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Abstract

For any multi-fractal dynamical system, a precise estimate of the local dimen-
sion is essential to infer variations in its number of degrees of freedom. Following
extreme value theory, a local dimension may be estimated from the distributions
of pairwise distances within the dataset. For absolutely continuous random vari-
ables and in the absence of zeros and singularities, the theoretical value of this
local dimension is constant and equals the phase-space dimension. However, due
to uneven sampling across the dataset, practical estimations of the local dimen-
sion may diverge from this theoretical value, depending on both the phase-space
dimension and the position at which the dimension is estimated. To explore
such variations of the estimated local dimension of absolutely continuous random
variables, approximate analytical expressions are derived and further assessed in
numerical experiments. These variations are expressed as a function of 1. the
random variables’ probability density function, 2. the threshold used to compute
the local dimension, and 3. the phase-space dimension. Largest deviations are
anticipated when the probability density function has a low absolute value, and a
high absolute value of its Laplacian. Numerical simulations of random variables
of dimension 1 to 30 allow to assess the validity of the approximate analytical
expressions. These effects may become important for systems of moderately-high
dimension and in case of limited-size datasets. We suggest to take into account
this source of local variation of dimension estimates in future studies of empirical
data. Implications for weather regimes are discussed.
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1 Introduction

Local dimension estimations are tools to study multifractal measures with local den-
sity exhibiting multiple scaling exponent. A first approach to study such measures is
global, looking at these scaling exponents over the measure’s whole attractor, through
what is called the spectrum of generalized dimensions [1-3]. The other approach is
local, examining variations of estimated dimensions at different points of the attrac-
tor. Such an approach is widely used to study dynamical properties of atmospheric
circulation [4-12], building on mathematical developments linking dynamical systems
theory and extreme value theory [13]. These local dimensions allow to assess the prob-
ability distributions of distances for “analogs” [14], often used in atmospheric science
for several applications [e.g. 15-18]. Local and global approaches can be reconciled,
as [19] showed that the spectrum of generalized dimensions can be deduced from the
ensemble of local dimensions estimates.

These dimension-estimation tools are designed for multifractal measures, and
should in principle give trivial results when applied to random variables with smooth
probability density functions. However, in practice, dimension estimates can be biased.

[20] showed that in high dimension, the curse of dimensionality induces dimension



estimates inferior to what is expected from the multi-fractal formalism of dynamical
systems (i.e., that the local dimension should equal the phase-space dimension). It has
also been noted that the dimension estimates are anomalously high in areas of low
density [6], such as the borders of the wings of the three-variable convective Lorenz
system [21].

In this work, we explore these seemingly intrinsic variations with position in phase-
space of the estimates of local dimension for random variables possessing an absolutely
continuous probability density function. We use Taylor expansions with the hyper-
sphere-radius used to compute local dimensions, to derive analytical approximate
expressions for the estimates of local dimension, leading to a typical formula that
can be used to compute the latter from empirical data. These expressions are then
compared to true empirical estimates of local dimension from numerically generated
data corresponding to 1. a one-dimensional double-well stochastic system, 2. a two-
dimensional Gaussian Mixture Model, and 3. a standard multivariate Gaussian of
arbitrary dimension.

Section 2 recalls the basic definitions and provides analytical derivations for the
approximate deviation of local dimension estimates from the phase-space dimension.
Section 3 provides particular cases of the analytical expressions, and describes numer-
ical experiments used to validate these expressions. Finally, section 4 gives concluding
remarks and discusses implications for studies of weather regimes based on dynamical

indicators.

2 Theoretical background

2.1 Definitions

Let us consider a dynamical system with invariant measure p. For any point x in the

support of u, the local, r-resolution dimension at point x follows:
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d(x,r) = log{éigﬁz’r) (1)

where B, , is the ball of radius r centered on z, and r > 0. The limit for small r of
this local dimension, when it exists, is denoted d(x). If d(x) exists for all = and if y is
ergodic, then d(z) is constant p-almost everywhere and the system is said to be exact-
dimensional [22]. In this case the typical value of d(z) is noted D; and is called the
first-order Renyi dimension or information dimension. It is also equal to the u-average

of the local dimensions :

1 B,,))d
Dy e lim J108((Beyr)) du(z)
r—0 logr

(2)

[19] showed that the local dimensions d(z,r) follow a large deviation principle
around their p-average value Dy as » — 0. This gives information on the probability

density of d(z,r) when |d(z,r) — D1| exceeds a given threshold.

