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This review focuses on the posttranscriptional processes which govern mitochondrial biogenesis,
with a special emphasis on the asymmetric localization–translation of nuclear-encoded mRNAs as
an important regulatory step of the protein import process. We review how spatio-temporal mRNA
regulons help to elicit timely, versatile, and coordinated intracellular processes to assemble mito-
chondrial structures. Our current knowledge on the mitochondrial import of respiratory chain
assembly factors and the role of the ribonucleic acid (RNA) binding protein Puf3 are presented. A
connection with the target of rapamycine signalling pathway may explain how respiratory chain
assembly senses environmental conditions via the protein import machinery.
� 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Most of the mitochondrion proteome is made of nuclearly-
encoded preproteins, translated in the cytosol, which have to be
imported, processed, assembled into large macromolecular com-
plexes and located to the proper mitochondrial compartment.
The abundance, morphology and functional properties of mito-
chondria are finely tuned to meet cell-specific energetic and met-
abolic demands. It is generally assumed that, in different
organisms, this tuning is largely achieved in the nucleus, at the le-
vel of transcriptional regulation [1–3], whereas the mitochondrial
import machinery is simply in charge of the protein sorting inside
mitochondrial compartments [4,5]. However, in vivo studies in
budding yeast and HeLa cells have stressed the importance of the
processes preceding the import step [6–8]. It seems clear, long
after the pioneering work of Butow et al. [9], that some nuclear-
ly-encoded proteins can be co-translationally imported into mito-
chondria. Global transcriptome studies have demonstrated that
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roughly half of the mRNAs coding for mitochondrially-localized
proteins are asymmetrically localized to the vicinity of mitochon-
dria [10,11]. This implies that gene-specific post-transcriptional
processes cooperate with the mitochondrial import machinery.
The recent demonstration of a role of Tom20, a subunit of the outer
membrane translocase, in the co-translational import process
[12,13], raises the possibility that the protein import can be mod-
ulated via precise mRNA localization and site-specific translation.

This review will focus on the role of mRNA localization and site-
specific translation in the control of mitochondrial protein import,
as an important posttranscriptional control of gene expression. The
specific case of the spatio-temporal control of the assembly of
respiratory chain complexes during the yeast metabolic cycle will
be emphasized, as an emblematic example of cooperation between
transcriptional and co-translational events. The mechanisms, that
possibly link the co-translational protein import at mitochondria
and cytosolic signals connected to cell growth and energetic de-
mand, will be discussed.

2. Key examples of mitochondria import regulations

Studies carried out in different eukaryotic systems have pointed
out the mitochondrial protein import process as a potentially
important level of regulation of gene expression and mitochondrial
activity. An exciting example of regulated protein import into yeast
lsevier B.V. All rights reserved.
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mitochondria is the case of fumarase [14,15]. Fumarase is asym-
metrically distributed between the cytosol and mitochondria,
depending on the metabolic state of the cells. When the glyoxylate
shunt is shut off, and therefore fumarase is no longer required in
the cytosol, the protein accumulates exclusively in mitochondria.
The mechanisms controlling this differential distribution are not
known, though the authors favour a change in fumarase folding,
which would modulate the rate of translocation into mitochondria.

In plant cells the mitochondrial import of proteins is a dynam-
ically regulated process that is influenced by the light–dark cycle,
wounding, and developmental cues [16]. In cardiac muscle cells,
thyroid hormone (T3) treatment dramatically increases the rate
of mitochondrial protein import [17]. This rate can also be altered
in mitochondria from senescent animals [18] and mutations that
disrupt the proper functioning of the import machinery can lead
to oxidative stress, neurodegenerative diseases and metabolic dis-
orders (reviewed in [6]). Additionally, external factors, like Rubella
virus, can inhibit mitochondrial import via the action of a capsid
RNA-binding protein which probably targets important component
of the translocation apparatus [19].
3. Connections between protein import and mitochondrial
metabolic activity

