
HAL Id: hal-04840226
https://hal.science/hal-04840226v1

Preprint submitted on 17 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deterministic and Heuristic Criteria for Optimized
Markov Chain Aggregation

Laurent Capocchi, Jean-François Santucci

To cite this version:
Laurent Capocchi, Jean-François Santucci. Deterministic and Heuristic Criteria for Optimized Markov
Chain Aggregation. 2024. �hal-04840226�

https://hal.science/hal-04840226v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Deterministic and Heuristic Criteria for Optimized
Markov Chain Aggregation

Laurent Capocchi · Jean-Fraçois Santucci

Received: date / Accepted: date

Abstract Markov chains are an important means of representing stochastic
systems, but their state space can become too large to be practical. Markov
model lumping is a well-known process for reducing the state space and sim-
plifying interpretation, as well as accelerating the computationally expensive
large Markov chain resolution. This paper investigates new Markov chain ag-
gregation algorithms defined by deterministic (mathematically proven) and
heuristic criteria using the Kullback-Leibler metric to compare Markov chains
based on their respective steady states and the Mean First Passage Time
property to optimize the state aggregation process. The objective is to strike a
balance between the two conflicting objectives: (i) to minimize the size of the
aggregation and (ii) to keep the aggregation as close as possible to the original
Markov chain. A set of experiments has been conducted to perform illustra-
tive comparisons that demonstrate the advantages gained from the proposed
state-space reduction algorithms.

Keywords Complex systems · Dimensionality reduction · Heuristic algo-
rithms · Iterative algorithms · Markov processes · Python

Mathematics Subject Classification (2020) 60J22 · 65C40 · 68M20 ·
68T20

L. Capocchi
SPE UMR CNRS 6134
University of Corsica
Campus Grimaldi, 20250 Corte (France)
E-mail: capocchi@univ-corse.fr

J.F. Santucci
SPE UMR CNRS 6134
University of Corsica
Campus Grimaldi, 20250 Corte (France)
E-mail: santucci@univ-corse.fr

2 Laurent Capocchi, Jean-Fraçois Santucci

1 Introduction

Markov chains [22] are one of the simplest forms of stochastic dynamical sys-
tems that allow one to model stochastic dependencies. Beyond the ability to
simulate a wide range of complex stochastic systems, the main interest of
Markov chains is their ability to predict their behavior. The simulation of
an aperiodic and irreducible Markov chain converges towards a limit station-
ary distribution, known as the steady state, which allows for state prediction.
However, dealing with real-world complex system applications requires reduc-
ing the Markov chains due to their large state spaces, making it impossible to
manipulate them.

An efficient solution for reducing the size of the state space of a Markov
chain is to use aggregation [4]. Aggregation is typically based on defining a
function to partition the nodes in the probability transition graph associated
with the large-scale chain under study. Sets of nodes that have strong inter-
actions are combined and considered as a single aggregated node in a new,
lower-order Markov chain. The resulting new Markov chain should have dy-
namics that are similar to the original one, despite potential differences due
to the state aggregations.

To reduce a Markov chain using aggregation, a set of approaches discussed
below has been defined based on the reduction of the state set involving prop-
erties such as exact-lumpability and quasi-lumpability [40] and [22]. Exact-
lumpability is a property of a Markov chain associated with a specific partition
of the state space into groups (or macro-states). This property is equivalent to
exact aggregation and ensures that the process (chain) obtained after aggrega-
tion according to the partition remains a Markov chain. However, few chains
have this property in practice, and it is helpful to use a lower threshold: quasi-
lumpability. The proposed approach uses the exact-lumpability technique that
guarantees accurate results, unlike quasi-lumpability.

Once a reduced Markov chain is generated from an initial Markov chain
using lumpability techniques based on state partitions [7,41], the next step is
to define a search methodology to select the optimal partition according to a
metric that allows the comparison of Markov chains based on their respective
steady states. This comparison helps to select the most promising reduced
Markov chains and, therefore, reduce the potential differences between the
original and the selected reduced Markov chain. One of the metrics associated
with the lumpability process is the Kullback-Leibler (KL) divergence rate,
as described in [19,18,32,3]. A search methodology is presented to select the
optimal partition according to the KL divergence metric, which allows the
comparison of Markov chains. An exhaustive comparison algorithm can be
used to compute such an optimum. This algorithm involves computing the
associated KL metric for each possible partition and returning the partitions
having the lowest KL value. However, the computation process seems impos-
sible for large Markov chains due to the CPU time consumption, as described
in [19,13,18].

