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Abstract. Mid-Infrared methane (CH4) spectroscopy results were obtained in band III beyond 7 µm. To 
achieve this, the generation of supercontinuum covering the spectral range between 5 and 12 µm was realized 
by using purified chalcogenide optical fibers free of highly toxic elements such as arsenic and antimony. 

Besides a pumping with an optical parametric amplifier, an all fibered pumping scheme has also been 
investigated. In both configuration, supercontinuum absorption spectroscopy experiments have allowed for 
CH4 sensing, concentration as low as 14 ppm has been detected.

During the last decade there has been a surge of interest 
in developing mid-infrared (mid-IR) fiber-based 
supercontinuum (SC) sources [1-5]. Such broadband 
light sources take advantage of extreme spectral 
broadening of high-intensity laser pulses in infrared 
optical fibers usually made of soft glasses, such as 
chalcogenides that offer the widest transmission window 
and the highest nonlinearity [6]. Beyond their spatial 
coherence and high brightness, mid-IR fiber SC sources 
are nowadays operating over some wavelength ranges of 
thermal sources with superior performances for 
spectroscopic applications [7].  In this spectral region, 
between 2 and 16 µm, organic compounds such as 
biomolecules present fundamental vibrational 
resonances and an absorption pattern corresponding to 
their spectroscopic fingerprints [3, 8]. Furthermore, this 
spectral range covers the strategic atmospheric windows 
3–5 μm and 8–12 μm. This is particularly interesting for 
practical applications such as greenhouse gas sensing [9], 
chemical sensing, medical therapeutics, and food safety 
monitoring [8]. Besides, it is worth mentioning that many 
applications of optical technologies related to healthcare, 
pharmaceuticals, and environmental monitoring are 
calling for biocompatible materials excluding 
compounds containing arsenic as well as antimony. The 
European [10] Registration, Evaluation, Authorization, 
and Restriction of Chemicals (REACH) regulation aims 
to limit or suppress as far as possible the usage of highly 
toxic substances. Presently, arsenic is already classified 
as acutely toxic in the REACH database. It is also 
considered as one of the ten substances of major concern 
for human health by the World Health Organization. In 

the present work, we demonstrate the fabrication of 
single-material optical fibers as well as step-index ones 
based on chalcogenide fibers free of highly toxic 
elements such as arsenic and antimony. The studied 
compositions belong to the Ge-Se-Te ternary system for 
both core and cladding glasses.  
More precisely they belong to the pseudo-binary GeSe4 - 
GeTe4, on the Se-rich side [11]. The thermal and optical 
properties of bulks and fibers have been investigated, as 
well as the purification process, in order to obtain low-
loss optical fibers (fig1). The figure 1 also evidences 
dispersion engineering in step-index fibers drawn from 
these glasses, according to their opto-geometric 
characteristics, in particular for optimizing SC 
generation. Such fiber pumped by a non colinear optical 
parametric amplifier (NOPA) followed by a difference 
frequency generation (DFG) module has led to large 
bandwidth supercontinuum extending from 1.8 up to 18 
µm within 20dB of dynamic range [12]. 
Finally, the SCs have been employed for gas sensing in 
the mid infrared range, above 7 µm. Supercontinuum 
absorption spectroscopy experiments on CH4 gas have 
been performed using a dedicated gas cell based on 
hollow fibers. Concentration as low as 14 ppm has been 
detected. An all fibered configuration has also been 
investigated. In that case the pump source is a fluoride-
based fiber laser which emit a femtosecond pulse 
centered at 4.1 µm. The SC generated has allowed for 
CH4 absorption gas sensing above 7 µm with a sensitivity 
down to 20 ppm. Limitations and perspectives of such 
sensor will also be presented.
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Fig. 1. (a) From left to right: Synthesized Ge-Se-Te glass rod; Scanning electron microscope image of the cross-section of our 12-µm-
core step-index fiber; Output near-field profile of the fundamental guided mode measured for an input broadband mid-IR source (the 
outer fiber diameter is indicated by the white circle). (b) Left axis, blue curve: Large-core fiber losses (inset: zoom on background 
losses). Right axis, green curve: Calculated dispersion profile D of fundamental guide mode for the 12-µm core Ge-Se-Te fiber. (c) 
Experimental setup for SC generation. (d) Measured output SC spectrum (red solid curve) from a 40-mm-long segment of 12-µm core 
fiber. Input pulse spectrum centered at 8.15 µm (black dotted curve). (e) Corresponding numerical simulation (bottom panel: SC 
spectrum, top panel: first-order degree of coherence). Blue areas indicate regions with normal dispersion (D < 0). [12] 
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