1𝐷

−1

)
. (B3)
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