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A bounded controller for a class of
bidirectional boost DC/DC converters:

Application to storage devices
Frédéric Mazenc1, Alessio Iovine2

Index Terms—Bounded control, Nonlinear control,
Control for Power Converters, boost converters

Abstract—This paper lies in the research field of
advanced control for power converters. We propose a
bounded controller for a DC/DC boost converter, which en-
sures boundedness and stability of the closed loop systems.
Guidelines on how to select the controller’s parameters are
provided.Simulations confirm that the developed control
strategy effectively regulates the converter.

I. INTRODUCTION

The development and application of sophisticated
control methods to regulate power converters in Alternate
Current (AC) or Direct Current (DC) grids in general and
DC/DC converters in particular has become a standard
practice [1]–[3], both in case of single converter situ-
ations [4]–[6] or when interacting to share a common
task [7], e.g., voltage regulation in DC grids [8], [9]. In-
deed, the advancement of technology and the increasing
complexity of tasks, coupled with a growing demand
for enhanced performance, necessitate more advanced
control techniques beyond the conventional Proportional
Integral Derivative (PID) controllers.

However, despite the plethora of advanced control
approaches, only a few consider the physical limitations
of the systems and their impact on performance and
operational range, e.g., boundedness of the control inputs
impacting the convergence rate [10], [11] and the feasible
working region [1], [12], [13] and/or boundedness of the
dynamics [14]–[16]. Developing an unbounded control
law for systems where large control values are restricted
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is common in the literature due to the complexity of
constructing bounded feedbacks. As a result, bounds are
empirically considered when selecting control law gains
to estimate the system’s operating region.

The present paper focuses on the development of
bounded controllers for boost DC/DC converters [7],
[11]–[13], [17], which are known for their inherent
complexity due to their bilinear nature and non-minimum
phase behavior. Unlike other approaches that involve
time derivatives, which may lead to undesirable oscil-
lations in the control law or significant control errors
in the presence of small measurement errors [10], [11],
[13], or complex computations involving Linear Ma-
trix Inequalities (LMI) [12], [17] or receding horizon
techniques [6], the approach presented in this paper
introduces a straightforward controller that relies solely
on desired reference values, measured dynamics, and
bounded functions. We focus on the possibility to control
the power output of a voltage source, e.g., a storage
device, by selecting its output current or the voltage of
the input capacitance of the converter. The controller is
designed for a class of DC/DC boost power converters
that satisfy a specific condition on the parameters’ val-
ues. The goal of the control is to improve the speed of
convergence of the solutions. Through the tuning of some
parameters, we can achieve locally an arbitrarily fast
speed of convergence. Even if restrictive, the conditions
considered in our study allow for the consideration of a
broad range of boost converters.

The paper is organized as follows. Section II intro-
duces the considered model, while Section III provides
the proposed bounded controller together with a stability
analysis and practical elements on how to select the
controller’s parameters to respect the bounds on the duty
cycle. Section IV outlines simulations to validate the
approach. Conclusions are provided in Section V.



Fig. 1. The adopted electrical scheme. The boost DC/DC converter
is introduced and is connected to a output voltage VO and to an
input one VI .

II. MODELING

The considered model for a DC/DC bidirectional
boost converter connected to a voltage source VI , e.g.,
a storage device, and an output voltage VO, e.g., a
strong DC bus, is shown in Fig. 1. The equivalent
circuit representation can be expressed using a state
space average model, under the hypothesis to then use
a Pulse Width Modulation (PWM) technique for control
purposes [18], [19]. Three state variables are needed for
the system model: the capacitor voltages VC1

: R →
R+ and VC3

: R → R+ (x1 and x3 respectively)
and the inductor current IL2

: R → R (x2). Let
X(t) = (x1(t), x2(t), x3(t)) = (VC1

(t), IL2
(t), VC3

(t)).
In the remaining part of the paper, time dependence
will be omitted due to lack of space. The values of
the parameters C1, C3, R1, R3, L2, R01 are known
and positive, and represent the values of the capacitors,
resistances and the inductor, respectively. The voltages
VI ∈ R+ and VO ∈ R+ are constant or piece-wise
constant. The measured signals are the states x1, x2, x3
and the external constant voltages d1 = VI , d2 = VO. By
definition of boost (step-up) converter, the disturbances
are such that d1 > 0, d2 > 0, d2 > d1. The control input
is denoted as v = 1 − u, which is defined as the duty
cycle of the circuit. Therefore, it results in v ∈ [0, 1].
According to average modeling, the electrical scheme
in Fig. 1 is represented by the following dynamical
equations:


V̇C1

= 1
R1C1

(VI − VC1
)− 1

C1
IL2

,

İL2
= 1

L2
VC1

− R01

L2
IL2

− 1
L2
VC3

v,

V̇C3
= 1

R3C3
(VO − VC3

) + 1
C3
IL2

v

(1)

which are rewritten in state-space with X(t) previously
defined as 

ẋ1 = −a1x1 − a2x2 + a1d1,

ẋ2 = a3x1 − a3x3v − a4x2,

ẋ3 = −a5x3 + a6x2v + a5d2

(2)

where the values of the parameters are shown in Table
I.