Recent studies have pointed out relationships between the im-
port machinery and the establishment of mitochondrial functions.
This was especially well addressed in plants. Rice shows substan-
tial tolerance to anaerobic conditions and is able to germinate
and grow for days in the absence of oxygen. Studies in relatively
mature rice tissues have shown that, in aerobic conditions, an in-
crease in the import capacity is correlated with an increase in
the abundance of the cytochrome bc1 complex, thus revealing a
link between the activity of respiratory chain complexes and the
protein import apparatus [20,21]. Interestingly, in plants, the mito-
chondrial processing peptidase is part of the cytochrome bc1 and is
repressed both at transcript and protein levels, under anaerobic
conditions, providing a direct connection between mitochondrial
protein import and processing, and the respiration rate. Physical
interactions, mediated by the Tim21 protein, were observed in
the budding yeast between the inner membrane translocase
TIM23 and subunits of the respiratory chain complexes [22,23].
Also the adenosine diphosphate/adenosine triphosphate (ATP) car-
rier Aac2, which plays a central role in the mitochondrial metabo-
lism, exists in physical association with the cytochrome c
reductase (cytochrome bc1)–cytochrome c oxidase (COX) super-
complex and its associated TIM23 machinery [24].
4. Mechanisms that control the mitochondrial protein import
machinery

The outer membrane protein translocase, that functions as a
general entry gate for preproteins into mitochondria is, a priori, a
good target for import regulation processes. Up-regulation of the
protein import process may result from an increased synthesis of
the diverse translocases. For instance, in plants, the level of
Tom20 was found to positively correlate with import capacity
[25]. More recent studies [20] have shown that transcript levels
of mitochondrial protein import components are unaffected by
oxygen availability, indicating that the abundance of these pro-
teins, which is higher in anaerobic conditions, is regulated at a
post-transcriptional level. In budding yeast, the expression of
genes associated with protein import is positively correlated with
the growth rate together with a substantial fraction of the genes
associated with translation, ribosome biogenesis and ribosomal
RNA (rRNA) metabolism [26]. This perception by the mitochondria
of the nutritional environment of the cell should depend on target
of rapamycine (TOR) signalling. TOR is a conserved signalling path-
way which controls cell growth by integrating multiple environ-
mental inputs, including nutrients availability, growth factors
and stress. TOR exists in two different protein complexes: TORC1
and TORC2. Both complexes exhibit protein kinase activities and
regulate many key cellular processes, including translation, ribo-
some biogenesis and basal metabolism. However the relationships
between TOR and the mitochondria are complex. Although inhibi-
tion of the TOR pathway leads to a global decrease of the cytoplas-
mic translation [27], tor1 null cells exhibit a higher rate of
mitochondrial translation and an increase in the expression of sev-
eral mitochondrially encoded oxidative phosphorylation (OXPHOS)
components [28]. Accordingly, the treatment of budding yeast with
rapamycin, an inhibitor of TORC1 activity, increases the expression
of genes involved in the TCA cycle, mitochondrial ribosome biogen-
esis, and assembly of the OXPHOS complexes [29]. In mammalian
cells, hypoxia represses mTOR (mammalian TOR) as if the cells
were exposed to rapamycin [30] and mTOR activity is regulated
in a redox-sensitive manner [31], which establishes an homeo-
static regulation loop between mTOR and mitochondria [32]. This
connection between TOR activity and membrane-linked transla-
tion may be an important aspect of the mitochondrial import reg-
ulation, since many mRNA encoding mitochondrial proteins are
translated by ribosomes present at the external membrane of
mitochondria (see below). The recent demonstration, in a leukemic
cell line, that mTOR directly controls mitochondria function, while
being localized to the outer membrane of the mitochondria [33],
strongly supports a direct action of TOR on proteins located at
the mitochondrial outer surface. In yeast, this effect could be med-
iated by the Sch9p kinase, which was shown to be the main target
of TORC1 [34], and the inactivation of which mimics the effects of
an inhibition of TOR activity on respiration and life span [28,35].
Altogether these observations suggest that TOR signalling could
be a key actor in the regulation of the mitochondrial import
process.
5. Mitochondrial co-translational import distinguishes groups
of genes

The site-specific translation of localized mRNA is a fast and effi-
cient way of reacting to external stimuli, with the added benefit of
providing spatial resolution to the cellular response [36]. Several
genome-wide studies [10,11,13] have shown that about half of
the mRNAs encoding mitochondrial proteins are enriched in the
vicinity of mitochondria, presumably to facilitate protein trans-
port. Interestingly, these mitochondrially localized RNAs (MLRs)
can be mechanistically split in two classes: class I mRNAs (MLR
I), whose asymmetric localization depends on the presence of the
RNA-binding protein Puf3, and class II mRNAs (MLR II), which
are localized to the vicinity of mitochondria independently of the
presence of the PUF3 gene [10]. Finally, a third class (class III)
groups the mRNAs encoding mitochondrial proteins, which are
not translated at the vicinity of mitochondria.
6. Parameters that control the mRNA asymmetric localization
to the mitochondria