2.2 Numerical estimation

We assume that we are provided with a long time-series of {xi}lgig y from the
dynamical system defining p, where N is a large integer.

Computing d(x,r) at fixed & through Eq. (1) with a Birkhoff sum to estimate
w(By ) gives a slow convergence to D for small values of . Instead, methods relying
on several values of p(B, ) for small r give more satisfying results. Let K € NN,
such that K /N is small enough to ensure small bias but large enough to ensure small
variance. Note r; < ... < rx the ordered distances to the K nearest neighbours of x
in the dataset {z;},.,<y. Then the following expression is an estimator of d(z,7x)

(see [18)]):

k=2

d(z,ric) = {if{log <T::)}1. (3)



Note also that, if we assume that there are constant values d, pg > 0 such that,
for r < rg, u(Bz,) = por?, then the integral in the right-hand side of Eq. (4) equals

exactly d~1. In the right-hand side of Eq. (3), the sum is an approximation of:

K rK
Zklog( - ) ~ [y 4)
2 K Tk—1 0 IU’(BZE,TK) r

~ Tk—Tk—1 Tk —Tk—1
= e e

- , which is valid only when
k

by using the approximation log (m’:—:)
is small. Note that from [18], we have the scaling rj, ~ k'/P1, so that the previous
approximations holds in particular for medium-to-large values of the dimension, and

for medium-to-large values of k. For instance, if D; = 1 and k = 1, we have the scaling

Tk—Tk—1
Tk

~ 1 and so this approximation barely holds. On the contrary, if D; = 3 and
k =4, then % ~ 0.07. Thus for practical applications, this approximation should

hold. This allows to directly reassess ci(x, rK) as a function of r:

In the following, we will focus on the behaviour of J(x, r) using this expression.

2.3 Expansion for absolutely continuous random variables

2.3.1 Fixed radius

In this section, the attractor measure p describes the probability of an absolutely
continuous random variable, i.e. the following formula is true for any n-dimensional

phase-space volume V':

pe e V)= [ s (6)

v
where p(x) is the probability density function of the random variable, and a smooth
function of x. We also assume that p(x) has no zeros, and no singularity (i.e. for

all z, 0 < p(x) < +o00). This condition is necessary, as one could otherwise build
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231 absolutely continuous random variables that have a continuous spectrum of generalized
232

933 dimensions, as in [23]. With our hypothesis, the quantity u(B;,) admits a Taylor
234
235
236
237
238

239 1(By,) = /B p(z + w)d™u 1)

expansion for small 7:

240

241 1 ,

212 = [ o0+ Vo) s o mO@ a0 e @
BO.T

243 f

244

245 where Vp(x) denote the n-dimensional gradient of p at z, and H(p)(z) denotes the

246
247 m X n - dimensional Hessian matrix of p at x, the matrix of second-order derivatives,

248

949 and centered dot “-” denotes scalar product.

250 The first term in the integral is constant and gives p(z)a,r™ where a,, > 0 is
;g; the volume of a radius-1, n-dimensional ball. Through symmetry in the ball By, the
;gi integral f Bo.. ud™u of the odd function u + u vanishes and so does the second term

255 in the integral. Finally the third term can be re-written as a sum of odd and even
256

257 functions.

