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NON-CONTRACTIBLE HAMILTONIAN LOOPS IN THE

KERNEL OF SEIDEL’S REPRESENTATION

SÍLVIA ANJOS AND RÉMI LECLERCQ

Abstract. The main purpose of this note is to exhibit a Hamiltonian diffeo-
morphism loop undetected by the Seidel morphism of a 1–parameter family

of 2–point blow-ups of S2 × S2, exactly one of which being monotone. As

side remarks, we show that Seidel’s morphism is injective on all Hirzebruch
surfaces, and discuss how to adapt the monotone example to the Lagrangian

setting.

1. Introduction

The motivation for this work is the search of homotopy classes of loops of Hamilton-
ian diffeomorphisms which are not detected by Seidel’s morphism. Given a sym-
plectic manifold (M,ω), and its Hamiltonian diffeomorphism group Ham(M,ω),
recall that Seidel’s morphism

S : π1(Ham(M,ω))→ QH∗(M,ω)×

was defined on a covering of π1(Ham(M,ω)) by Seidel in [26] for strongly semi-
positive symplectic manifolds and then on the fundamental group itself and for any
closed symplectic manifold by Lalonde–McDuff–Polterovich in [18].

The target space, QH∗(M,ω)×, is the group of invertible elements of the quantum
homology of (M,ω). More precisely, the small quantum homology of (M,ω) is
QH∗(M,ω) = H∗(M ;Z) ⊗ Π where Π = Πuniv[q, q−1] with q a degree 2 variable
and the ring Πuniv consisting of generalized Laurent series in a degree 0 variable t:

Πuniv :=

{∑
κ∈R

rκt
κ

∣∣∣∣∣ rκ ∈ Q, and ∀c ∈ R, #{κ > c | rκ 6= 0} <∞

}
.(1)

Since its construction, Seidel’s morphism has been successfully used to detect many
Hamiltonian loops (see e.g [22] and references therein), and was extended or gen-
eralized to various situations (see e.g [16], [25], [14], [15], [12]). A particular exten-
sion consists of secondary-type invariants, whose construction is based on Seidel’s
construction after enriching Floer homology by considering Leray–Serre spectral
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sequences introduced by Barraud–Cornea [6], and which should detect loops unde-
tected by Seidel’s morphism [7]. However, there were no Hamiltonian loops with
non-trivial homotopy class known to be undetected by Seidel’s morphism (as far as
we know). This short note intends to provide the first example of such a loop on
a family of symplectic manifolds. Moreover, the example is explicit and thus can
easily be used to test other constructions. Notice finally that this example can also
be used to construct other examples (e.g by products, see [20]).

First try: Symplectically aspherical manifolds. Looking for elements in the
kernel of the Seidel morphism, one might first consider symplectically aspherical
manifolds, by which we mean that both the symplectic form and the first Chern
class vanish on the second homotopy group of the manifold. Indeed, such manifolds
have trivial Seidel morphism.

The geometric reason for this is that, by construction, the Seidel morphism of
(M,ω) counts pseudo-holomorphic section classes of a fibration over S2 with fiber
(M,ω). The difference between two such classes is thus given by elements of π2(M)
admitting a pseudo-holomorphic representative, whose existence is prevented by
symplectic asphericity.

Alternatively, this can be proved via purely algebraic methods, using the equivalent
description of Seidel’s morphism, as a representation of π1(Ham(M,ω)) into the
Floer homology of (M,ω). Given a loop of Hamiltonian diffeomorphisms, one gets
an automorphism of HF∗(M,ω) which can be shown to act trivially by playing
around with the following facts:

(i) Morse homology (the quantum homology of symplectically aspherical mani-
folds) is a ring over which Floer homology is a module.

(ii) All involved morphisms (PSS, Seidel, continuation) are module morphisms.

(iii) Any automorphism of Morse homology preserves the fundamental class, since
it generates the top degree homology group.

(iv) The fundamental class is the unit of the Morse homology ring.

This line of ideas, which goes back to Seidel, has been used by McDuff–Salamon
in [23] to simplify Schwarz’s original proof of invariance of spectral invariants. It
has then been adapted by Leclercq in [19] to Lagrangian spectral invariants and
to prove the triviality of the relative (i.e Lagrangian) Seidel morphism by Hu–
Lalonde–Leclercq in [15] (see Lemma 5.5).

Now, even though aspherical manifolds seem to be ideal candidate, there are no ho-
motopically non-trivial loops of Hamiltonian diffeomorphisms known to the authors
in such manifolds...

