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Abstract—Magnitude Pruning is a staple lightweight network
design method which seeks to remove connections with the small-
est magnitude. This process is either achieved in a structured or
unstructured manner. While structured pruning allows reaching
high efficiency, unstructured one is more flexible and leads to
better accuracy, but this is achieved at the expense of low
computational performance.
In this paper, we devise a novel coarse-to-fine (CTF) method that
gathers the advantages of structured and unstructured pruning
while discarding their inconveniences to some extent. Our method
relies on a novel CTF parametrization that models the mask
of each connection as the Hadamard product involving four
parametrizations which capture channel-wise, column-wise, row-
wise and entry-wise pruning respectively. Hence, fine-grained
pruning is enabled only when the coarse-grained one is disabled,
and this leads to highly efficient networks while being effective.
Extensive experiments conducted on the challenging task of
skeleton-based recognition, using the standard SBU and FPHA
datasets, show the clear advantage of our CTF approach against
different baselines as well as the related work.

Index Terms—Coarse and fine-grained pruning, graph convo-
lutional networks, skeleton-based recognition.

I. INTRODUCTION

Deep learning (DL) is a rapidly growing subfield of artificial
intelligence (AI) which has made a significant advancement [1]
in various pattern recognition tasks including action and hand-
gesture classification [47]. Major actors in the realm of AI are
nowadays deploying DL techniques (and particularly neural
networks) to solve problems and gain a competitive edge.
However, DL’s progress has been achieved at the expense of
a significant increase of time and memory demand, making
it overpowering to deploy on cheap devices endowed with
limited hardware resources. In the field of skeleton-based
recognition, graph convolutional networks (GCNs) are peculiar
neural networks that operate on non-euclidean domains (such
as skeleton graphs) by learning relationships between nodes
and edges. Two categories of GCNs exist in the literature:
spectral [2], [3], [22], [37] and spatial [4], [6], [10], [52].
The former relies on the Fourier transform while the latter
leverages message passing and multi-head attention layers.
These layers extract node representations by aggregating fea-
tures over their most salient neighboring nodes, prior to
applying convolutions (as inner products) on the resulting
node aggregates. With multi-head attention, spatial GCNs are
deemed highly accurate on skeleton data, but oversized and
computationally overwhelming, and their deployment on cheap
devices requires designing their lightweight counterparts.

Existing work that addresses the issue of lightweight neural
network design includes tensor decomposition [17], quantiza-
tion [21], distillation [7], [40], [66], neural architecture search
[69] and pruning [16], [23]–[25], [55]. Pruning techniques
are particularly effective and consist in removing unnecessary
connections leading to more compact and faster networks
with a minimal decay on accuracy. One of the mainstream
lightweight design methods is magnitude pruning (MP) [21].
The latter aims at ranking network connections according
to the magnitude, as a proxy to the importance, of their
weights, prior to remove the smallest magnitude connections,
and this eventually leads to a minimal impact on performances.
Two categories of MP techniques are widely known: struc-
tured [14], [41] and unstructured [21], [23], [27]. Structured
MP consists in removing entire groups of weights, filters or
neurons which significantly changes the model architecture
and leads to higher compression rates and efficient compu-
tation on standard deep learning frameworks/hardware. How-
ever, structured MP suffers from a coarse pruning granularity
as it cannot target individual (possibly important) weights
within a group, and this may potentially result into a significant
drop in accuracy particularly when aggressive pruning is
achieved. On another hand, unstructured MP offers a fine con-
trol over granularity as it identifies and removes connections
individually, and maintains the overall network architecture.
Hence, it may potentially preserve important connections and
ultimately achieve higher accuracy compared to structured
MP. However, unstructured MP suffers from several downsides
including lower compression rate compared to structured MP,
and slower inference with spread weight distributions which
may be inefficient for acceleration with most of the existing
standard hardware.

In order to gather the upsides of both structured and unstruc-
tured pruning techniques, while mitigating their downsides, we
devise in this paper a new pruning method for lightweight
GCNs. The design principle of our approach is coarse-to-
fine (CTF) and achieved using a novel multi-structured tensor
parametrization; as we traverse this parametrization, pruning is
getting relatively less structured and computationally less effi-
cient, but more resolute (finer), allowing to reach the targeted
pruning rate with a high accuracy. Given an unpruned network,
we define our parametrization as the combination of three
functions: (i) a band-stop parametrization which keeps only
connections with the highest magnitudes, (ii) a weight-sharing
parametrization that groups connections either channel-wise,



column-wise, row-wise or keeps them as singletons, and (iii)
a gating mechanism which either keeps weights as singletons,
or removes them in a structured manner. Besides being able to
handle coarse as well as fine-grained pruning, our composed
parametrization allow reaching a tradeoff between efficient
computation and high accuracy as corroborated through ex-
tensive experiments conducted on the challenging task of
skeleton-based action and hand-gesture recognition.