258

259

260 /u [H(p)(z)u]d"u = Z 8i3jp/uiujd"u + Z 8i2p/ uid™u. (9)
261 itj i

262
263

264 tions vanish, and the sum of non-vanishing terms amounts to iAp(x)ﬁnr”” where
265

266 Ap(z) = >, 0?p(x) is the Laplacian of p at = (i.e. the trace of the Hessian matrix)
267
268

269 fourth term of order O(u?) (non-written here) also vanishes, so that one can write:
270

In this expression, terms that depend on cross-derivatives along different direc-

and 3, is the integral [ Bo s u?d™u. Through vanishing integral of odd functions the

271

272 B

3 #Bry) = pla)ant™ + 50 Ap(@)r"™ + O(") (10)
;;g Coming back to J(x, ), one can also estimate the following integral as:

276



2= (1) toar+ (155 grawtar 007,

r 2n

which gives, after manipulation, and using the fact that (n + 2)8, = nay,:

R o Ap(x) r 2 "
d(z,r) = {1+ (@) <n+2) }+O( ). (12)

This final expression shows that, for absolutely continuous attractor measures p,

the first order deviations of d(w, r) from the exact, integer phase-space dimension n is
of order r2. The Laplacian of p(z) is positive (resp. negative) in case of local minima
(resp. maxima) of probability. This means that in highly sampled areas, the dimension
decreases, while around poorly sampled areas the dimension increases. However, this
effect is also balanced by a factor p(x)~!, and therefore the position of extrema of d
differ from those of p in general.

In one dimension, Eq. (12) reads:

d2p(x)
Ip(x)

where 92p(x) is the second-order derivative of p at z. In two dimensions (z,y), we

d(z,r) =1+ r? +0(rt). (13)

have:

s (92 + 92)p(x,y) 2

d((z,y),7) =2+ 8p(2.7) +0(r"). (14)

One can check that when taking the p-average of J(ac, ), we have:

Ap(z) . D
/Q e au = / Ap(a)d (15)

=/ Vp(z)-d" 'z, (16)
6Q
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where the last integral is the flux of the gradient of p at the border of the whole domain

), which is zero. This gives:

[ dte. i) = n+ 06 a7)
which is a low-order particular case of the general statement that the p-average of

local dimensions is the order-1 Reiny dimension (here n).

2.3.2 Fixed quantile

In practice, when trying to compute local dimensions, one rarely fixes the radius r,
but rather the quantile ¢ which is the proportion of data used to compute the local
dimensions. Indeed, fixing the radius can become complicated when data are poorly
sampled, as this would imply to rely on very few points for computing d.

The quantile ¢ can be related to the radius and probability density function by

noting that ¢ = p (By,-) by definition, and recalling Eq. (10), which gives at first order:

() (o (2)

Inserting this in Eq. (12) gives:

A {1 . Ap(z) (D(5+ 1>q>2/"} | 19)

A =0\ e e+ 27

where I' is the Gamma function that enters into the expression of the volume of a

radius-1, n-ball: o, = 7/2/T'(n/2+1). In the case of large n, one can recover Eq. (17)

as the second-term of the right-hand side of Eq. (19) is still approximately proportional
to Ap(z)/p(x).

Eq. (19) has a less straightforward dependency with n than Eq. (12), highlighting

the dependency of r with n when q is fixed. However, another dependency with dimen-

sion is hidden in the ratio Ap(z)/p(x), as probability density functions also strongly



depend on dimension. For instance, the probability density function of a standard nor-

—n/2

mal vector evaluated at 0 decreases with dimension n as (2m) . Particular cases

are outlined below to better understand these expressions.

3 Particular cases and numerical experiments

3.1 Double-well potential

First consider a one-dimensional example of a stochastic system emanating from the

following stochastic differential equation (SDE, see e.g. [24]):

dz = -0,V (z)dt + cdW , (20)

where z(t) is real-valued, ¢ is time, ¢ > 0 and W is a Wiener-process of variance dt,

with the following potential:

V(z)=(1-2%)7?, (21)

which is the famous symmetric double-well. In particular, this potential has the

following drift and second-derivative:

-0,V =4(1 —2H)x , (22)
02V = 4(32% — 1) . (23)

This potential has two stable equilibrium at x = +1 and one unstable equilibrium
at z = 0. We have 92V (1) = 8, and 92V (0) = —4.

The Fokker-Planck Equations associated with the above SDE is:

() = 0. (o 00,V ()] + 22 | Tl (29

which has the static solution :
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Fig. 1 Left: example of trajectory following Eq. (20) with potential (21), and noise amplitude o = 5.
Right: corresponding potential (dashed blue line) and static probability density (full orange line).

o (-2442)
ps(z) = fj;o exp (_ 2\;(;)) du ’ (25)

One simulation of this stochastic system with the Euler-Maruyama method and

a time step of 1073 is shown in the left panel of Fig. 1. The right panel shows the
corresponding potential and static probability density function. We can see the typical
behaviour of this system, jumping randomly from one well to another.