In addition let us observe that

a2 ̸= 0 (3)

and
a3 > 0. (4)

These properties will be used in the mathematical devel-
opments of the next sections.

A. Equilibrium point

Let us determine the equilibrium point of the system
(2) with v ≡ v∗ where v∗ > 0 is a constant. Let
x∗ = (x1∗, x2∗, x3∗) denote an equilibrium point. One
can prove easily that

x1∗ =
(
a6v2

∗
a5

+ a4

a3

)
a1

d1−v∗d2

a1

(
a6v2

∗
a5

+
a4
a3

)
+a2

+ v∗d2,

x2∗ = a1
d1−v∗d2

a1

(
a6v2

∗
a5

+
a4
a3

)
+a2

,

x3∗ = a6v∗
a5
a1

d1−v∗d2

a1

(
a6v2

∗
a5

+
a4
a3

)
+a2

+ d2.

(5)
Clearly, in order to have that v ∈ [0, 1], the controller

at the equilibrium, i.e., v∗, must satisfy this constraint
as well, i.e., v∗ ∈ [0, 1]. Actually, several constraints
arise on the dynamical evolution of the system and
on its desired equilibrium point due to the bounds on
the control input. The exact computation of the set of
admissible initial conditions such that the bounds are
respected is out of the scope of the present paper. We
will consider the values of initial conditions, for which
v(t) ∈ [0, 1] for all t ≥ 0.

The equilibrium point in (5), x∗, is function of
the value of the control at the equilibrium, v∗, i.e.,
x∗ = f(v∗). In practice, the available degree of freedom
given by the control inputs is utilized to establish a
desired equilibrium, leading other dynamics to align
accordingly. Consequently, we can define a desired equi-
librium relative to a specific variable’s reference. The
possibilities are:

• a value xe1 is imposed;

x1∗ = xe1
x2∗ = a1

a2
(d1 − xe1)

x3∗ = 1
2

[
d2 +

√
d22 + 4β1ϕ1(xe1 − γ1ϕ1)

]
,

(6)
where β1 = a6a1

a5a2
, γ1 = a4a1

a3a2
, ϕ1 = d1 − xe1.

• a value xe2 is imposed;

x1∗ = d1 − a2

a1
xe2

x2∗ = xe2

x3∗ = 1
2

[
d2 +

√
d22 + 4a6

a5
xe2 [d1 − γ2xe2]

]
,

(7)



TABLE I
THE POSITIVE VALUES OF THE PARAMETERS.

Parameter Value Parameter Value
a1

1
R1C1

a2
1
C1

a3
1
L2

a4
R01
L2

a5
1

R3C3
a6

1
C3

where γ2 = a2

a1
+ a4

a3
.

Let us observe that similar calculations apply also in
the case where xe3 is imposed. However, the goal of the
present paper is to impose a reference value either for
the voltage of the input capacitance, i.e., x1, or for the
current, i.e., x2.

B. Problem statement

We introduce an assumption which is often satisfied
in practice and is vital when we establish our main result.
The inequality(

1

R1C1
− R01

L2

)2

> 4
1

C1L2
(8)

is satisfied.
Condition (8) in Assumption II-B reads

(a1 − a4)
2 > 4a2a3. (9)

Let us propose the following problem: For the class
of DC/DC boost power converters described by (1), i.e.,
(2), and satisfying condition (8), i.e., (9), find a bounded
controller v ensuring that solutions of the system (2)
converge asymptotically to a desired equilibrium point.

In the sequel, a controller solving Problem II-B for
solutions of interest together with a theoretical proof
showing stability is presented. Subsequently, a discus-
sion ensues regarding the parameter selection process
to ensure that the controller’s values remain within the
specified bounds, i.e., v(t) ∈ [0, 1] for all t ≥ 0 for
solutions of interest.