Deterministic and Heuristic Criteria for Optimized Markov Chain Aggregation 3

This article combines two different approaches to speed up computation
processing and enable optimal partitioning according to the KL metric. The
first approach simplifies the previous exhaustive algorithm by introducing a
new deterministic criterion, which selects partitions with n-1 elements from
the n-dimensional Markov chain. The second approach reduces the partition
search space using a heuristic criterion based on a Markov chain property
called the mean first passage time (MFPT) [10]. MFPT represents the time
it takes to go from state i to state j for the first time. In [33], the authors
have mathematically proven the relationship between MFPT and lumpability,
implying that a semi-Markov process is lumpable if and only if the MFPTs are
equal in distribution. The paper addresses a real optimization problem, which
involves finding a balance between two conflicting objectives: (i) minimizing
the size of aggregation using an exhaustive algorithm, and (ii) making the
aggregation as similar as possible to the original chain using two algorithms
that incorporate the previously mentioned improvements (deterministic and
heuristic). In terms of the existing literature, the paper makes the following
main contributions: (i) Presenting an exhaustive method with a complete al-
gorithm that, given enough time and space, generates the optimal partition to
reduce a stationary Markov chain. The advantage is that the optimal partition
is found, but the disadvantage is that it is time-consuming and requires a lot
of space. A benchmark on a large Markov chain illustrates the methodology
and properties of the exhaustive algorithm (ii) Showing that the best partition
(resulting in the minimum KL) belongs to the set of partitions obtained for
the class k=n-1. The advantage is that this improvement is deterministic, but
the disadvantage is that the resulting set of partitions is still too large (iii)
Presenting an iterative algorithm to heuristically compute the MFPT property
associated with the KL metric, which reduces the set of partitions obtained
from the previous improvement. The advantage is that this approach signifi-
cantly reduces the set of partitions, but the disadvantage is that the heuristic
may not lead to the best reduction (iv) Introducing a new user-based heuristic
algorithm (incorporating the previous algorithms) that allows finding the best
partition that satisfies the two conflicting objectives presented earlier. The
advantage is that a good partition is found, but the disadvantage is that it
requires the user to make an effort to find the right heuristic (v) Providing ex-
amples that illustrate the presented method and the properties of solutions for
both algorithms. A series of experiments have been conducted to make illus-
trative comparisons that demonstrate the advantages that can be gained from
the application of the two improvement techniques proposed in this paper.

2 Background

2.1 Markov Chain Theory and Lumpability

In Markov theory, a Markov chain is a stochastic process X(t) defined in a
finite state space S = 1, 2, . . . , n [22] that generates a series of observations

4 Laurent Capocchi, Jean-Fraçois Santucci

X. The Markov property states that the probability distribution over the next
observation depends only upon the current observation. Let pi,j be the prob-
ability that the next observation is j (X (t+ 1) = j) given that the current
observation is i (X (t) = i). These transition probabilities are represented by
a transition matrix P . In this paper, we only consider ergodic chains (i.e., the
transition matrix must be irreducible and aperiodic) M = (S, P, π). The ad-
vantages of ergodicity for the Markov chain aggregation model are highlighted
by Deng in [14] when he explains that convergence of the aggregation algo-
rithms is established based on stochastic approximation arguments as well as
the ergodicity of the filtering process.

An ergodic Markov chain has a unique stationary distribution π (called the
steady state) such that π = πP . However, when dealing with large Markov
chains, manipulation can be difficult due to the large number of states. Lumpa-
bility is used to work at a higher level of probabilistic hierarchy using a par-
tition of the set of states. Let us introduce two definitions to define quasi-
lumpability and lumpability based on the probability matrix.

Definition 1 Let P be a stochastic transition matrix associated with an er-
godic Markov chain. The quasi-lumpability on the partition (d macro-states)
C1, C2, . . . , Cd: for all macro-states Ci,Cj ,

max
l1,l2∈Ci

|
∑
d∈Cj

Pl1,d −
∑
d∈Cj

Pl2,d| = E (i, j) ≤ ϵ.

The classic definition of exact lumpability is obtained when ϵ = 0.

Definition 2 If M is a Markov chain, S is the set of states, π is the steady
state and P is the transition matrix. The Markov chain (S, P, π) is lumpable
using a partition L = {C1, C2, . . . , Cm} on S if there exists a Markov chain

Q =
(
L, P̂ , π̂

)
of order m, such that for all i, j ∈ {1, . . . ,m} and for all k ≥ 0

it holds,

P̂ k (i, j) =

∑
i′∈Ci

[π(i′)
∑

j′∈Cj

pk (i′, j′)]

π̂ (i)
, (1)

where π̂ (i) =
∑
i′∈Ci

π(i′).

The purpose of lumpability is to facilitate model reduction. Additionally,
a metric is required to compare two Markov chains with different state spaces:
N for the original Markov chain andM for the reduced Markov chain obtained
after the partitioning process (with dim(M) < dim(N)). This process is based
on a partition function ϕ that relates N to M . In this paper, we choose to use
the KL divergence rate, which only considers chains of the same dimension,
as defined below. We also provide the definition of the partition function.