From section 2.3, dimension estimates are expected to deviate from the true dimen-
sion n = 1, with lower dimensions around the wells of the potential, and higher
dimensions not only at the centered unstable fixed point but also to the right and left
of the wells. More precisely, combining ps(z) from Eq. (25), expressed from Eq. (21),
with Eq. (13) gives:

4
d(z,r) =1- g%% <3x2 1= 962)2””2) rt+0(r") . (26)

A numerical simulation of Eq. (20) is performed with time step 10~3, running for
5 x 10° non-dimensional time. This numerical simulation will serve as a “catalog”
from which the distances r; are computed. The empirical local dimension is then

estimated on a regular grid. The interval —3 < z < 3 is spanned, using Eq. (3) at

10



fixed radius 7 = 0.3 by choosing K (z) at each position z so that rx < r < riy1,
and the {ry}x are the distances between x and the elements of the catalog. These
empirical estimates of ci(x,r) are then compared with the approximate analytical
expression Eq. (26), and shown in Fig. 2. The approximation appears to be valid for
—1.5 <z < 1.5, and starts to break down for larger absolute values of the position
x. Note that the approximation still captures an interesting feature, also present in
the empirical estimates of dimension from the simulated catalog: the position of the
minimum of dimension differs from that of the maximum of probability.

This can be important for weather regimes [see e.g. 6]. These regimes are usually
defined through the fit of a Gaussian Mixture Model to the empirical probability den-
sity of atmospheric circulation data projected onto Empirical Orthogonal Functions.
They are therefore defined through the maxima of density. These regimes are studied
with dynamical features such as the local dimension, and some studies have shown
that peaks of regime index coincide with troughs in dimension [8, 25|, arguing that
this strengthens the physical meaningfulness of weather regimes. The latter should
in principle be associated with less complex dynamics and higher predictability, and
therefore lower fractal dimension (as well as higher persistence). With the numerical
example, variations of estimated local dimension are due to variations in density. It is
an artifact and not a sign of a local modification of the true fractal dimension. These
local dimension variations have a similar behaviour as the one depicted in [8, 25],
with low dimension associated with high density (and therefore high regime index).
However, there is a strong shift between the position of the peak density and the posi-
tion of the trough of estimated dimension. Therefore, the effects depicted here might
be candidates to explain the observed variations in dimension estimate observed in
[8, 11, 25], at the peak of regimes and at transitions between regimes. However, the
fact that the position of the stable fixed points is shifted with respect to the position of

minimum dimension seems to indicate that reported variations in dimension estimate

11
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Fig. 2 Empirical dimension estimate versus analytical approximation from a long simulation of the
double-well stochastic system.

may certainly not be solely due to the artifacts depicted here. In the next subsection,
the case of two-dimensional Gaussian Mixture Models is considered to better assess
the possible effect of this artifact.

The simple one-dimensional example can finally be used to investigate one property
of Eq. (26), which is the scaling ci(x,r) —1 ~ r2. To do so, we take a closer look at
a few points x between -1.3 and 0 for which the approximation seems to be valid,
Fig. 2. We take regularly sampled values of 72 between 0.0004 and 0.25, for which
the local dimension is estimated with Eq. (3), and K defined as previously through
rg <r < rgi1. These estimates are compared with the analytical expression of Eq.
(26) in Fig. 3. The agreement is very good between the analytical approximation and
the empirically estimated values, validating both the scaling of cf(a?, r) —1 with r2 and

2
the values of the slopes given by the analytical expression %”pp((f)) in dimension 1.

3.2 Gaussian Mixture Model

The previous example showed that the position of minima of dimension differs from
that of the maxima of probability density. To test this assertion, a Gaussian Mixture

Model is considered (GMM, see e.g. [26]), of which k-means [27] are a particular case.

12
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Fig. 3 Local dimension estimate as a function or r2 for several locations = in the double-well
stochastic system, estimated from numerical simulations compared to an analytical approximation.
Squares: approximation from Eq. (26). Dotted lines: empirical values from numerical simulation.