At least four elements are known to control the peri-mitochon-
drial mRNA asymmetric localization, which are more or less impor-
tant, depending on the MLR class that is considered: (i) the
mitochondrial targeting sequence (MTS), which is located at the
N-terminus of the nascent pre-proteins, is more than a general pro-
tein feature that interacts with the Tom20 translocase to favour
mitochondrial addressing. It also acts to regulate this translocation
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process. Thus, the MTS can either tilt the balance between mito-
chondrial and cytosolic dual localization [15], or guide the mRNA
asymmetric localization to the vicinity of mitochondria [12,13].
However, the MTS is present in many mitochondrial proteins inde-
pendently of the three classes described above [37], and therefore
is not sufficient to explain the site-specific translation of MLRs, (ii)
the outer membrane protein, Tom20, was shown to mediate local-
ization of mRNAs to mitochondria in a translation-dependent man-
ner [13]. Absence of this major import receptor alters the
repertoire of mRNAs localized to the vicinity of mitochondria,
(iii) the translational machinery was observed to be required to
maintain MLRs next to mitochondria [12,13]. In mammals it was
clearly demonstrated that ribosomes specifically bind to mitochon-
dria via protease-sensitive proteins on the outer membrane [38]
and it is reasonable to hypothesize that ribosomes are involved
in the direct interaction of some mRNAs with mitochondria [9],
Fig. 1. The mitochondria cycle. When grown under continuous, nutrient-limited conditi
[43]). Clustering analyses [43,44] of gene expression of 656 genes encoding mitochondr
(oxidative, 137 genes mostly involved in amino-acid synthesis), RB-A (reductive building
B, 77 genes coding mainly for respiratory chain subunits) RC (reductive charging, 150 gen
genes in each of the four phases, which belong to the MLR class I (green bars), MLR c
histograms. The cis- and trans- regulatory elements which have been demonstrated or p
translation [10] are represented as follows. Puf3 (upper right) recognizes the P3E motif in
surface [10]. These Puf3 targets are MLR class I which are mostly expressed during the
recognize the CCAAT box in the promoter of its target genes. These genes are mostly exp
spread between the RB-B, the RC and the Ox phases but represent the major class in
mitochondrial asymmetric localization depends on cis-regulatory sequences located into
to date. The class III mRNAs (on the left) are spread between the RB-B, the RC and the Ox
and the Ox phases. The class III mRNAs expressed during the Ox phase (upper left) share
characterised by in silico analyses [54]. The role of this sequence and its correspondin
categories enriched in each phase of the cycle are indicated at each corner of the figure
(iv) Puf3 and probably other unidentified mRNA binding proteins
are required to maintain mRNA asymmetric localization to the
vicinity of mitochondria. The MLR I class largely overlaps the
Puf3 target mRNAs previously identified [39] and the importance
of the Puf3 binding site in the 30UTR of some MLR I members for
their mitochondrial asymmetric localization was experimentally
demonstrated [10].

Recent studies have shown that localization of some MLR I to
mitochondria depends on both Puf3p and Tom20p [13]. Accord-
ingly, a tom20D puf3D strain exhibited growth defects under con-
ditions where fully functional mitochondria are required [13].
While it was strongly suggested that Tom20p and Puf3p are both
localized to the mitochondrial outer membrane [40], they do not
seem to interact with each other, at least in standard growth con-
ditions [13]. However, Puf3 controls the Tom20 mRNA localization
next to mitochondria [10] and the deletion of TOM20 considerably
ons, budding yeast exhibits robust, highly periodic cycles (from 40 [59] to 300 min
ial proteins have emphasized four different phases during the metabolic cycle: Ox
A, 262 genes coding for assembly and translation factors), RB-B (reductive building

es, coding for TCA cycle enzymes and other metabolic pathways). The percentages of
lass II (purple bars) and mRNA class III (blue bars) categories, are represented by
redicted to play a role in the yeast mitochondrial cycle [44] and in MLR site-specific
the 30UTR of its targets RNA and plays a role in targeting them to the mitochondrial
RB-A phase. The Hap complex and the Hap4 transcription factor (bottom middle)