Deterministic and Heuristic Criteria for Optimized Markov Chain Aggregation 5

Definition 3 For two stationary Markov chains (N, π, P) and (N, π′, P ′) de-
fined in the same state space N , the KL divergence rate R (P ||P ′) is a measure
of the difference between these two Markov chains and is given by the following
formula inspired by [28]:

R (P ||P ′) =
∑
i,j∈N

πiPi,j log

(
Pi,j
P ′
i,j

)
. (2)

Definition 4 Let N = {1, 2, ..., n} and M = {1, 2, . . . ,m} with m ≤ n. A
partition function ϕ : N → M is a surjective function from N onto M . For
k ∈M,ϕ−1(k) denotes the kth group in N .

To compare a Markov chain P (with a state spaceN) and a lumped Markov
chain Q (with a state space M obtained a partition function ϕ), we need to
lift the Markov chain Q to the original state space N . The lifted Markov chain
is denoted Q̂ and is defined as follows.

Definition 5 Let ϕ be the partition function in N ; let M denote the range
of ϕ and Q denote a lumped Markov transition matrix on M obtained from P
defined in N ; let π denote the stationary distribution of P . Then π-lifting of
Q is defined as:

Q̂i,j (ϕ) =
πj∑

k∈ψ(j)
πk
Qϕ(i)ϕ(j), i, j ∈ N (3)

where ψ(j) = ϕ−1 ◦ ϕ(j) denotes the set of states that belong to the same
group as the jth state in N.

We will illustrate the manipulation of Markov chains using a weather fore-
casting example. Figure 1 shows the probabilistic finite-state automata corre-
sponding to a transition matrix with three states: Sunny, Rainy, and Cloudy.
When the weather is Sunny (indicated by rst n in Figure 1), the probability
of having rain on the next day is 0.1, 0.9 for clouds, and 0.0 for remaining
sunny. The same applies to the other two states.

The Markov chain is based on the following transition matrix:

P =

0.0 0.1 0.9
0.5 0.1 0.4
0.5 0.4 0.1

 .
The steady state π can be calculated by solving equation πP = π. We

have [π0, π1, π2] = [0.33330, 0.23070, 0.4359] and the probability that today is
cloudy is 0.4359. To illustrate the lumping process, we choose a partition
L = {{Sunny}{Rainy,Cloudy}} and the corresponding lumped Markov chain

Q =
(
L, P̂ , π̂

)
obtained from Equation 1:

P̂ =

[
0.0 1.0
0.5 0.5

]
and π̂ = [0.3333, 0.6666].

6 Laurent Capocchi, Jean-Fraçois Santucci

Fig. 1: Probabilistic finite state automata of the weather forecasting example
with three states: Sunny, Rainy and Cloudy.

2.2 Mean First Passage Time and Kullback–Leibler

If an ergodic Markov chain P starts in state si, the expected number of steps to
reach state sj for the first time is called the Mean First Passage Time (MFPT)
from si to sj . It is denoted by mij and is calculated by the following equation:

mij = 1 +
∑
k ̸=j

pikmkj , (4)

where pik is an element of the transition matrix associated with the ergodic
Markov chain.

It has been pointed out in [22] that the MFPT has the following property
(P1): If a finite Markov chain with N states is lumpable with respect to a given
partition L = {L (0) , L (1) , ..., L (M)} of N , then its MFPT from i ∈ L (m)
to any state in L (n) is the same for all i ∈ L (m) for 0 ≤ m, n ≤ M , m ̸= n.
These relationships between MFPT and lumpability have guided the definition
of a heuristic criterion to guide the search for the optimal partition.

The problem of aggregating Markov chains can be summarized as follows:
given a stochastic matrix of transition probabilities, the goal is to partition this
matrix and produce a reduced-size matrix with fewer states. There are many
possible aggregated stochastic matrices that can be formed for a given Markov
chain, and the objective is to find a matrix that produces the least difference
for a chosen measure, such as the Kullback-Leibler (KL) divergence. The KL
divergence is widely recognized as a measure of change between Markov chains,
which enables one to identify optimal properties [28]. In mathematical terms,
this can be expressed as follows:

Let (N,P, π) be a given stationary Markov chain. The partition problem is
to find the partition function ϕ : N →M and the optimal aggregated Markov

chain (M,Q,ω) (with dim(M) < dim(N)) such that R(ϕ)
(
P ||Q̂

)
(Equation 2)

with Q̂ (Equation 3) is minimized:

Deterministic and Heuristic Criteria for Optimized Markov Chain Aggregation 7

min
ϕ
R(ϕ)

(
P ||Q̂

)
. (5)

The proposed approach is based on a combination of these two properties
(MFTP and KL) to implement new Markov chain reduction algorithms.

3 Optimal Markov Chain Aggregation

3.1 Problem Statement

Basically, the reduction of the Markov chain can be seen as an optimization
problem that aims to find the best aggregation of an n-dimensional Markov
chain. This involves finding a balance between two conflicting objectives: (i)
computing the smallest possible aggregation reflected in a pure optimization
problem and (ii) determining an aggregation that is as similar as possible to
the original chain in order to preserve its global dynamical properties (i.e.,
searching for lower KL values).