II. RELATED WORK

The following review discusses the related work in pruning
and skeleton-based recognition, highlighting the limitations
that motivate our contributions.

Variational Pruning. The latter seeks to learn weights and
binary masks in order to capture the topology of pruned
networks. This is obtained by minimizing a global loss
which mixes a classification error and a regularizer that
controls the cost of the pruned networks [13]–[15]. However,
existing methods are powerless to implement targeted
pruning rates without overtrying multiple weighting of the
regularizers. Alternative methods explicitly use ℓ0-based
criteria to minimize the discrepancy between observed and
targeted costs [15], [53]. Existing solutions rely on sampling
heuristics or relaxation, which promote sparsity (via different
regularizers including ℓ1/ℓ2-based, entropy, etc.) [8], [9], [11],
[12] but are powerless to implement target costs exactly, and
may lead to overpruned and thereby disconnected networks.
Besides, most of the existing solutions including magnitude
pruning are either structured [14], [41] or unstructured
[21], [23], [46], and their benefit is not fully explored. This
paper aims to gather the advantages of both structured and
unstructured pruning while discarding their limitations.

Skeleton-based recognition. This task has gained increasing
interest due to the emergence of sensors like Intel RealSense
and Microsoft Kinect. Early methods for hand-gesture and ac-
tion recognition used RGB [26], depth [51], shape/normals [5],
[60]–[65], and skeleton-based techniques [49]. These methods
were based on modeling human motions using handcrafted
features [59], dynamic time warping [56], temporal informa-
tion [19], [67], and temporal pyramids [47]. However, with
the resurgence of deep learning, these methods have been
quickly overtaken by 2D/3D Convolutional Neural Networks
(CNNs) [18], [68], Recurrent Neural Networks (RNNs) [42]–
[45], [47], [48], manifold learning [32]–[35], attention-based
networks [54], [58], and GCNs [28]–[31]. The recent emer-
gence of GCNs, in particular, has led to their increased use in
skeleton-based recognition [3]. These models capture spatial
and temporal attention among skeleton-joints with a better
interpretability. However, when tasks involve relatively large
input graphs, GCNs with multi-head attention become compu-
tationally inefficient and require lightweight design techniques.
In this paper, we design efficient GCNs that make skeleton-
based recognition highly efficient while also being effective.

III. GRAPH CONVNETS AT GLANCE

Considering S = {Gi = (Vi, Ei)}i as a collection of graphs
with Vi, Ei being respectively the nodes and the edges of Gi,
each graph Gi (denoted for short as G = (V, E)) is empowered
with a signal {ϕ(u) ∈ Rs : v ∈ V} and an adjacency
matrix A. Graph convolutional networks (GCNs) learn a set
of C filters F that define convolution on n nodes of G as
(G ⋆ F)V = f

(
A U⊤ W

)
, here n = |V|, ⊤ stands for

transpose, U ∈ Rs×n is the graph signal, W ∈ Rs×C is
the matrix of convolutional parameters corresponding to the
C filters and f(.) is a nonlinear activation applied entry-
wise. With (G ⋆F)V , the input signal U is projected using A
providing for each node v, the aggregate set of its neighbors.
Entries of A can either be handcrafted or learned in (G ⋆F)V
forming a convolutional block with two layers: the first layer
in (G ⋆ F)V aggregates signals in N (V) (as the sets of
neighbors of nodes in V) by multiplying U with A, while
the second layer performs convolutions by multiplying the
resulting aggregates with the C filters in W. Learning multiple
adjacency (also referred to as attention) matrices (denoted
as {Ak}Kk=1) enable capturing various contexts and graph
topologies when achieving aggregation and convolution. With
multiple adjacency matrices {Ak}k (and associated convo-
lutional filter parameters {Wk}k), (G ⋆ F)V is updated as
f
(∑K

k=1 A
kU⊤Wk

)
, so stacking multiple aggregation and

convolutional layers makes GCNs more accurate but heavier.
Our proposed method, in this paper, seeks to make GCNs
lightweight yet effective.