ressed during the RB-B or the RC phases. The MLR class II mRNAs (bottom right) are
the RB-B phase. In the particular case of ATP2 mRNA, it has been shown that the
the open reading frame [12]. The proteins recognizing these sequences are unknown
phases, and they represent the large majority of the genes expressed during the RC
a special feature: most of them have a NRSE1 motif in their 30UTR. NRSE1 has been
g RNA binding proteins are unknown. Finally, the main mitochondrial functional
(based on [44]).
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increases the level of PUF3 mRNA and protein [13]. This increase
could be an adaptation to the mislocalisation of Puf3 in the cytosol,
that is observed in tom20D strains [13].

A simple scenario can describe the main steps controlling the
co-translational processing of MLRs: (1) interaction of Tom20p
with the emerging pre-protein through its MTS, (2) translation of
the downstream ORF, (3) interactions of additional RNA-binding
factors which, by interacting with ORF-contained motifs [12] or
signals in the 30UTR (like Puf3-motif) [10], can favour mRNA–mito-
chondria interactions, while participating in the regulation of
mRNA translation and stability. An essential aspect of this process
is the tight control of translation which has to be blocked until
mRNA has reached its appropriate localization and whose rate
has to be severely modulated to maintain ribosomes in close prox-
imity with mitochondria. In the MLR II member ATP2, the transla-
tion of two elements in the coding sequence has been shown to be
essential for mRNA anchoring to the mitochondrial surface [12].
This translation regulation of MLRs may also be achieved by
RNA-binding proteins, such as Puf3 in the case of the MLR I mem-
bers, which interacts both with the external side of mitochondria
[40] and with P-bodies [41], and therefore could control the local-
ization and the translation/degradation balance of its target mRNA.
Alternatively, such RNA binding proteins could coat the mRNAs in
the nucleus during mRNP formation or straight after cytoplasmic
export to ensure translational repression during transport, as pro-
posed by Lithgow et al. [42]. In conclusion, site-specific mRNA
translation seems important to precisely control both the localiza-
tion and the rate of cotranslational protein import into
mitochondria.

7. Protein import and the spatio-temporal regulation of
mitochondria biogenesis: a complex interplay between
transcriptional and post-transcriptional events

The cotranslational import of groups of mitochondrially-local-
ized proteins challenges the previous dogma that placed transcrip-
tional control at the centre of gene regulation and relegated
translation to a more passive role. Co-regulated groups of genes
were precisely identified in Yeast Metabolic Cycle data obtained
by transcriptome analysis of metabolically synchronized yeast cell
cultures [43]. The time-dependent expression of groups of nuclear
genes encoding mitochondrial proteins strikingly correlates with
their mode of mitochondrial import [44].The most salient feature
is probably the identification of a group of genes (named RB-A in
Fig. 2. Early steps of COX assembly: assembly factors are co translationally imported. T
Cox1 subunit is translated inside mitochondria, the first protein complexes are formed w
All these factors are likely to be co translationally imported since their mRNA is closely a
Constitutive Cox5 and Cox6 subunits are probably imported posttranslationally (Class
assembly, all but one (Cox16) belong to the MLR I class.
Fig. 1), whose mRNA amount increases at a very early step of the
Yeast Metabolic Cycle. These 262 mRNAs are mainly (70%) trans-
lated to the vicinity of mitochondria and contain a canonical
Puf3 binding site in their 30UTR [39,44]. They correspond to func-
tions required for the construction of mitochondria (assembly fac-
tors, ribosomal proteins, translation and transcription regulators).
Interestingly this group of genes, whose site-specific translation
seems to be tightly regulated, do not seem to be transcriptionally
regulated [45] and no evident consensus motif could be found in
their promoter region [44], suggesting that their up-regulation is
mainly due to a reduced mRNA degradation. The situation is more
classical for the following group of genes (RB-B in Fig. 1), which
code mainly for respiratory chain subunits, exhibit a transcrip-
tional regulation by Hap transcription factors [46] and a controlled
mRNA asymmetric localization [10]. The best documented case of
transcriptional regulation assisted by a posttranscriptional regula-
tion process is that of ATP2, which belongs to the RB-B group, has a
bona fide Hap binding site in its promoter and whose translation,
to the vicinity of mitochondria, is tightly regulated [12].