Such a model allows to define a random variable as stemming from several components
(of the “mixture”), each component being defined by a Gaussian distribution with its
own characteristics (mean and covariance matrix).

These statistical models are also typically used to assign atmospheric circulation
data to weather regimes. For instance, in [28], four weather regimes are defined through
the fitting of a GMM to atmospheric circulation data, smoothed in time and projected
on two empirical orthogonal functions, giving a two-dimensional space. As a reminis-
cence of this configuration, we take here interest in a two-dimensional random variable
defined by a GMM with four components. This random variable X has the following

distribution px:

4
px =Y 6N (mi, ), (27)
i=1

where N'(m, ) stands for the probability density function of a Gaussian distribution
with mean m and covariance matrix X, and each ¢; corresponds to the probability of

a given component to be selected. We choose to use diagonal covariance matrices for
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Parameter \Component Upper-right | Lower-right | Lower-left | Upper-left
ms [15,1.5] [T,1] |[-1,090][-1,009]

3 1.3 0.9 1.2 0.9

i 0.25 0.25 0.25 0.25

Table 1 Parameters used for the two-dimensional Gaussian Mixture Model.
Covariance matrices are proportional to the identity matrix and therefore only one
coefficient is given. The components are given names related to their position in
phase-space, as shown in the plots of Fig. 4.

simplicity. The values set for the means m;, covariances X; and probabilities ¢; are
listed in Table 1.

Although feasible, there is no interest in giving the analytical expression for the
approximate analytical expression of 02(% r) from Eq. () using the expression for the
probability density function of this random variable. However, we can visually check
the agreement between this analytical expression and the true dimension estimated
from numerical experiments. To do so, we draw 107 samples of the GMM, and for each
two-dimensional position x on a regular grid of 200 x 200 points ranging from —3.5
to +3.5 in both dimensions, we compute the empirical dimension at radius » = 0.5
using this randomly sampled data and Eq. (3). The result of this procedure is shown
in Fig 4(c), and compared to our approximate analytical expression in Fig 4(b), while
the GMM model density is shown in Fig 4(a). A very good agreement between our
approximation and the empirical estimates in terms of the position of the minima of
estimated dimension (see in particular the position of the minima of dimension on the
top-right), as well as the general behaviour (including rising dimension in areas of low
density, far from the GMM components). Again, the approximation overestimates the
amplitude of these variations, here by a factor of ~ 3. However, the relative intensities
of the empirical dimension minima also agree with previsions from our estimates:
the bottom-right and top-left troughs of dimension are stronger than the one on the
top-right and bottom-left.

This example shows that our approximation captures anomalous variations in esti-

mated dimension for random systems stemming from a GMM. In particular, troughs

14



(b) Approximate analytical dimension

(a) GMM density and Gaussians from GMM density at r=0.5 26 (c) Empirical dimension, r=0.5 22
3 : b B> i ’
2.4
2 2.1
1 2.2
0 / \ 2.0 2.0
-1 1.8
-2 \\ / 1.9
1.6
-3
1.4 1.8

Fig. 4 (a) GMM density (contours) and Gaussian distributions’ averages (crosses) and radius at
which the probability of the gaussian is twice smaller then its maximum probability (circles). (b)
Approximate analytical expression for the dimension estimates from Eq. (3.2) and true GMM density,
setting radius r = 0.5. Crosses and circles from (a) are repeated for comparison. Squares indicate the
position of the minima of dimension, and the corresponding minimum values of dimension are written
next to the squares. (¢) Same as (b) but for the empirical dimension estimates from numerically
sampled GMM and with Eq. (3). The position of the squares of (b) are repeated for comparison.

of dimension are witnessed near the weather regime means, so that the observations
of [8, 11, 25] may indeed be associated to such effects of density variation rather than
true changes in the fractal properties of the attractor of the underlying atmospheric
dynamical system. However, the amplitude of the variations in dimension estimate
observed in this example are small, and more investigations are needed to understand
how these effects depend on phase-space dimension. This is the subject of the following

particular case.