IV. PROPOSED METHOD

Subsequently, we formalize a given GCN as a multi-
layered neural network gθ with weights defined by θ ={
W1, . . . ,WL

}
, and L its depth, Wℓ ∈ Rdℓ−1×dℓ its ℓth layer

weight tensor, and dℓ its dimension. We define the output of a
given layer ℓ as ϕℓ = fℓ(W

ℓ⊤ ϕℓ−1), ℓ ∈ {2, . . . , L}, with fℓ
an activation function; without a loss of generality, we omit
the bias in the definition of ϕℓ.
Pruning is the process of removing a subset of weights in θ by
multiplying Wℓ with a binary mask Mℓ ∈ {0, 1}dℓ−1×dℓ . The
binary entries of Mℓ are determined by pruning the underlying
layer connections, so ϕℓ = fℓ((M

ℓ ⊙Wℓ)⊤ ϕℓ−1), with ⊙
being the element-wise matrix product. In our definition of
pruning, entries of the tensor {Mℓ}ℓ are set depending on the
prominence and also on how the underlying connections in gθ
are grouped (or not); pruning that removes all the connections
individually (resp. jointly) is referred to as unstructured (resp.
structured) whilst pruning that removes some connections
first group-wise and then individually is dubbed as coarse-
to-fine. In what follows, we introduce our main contribution;
a novel coarse-to-fine method that allows combining multiple
pruning granularities resulting into efficient and also effective
lightweight networks (as shown later in experiments).

A. Coarse-to-fine Pruning

We define our parametrization as the Hadamard product
involving a weight tensor and a cascaded function applied



to the same tensor as

Wℓ = Ŵℓ ⊙ ψ(Ŵℓ), (1)

here Ŵℓ is a latent tensor and ψ(Ŵℓ) a continuous relaxation
of Mℓ which enforces the prior that (i) weights Ŵℓ with
the smallest magnitude should be removed, (ii) entries in
mask ψ(Ŵℓ) are either removed group-wise (through rows,
columns, channels) or removed individually. In the following,
we expand the definition of fine and coarse parametrizations
(respectively denoted as ψf and ψc) prior to their combination
in Eq. 3. Unless stated otherwise, we omit ℓ in the definition
of Ŵℓ and we rewrite it (for short) as Ŵ.

Fine-grained parametrization. As subsequently described,
the function ψf (Ŵ) is entry-wise applied to the tensor
Ŵ with the prior that small magnitude weights should
be individually removed. The class of ψf functions must
be: (1) differentiable, (2) symmetric, (3) bounded in [0, 1],
and (4) asymptotically reaching 1 when entries of ψf (.)
have large magnitude and 0 otherwise. Properties (1) and
(2) respectively ensure that ψf has computable gradient
and that only the magnitude of the latent weights matters
whereas properties (3) and (4) guarantee that ψf is neither
overflowing nor changing the sign of the latent weights, and
also values in ψf behave as crisp (almost binary) masks
reaching asymptotically 1 iff the latent weights in |Ŵ| are
sufficiently large, and 0 otherwise. In practice, a choice of
ψf that satisfies these four conditions is the symmetrized
shifted sigmoid ψf (Ŵ) = 2 sigmoid(σŴ2) − 1; here the
power and the sigmoid are applied entry-wise and σ is a
scaling factor that controls the crispness (binarization) of
the mask entries in ψf (Ŵ). In practice, σ is annealed so as
to cut-off the connections in the network in a smooth and
differentiable manner — as the optimization of Ŵ evolves
— while obtaining at the end of the optimization process
crisp (almost binary) masks.

Coarse-grained parametrization. The function ψc(Ŵ) im-
plements a coarse-grained pruning by removing connections
group-wise (row-wise, column-wise or block/channels-wise)
in the tensor Ŵ. This function is formally defined as

ψc(Ŵ) = ϕ−1(Pr ϕ(Ŵ))︸ ︷︷ ︸
row-wise pruning

⊙ϕ−1(ϕ(Ŵ)⊤ Pc)︸ ︷︷ ︸
column-wise pruning

⊙ϕ−1(PrP
⊤
c ϕ(Ŵ))︸ ︷︷ ︸

block-wise pruning

,

(2)
here ϕ (resp. ϕ−1) reshapes a matrix into a vector (resp.
vice-versa), and Pr ∈ {0, 1}(dℓ−1×dℓ)

2

, Pc ∈ {0, 1}(dℓ−1×dℓ)
2

are two adjacency matrices that model the neighborhood
across respectively the rows and the columns of Ŵ whilst
PrP

⊤
c ∈ {0, 1}(dℓ−1×dℓ)

2

models this neighborhood through
blocks/channels of the tensor Ŵ.