8. Respiratory chain assembly factors: an interesting Puf3 post-
transcriptional regulon

The protein import process, through the co-translational import
process, is able to funnel functionally connected groups of proteins
according to a spatio-temporal program. Several groups of proteins
are concerned but the case of the respiratory chain assembly fac-
tors is especially convincing. The biogenesis of the respiratory
chain complexes is critical for cellular bioenergetics and as such
it is tightly regulated to cope with cellular and environmental con-
ditions. Biogenesis of cytochrome c oxidase (COX), the last enzyme
of the mitochondrial respiratory chain represents a case study by
the importance and complexity of this multimeric enzyme
[47,48]. In the budding yeast, COX is formed by 13 different sub-
units of dual genetic origin (10 nuclear and 3 mitochondrial). Its
assembly involves at least 27 assembly factors which control dif-
ferent assembly steps. For instance, the mitochondrion-encoded
Cox1 subunit is incorporated within one early assembly intermedi-
ate containing the assembly factor Mss51 [49]. Subsequently, Cox1
maturation involves the progression to downstream assembly
intermediates requiring the assembly factors Coa1, Cox14 and
Shy1 [50], and COX biogenesis continues under the control of a
sophisticated ballet of assembly factors. Each respiratory chain
complex has its own set of assembly factors, only Oxa1, the first
his model is adapted from Khalimonchuk et al. [49] and Mick et al. [60]. When the
ith the nuclear-encoded assembly factors Mss51, Pet309, Oxa1, Coa1, Cox11, Shy1.

ssociated with mitochondria and contains a Puf3 binding site in their 30UTR (MLR I).
III mRNA). Note that among the 25 identified assembly factors involved in COX
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discovered assembly factors [51], is shared by the three different
respiratory complexes (III, IV and V). All these assembly factors
share similar post-transcriptional properties which are tightly con-
nected with their mitochondrial import process and which are
illustrated in Fig. 2: (1) their mRNA is asymmetrically localized,
31 of the 32 mRNAs coding for respiratory complexes assembly
factors are localized to the vicinity of mitochondria, (2) most of
them (29/32) have a Puf3 binding site in their 30UTR sequence
which has been shown to be functionally active in many cases
[10,39], (3) 25/32 of these mRNAs are more abundant in the very
early beginning of the yeast metabolic cycle strongly suggesting
that, in metabolically synchronized cells, assembly factors are pro-
duced before respiratory chain subunits and thus constitute the
corner stones of mitochondria biogenesis.

To summarize, whereas the regulation of assembly factor cod-
ing genes appeared quite heterogenous and difficult to rationalize
[45], the analysis of transcriptome data from metabolically syn-
chronized strains [43], together with data concerning the topolog-
ical properties of their mRNAs [10,44], have revealed that assembly
factor mRNAs share common properties: they are regulated mostly
post-transcriptionally both by their translation mode (localization,
controlled rate) and by their stability. In that respect they consti-
tute one of the best documented case of a decay regulon [52] or,
more generally, a post-transcriptional regulon which coordinates
the localization, translation and stability of mRNAs [53].