A first classical approach to finding the smallest possible aggregation is us-
ing an exhaustive algorithm to solve equation 5. To accelerate the algorithm,
two types of algorithms can be used: (i) heuristic-based, which guides to an
optimal solution on average, and (ii) deterministic-based, which always leads
to an optimal solution. Both types of algorithms have advantages in terms of
computation time. While deterministic algorithms have improved features such
as CPU time and memory, heuristics may not always result in optimal perfor-
mance. However, optimal heuristics are essential for efficiently performing the
optimal partition generation process and complement deterministic improve-
ments. These algorithms enable finding the optimal reduced Markov chain
with n-1 states when the initial chain had n. However, the main objective is to
find the optimal aggregation of an n-dimensional Markov chain. The proposed
paper presents a new algorithm that loops over each reduced Markov chain
obtained by the exhaustive algorithm, including deterministic and heuristic
improvements, to find the optimal aggregated Markov chain which as similar
as possible to the original chain. This means for this new algorithm that it
seeks the minimum between the quality of the approximation and the number
of aggregates.

The next subsection presents the exhaustive algorithm with deterministic
improvement, and the following subsection describes the chosen heuristic and
the corresponding improvement for generating an optimal aggregated Markov
chain. The third subsection presents the new algorithm, which combines the
previous algorithms to achieve the main objective.

3.2 Exhaustive Algorithm with Deterministic Improvement

The approach consists of solving the equation 5. The implementation is based
on a function FOP (Find-Optimum Partition) given in Algorithm 1. After

8 Laurent Capocchi, Jean-Fraçois Santucci

reading the ergodic Markov chain M = (S, P, π), a preprocessing phase is
performed, which consists of generating the set of all possible partitions of
states associated with M . Let us call LPM the set of all partitions of a given
Markov chain M . FOP (LPM) is a function whose parameter is the list of
partitions that will be considered to find the ”best” partition (not optimal
but ”best” due to the fact that LPM contains all the possible partitions). For
each partition p of LPM (line 2 of Algorithm 1), the following three steps are
executed:

– Them-dimensional Markov chainQ (wherem is the number of macrostates
corresponding to partition p) is computed using the function Lump (line
3 in Algorithm 1). Lump is implemented according to Equation 1.

– The lifted Markov chain Q̂ is obtained (line 4 in Algorithm 1) by performing
the π-lifting ofQ implemented in the function Lifting based on Equation 3.

– The KL value R corresponding to the KL divergence rate between M and
Q̂ is calculated using the function KL based on Equation 2 (line 5 in
Algorithm 1).

– The tuple (R,P, p) is added to the list LPM (line 6 in Algorithm 1), which
will be analyzed by the function argminR to find the optimal partition p′

associated with the optimal KL value R′ and the lump transition matrix
P ′ that are encapsulated in the set (R′, P ′, p′) (line 8 in Algorithm 1).

Algorithm 1 Algorithm for the Find-Optimal-Partition (FOP) function that
returns the optimal partition according to a given list LPM .

Input: LP ,π,S,P
Output: (R′,P ′, p′)
1: FOP (LPM)

Initialization
2: LR ← Null

Loop Process
3: for all p in LPM do
4: Q← Lump (p, π)

5: Q̂← Lifting (Q, p, π, S)

6: R← KL
(
Q̂, π, S, P

)
7: LR← (R,P, p)
8: end for
9: return (R′, P ′, p′)← argminR LR

Then, the best partition p′ (associated with its KL value R and the tran-
sition matrix P ′) is obtained by selecting the corresponding minimum value
of R according to LR (line 8 in Algorithm 1). However, the computation can
only be performed on small state spaces. Indeed, according to Algorithm 1,
which contains a loop (line 2), its time complexity is considered to be O(n3),
where n is the number of partitions (the length of the list LPM) to be parsed.
Obviously, the larger the state space (large Markov chain), the greater the
time complexity (CPU time and memory space). We therefore propose an

Deterministic and Heuristic Criteria for Optimized Markov Chain Aggregation 9

improvement to the exhaustive algorithm based on deterministic criteria. By
running the previous Algorithm 1 on examples with small state spaces, we no-
ticed that the best solutions belonged to partitions with n− 1 elements of the
n-order Markov chain. Given the nature of the lifted matrix Q̂, this leads to a
theorem P (n) mathematically demonstrated in [8]. The Perron-Frobenius [27]
reduction method also uses this theorem.

The use of theorem P (n) allows us to considerably reduce the number
of partitions to be considered by the exhaustive algorithm of the previous
section. Instead of considering all partitions (LPM) associated with an n-
ordered ergodic Markov chain of order n M , using the theorem P (n), we can
just consider a subset of LPM corresponding to partitions that have n − 1
elements (called LPMn− 1). Then, the optimal partition can be obtained by
performing FOP (LPMn− 1).

Even though the number of partitions is drastically reduced when search-
ing for the optimum using the FOP function, the methodology still cannot
find the optimum for large Markov chains in an acceptable CPU time. We
therefore propose a heuristic criterion that can guide the search towards the
most promising partitions.