Coarse-to-fine-grained parametrization. Considering the
above definition of ψc and ψf , we obtain our complete coarse-
to-fine mask parametrization as

ψ(Ŵ) = [ψc(ψf (Ŵ))]︸ ︷︷ ︸
coarse-grained pruning

⊙ ψf (Ŵ).︸ ︷︷ ︸
fine-grained pruning

(3)

From Eqs. 2 and 3, assuming crisp (almost binary) entries
in Ŵ (thanks to the sigmoid), block-wise pruning has the
highest priority, followed by column-wise and row-wise prun-
ing. This priority allows designing highly efficient lightweight
networks with a coarse-granularity for block / column / row-
wise (structured) pruning while the entry-wise (unstructured)
parametrization is less computationally efficient but allows
reaching the targeted pruning rate with a finer granularity (see
Fig. 1). In sum, CTF allows efficient coarse-grained network
design while also leveraging the accuracy of fine-grained one,
thereby leading to both efficient and effective pruned networks
as shown subsequently in experiments.
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row−wise

column−wise

entry−wise

block/channel−wise

Coarse−to−fine pruning

ψf (Ŵ)

ψc(ψf (Ŵ))

ψc(ψf (Ŵ))⊙ ψf (Ŵ)

Fig. 1. This figure shows the CTF pruning process in Eq. 3; here each diagonal
block corresponds to a channel.

B. Variational Pruning

By considering Eq. 1, we define our CTF pruning loss as

Le

(
{ψ(Ŵℓ)⊙ Ŵℓ}ℓ

)
+ λ

( L−1∑
ℓ=1

1⊤
dℓ
ψ(Ŵℓ) 1dℓ+1

− c
)2

,

(4)
here the left-hand side term is the cross entropy loss that
measures the discrepancy between predicted and ground-truth
labels. The right-hand side term is a budget loss that allows
reaching any targeted pruning cost c. In the above objective
function, λ is overestimated (to 1000 in practice) in order to
make Eq. 4 focusing on the implementation of the budget.
As training reaches its final epochs, the budget loss reaches
its minimum and the gradient of the global objective function
becomes dominated by the gradient of Le, and this allows
improving further classification performances.



V. EXPERIMENTS

In this section, we evaluate the performances of our pruned
GCNs on skeleton-based recognition using two challenging
datasets, namely SBU [64] and FPHA [20]. SBU is an
interaction dataset acquired using the Microsoft Kinect
sensor; it includes in total 282 moving skeleton sequences
(performed by two interacting individuals) belonging to 8
categories. Each pair of interacting individuals corresponds
to two 15 joint skeletons and each joint is characterized
with a sequence of its 3D coordinates across video frames.
In this dataset, we consider the same evaluation protocol as
the one suggested in the original dataset release [64] (i.e.,
train-test split). The FPHA dataset includes 1175 skeletons
belonging to 45 action categories with high inter and intra
subject variability. Each skeleton includes 21 hand joints and
each joint is again characterized with a sequence of its 3D
coordinates across video frames. We evaluate the performance
of our method on FPHA following the protocol in [20]. In
all these experiments, we report the average accuracy over all
the classes of actions.

TABLE I
COMPARISON OF OUR BASELINE GCN AGAINST RELATED WORK ON THE

SBU DATABASE.