3.3 Multivariate Gaussian

A multivariate Gaussian system is now considered, to more particularly explore the
effect of dimensionality on our claims. For a standard multivariate Gaussian, the

probability density function is given by:

||
exp(— P) )
= 27 28
p(z) CSE (28)
where z is a n-dimensional vector. The Laplacian of p(z) reads:
2 exp(— ‘lez )
Ap(z) = (|x| - n) 7(271_)% . (29)
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Substituting this into Eq. (19) gives:

d(z,q) = n {1 +2v7 (|2|* — n) exp (|$nz>

(5 + 1>q>2/”} )

(n+2)?
Again, the witnessed behaviour is similar to those depicted in the previous experi-
ments, with a decreased dimension towards the area of high probability density (here
2 = 0), and an increased dimension with respect to the theoretical value n in areas of
low density (here for large values of |z|).
Mentioned above, these formulas are only approximations of the true behaviour
of local dimension estimates for data generated from the standard multivariate Gaus-

sian. To test their validity using numerical experiments, we first consider five different

positions z = (0,...,0), « = (1,0,...,0), = (2,0,...,0), = (3,0,...,0),
x = (4,0,...,0); as well as three values of the proportion of data used to compute
the local dimensions ¢ = 1072, ¢ = 1074, ¢ = 10~°; and finally three values for the
exact dimension n = 2, n = 5, n = 8. To each triplet of values (x,¢,n) can be asso-
ciated an approximate value of d(z, q) from Eq. (30), which is reported in Fig. 5(b).
To compare this to real dimension estimates from numerical experiments, we generate
100 independent datasets for each pair (¢,n), each dataset containing 103/q samples
of the standard multivariate Gaussian of exact dimension n. Then, with each dataset
we compute the local dimension estimate using Eq. (3) at all five positions x listed
above. For each triplet (x, ¢, n), we therefore obtain 100 values for ci(:c, q). Taking the
average over all 100 realisations, we obtain the results shown in Fig. 5(a).

Numerical experiments confirm the same tendency as the ones given by our approx-
imate Eq. (30): slightly lower than n for x = 0, and growing with |z|, eventually
exceeding n. The deviation at x = 0 from the exact value n is a growing function

of n for the values considered here, both according to our approximation and to the

numerical experiments. At fixed position x = 4, the opposite behaviour is observed:
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(a) Numerical experiments (b) Our approximation
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Fig. 5 Estimated local dimension for the multivariate normal distribution, at positions z =
(0,0,...,0), 2z =(1,0,...,0), up to z = (4,0,...,0), for three values of ¢, the proportion of data used
to compute the local dimensions, and three values of n, the exact dimension. (a) Values obtained
from numerical experiments, averaged over 100 realisations for each triplet (z,g,n). (b) Approxima-
tion from Eq. (30).

the deviation is stronger for small values of n. Note also that, as in the previous exper-
iments, our approximation strongly departs from the numerical values in areas of very
small density (here, large values of |z]). Our approximation also overestimates the
deviation at x = 0. However, these numerical experiments display the same behaviour
as one would expect from our approximation, suggesting that the latter adequately
represents the effect of changing density on variations of numerical estimates of fractal
dimension.

A next question is then the following: what is the typical variation of fractal dimen-
sion estimate that is only due to density variations, and how does this typical variation
depend on the exact dimension n ? To test this, we define the radius r*(n,7), where
0 < 7 < 1 is the probability that = lies in a ball of radius r* centered on & = 0. This

radius r* is thus defined implicitly through the following equation:

7= ()" Lexp (@2) : (31)

where the right-hand side of this equation is obtained by integrating the probability

density function of a standard Gaussian distribution from r = 0 to r = r*. We can
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Fig. 6 Plot of radius r*(n, 7) versus phase-space dimension n defined through Eq. (31). This is the
radius for which the probability of a standard multivariate Gaussian to lie in a O-centered ball of
radius r* equals 7.

find an approximate value for r*(n,7) by solving this equation numerically for each
desired values of n and 7: see Fig. 6 for the behaviour of r* with n.
Then, our objective is to estimate the following quantity:
S (el = (n,7),0) — d(la] = 0,0)) (32)
This last quantity is representative of the typical variations of fractal dimension
estimate that would be observed roughly 1-7 times on average. These variations are
only due to changes in probability density, and they do not not represent variations

in fractal properties. Since there is no analytical expression for r*, we cannot give