3.3 Exhaustive Algorithm with Deterministic and Heuristic Improvements

To guide the selection of the set of potential partitions (LPMn−1) in the search
for the optimal solution, the notion of MFTP can be associated with the
concept of lumpability of a Markov chain (as explained in Section 2). This is
a novel idea that has not been explored in previous scientific work related to
determining the best aggregation solution (as discussed in Section 5).

Since there is a strong link (P1 property defined in Section 2) between
lumpability and the MFPT of the Markov chain states, a heuristic criterion
has been defined to propose an ordering between sets of potential partitions.

This heuristic criterion can be used to reduce the list of potential par-
titions before applying Algorithm 1. The reduction is done to avoid trying
all partitions, as some partitions pointed out by the MFPT analysis can be
overlooked.

The heuristic criterion is defined as follows: For each partition p, the algo-
rithm computes the minimum of the differences in MFPT (p). This produces
a list of values that reflects the lumpability of a given partition p. Selecting
the minimum value of the set of MFPT values as the heuristic criterion gives
priority to partitions that have a greater ability to satisfy property P1 (and
reflect the potential lumpability of the initial ergodic Markov chain M with
respect to partition p).

The implementation of the previous heuristic, which allows one to compute
the reduced list of partitions to be considered (called NewLP), is given in
Algorithm 2. The function REDUCED is based on the heuristic criterion
to reduce the number of partitions to be considered as a potential optimal

10 Laurent Capocchi, Jean-Fraçois Santucci

solution. The optimal partition is then obtained by performing
FOP

(
REDUCED

(
LPMn−1

))
.

Algorithm 2 Algorithm of the function REDUCED that uses the MFPT-
based heuristic to reduce a given list of partitions LPM .

Input: LPM

Output: NewLP
1: REDUCED(LPM)

Initialization
2: NewLP ← Null

Loop Process
3: for all p in LPM do
4: Hp ← (p,MFTP (p))
5: end for
6: Mean←MEAN (Hp)
7: for all (p, h) in Hp do
8: if h < Mean then
9: NewLP ← p
10: end if
11: end for
12: return NewLP

In the loop of Algorithm 2 (line 2), p contains m elements corresponding
to the m macro-states. Let us call these elements pi where 1 ≤ i ≤ m. The
functionMFPT computes (line 3) the minimum of the difference between the
MFPT of state pi and each state belonging to pj where i ̸= j. Let us call this
value Hp. Line 5 of Algorithm 2 shows the call to the Mean function, which
computes the mean of the MFPT values. The proposed heuristic is based on
the mean of the MFPT values. The list newLP is obtained by reducing the
list Hp according to the value of Mean (lines 6-10).

The MFPT-based heuristic generally leads to a set of partitions that in-
cludes the optimal one when using the Mean function. However, using this
heuristic has some disadvantages, since an optimal partition cannot always
belong to the final set of proposed partitions.

Despite the minor deficiencies mentioned above, we expect that the in-
troduction of the MFPT heuristic will accelerate the overall optimal search
process and further improve the performance of the exhaustive algorithm, as
pointed out in Section 4.

3.4 New Optimal Aggregation Algorithm

In the two previous subsections, we presented algorithms that allow us to find
the optimal Markov chain reduction to n − 1 states when the initial chain
had n states. However, the main goal is to find the optimal aggregation of an
n-dimensional Markov chain (the original chain) with as few aggregated states
as possible while being as similar as possible to the original chain.

Deterministic and Heuristic Criteria for Optimized Markov Chain Aggregation 11

Fig. 2: Illustration of Algorithm 3 where the aggregation process is executed
from an original n-dimensional Markov chain Mn to the 2-dimensional one
M2. At each step, the Markov chain is reduced by one state and a new KL
divergence (noted R) is generated from the BESTA(M) function. The stop-
ping condition may depend on the value of the ϵ parameter.

An algorithm based on the FOP function presented in Algorithm 1 is pro-
posed in Figure 2. At each step i, the optimal partition algorithm for n− i is
executed to produce the lumped Markov chain Mn−i, and the error limits are
computed using the values Rn−i. A stopping strategy is based on a heuristic
that allows us to determine when the algorithm is complete, resulting in the
Markov chain with the smallest possible aggregated states while still being
similar to the original chain (similarity is measured using the KL values).

Algorithm 3 Algorithm for finding the optimal aggregated transition ma-
trix P ′ for a Markov chain M ′ = (S′, P ′, π′) with respect to the minimum
number of states and the maximum similarity to the initial Markov chain
M = (S, P, π).