Second try: Symplectic toric manifolds. Symplectic toric geometry provides
a large class of natural examples of symplectic manifolds which are complicated
enough to be interesting while simple enough so that many rather involved con-
structions can be explicitly performed. In [4], we computed the Seidel morphism
on NEF toric 4–manifolds following work of McDuff and Tolman [24]. Recall that
by definition (M,J) is a NEF pair if there are no J–pseudo-holomorphic spheres
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in M with negative first Chern number. This gave, in the particular case of 4–
dimensional toric manifolds, an elementary and somehow purely symplectic way to
perform these computations previously obtained by Chan, Lau, Leung, and Tseng
[9] (and using works by Fukaya, Oh, Ohta, and Ono [11], and González and Iritani
[13]). We also showed that one could then deduce the Seidel morphism of some
non-NEF symplectic manifolds and, as an example, we made explicit computations
for some Hirzebruch surface.

The easiest symplectic toric 4–manifolds for which we can exhibit a non-trivial
element in the kernel of the Seidel morphism are 2–point blow-ups of S2×S2. More
precisely, start with the monotone product (S2×S2, ω1)1 on which we perform two
blow-ups. Notice that the resulting symplectic manifold is monotone only when the
respective sizes of the blow-ups coincide and are equal to 1

2 .

In Section 4, we exhibit a specific loop of Hamiltonian diffeomorphisms whose
homotopy class is in the kernel of Seidel’s morphism if and only if the size of the
two blow-ups coincide. Since this loop, obtained from two circle actions, can easily
be seen to be non-trivial (in [5], Anjos and Pinsonnault computed the rational
homotopy of symplectomorphism groups of these manifolds), this obviously yields
a family of symplectic manifolds, only one of which being monotone, with non-
injective Seidel morphism, i.e

Theorem 1.1. The Seidel morphism of the 2–point blow-ups of (S2×S2, ω1) with
blow-ups of equal (arbitrary) sizes is not injective.

In our search for undetected Hamiltonian loops, we realized that

Theorem 1.2. Seidel’s morphism is injective on all Hirzebruch surfaces.

While this is not hard to prove and might be well-known to experts, we did not
find it in the literature and thus include a proof in Section 3.

Discussion on the adaptation to the Lagrangian setting. As mentionned
above, there is a relative (i.e Lagrangian) version of the Seidel morphism defined
by Hu–Lalonde in [14] and further studied by Hu–Lalonde–Leclercq in [15]. There
are two ways to adapt the example of Theorem 1.1 to the Lagrangian setting which
we discuss here. (However, in order to keep this note short – and without too many
technical details on the standard tools involved here –, we will not investigate these
ideas further on here.)

First, let us remark that to get the Lagrangian version of the Seidel morphism,
we need to consider a monotone Lagrangian of minimal Maslov at least 2. So, in
what follows, we have in mind the only monotone symplectic manifold of the family
mentionned above, i.e the monotone product S2×S2 with area of each factor equals
to 1 on which we perform two blow-ups of size 1

2 .

• The first way to relate absolute and relative settings is to consider the diagonal
of the symplectic product. More precisely, let (M,ω) be a monotone symplectic
manifold. The diagonal ∆ ' M is a monotone Lagrangian of the product (M ×

1traditionally, ωµ denotes the product symplectic form with total area µ ≥ 1 on the first factor

and area 1 on the second one
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M,ω ⊕ (−ω)), which we denote (M̂, ω̂) for short, with minimal Maslov number
equal to twice the minimal first Chern number of (M,ω) and thus greater than or
equal to 2. This allows us to consider the Lagrangian Seidel morphism:

S∆ : π1(Ham(M̂, ω̂),Ham∆(M̂, ω̂))→ QH∗(∆)×

where Ham∆ denotes the subgroup of Ham formed by Hamiltonian diffeomorphisms
which preserve ∆ and QH∗(∆) denotes the Lagrangian quantum homology of ∆.

An element φ ∈ π1(Ham(M,ω)) generated by the Hamiltonian H : M × [0, 1]→ R,

induces φ̂ ∈ π1(Ham(M̂, ω̂),Ham∆(M̂, ω̂)), generated by F̂ = F ⊕ 0: M̂ × [0, 1]→
R. To get an element in the kernel of the Lagrangian Seidel morphism, it only
remains to prove that:

(i) S(φ) = S∆(φ̂) in QH∗(M,ω) ' QH∗(∆), and (ii) φ̂ is non zero.