Method Accuracy (%)
Raw Position [64] 49.7
Joint feature [60] 86.9

CHARM [61] 86.9
H-RNN [42] 80.4

ST-LSTM [43] 88.6
Co-occurrence-LSTM [47] 90.4

STA-LSTM [54] 91.5
ST-LSTM + Trust Gate [43] 93.3

VA-LSTM [45] 97.6
GCA-LSTM [44] 94.9

Riemannian manifold. traj [33] 93.7
DeepGRU [48] 95.7

RHCN + ACSC + STUFE [29] 98.7
Our baseline GCN 98.4

Implementation details and baseline GCNs. All the GCNs
have been trained using the Adam optimizer for 2, 700 epochs
with a batch size of 200 for SBU and 600 for FPHA, a
momentum of 0.9, and a global learning rate (denoted as
ν(t)) inversely proportional to the speed of change of the
loss used to train the networks; with ν(t) decreasing as
ν(t)← ν(t− 1)× 0.99 (resp. increasing as ν(t)← ν(t− 1)/
0.99) when the speed of change of the loss in Eq. 4 increases
(resp. decreases). Experiments were run on a GeForce GTX
1070 GPU device with 8 GB memory, without dropout or
data augmentation. The baseline GCN architecture for SBU
includes an attention layer of 1 head, a convolutional layer of
8 filters, a dense fully connected layer, and a softmax layer;
notice that this architecture is not very heavy, nonetheless its
pruning is very challenging (particularly at high pruning rates)
as it may result into disconnected networks. The baseline
GCN architecture for FPHA is heavier and includes 16 heads,

TABLE II
COMPARISON OF OUR BASELINE GCN AGAINST RELATED WORK ON THE

FPHA DATABASE.

Method Color Depth Pose Accuracy (%)
2-stream-color [18] ✓ ✗ ✗ 61.56
2-stream-flow [18] ✓ ✗ ✗ 69.91
2-stream-all [18] ✓ ✗ ✗ 75.30
HOG2-dep [51] ✗ ✓ ✗ 59.83

HOG2-dep+pose [51] ✗ ✓ ✓ 66.78
HON4D [62] ✗ ✓ ✗ 70.61

Novel View [63] ✗ ✓ ✗ 69.21
1-layer LSTM [47] ✗ ✗ ✓ 78.73
2-layer LSTM [47] ✗ ✗ ✓ 80.14
Moving Pose [65] ✗ ✗ ✓ 56.34

Lie Group [56] ✗ ✗ ✓ 82.69
HBRNN [42] ✗ ✗ ✓ 77.40

Gram Matrix [67] ✗ ✗ ✓ 85.39
TF [19] ✗ ✗ ✓ 80.69

JOULE-color [26] ✓ ✗ ✗ 66.78
JOULE-depth [26] ✗ ✓ ✗ 60.17
JOULE-pose [26] ✗ ✗ ✓ 74.60
JOULE-all [26] ✓ ✓ ✓ 78.78

Huang et al. [32] ✗ ✗ ✓ 84.35
Huang et al. [35] ✗ ✗ ✓ 77.57

HAN [34] ✗ ✗ ✓ 85.74
Our baseline GCN ✗ ✗ ✓ 86.43

a convolutional layer of 32 filters, a dense fully connected
layer, and a softmax layer. Both the baseline (unpruned) GCN
architectures, on the SBU and the FPHA benchmarks, are
accurate (see tables. I and II), and our goal is to make them
lightweight while maintaining their accuracy.

TABLE III
THIS TABLE SHOWS DETAILED PERFORMANCES AND ABLATION STUDY ON
SBU FOR DIFFERENT PRUNING RATES. “NONE” STANDS FOR NO-ACTUAL

SPEEDUP IS OBSERVED AS THE UNDERLYING TENSORS/ARCHITECTURE
REMAIN SHAPED IDENTICALLY TO THE UNPRUNED NETWORK (DESPITE

HAVING PRUNED CONNECTIONS); SEE ALSO FIG. 2.

Pruning rates Accuracy (%) SpeedUp Observation
0% 98.40 none Baseline GCN

70% 93.84 none Band-stop Weight Param.

90%
83.07 11× Coarse MP (structured)
96.92 none Fine MP (unstructured)
89.23 6× Coarse-to-Fine MP (both)

95%
75.38 34× Coarse MP (structured)
93.84 none Fine MP (unstructured)
84.61 9× Coarse-to-Fine MP (both)

98%
49.23 235× Coarse MP (structured)
90.76 none Fine MP (unstructured)
76.92 43× Coarse-to-Fine MP (both)

Comparative (regularization-based) pruning

98%

55.38 none MP+ℓ0-reg.
73.84 none MP+ℓ1-reg.
61.53 none MP+Entropy-reg.
75.38 none MP+Cost-aware-reg.