Input: M
Output: P ′

1: BESTA(M)
Initialization

2: R,P ′, p′ ← FOP (REDUCED(LPM
n−1))

3: M ′ ← (STATES(P ′), P ′, STEADY (P ′))
4: NewR← 0
5: n← dim(M)

Loop Process
6: while condition do
7: NewR,P ′, p′ ← FOP (REDUCED(LPM′

n−1))
8: M ′ ← (STATES(P ′), P ′, STEADY (P ′))
9: R← NewR
10: n← n− 1
11: end while
12: return P ′

12 Laurent Capocchi, Jean-Fraçois Santucci

The K-L divergence rate acts as a limit to the reduction error of the
model, setting the error bounds. Algorithm 3 works as follows: the functions
STATES(P ′) and STEADY (P ′) (line 2) compute, respectively, the list of
states S and the steady-state value π of a transition matrix P ′, which are
used to define the reduced Markov chain M ′. NewR and n are initialized to
zero and the number of states of the initial Markov chain M (lines 3 and 4),
and are updated during the loop process controlled by a condition statement
in a while loop (line 5). The new KL divergence (NewR), the new transition
matrix P ′, and the best partition p′ are calculated by executing the function
FOP on the result of the REDUCED one (line 6). The current Markov chain
M ′, the KL value R, and the variable n are updated from lines 7-9.

The stopping condition (line 5) can be expressed as the difference between
the current KL divergence (NewR) and the previous one (R), which is com-
pared to a parameter ϵ (NewR−R > 0 and NewR−R > ϵ). In this way, the
stopping condition depends on the deviation of the KL divergences and can
be defined as a percentage. Another way is to define the stopping condition in
relation to the desired size of an aggregated Markov chain with dimensions N ,
by implementing the rule n ≥ N . However, if the stopping condition is never
reached, the algorithm ends with a minimally aggregated two-dimensional
Markov chain P ′. Since the FOP (REDUCED(LPM

′

n−i)) function (with i ∈
[2, dim(M ′)]) gives the best (n-i)-dimensional aggregated Markov chain (i.e.,
with the best KL divergence compared to the previous n-dimensional Markov
chain), the optimal aggregated Markov chain can be obtained when the stop-
ping condition is reached.

In fact, finding the optimal aggregation of an n-dimensional Markov chain,
with the stopping condition based on ϵ, having as small as possible aggregated
states and being as similar as possible to the original chain, consists of finding
the appropriate ϵ, which can be defined as a tracking error that may not
exceed a specific value (expressed as a percentage, for example). When the
stopping condition is specified by a specific number of states (dimension) of
the expected aggregated Markov chain to reach, the control is easier to define.

3.5 Time Computational Complexity Formal Analysis

The algorithm 1 is evidently intractable and not very practical because its time
complexity (both in the worst case and in the average case) is not polynomial,
in general.

According to Equations 1, 3, and 2, the total execution time of algorithm 1
is N ∗ (NNc1 +NNc2 +NNc3), with c1, c2, and c3 being the constant times
corresponding to the execution of the statements called in the Lump, Lifting,
and KL functions. The time complexity is considered to be T (N) = O(N3),
where N is the number of partitions (the length of the list LPM) to be parsed.

The total execution time of algorithm 2 isN∗t+c+N , with t being the time
corresponding to the execution of the function MFPT (line 2) that depends
on the partition p and is equal to t = len(p)c, where c is the constant time

Deterministic and Heuristic Criteria for Optimized Markov Chain Aggregation 13

corresponding to the multiplication operation involved in Equation 4 and p is
the Markov chain of LPM . Now ignoring the lower-order terms, since they are
relatively insignificant for large input Nlen(p), only the highest-order term is
taken (without constant), which is N in this case. The time complexity is con-
sidered to be T (N, len(p)) = O(N), because len(p) is relatively insignificant
compared to N , which is the number of partitions obtained from p. During the
analysis of the algorithm, mostly the worst-case scenario is considered, i.e., for
a large Markov chain.

The time complexity of algorithm 3 is T (N) = O(N3+Z∗N3) = O(N3(1+
Z)), because the function FOP (REDUCED(LPMN−1)) has a time complexity
equal to T (N) = O(N3). The variable Z ∈ [0, dim(M) − 1] is related to the
while condition (called on line 5) and can possibly be neglected in front of N3.
The order of growth is how the execution time depends on the length of the
input. It is evident that the execution time cubically depends on the number of
partitions N , which is lowered by the fact that we choose to apply the BESTA
algorithm on the LPM calculated for the class k = N − 1 at each step of
the while condition driven by the statement cond. The worst-case scenario is
considered when cond is true until reaching the maximum steps of the while
loop (Z = dim(M) − 1), while the best case is considered when cond is false
(Z = 0). In terms of comparison, the computational time complexity of the
Partial Sum and the Gerschgorin functions is O(N2), and the Markov Chain
Indexing method is O(N4).

Regarding the relations between the error bounds encountered and the
computational time complexity, the more you reduce, the longer the computa-
tion time, and the greater the error. That is why the stopping condition allows
us to obtain a result fairly quickly without too much error.