Note that in (i), not only the quantum homologies are canonically identified but
the chain complexes themselves coincide and this identification agrees with the PSS
morphisms in the following sense:

QH∗(M,ω)

PSS

��

QH∗(∆)

PSS
��

HF∗(H,J) HF∗(Ĥ, Ĵ : ∆)

as proved in the monotone setting by Leclercq–Zapolsky in [21] (J denotes an

almost complex structure on M , compatible with and tamed by ω, while Ĵ denotes

an almost complex structure on M̂ adapted to J). This makes us believe that (i)
can be straigthforwardly shown to hold.

On the other hand, proving (ii) will require some other technique.

• The second way to the Lagrangian setting is to use Albers’s comparison map
between Hamiltonian and Lagrangian Floer homologies from [3], denoted below
by A, which relates the absolute and relative Seidel morphisms via the following
commutative diagram (see [14]):

π1(Ham(M,ω)) //

S
��

π1(Ham(M,ω),HamL(M,ω)) //

SL
��

π0(HamL(M,ω))

HF∗(M,ω)
A

// HF∗(M,ω;L)

where L is a closed monotone Lagrangian of (M,ω) with minimal Maslov number
at least 2.

To get an interesting example via this method, one has to choose L such that
HF∗(M,ω;L) 6= 0 and to prove (again) that the image of φ ∈ π1(Ham(M,ω)) in
π1(Ham(M,ω),HamL(M,ω)) is non-trivial.
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2. Background and user manual for Sections 3 and 4

In order to prove Theorems 1.1 and 1.2 in the following sections, we need to describe
the setting and give some information whose nature we now explain. We also give
some details about previous works on which it relies.

A. Geometric setting. We will first introduce the symplectic toric 4–manifold
(M,ω) in which we are interested and describe the associated circle actions, moment
map, and polytope. Then we will give topological information which will be useful:

• the fundamental group of Ham(M,ω), on which the Seidel morphism is
defined, and

• the second homology group of M , which consists of generators of the quan-
tum homology of (M,ω) (as a module over the Novikov ring).

Background for A. (see da Silva [8] for more details). First, consider a Hamiltonian
circle action on (M,ω). It is generated by a function φ : M → R, called the moment
map, which is assumed to be normalized, that is, satisfying

∫
M
φωn = 0.

Now (M,ω) is called toric if it admits an effective action by a Hamiltonian torus
T2 ⊂ Ham(M,ω). We will denote by Φ the corresponding moment map and by
P = Φ(M) the moment polytope. If η is an outward primitive normal to the facet
Dη of P , we consider the associated Hamiltonian circle action, Γη, whose moment
map is φ := 〈η,Φ(·)〉.2

Note that φ−1(Dη) is a semifree maximum component for Γη, as the action is
semifree (i.e. the stabilizer of every point is trivial or the whole circle) on some
neighborhood of φ−1(Dη).

B. The Seidel morphism. In a second step, we will give the expression of the
image of the aforementioned circle actions (the Γη’s) via the Seidel morphism, S.

Background for B. (see McDuff–Tolman [24] and Anjos–Leclercq [4]). We consider
a toric 4–manifold (M,ω,Φ) as above. To compute the image of a Hamiltonian
circle action via the Seidel morphism, we pick a ω–compatible, S1–invariant almost
complex structure, J . The main case we are concerned with here is the Fano case.
Recall that (M,J) is said to be Fano if any J–pseudo holomorphic sphere in M
has positive first Chern number.

When this is the case, Theorem 1.10 from [24] or 4.5 from [4] tells us that the
associated Seidel element consists of only one term (the one of highest order).
More precisely,

Theorem 2.1. ([24, Theorem1.10]) Let (M,ω, J,Φ) be a compact Fano toric sym-
plectic 4–manifold. Let η be an outward primitive normal to the facet Dη of the
moment polytope P and let Γη be the associated Hamiltonian circle action. Then

S(Γη) = [Fmax]⊗ qtφmax

where φ is the moment map associated to Γη, Fmax = φ−1(Dη) is the maximal fixed
point component of φ and φmax = φ(Fmax).

2To lighten the notation, we will actually denote by Di and Γi, respectively, the facet and the
circle action associated to the normal ηi (instead of Dηi and Γηi ).
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C. The quantum homology of (M,ω). The computation of the Seidel elements
S(Γη) in Step B. also gives us explicit relations involving the quantum product.
This allows us to complete the description of the quantum homology as an algebra.
Since the generators of π1(Ham(M,ω)) can be expressed in terms of the Γη’s, this
also gives us the image of the Seidel morphism so that, by understanding im(S) ⊂
QH∗(M,ω)×, we can prove Theorems 1.1 and 1.2.