III. MAIN RESULT

A. Preliminaries

Given the parameters in Table I, let us introduce the
following constants:

∆ =
√

(a1 − a4)2 − 4a2a3 (10)

α1 =
a1 − a4 −

√
∆

2a3
, α2 =

a1 − a4 +
√
∆

2a3
(11)

g1 =
a1 + a4 +

√
∆

2
, g2 =

a1 + a4 −
√
∆

2
(12)

β =
α1

α2
+ p (13)

p =
α1λ2

α2(g1 − g2 − λ2)
(14)

where λ2 > 0 is a constant parameter such that

g1 − g2 − λ2 ̸= 0 (15)

representing a desired convergence rate. Moreover, let us
consider the constant parameters λ1 > 0 (another desired
convergence rate), ϵ1 > 0,

ϵ2 =
4

3
ϵ1 (16)

and the function σϵ defined by

σϵ(s) =

{
s s ∈ [−ϵ, ϵ],
ϵ s
|s| |s| > ϵ

(17)

where ϵ ∈ (0, 1). Moreover, let us define

x̃1(t) = x1 − x1∗, x̃2(t) = x2 − x2∗ (18)

and perform a change of variables

zi = x̃1 + αix̃2 (19)

with i = 1, 2. Finally, let us introduce the function ψ
defined by:

ψ(s) =

 (1− ϵ)x3∗ s ≤ (1− ϵ)x3∗,
s s ∈ [(1− ϵ)x3∗, (1 + ϵ)x3∗],

(1 + ϵ)x3∗ s ≥ (1 + ϵ)x3∗.
(20)

where ϵ is the constant involved in the definition of σϵ.

B. Controller

We are ready to state and prove the following result:
Consider the controller

v(x̃1, x̃2, x3) =
a3x1∗ − a4x2∗ − ω(x̃1, x̃2)

a3ψ(x3)
(21)

where

ω =− 1

α2
σϵ2(λ2x̃1 + λ2α2x̃2)

− 1

α2

β

|β|
σϵ1(λ1(1 + p)x̃1 + λ1(α1 + pα2)x̃2).

(22)

It solves Problem II-B for all the solutions such that there
is T ≥ 0 such that x3(t) ∈ [(1 − ϵ)x3∗, (1 + ϵ)x3∗] for
all t ≥ T , where ϵ is the constant present in (17) and
(20).



Remark. Theorem III-B is concerned only with the
solutions such that x3 enters the interval [(1−ϵ)x3∗, (1+
ϵ)x3∗] in finite time. This may seem a strong limitation
of the proposed result. But this is not at all the case:
the simulations we perform show that the solutions with
initial conditions that are meaningful from a practical
point of view satisfy this property when ϵ = 0.1 is
chosen.

Consider a solution (x1, x2, x3) of the system (2) in
closed-loop with the control law (21) such that there is
T > 0 such that x3(t) ∈ [(1− ϵ)x3∗, (1 + ϵ)x3∗] for all
t ≥ T .
Then, from the definition of ψ in (20), it follows that

v(x̃1, x̃2, x3) =
a3x1∗ − a4x2∗ − ω(x̃1, x̃2)

a3x3
, (23)

for all t ≥ T . We deduce that the (x1, x2)-subsystem of
the system (2) in closed-loop with the control law (21)
can be rewritten as{
ẋ1 = −a1x1 − a2x2 + a1d1,

ẋ2 = a3x1 − [a3x1∗ − a4x2∗ − ω(x̃1, x̃2)]− a4x2
(24)

when t ≥ T . As an immediate consequence,{
˙̃x1 = −a1x̃1 − a2x̃2,
˙̃x2 = a3x̃1 − a4x̃2 + ω(x̃1, x̃2)

(25)

when t ≥ T .
Next, in the remaining part of the proof we consider the
case where t ≥ T , without mentioning this. We have

ż1 =− a1x̃1 − a2x̃2 + α1(a3x̃1 − a4x̃2 + α1ω

=(−a1 + α1a3)x̃1 − (a2 + α1a4)x̃2 + α1ω

=(−a1 + α1a3)

[
x̃1 +

a2 + α1a4
a1 − α1a3

x̃2

]
+ α1ω. (26)

Now, observe that

a2 + α1a4
a1 − α1a3

= α1 (27)

because
α2
1a3 + (a4 − a1)α1 + a2 = 0. (28)

It follows that

ż1 = (−a1 + α1a3)z1 + α1ω. (29)

Similarly, one can prove that

ż2 = (−a1 + α2a3)z2 + α2ω. (30)

Thus we have {
ż1 = −g1z1 + α1

α2
u,

ż2 = −g2z2 + u
(31)

with g1 and g2 as in (12) and

u = α2ω. (32)