4 Experiments and Results Analysis

Algorithms and test benches, including Markov chains ranging from 3 to 1000
states (randomly generated), have been implemented in the Python language
(v. 3.9.6) and executed on a Windows 10 operating system with an Intel (R)
Xeon (R) (E-2176M CPU @ 2.70GHz, 2712 MHz, 6 cores) processor and 32GB
of RAM. All the code used to obtain the results presented in this paper is
available in [8].

4.1 Validation of Deterministic and Heuristic Based Improvements

To validate the benefits of using deterministic and heuristic improvements, we
propose conducting two types of experiments based on ergodic Markov chains
normalized to a size of n (number of states) and a chosen distribution drift
(uniform, Rayleigh, binomial, Weibull, and beta) [1]. Stochastic matrices will
be generated using random numbers, subject to certain conditions:

– The rows must sum up to 1.

14 Laurent Capocchi, Jean-Fraçois Santucci

– The values on the diagonal should be significantly higher than the other
values.

The first experiment compares the exhaustive algorithm with a determin-
istic improvement based on 11 randomly uniformly distributed Markov chains
from the benchmark. It is not necessary to consider large Markov chains to
validate the deterministic improvement.

On the other hand, validating the heuristic algorithm requires considering
a large Markov chain to demonstrate the benefits of the reduction rate (i.e.,
the number of partitions the heuristic algorithm needs to consider to find the
optimal partition relative to the total number of partitions).

Table 1: The efficiency of both the deterministic and heuristic improvements
was validated on large, normalized, ergodic Markov chains that were uniformly
distributed with high probability, where the parameter high was set to 0.1.

Matrix Nb. of Nb. of Time for Best KL Optimal FOP [s] REDUCED FOP(REDUCED) Reduction Rate
(n x n) partitions partitions k=n-1 [s] partition [s] [s] (compared to k=n-1)

for k=n-1 max length [%]
3x3 5 3 1.091 0.0927 2 1.0987 6.9e−7 0.0028 33.33
4x4 14 5 1.1018 0.1679 3 1.1106 6.9e−7 0.0043 40.00
5x5 49 8 1.0830 0.1403 7 1.0815 8.0e−7 0.0083 12.50
6x6 198 13 1.1003 0.0829 2 1.1545 7.0e−7 0.014 7.69
7x7 869 17 1.0891 0.0732 14 1.465 6.0e−7 0.020 17.64
8x8 4130 24 1.1319 0.0694 18 3.295 8.0e−7 0.046 25.00
9x9 2110 32 1.1628 0.0622 24 14.974 7.0e−7 0.053 25.00

10x10 11600 40 1.2344 0.0524 30 93.988 8.0e−7 0.092 25.00
15x15 1.38e+09 99 1.6420 0.037 68 707.23 8.0e−7 0.390 31.31
20x20 5.17e+13 181 2.9050 0.0279 138 4746.9 8.9e−7 1.485 23.75
30x30 8.47e+23 422 9.9782 0.0148 259 35588 8.0e−7 6.777 38.62
40x40 1.57e+35 762 31.6959 0.0115 496 > 10e3 1.5e−6 19.526 34.90
50x50 1.86e+47 1200 77.3586 0.0077 799 - 8.0e−7 45.942 33.41
60x60 9.77e+59 1740 165.386 0.0046 1192 - 9.0e−7 108.486 31.49
70x70 1.81e+73 2380 312.5046 0.004 1508 - 8.9e−7 220.963 36.63
80x80 9.91e+86 3120 551.0799 0.0036 2049 - 8.9e−7 361.596 34.32
90x90 1.42e+101 3960 883.8726 0.003 2628 - 1.0e−6 558.582 33.63

100x100 4.76e+115 4900 1391 0.004 3214 - 9.9e−7 962.731 34.40
1000x1000 5.56e+401 15760 > 10e8 < 10e−5 6178 - < 10e−8 > 10e3 12.56

The results are summarized in Table 1. They demonstrate the efficiency of
deterministic and heuristic improvements and can be reproduced by executing
the script table1.py, which is available from [8].

Table 1 shows the results for 19 n-ordered Markov chains. Specifically, it
displays the total number of partitions, the number of partitions considered
when computing the optimum one (when k = n−1), the CPU time required to
perform the KL computation and obtain the corresponding optimal partition
when k = n− 1, the obtained value for the best KL, the maximum length for
the reduced partitions set using the heuristic algorithm based on MFPT, the
CPU time to find the best partition from all possible partitions (FOP), the
CPU time to reduce the list of all partitions using the MFPT-based heuristic,
the CPU time required to perform the KL computation and obtain the optimal
partition on the set of reduced partitions using the MFPT-based heuristic, and
the reduction rate.

The reduction rate expresses the interest in heuristic improvement by com-
puting 1 minus the length of the partition set obtained after applying the

Deterministic and Heuristic Criteria for Optimized Markov Chain Aggregation 15

heuristic process on the number of partitions to be considered by the deter-
ministic process (k = n − 1). This reduction rate expresses the impact in
terms of the number of partitions to be considered when computing the best
KL value and the corresponding optimal partition.