Background for C. (see McDuff–Tolman [24, Section 5.1] for the general setting).
Let us recall how to obtain the quantum homology algebra in our specific setting.
Let D1, . . . , Dn be the facets of P and η1, . . . , ηn ∈ R2 the respective outward
primitive integral normal vectors. Let C be the set of primitive sets, i.e subsets
I = {i1, i2} ⊂ {1, . . . , n} such that Di1 ∩Di2 = ∅. Let ui = [Di]⊗ q. There are two
linear relations:

n∑
i=1

〈(1, 0), ηi〉ui = 0 and

n∑
i=1

〈(0, 1), ηi〉ui = 0

which generate the ideal of linear relations Lin(P ) in Q[u1, . . . , un]. Moreover,
relations between the normal vectors ηi’s yield equations satisfied by the corre-
sponding Seidel elements S(Γi). Using these, it is then possible to exhibit the
quantum product ui1 ∗ ui2 , for every primitive set {i1, i2}, as a linear combina-
tion of the classes p (the class of a point), 1 (the fundamental class), and ui:
fi1i2 = (αp ⊗ q2 + β1 +

∑
αiui) t

γ for some α, β, αi ∈ Z and γ ∈ R. Then, the
Stanley–Reisner ideal is defined by

SRY (P ) = 〈ui1 ∗ ui2 − fi1i2 | {i1, i2} ∈ C〉.
Finally, there is an isomorphism of Πuniv–algebras

(2) QH∗(M,ω) ' Q[u1, . . . , un]⊗Πuniv/(Lin(P ) + SRY (P )) .

3. Hirzebruch surfaces

We proceed in two steps as the “even” and “odd” Hirzebruch surfaces have to be
dealt with separately. In the whole section, we follow the notation and conventions
used in [4] (in particular in Section 5.3), most of them being recalled in Section 2
above.

3.1. Even Hirzebruch surfaces. Recall that the toric “even” Hirzebruch surfaces
(F2k, ωµ), 0 ≤ k ≤ ` with ` ∈ N and ` < µ ≤ ` + 1, can be identified with the
symplectic manifolds Mµ = (S2 × S2, ωµ) where ωµ is the split symplectic form
with area µ ≥ 1 for the first S2–factor, and with area 1 for the second factor. The
moment polytope of F2k is

P2k =
{

(x1, x2) ∈ R2 | 0 ≤ x1 ≤ 1, x2 + kx1 ≥ 0, x2 − kx1 ≤ µ− k
}
.

Let Λ2k
e1 and Λ2k

e2 represent the circle actions whose moment maps are, respectively,
the first and second components of the moment map associated to the torus action
T2k acting on F2k. We will also denote by Λ2k

e1 and Λ2k
e2 the corresponding generators

in π1(T2k).

It is well known (see e.g [1, Theorem 1.1 or Corollary 2.7]) that for k = 0,
π1(Ham(F0, ωµ)) = Z/2 ⊕ Z/2 and that for k ≥ 1, π1(Ham(F2k, ωµ)) = Z/2 ⊕
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Z/2 ⊕ Z. Moreover, the authors explain in [1] (see Section 2.5 and in particu-
lar Lemma 2.10) that the Z/2 terms of the fundamental groups are respectively
generated by Λ0

e1 and Λ0
e2 , while the generator of the additional Z term is Λ2

e1 .

Let B = [S2×{p}] and F = [{p}×S2] ∈ H2(S2×S2;Z) and denote u = B⊗ q and
v = F ⊗ q where q is the degree 2 variable entering into play in the definition of
Π = Πuniv[q, q−1] and Πuniv the ring of generalised Laurent series defined by (1).

We now gather from [4] the results we will need for the proof of Theorem 1.2 in
this case. First, in [4, Section 5.3], we computed the image of the generators Λ0

e1 ,

Λ0
e2 , and Λ2

e1 by the Seidel morphism, S. Namely we obtained:

S(Λ0
e1) = B ⊗ qt 1

2 = ut
1
2 , S(Λ0

e2) = F ⊗ qt
µ
2 = vt

µ
2 , and

(3) S(Λ2
e1) = (B + F )⊗ qt 1

2−ε = (u+ v)t
1
2−ε with ε =

1

6µ
.