Now, let us analyze the stability properties of the system
(31). Let us recall that (15) is satisfied and let us of
observe that

u = −σϵ2(λ2z2) + ρ (33)

where ρ is

ρ = − β

|β|
σϵ1(λ1(1 + p)x̃1 + λ1(α1 + pα2)x̃2). (34)

It follows from (16) that

|ρ(x̃1, x̃2)| ≤ ρ (35)

for all (x̃1, x̃2) ∈ R2 with

ρ =
3ϵ2
4
. (36)

Thus, we have{
ż1 = −g1z1 − α1

α2
σϵ2(λ2z2) +

α1

α2
ρ,

ż2 = −g2z2 − σϵ2(λ2z2) + ρ.
(37)

To analyze the stability properties of the z2-subsystem
of (37), let us introduce the positive definite function:

U2(z2) =
1

2
z22 . (38)

Its derivative along the trajectories of (37) satisfies

U̇2(t) ≤ −g2z22 − z2σϵ2(λ2z2) + |z2|ρ
≤ −g2z22 − z2σϵ2(λ2z2) + |z2|3ϵ24

(39)

where the last inequality is a consequence of (36).
When |z2(t)| ≥ 3ϵ2

4λ2
, then

U̇2(t) ≤ −g2z22 − |z2|σϵ2
(
λ2

3ϵ2
4λ2

)
+ |z2|3ϵ24

= −g2z22 − |z2|3ϵ24 + |z2|3ϵ24
< 0.

(40)

We deduce that there is t1 ≥ 0 such that for all t ≥ t1,

|z2(t)| ≤
3ϵ2
4λ2

. (41)

Then for all t ≥ t1,{
ż1 = −g1z1 − α1

α2
λ2z2 +

α1

α2
ρ,

ż2 = −(g2 + λ2)z2 + ρ.
(42)



Now, let us perform the change of variables

z3(t) = z1(t) + pz2(t). (43)

Then

ż3 = −g1z1 − α1

α2
λ2z2 +

α1

α2
ρ

−p(g2 + λ2)z2 + pρ

= g1[−z3(t) + pz2]−
[
α1

α2
λ2 + p(g2 + λ2)

]
z2

+
(
α1

α2
+ p

)
ρ

= −g1z3 −
[
α1

α2
λ2 + p(g2 − g1 + λ2)

]
z2

+
(
α1

α2
+ p

)
ρ.

(44)
From the definition of p, it follows that

ż3 = −g1z3 + βρ (45)

with
β =

α1

α2
+ p. (46)

Now, we observe that

β = α1

α2
+ α1λ2

α2(g1−g2−λ2)
= α1

α2

[
1 + λ2

g1−g2−λ2

]
= α1

α2

√
∆√

∆−λ2

.

(47)
Let us observe that Assumption 1 ensures that α1 ̸= 0
and ∆ > 0. We deduce that β ̸= 0. Then through simple
calculations, one can prove that

ρ = − β

|β|
σϵ1(λ1z3). (48)

Then, according to (42) and (45), for all t ≥ t1,{
ż3 = −g1z3 − |β|σϵ1(λ1z3),
ż2 = −(g2 + λ2)z2 − β

|β|σϵ1(λ1z3).
(49)

We can easily analyze the the stability properties of the
z3-subsystem of (49). In particular there is t2 ≥ t1 such
that for all t ≥ t2, |z3(t)| < ϵ1

λ1
. It follows that for all

t ≥ t2, {
ż3 = −(g1 + |β|λ1)z3,
ż2 = −(g2 + λ2)z2 − β

|β|λ1z3.
(50)

Let us observe that an arbitrary large rate of convergence
can be obtained by an appropriate choice of λ1 and λ2.
The controller v in (21) and (22) solves Problem II-B for
the solutions we specified in Theorem 1. However, it is
not guaranteed that v ∈ [0, 1]. To ensure this property, a
proper choice of initial conditions and of the parameter
ϵ1 has to be made (recall that (16) holds). From physical

TABLE II
THE VALUES OF THE PARAMETERS.

Parameter Value Parameter Value
R1 100 mΩ R3 100 mΩ

C1 100 mF C3 10 mF

L2 33 mH R01 10 mΩ

properties and the considered parameters in Table I, it
is possible to say that, for realistic initial conditions,
the dynamics of x3 will not move too far from the
computed equilibrium in (5). Then we can consider
an upper bound xM3 and a lower bound xm3 of x3(t).
Therefore, a conservative selection of the parameter ϵ2
(and then of ϵ1) can be performed such that

ω ∈ [a3x1∗ − a4x2∗ − a3ψ(x
m
3 ), a3x1∗ − a4x2∗] , (51)

which ensures that v ∈ [0, 1].