Ad
n

an explicit expression for using our approximation (30), however we can plot it
numerically. This is shown in Fig. 7. Our approximation (30) predicts that n — ATCZ
is a growing function of n for 7 = 0.9 and values of ¢ below 0.001, while it reaches
a maximum for moderate values of n if 7 = 0.9 and ¢ = 0.01, or if 7 = 0.99 and for
all considered values of ¢. This maximum value of n ATJ depends on g and 7, as
well as the value of n for which the maximum is reached. Fig. 7 indicates very strong

values for Acz, up to 4 times the exact phase-space dimension n. On the one hand,

noting the discrepancy between our approximation and numerical experiments from
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Fig. 7 Typical variations of dimension estimates for the multivariate Gaussian, as predicted from
our approximation Eq. (30), as a function of phase-space dimension n, and for various values of the
ratio g of total data used to compute the local dimensions. (a) Probability 7 = 0.9 of being in a
centered ball of radius r*. (b) Same with 7 = 0.99.

Fig. 5, we expect these numbers to greatly overestimate the true value of %‘J . On the
other hand, the good agreement shown in Fig. 5 between experiments and analytical
approximation in terms of behaviour with n and ¢ suggests that the same kind of
qualitative agreement could be found for %‘i.

To test the validity of these approximations, numerical experiments are again
performed. This time, we use two values for ¢ = 1073, 10~%; and ten values for
n=2,5,8,...,29; and finally two values for 7 = 0.9, 0.99. As in the previous
experiment, for each pair (¢,n) 100 independent datasets are generated, each con-
taining 103/q samples of the standard multivariate Gaussian of exact dimension n.
For each dataset, Eq. (3) is used to estimate the dimension at z = (0,0,...,0) and
at x = (r*,0,...,0). For each triplet (7,¢,n), 100 values are therefore obtained for
%‘i. Taking the average over all 100 realisations, we obtain the empty circles and full
stars shown in Fig. 8, and compared against the semi-analytical curves of the previous

figure.
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Fig. 8 Estimated variations of local dimension Ad {41 the multivariate normal distribution, between
position z = (0,0,...,0), and z = (r*,0,...,0), where r* is such that the probability to be within
distance r* from z = 0 is 7 = 0.9, for two values of ¢, the proportion of data used to compute the local
dimensions, and 10 values of n, the exact dimension. Circles and stars: values obtained from numerical
experiments, averaged over 100 realisations for each triplet (7,¢,n). Full lines: approximation from
Eq. (30), exactly as in Fig. 7.

The comparison with the approximation from (30) confirms that the latter strongly
overestimates the amplitude of these variations, by approximately one order of magni-
tude. However, as in the previous experiment, the behaviour is quite the same between
our theoretical approximation and the numerical experiments. For n = 2, %‘i is neg-
ligible. The numerical estimates of n — %‘i at fixed (g, 7) seem to reach a maximum
between n = 5 and n = 8 for ¢ = 1072, while the maximum is reached for slightly
higher values of n in the case ¢ = 10~3. The empirical values of the maxima are ~ 0.15
for 7 = 0.9 (one event out of 10) and between ~ 0.3 and ~ 0.4 for 7 = 0.99 (one event
out of 100) depending on the value of ¢. Although our approximation overestimates
these effects, they are still non-negligible in practice. According to this experiment,
for a system of dimension n = 14, and using 1 millionth of the data to compute local
fractal dimensions, the difference in estimated dimension between the most probable
position (xz = 0) and a position which is visited one time out of 10 (respectively 100) is

of the order of 15% (respectively 30%) of the true dimension, that is ~ 2 (respectively
~4).
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To recall, a dimension of 14 is typical of continental-scale atmospheric circulation
systems [6]. This experiment suggests that variations of local dimension estimates of
the order of 2-4 might be due to changes in local density, and not to true changes in
the fractal dimension. Note that such an amplitude of local variations of dimension
is usually interpreted as variations in the local fractal nature of the attractor [6]. The
results shown here suggest that these variations may be more difficult to interpret,
possibly embedded with changes associated to uneven sampling of the phase-space

caused by local changes in density.