Note that the circle action Λ2
e1 acts on the second Hirzebruch surface F2 and the

almost complex structure in this case is not Fano, because the class B − F is
represented by a pseudo-holomorphic sphere and its first Chern number vanishes.
Nevertheless, by Theorem 4.4 in [5], the Seidel element of this action still does not
contain any lower order terms.

The computation of the Seidel elements associated to each one of the facets of the
polytope yield the following quantum product identities

(4) F ∗ F = 1⊗ q−2t−µ, B ∗B = 1⊗ q−2t−1, and F ∗B = p

so S(Λ0
e1)2 = S(Λ0

e2)2 = 1. Finally recall that, thanks to [4, Proposition 5.1] (see
(2) in our setting), we were able to express the (small) quantum homology algebra
as

QH∗(F2k, ωµ) ' Πuniv[u, v]/〈u2 = t−1, v2 = t−µ〉 .
From (3) and (4), it is now easy to check that the inverse of S(Λ2

e1) is given by

(5) S(Λ2
e1)−1 = (B − F )⊗ q t

1
2 +ε

1− t1−µ
= (u− v)

t
1
2 +ε

1− t1−µ
.

Let us now prove the theorem.

Proof of Theorem 1.2 for even Hirzebruch surfaces. Since Λ0
e1 and Λ0

e2 are of order

2, any element in π1(Ham(F2k, ωµ)) is of the form ε1Λ0
e1 + ε2Λ0

e2 + `Λ2
e1 , with

ε1 and ε2 in {0, 1} and ` ∈ Z. Moreover, it is in the kernel of S if and only
if S(Λ2

e1)−` = S(Λ0
e1)ε1S(Λ0

e2)ε2 which is equivalent to the fact that S(Λ2
e1)−` is

either u, v, or uv, up to a power of t.

Let `′ ∈ N\{0}, and expand the `′–th power of S(Λ2
e1) (whose expression is recalled

in (3) above) thanks to the binomial theorem to get

S(Λ2
e1)`

′
=

`′∑
k=0

(
`′

k

)
ukv`

′−kt(
1
2−ε)`

′
.

The identities u2 = t−1 and v2 = t−µ ensure that S(Λ2
e1)`

′
is of the form C1 ·u+C2 ·v

if `′ is odd, or C1 + C2 · uv otherwise, where (in both cases) C1 and C2 are linear
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combinations of powers of t with positive rational coefficients (hence non zero).
Thus ε1Λ0

e1 + ε2Λ0
e2 + `Λ2

e1 /∈ ker(S) for any ε1 and ε2 in {0, 1} and ` < 0.

We proceed along the same lines for a positive ` : S(Λ2
e1)−` is, by the binomial

theorem together with (5), of the form

C ′1 · u− C ′2 · v
(1− t1−µ)`

or
C ′1 − C ′2 · uv
(1− t1−µ)`

which shows that ε1Λ0
e1 + ε2Λ0

e2 + `Λ2
e1 /∈ ker(S) for any ` > 0 either.

This implies that the only elements of π1(Ham(F2k, ωµ)) which could be in ker(S)
are of the form ε1Λ0

e1 + ε2Λ0
e2 so that in the end ker(S) = {0}. �

3.2. Odd Hirzebruch surfaces. Similarly, “odd” Hirzebruch surfaces (F2k−1, ω
′
µ),

1 ≤ k ≤ ` with ` ∈ N and ` < µ ≤ ` + 1, can be identified with the symplectic
manifolds (CP2#CP2, ω′µ) where the symplectic area of the exceptional divisor is
µ > 0 and the area of the projective line is µ+ 1. Its moment polytope is{

(x1, x2) ∈ R2

∣∣∣∣ 0 ≤ x1 + x2 ≤ 1, x2(k − 1) + kx1 ≥ 0,
kx2 + (k − 1)x1 ≥ k − µ− 1

}
.

Let Λ2k−1
e1 and Λ2k−1

e2 represent the circle actions whose moment maps are, respec-
tively, the first and the second component of the moment map associated to the
torus action T2k−1 acting on F2k−1. As before, we will also denote by Λ2k−1

e1 and

Λ2k−1
e2 the generators of π1(T2k−1).

Similarly to the even case the fundamental group of (F2k−1, ω
′
µ) is computed in

[1, Theorem 1.4 or Corollary 2.7]. More precisely, π1(Ham(F2k−1, ω
′
µ)) = Z〈Λ1

e1〉
for all k ≥ 1, that is, Λ1

e1 is the generator of the fundamental group as explained
in [1, Section 2.5] (see in particular Lemma 2.11). So, in order to prove that the
Seidel morphism is injective, we only need to show that the order of S(Λ1

e1) in
QH∗(F2k+1, ω

′
µ) is infinite.