IV. SIMULATIONS

The simulations are developed in Mat-
lab/Simulink2022b©. To demonstrate the effectiveness
of the proposed control law, we use a piece-wise
constant reference trajectory instead of a constant one.
This approach, which is commonly used when testing
the performance of power converters in closed-loop,
relies on the controller’s ability to ensure a satisfactory
convergence before each change in the reference occurs.
As described in Section II, we impose xe2 and propose
a comparison between two tuning parameters ε2 for
the controller. Since no hypothesis is made for the
voltage source of the converter, i.e., the device can
act as providing or absorbing power, it is possible to
consider that the reference xe2 takes both positive and
negative values. Parameters’ values are in Table II. The
considered simulation time is about 10 seconds.

A. Case 1: choice of a value ε2 = 12000

Fig. 2, 3 and 4 depict both the references x1∗, x2∗ =
xe2 and x3∗ and the dynamical behaviour of the state
variables x1, x2 and x3, respectively, when the system
is controlled by the control input introduced in equation
(21) with target to impose a desired xe2 and with the
choice ε2 = 12000. As shown, the controller perfectly
meets its target, since the error dynamics converges to
zero and a smooth behaviour with no overshoots results
for the variables of main interest x1 and x2. Furthermore,
since the choice of the parameter ε2 and of the desired
reference xe2 have been properly done, the controller fits
its boundaries, as it is depicted in Fig. 5.



Possible undesired behaviours can be the high over-
shoots taking place in the dynamics of x3 or the fact that
the controller almost touches its boundaries at time 2s
and 6s. To avoid these drawbacks, we focus now on a
possible different choice of the parameter ε2.

B. Case 2: choice of a value ε2 = 4000

Fig. 6, 7 and 8 are similar to Fig. 2, 3 and 4,
as they show dynamics x1, x2 and x3 with respect to
their references x1∗, x2∗ = xe2 and x3∗. However, here
the parameter ε2 in (21) is ε2 = 4000. Similarly as
in the previous case, the controller perfectly meets its
target, since the error dynamics converges to zero for
the variables of main interest x1 and x2. However, we
remark that the convergence rate is slower with respect to
the case where ε2 = 12000 and also overshoots appears
in the dynamics of x1 and x2. This is not surprising, as
the current choice is more limiting. As shown by Fig.
9, by saturating earlier the controller reduces its margin
of maneuver, thereby affecting performance. However, it
is worth noting that the controller remains further from
its bounds, and the overshoots observed in the dynamics
x3 are of lesser magnitude, as shown comparing Fig. 8
with Fig. 4.
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Fig. 2. Case 1: The dynamical behaviour of x1 with respect to its
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Fig. 3. Case 1: The dynamical behaviour of x2 with respect to its
reference x∗

2 and with the value ε2 = 12000.

From Fig. 5 and 9 it must be noted that the devel-
oped control action allows for a ”smooth” curve in the
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Fig. 5. Case 1: The controller u with respect to its physical bounds
when ε2 = 12000.

0 2 4 6 8 10

Time [s]

340

360

380

400

420

440

460

V
o

lt
a
g

e
 [

V
]

Dynamics x
1

x
1 x

1

*

Fig. 6. Case 2: The dynamical behaviour of x1 with respect to its
reference x∗

1 computed according to xe
2 and the value ε2 = 4000.

obtained duty cycle. It is important since it results in less
stress for the components and the devices.

While in other approaches as in [11] this outcome
is due to the proper choice of several parameters, here
this outcome is a result of the dominant static part
of the controller. Indeed, the dynamical part of the
controller behaviour takes place only during transients
due to a change in the desired equilibrium. Therefore,
the choice of the parameters needs mainly to focus on
the verification of the static bounds, thus to simplify the
understanding and the implementation of the proposed
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Fig. 9. Case 2: The controller u with respect to its physical bounds
when ε2 = 4000.

controller. The simulations demonstrate the efficacy of
the proposed controller and highlight the advantages and
disadvantages of choosing larger or smaller parameters,
which influence the size of the controller.

V. CONCLUSIONS

This paper presents a novel bounded nonlinear con-
troller designed for a specific class of DC/DC boost
converters. The controller calculates the control input
in real-time, taking into account physical constraints to
ensure desired performance.

Simulation results validate the effectiveness of the
proposed control strategy.

Future works will focus on output feedback stabiliza-
tion of the systems when a delay in the measurements
is present.
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