9. Could TOR signalling pathway regulates mitochondrial
import via Puf3?

The above scenario may offer some clues for better exploring
the regulatory mechanisms which control mitochondrial biogene-
sis via the mitochondrial import process (Fig. 3). It was recently
proposed that the role of Puf3 in mRNA translation and stability
could be connected to the Mkt1 protein, which interacts with the
Poly(A)-binding protein associated factor Pbp1 [41]. Moreover,
rapamycin treatment has been shown to reduce the ability of
Fig. 3. Metabolism and co-translational import regulation. (1) Puf3 may serve as a regula
stored in P-bodies where they are translationally silenced and either degraded or releas
dietary restriction increase translation of nuclear-encoded mitochondrial genes [62,63]. R
of co-translationally active mRNA–Puf3–Tom20 complexes. Class I mRNAs are translated
[10]. Puf3 and the outer membrane translocase Tom20 are both necessary for an asymm
dependent on Mdm12 [40]. This model is speculative and many of the factors involved in
with the Poly(A)-binding protein associated factor, Pbp1, during translation and can eith
regulating P-body abundance [41]. Mkt1 is a good candidate to play an important role in
allele reduces the formation of petite colonies and compromised the growth of petite ce
other putative functions for Mkt1 have been mentioned mostly in connections wit
predominant. Yeast TOR is also a very important factor in the control of Puf3 properties
complex comprising the outer mitochondrial membrane proteins Bcl-xl and VDAC1 is ce
biogenesis through the YY1-PGC-1a transcriptional complexes [68] thus connecting tran
Puf3 to control mRNA stability [54]. Finally, in a leukemic cell line,
inhibition of mTOR has immediate effects, which cannot be ex-
plained by transcriptional changes, on carbon and mitochondrial
metabolism by acting directly at the mitochondrial outer mem-
brane. It is tempting to propose that, in the yeast, Puf3, which is
also located at the mitochondrial outer membrane [40], might be
a direct phosphorylation substrate for TOR signalling. In this mod-
el, two distinct states of Puf3-mRNA complexes would exist: (i) a
repressive complex associated with P-bodies, and (ii) an activating
complex at the mitochondria, engaged in co-translational import.
The balance between these states could be achieved by TOR, which
is a negative regulator of Puf3 function and mitochondrial biogen-
esis (Fig. 3). This would allow mitochondria to swiftly adapt to the
energetic, metabolic and signalling demand of the cell, without
relying on time-consuming transcriptional processes. It is impor-
tant to mention that the functional homologue of Puf3 in human
cells is unknown to date. None of the human pumilio proteins
PUM1 and PUM2 interact specifically with mRNAs encoding mito-
chondrial proteins [55–57]. However, further experimental work is
needed to exclude a role of PUM1 and PUM2 in mRNA localisation
to the mitochondria.

10. Concluding remarks

Importance of the mitochondrion in the cell physiology implies
that this organelle should have the capacity to swiftly adapt its
properties to the cellular or extracellular context. The transcrip-
tional regulation of nuclear genes coding for mitochondrially local-
ized proteins is certainly important, but it cannot account for a fast
adaptive response. Recent studies have underscored the impor-
tance of a co-translational import process concerning a large set
of proteins important for mitochondrial biogenesis. This process,
which relies on a tight translational regulation of localized mRNAs,
can rapidly respond to cellular conditions while giving the possibil-
ity to orchestrate complex assembly at discrete foci on the mito-
chondrial membrane. TOR signalling might play a central role in
tory signal in processes taking place in P-bodies [41]. Puf3-mRNA complexes can be
ed back in the translating pool [61]. (2) Reduced nutrient sensing TOR pathway or
apamycin alters P-bodies-linked Puf3 properties [54] and may favour the formation
to the vicinity of mitochondria under the control of the mRNA-binding protein Puf3
etric mRNA localization [12,13]. Puf3 interaction with the mitochondrial surface is
this equilibrium have to be studied. For instance, Mkt1 is a protein which interacts

er regulate translation [64] or control the stability of Puf3-dependent transcripts by
the P-bodies-Mitochondria equilibrium of Puf3 [41]. In addition, the fact that MKT1

lls [65] is a strong indication of its role in mitochondria biogenesis. Though several
h environmental conditions [66,67], its role in mitochondria biogenesis seems
[54] and the recent finding that, in a leukemic cell line, mTOR can be localized in a
rtainly worth noting [33]. Moreover, in mammals mTOR also controls mitochondria
scriptional and post transcriptional regulation.
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this regulation via modification of mRNA-binding proteins like
Puf3 [54]. Recent data showed that reduced TOR signalling extends
yeast chronological life span by increasing oxygen consumption.
This is, in part, due to a up-regulation of the translation of
mtDNA-encoded OXPHOS subunits [58]. TOR could then be an
important element to connect mitochondrial protein import and
the synthesis of mitochondrial proteins. Interestingly Puf3 controls
the translation of many important mRNAs including TOM20 mRNA,
which codes for an important component of the outer membrane
translocator. The Tom20-Puf3 couple, which may sense the envi-
ronmental context, seems to be important to regulate the in vivo
import of many mitochondrial proteins [13]. Unquestionably the
Tom20–Puf3 regulon is not the only protein association in charge
of the mitochondrial import regulation but it is a paradigmatic
example which certainly opens the way to new approaches to
study mitochondrial biogenesis and which may be relevant to bet-
ter understand dramatic pathological situations.
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