We now need to expand Remark 5.6 of [4] (which quickly dealt with the odd case),
along the lines of [4, Section 5.3] (where we focused with more details on the
even case). Let B ∈ H2(CP2#CP2;Z) denote the homology class of the excep-
tional divisor with self intersection −1 and F the class of the fiber of the fibration
CP2#CP2 → S2. If we set u1 = (B + F ) ⊗ q, u2 = u4 = F ⊗ q, and u3 = B ⊗ q,
clearly the additive relations are given by

(6) u2 = u4 and u1 = u2 + u3.

The normal vectors to the moment polytope of F1 are given by η1 = (1, 1), η2 =
(0,−1), η3 = (−1,−1), and η4 = (−1, 0). We denote by Γi the actions associated
to ηi.

As explained in Section 2, since F1 is Fano, it follows from [24, Theorem 1.10] that
the Seidel elements associated to the Γi’s are given by

S(Γ1) = (B + F )⊗ qt1+µ−2ε = u1t
1+µ−2ε, S(Γ2) = S(Γ4) = F ⊗ qtε = u2t

ε,

S(Γ3) = B ⊗ qt2ε−µ = u3t
2ε−µ with ε =

3µ2 + 3µ+ 1

3(1 + 2µ)
.
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The relation η1 + η3 = 0 yields S(Γ1) ∗ S(Γ3) = 1, that is, B ∗ (B + F )⊗ q2t = 1.
Similarly, since η2+η4 = η3 it follows that S(Γ2)∗S(Γ4) = S(Γ3) which is equivalent
to F ∗ F = B ⊗ q−1t−µ. Therefore the primitive relations are given by

(7) u1u3 = t−1 and u2u4 = u3t
−µ.

Now, following Step C. of Section 2 above, we set u = F ⊗ q and deduce from the
relations (6) and (7) that

QH∗(F2k+1, ω
′
µ) = Πuniv[u]/(u4t2µ + u3tµ − t−1) .(8)

Note that the generator of π1(Ham(F2k−1, ω
′
µ)), Λ1

e1 , is the action associated to the

vector (1, 0). We thus get that S(Λ1
e1) = S(Γ4)−1.

Now we can proceed with the proof of the theorem.

Proof of Theorem 1.2 for odd Hirzebruch surfaces. From the discussion above, we
see that S(Λ1

e1)−1 = S(Γ4) = utε. So, in order to show that Seidel’s morphism is

injective we only need to show that, for any ` ∈ N \ {0}, S(`Λ1
e1)−1 = u`t`ε 6= 1.

First notice that the polynomial M(u) = u4t2µ+u3tµ− t−1 ∈ Πuniv[u] in (8) above
has invertible main coefficient, so that for any positive integer `, there exist uniquely
determined polynomials Q` and R` such that u`t`ε − 1 = M(u)Q`(u) + R`(u) and
degree of R` is less than degree of M .

Assume that Seidel’s morphism is not injective: then there exists `0 ∈ N \ {0} such
that R`0 = 0. To determine the polynomial Q`0 , we proceed to the long division
of u`0t`0ε − 1 by M which consists in a finite number of (at most `0 − 3) steps.
This ensures that the coefficients of Q`0 are finite linear combinations of powers of
t (with rational coefficients). Thus Q`0 induces a polynomial in Q[u] when t is set
to 1, Q1

`0
, which satisfies u`0 − 1 = (u4 + u3 − 1)Q1

`0
(u) in Q[u]. Since the roots of

u4 +u3−1 are not roots of unity, we get a contradiction. Thus, there is no positive
integer `0 so that u`0t`0ε = 1 which concludes the proof. �

4. 2–point blow-ups of S2 × S2

We now consider the manifold obtained from (Mµ, ωµ) = (S2×S2, ωµ) (see Section
3.1) by performing two successive symplectic blow-ups of capacities c1 and c2 with
0 < c2 ≤ c1 < c1 + c2 ≤ 1 ≤ µ, which we denote by (Mµ,c1,c2 , ωµ,c1,c2). Let B, F ∈
H2(Mµ,c1,c2 ;Z) be the homology classes defined by B = [S2 ×{p}], F = [{p}× S2]
and let Ei ∈ H2(Mµ,c1,c2 ;Z) be the exceptional class corresponding to the blow-up
of capacity ci.