Lightweight GCNs (Comparison and Ablation). Tables III-
IV show a comparison and an ablation study of our method
both on SBU and FPHA datasets. First, according to tables
III-IV, when only the cross entropy loss is used without



Fig. 2. This figure shows a crop of the mask tensor of the second (multi-head-attention) layer of our GCNs when trained on the FPHA dataset. Top row
corresponds to the original mask (without pruning) while the second and the third rows correspond to masks obtained with structured and unstructured pruning
respectively (with increasing pruning rates; from left-to-right equal to 90%, 95% and 98% respectively). The final row corresponds to masks obtained with
semi-structured pruning (with again increasing pruning rates; from left-to-right, equal to 90%, 95% and 98% respectively). In all these masks, each diagonal
block corresponds to a channel. Better to zoom the PDF.

budget (i.e., λ = 0 in Eq. 4), performances are close to
the initial heavy GCNs (particularly on FPHA), with less
parameters1 as this produces a regularization effect similar
to [57]. Then, when pruning is achieved with the coarse-
grained parametrization, the accuracy is relatively low but the
speedup is high particularly for high pruning regimes. When
pruning is performed with the fine-grained parametrization,
the accuracy reaches its highest value, but no speedup is

1Pruning rate does not exceed 70% and no control on this rate is achievable.

observed as pruning is unstructured and the architecture of the
pruned networks remains unchanged. When the coarse-to-fine
parametrization is used, we observe the best tradeoff between
accuracy and speedup; in other words, coarsely pruned parts
of the network lead to high speedup and efficient computation,
while finely pruned parts allow reaching better accuracy with
a limited impact on computation, so a significant speedup is
still observed.

Extra comparison against other regularizers shows



TABLE IV
THIS TABLE SHOWS DETAILED PERFORMANCES AND ABLATION STUDY ON
FPHA FOR DIFFERENT PRUNING RATES. “NONE” STANDS FOR NO-ACTUAL

SPEEDUP IS OBSERVED AS THE UNDERLYING TENSORS/ARCHITECTURE
REMAIN SHAPED IDENTICALLY TO THE UNPRUNED NETWORK (DESPITE

HAVING PRUNED CONNECTIONS); SEE ALSO FIG. 2.

Pruning rates Accuracy (%) SpeedUp Observation
0% 86.43 none Baseline GCN
50% 85.56 none Band-stop Weight Param.

90%
76.69 13× Coarse MP (structured)
83.13 none Fine MP (unstructured)
80.17 6× Coarse-to-Fine MP (both)

95%
70.08 37× Coarse MP (structured)
81.56 none Fine MP (unstructured)
77.56 13× Coarse-to-Fine MP (both)

98%
63.30 96× Coarse MP (structured)
76.86 none Fine MP (unstructured)
70.95 41× Coarse-to-Fine MP (both)

Comparative (regularization-based) pruning

98%

64.69 none MP+ℓ0-reg.
70.78 none MP+ℓ1-reg.
67.47 none MP+Entropy-reg.
69.91 none MP+Cost-aware-reg.

the substantial gain of our method. Indeed, our method
is compared against variational pruning with different
regularizers plugged in Eq. 4 instead of our budget loss,
namely ℓ0 [15], ℓ1 [11], entropy [12] and ℓ2-based cost [39];
all without parametrization. From the observed results, the
impact of our method is substantial for different settings and
for equivalent pruning rate (namely 98%). Note that when
alternative regularizers are used, multiple settings (trials) of
the underlying hyperparameter λ (in Eq. 4) are considered
prior to reach the targeted rate, and this makes the whole
training and pruning process overwhelming. While cost-aware
regularization makes training more tractable, its downside
resides in the observed collapse of trained masks; this is a
well known effect that affects performances at high pruning
rates. Finally, Fig. 2 shows examples of obtained mask
tensors taken from the second (attention) layer of the pruned
GCNs; we observe compact tensor weight distributions with
some individually pruned connections when using CTF,
while coarse-grained and fine-grained pruning, when taken
separately, either produce compact or spread tensors with
a negative impact on either accuracy or speed respectively.
CTF gathers both fine and coarse-grained advantages while
discarding their downsides.

VI. CONCLUSION

We introduce in this paper a CTF approach for pruning.
The strength of the proposed method resides in its abil-
ity to combine the advantages of coarse-grained (structured)
and fine-grained (unstructured) pruning while discarding their
downsides. The proposed method relies on a novel weight
parametrization that first prunes tensors channel-wise, then
column-wise and row-wise, and finally entry-wise enabling
both high efficiency and high accuracy. Experiments con-
ducted on the challenging tasks of action and hand-gesture

recognition, using two standard datasets, corroborate all these
findings.
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