4 Conclusion and perspectives

Approximate analytical expressions have been derived to anticipate the variations
of local dimension estimate of random variables possessing an absolutely continuous
measure (i.e., a continuous probability density function) without zeros or singulari-
ties. Such variables should not display variations of the local dimension according to
the multi-fractal formalism of dynamical systems. These variations are therefore not
related to the local fractal properties of the attractor. Rather, they are consequences of
uneven sampling of the phase-space due to local changes in density of the underlying
system. The derived approximate analytical expressions are compared to numerical
experiments, proving relevant for a one-dimensional double-well stochastic system, a
two-dimensional Gaussian Mixture Model, and finally standard multivariate Gaussian
random variables. Although the given approximations overestimate these anomalous
variations, good qualitative agreements are found between the behaviour expected
from our approximations and that observed in the numerical simulations.

The issue tackled in this work is related to that of [20], who showed that the
attractor dimension, obtained by averaging local dimensions on the attractor estimated
as in Eq. (3), differs from the true phase-space dimension for random variables with

absolutely continuous measures. Here, we focused not on the average of the local
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967 dimension but on the variations of this local dimension. [20] showed that the deviation
968

99 from the true phase-space dimension n of the averaged local dimension is strongest
970
971

972 the local dimension. Here, studying the relative variations in phase-space of local
973

974 dimension for a multivariate Gaussian (see Eq. 30), we find similar results for the
975
976
977 estimates, we expect the variations of local dimension to be strongest for moderate
978

979 values of the phase-space dimension n, around n ~ 11 (see empirical values of Fig.
980
981
982 [6], our results suggest that such density-related effects could, in principle, be the
983

9g4 prominent drivers of dimension estimate variability for these studies.

985
986
987 effect of lower dimension around regime peaks (as observed by [8] and [25]), and higher
988

ggg dimension around transitions between regimes (observed by [11]), is also obtained for
990
991

992 local attractor dimension. However, note that this is only true if the regime peak
993

994 happens close to the center of the regimes. On the contrary, [25] showed that the
995
996
997 weather-regime index, ¢.e. far from the regime centers, where the density of data is
998

999 low. According to our work, such a behaviour is not expected for random variables
1000
1001

1002 of dimension far from regime centers due to the lower data density. This last fact
1003

1004 strengthens, on the contrary, the idea that the observed diminution of local dimension
1005
1006
1007 nature of the attractor, rather then the density-based effects studied here.

1008

1009 These elements suggest that more investigations are needed to establish the rele-
1010
1011
1012

in high-dimension and with low values of ¢, the proportion of data used to compute

dependency with ¢q. However, since we focus on the relative variations of dimension

8). For atmospheric circulation data with typical local dimensions between 8 and 13

Furthermore, tests on simulated Gaussian Mixture Model data also suggest that the

purely random systems that should not, in principle, exhibit local variations of the

effect of lowered dimension around regime peaks is strongest for high value of the peak

with absolutely continuous measures, because the latter would witness an increase

around peak weather regime index is dominated by effects of change in the multi-fractal

vance of these results to real atmospheric circulation from realistic model simulations
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and observations. Taking these inquiries further would allow to assess the relative
importance of two concurring views of weather regimes: the statistics-based descrip-
tion which views atmospheric circulation as a random system subject to fluctuations
between different metastable states, and the dynamical systems-based description
where local variations in the fractal properties of the attractor drive the dynamics of
the system.

More broadly speaking, this study suggests that at least a part of the variability of
dimension fluctuations is due to changes in density, and not solely changes in fractal
properties. Being able to discriminate the part of dimension variability related to each
of these two sources would allow one to interpret better the notion of dimensionality
from such estimates. In particular, with the objective of building a low-order model,
one would be interested in knowing if the largest values of estimated dimension are
due to changes in fractal properties (in which case a large number of variables would
be needed in a low-order model) or to changes in density (in which case one could rely
on a number of variables lower than the largest estimated dimension). Again, further

developments are needed in order to separate these two sources.
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