Remark 4.1. There is an alternative description of this manifold as the 3–point
blow-up of CP2. Indeed, consider X3 = CP2# 3CP2 equipped with the symplectic
form ων;δ1,δ2,δ3 obtained from the symplectic blow-up of (CP2, ων) at 3 disjoint
balls of capacities δ1, δ2 and δ3, where ων is the standard Fubini–Study form on CP2

rescaled so that ων(CP1) = ν. Let {L, V1, V2, V3} be the standard basis of H2(X3;Z)
consisting of the class L of a line together with the classes Vi of the exceptional
divisors. It is well known that X3 is diffeomorphic to Mµ,c1,c2 . The diffeomorphism
X3 →Mµ,c1,c2 can be chosen to map the ordered basis {L, V1, V2, V3} to {B+F −
E1, B − E1, F − E1, E2}. When one considers this birational equivalence in the
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symplectic category, uniqueness of symplectic blow-ups implies that (X3, ων;δ1,δ2,δ3)
is symplectomorphic, after rescaling, to Mµ blown–up with capacities c1 and c2,
where µ = (ν − δ2)/(ν − δ1), c1 = (ν − δ1 − δ2)/(ν − δ1), and c2 = δ3/(ν − δ1). In
[5, Section 2.1], it is explained why it is sufficient to consider values of c1 and c2 in
the range above: 0 < c2 ≤ c1 < c1 + c2 ≤ 1 ≤ µ. J

The quantum algebra of (Mµ,c1,c2 , ωµ,c1,c2) was computed by Entov–Polterovich in
[10] (as (X3, ων;δ1,δ2,δ3), see the proof of Proposition 4.3). More precisely, setting
u = (F − E2)⊗ q and v = (B − E2)⊗ q, they proved that:

Lemma 4.2. As a Πuniv–algebra we have

QH∗(Mµ,c1,c2 , ωµ,c1,c2) ∼= Πuniv[u, v]/Iµ,c1,c2

where Iµ,c1,c2 is the ideal generated by

u2v2 + u2vt−c2 = vt−µ−c2 + tc1−µ−1−c2 and

u2v2 + uv2t−c2 = ut−1−c2 + tc1−µ−1−c2 .

We recall here parts of this computation, using the formalism of [4], as they will
be needed below to understand the proof of the non-injectivity result stated as
Theorem 1.1. These parts correspond to Steps B. and C. of Section 2.

Sketch of proof. Consider (Mµ,c1,c2 , ωµ,c1,c2) endowed with the standard action of
the torus T = S1 × S1 for which the moment polytope is given by

(9) P =
{

(x1, x2) ∈ R2 | 0 ≤ x2 ≤ µ, −1 ≤ x1 ≤ 0, c1 ≤ x2 − x1 ≤ µ+ 1− c2
}

so the primitive outward normals to P are as follows:

η1 = (0, 1), η2 = (1, 0), η3 = (1,−1), η4 = (0,−1), η5 = (−1, 0), and η6 = (−1, 1).

The Delzant construction gives a method to obtain, from the polytope P , the
symplectic manifold (Mµ,c1,c2 , ωµ,c1,c2) with the toric action T : First consider the
standard action of the torus T6 on C6 and then perform a symplectic reduction
at a regular level of that action (for more details see for example [8, Section 29]).
Then the normalised moment map Φ : Mµ,c1,c2 → R2 of the remaining T action,
obtained through the Delzant construction, is given by

Φ(z1, . . . , z6) =

(
−1

2
|z2|2 + ε1,−

1

2
|z1|2 + µ− ε2

)
, zi ∈ C,

where ε1 and ε2 are given by the symplectic parameters µ, c1, and c2 as:

(10) ε1 =
c31 + 3c22 − c32 − 3µ

3(c21 + c22 − 2µ)
and ε2 =

c31 − c32 + 3c22µ− 3µ2

3(c21 + c22 − 2µ)
.

Moreover, the homology classes Ai = [Φ−1(Di)] of the pre-images of the corre-
sponding facets Di are: A1 = F − E2, A2 = B − E1, A3 = E1, A4 = F − E1,
A5 = B − E2, and A6 = E2.

For 1 ≤ i ≤ 6, let Γi be the circle action associated to the primitive outward normal
ηi. Since the toric complex structure on Mµ,c1,c2 is Fano and T–invariant, it follows
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Figure 1. (Mµ,c1,c2 , ωµ,c1,c2) with toric actions T1 and T2.

from [24, Theorem 1.10] or [4, Theorem 4.5] (recalled as Theorem 2.1 in Section 2)
that the Seidel elements associated to the Γi’s are given by the following expressions

S(Γ1) = (F − E2)⊗ qtµ−ε2 , S(Γ2) = (B − E1)⊗ qtε1 ,
S(Γ3) = E1 ⊗ qtε1+ε2−c1 , S(Γ4) = (F − E1)⊗ qtε2 ,
S(Γ5) = (B − E2)⊗ qt1−ε1 , S(Γ6) = E2 ⊗ qtµ+1−c2−ε1−ε2 .

(11)

There are nine primitive sets: {1, 3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {2, 6}, {3, 5},
{3, 6}, and {4, 6} which yield nine multiplicative relations (which form the Stanley–
Riesner ideal) that, combined with the two linear relations (A5 = A1 + A2 − A4

and A6 = A3 +A4−A1), give the desired result as explained in Step C. of Section
2 above. �

Assume from now on that µ = 1. Recall from [5, Theorem 1.1] that if c2 < c1 then

π1(Ham(M1,c1,c2 , ω1,c1,c2)) ' Z〈x0, x1, y0, y1, z〉 ' Z5

where the generators x0, x1, y0, y1, z correspond to circle actions contained in max-
imal tori of the Hamiltonian group. In particular, the generators in which we will
be most interested are x0 = Γ2 and y0 = Γ1 where the Γi’s are the circle actions
associated to the primitive outward normals ηi to the polytope P defined in (9).

Remark 4.3. In order to understand the remaining generators, consider the two
toric manifolds given by the polytopes in Figure 1. We denote by {x0,i, y0,i} the
generators in π1(Ti), where Ti, i = 1, 2, represent the two torus actions in this figure
and the generators {x0,i, y0,i} correspond to the circle actions whose moment maps
are, respectively, the first and second components of the moment map associated
to each one of the toric actions. It was shown in [5, Lemma 4.5] that x1 = x0,1,
z = y0,2, and y1 = y0,1 − x1 = z − x0,2.

Note that the case c1 = c2 is an interesting limit case in terms of the topology of
the Hamiltonian group since y1 disappears. For more details see [5, Section 5.1]. J

To prove Theorem 1.1, we will now show that

Proposition 4.4. The class of 2(x0 + y0) belongs to ker(S) if and only if µ = 1
and c1 = c2.
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Proof. From the computation of the Seidel elements in (11) one gets that in the
general case (by which we mean for all µ ≥ 1): S(Γ1) = utµ−ε2 and S(Γ5) = vt1−ε1 .
As the Seidel elements are invertible quantum classes, this yields invertibility of u
and v. Note that S(x0) = S(Γ2) = S(Γ5)−1 = v−1tε1−1 and S(y0) = S(Γ1) =
utµ−ε2 .

Since µ ≥ 1 > c22, it is straightforward to deduce from (10) that ε1 = ε2 if and only
if µ = 1: we now restrict our attention to this case and denote by ε the common
value of ε1 = ε2. By invertibility of u and v, the fact that 2(x0 + y0) belongs to
ker(S) is equivalent to u2 = v2, since

S(2(x0 + y0)) = S(x0)2 ∗ S(y0)2 = v−2tε−1u2t1−ε = v−2u2 .

On the other hand, note that multiplying the first and second relations in I1,c1,c2
by v−1tc2 and u−1tc2 , respectively, these become equivalent to

u2 = t−1 + v−1tc1−2 − u2vtc2 and v2 = t−1 + u−1tc1−2 − uv2tc2

so that u2 = v2 is equivalent to v−1tc1−2 − u2vtc2 = u−1tc1−2 − uv2tc2 .

Multiplying both relations in I1,c1,c2 by t2c2 , we see that

−u2vtc2 = (u2v2t2c2 − tc1+c2−2)− vtc2−1, and

−uv2tc2 = (u2v2t2c2 − tc1+c2−2)− utc2−1
(12)

so that we can replace u2vtc2 and uv2tc2 in the previous equality to obtain

u2 = v2 ⇐⇒ v−1tc1−1 + utc2 = u−1tc1−1 + vtc2 .(13)

Finally, (12) also induces, by subtracting one from the other, the equality (u2v −
uv2)t−c2 = (v−u)t−1−c2 which is equivalent to (v−1−u−1)t−1 = v−u. Using these
together with (13) we conclude that u2 = v2 if and only if (u − v)(tc1 − tc2) = 0
which is equivalent to c1 = c2 since otherwise tc1 − tc2 would be invertible. �
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