Fig. 3: CPU times are required to per-
form the KL computation and obtain
the corresponding optimal partition
when KL is minimum with k=n-1 (la-
beled ”For k=n-1” and corresponding
to the column ”Time for k=n-1” in
Table 1), as well as the CPU times
required to perform the KL compu-
tation and obtain the optimal parti-
tion on the reduced partition set us-
ing MFPT heuristic (labeled ”For op-
timal partition” and corresponding to
the column ”FOP (REDUCED)” in
Table 1).

Fig. 4: The number of partitions to
be considered by the heuristic algo-
rithm to find the optimal partition is
compared for two scenarios: when the
number of partitions is set to k=n-
1, labeled ’Compared to k=n-1’, and
when it is compared to the total num-
ber of partitions, labeled ’Compared
to all partitions’.

From Table 1, it becomes evident that using both the deterministic and
heuristic improvements, the computation of the optimal partition can be per-
formed on large Markov chains. Without these improvements, it is not possible
to compute the search for the optimal partition for large Markov chains, as
highlighted in the 7th column ”FOP (LP)”. Furthermore, the CPU time to
compute the KL metrics and the optimal partition is drastically reduced (see
the fourth and ninth columns) as presented in Figure 3. One can also notice
that these CPU times appear to be small in comparison to the CPU times re-
quired for performing the KL computation and the optimal partition without
the heuristic improvement.

We also point out that the best KL is found for each Markov chain belong-
ing to the set of selected partitions using the heuristic. So, in our benchmark,
the heuristic criterion allows finding the best partition (this may not always
be true). Finally, the last column of Table 1 confirms that the search for the

16 Laurent Capocchi, Jean-Fraçois Santucci

optimal partition algorithm performs much better when using the heuristic
improvement (see ”Compared to k=n-1” in Figure 4).

In addition, it is quite clear that the heuristic benefit is also highlighted
by comparing the three columns that deal with the number of partitions to
be considered in the algorithms. The curve ”Compared to all partitions” in
Figure 4 shows that 100% is reached for large space Markov chains, which
highlights the benefit of the heuristic process.

Fig. 5: The reduction rate compared to k=n-1 can be expressed as a function
of the distribution used to randomly generate the initial Markov chain.

Furthermore, to demonstrate the impact of the heuristic process, we per-
formed an additional experiment using normalized initial ergodic Markov chains
generated using five different distribution drifts. The results of this experiment
are summarized in Figure 5, which shows the reduction rates obtained by com-
paring the number of partitions obtained after the heuristic process with the
number of partitions for k = n− 1.

Figure 5 confirms that the heuristic process results in a significant reduction
in the dimensionality of the number of partitions to be considered. For all
distributions, the reduction rate is between 30 and 40 when the transition
matrices are large, which is a good result.

4.2 Validation of the Optimal Aggregation Algorithm

Two types of experiments are proposed to validate the BESTA algorithm
(Algorithm 3) for optimal aggregation. The first experiment is based on a
16-dimensional Markov chain, which allows us to demonstrate the proposed
aggregation at each step of the algorithm and show how the two conflicting
objectives can be taken into account.

Deterministic and Heuristic Criteria for Optimized Markov Chain Aggregation 17

The second experiment aims to validate that the proposed algorithm results
in an aggregated Markov chain that is still semantically correct. To achieve
this, a well-known case study on weather forecasting has been extended and
used as an example.

4.2.1 Conflicting Objectives Problem Illustrative Example

This subsection aims to validate the use of the BESTA algorithm. Figure 6
illustrates an initial Markov chain involving 16 states and demonstrates the
use of the parameter ϵ to break the loop involved in the BESTA algorithm (line
5 in Algorithm 3) to obtain the optimal aggregated Markov chain when the
standard deviation of the KL divergence should not exceed 50%. As per the
notation introduced in Section 3.4, the stopping condition is |newR−R| < ϵ,
with ϵ = R ∗ 0.5.

Fig. 6: Transition graph of the 16x16 Markov chain involved in the conflicting
objectives problem illustrative example.

Table 2 presents the results obtained, which can be reproduced by execut-
ing the table2.py script available at [8]. The computation of the KL at each step
of the BESTA algorithm is given in the column ”Best KL,” while the difference
between two consecutive KLs is given in the column ”Best KL Difference.” The
last column shows the differences between the initial 16-dimensional Markov
chain and the aggregated one. The results show that the 10x10 transition ma-
trix presents the best compromise between the conflicting objectives described
above, as ϵ becomes smaller than the corresponding KL difference when using
the 10x10 transition matrix (as shown in bold in Table 2).

To validate that the 10x10 matrix obtained with ϵ = 50% is the best
compromise, we propose to calculate the KL differences between the initial

18 Laurent Capocchi, Jean-Fraçois Santucci

Table 2: Validation of the BESTA algorithm applied on the 16-dimensional
Markov chain. The optimal reduced Markov chain is obtained as soon as the
ϵ value is less than the corresponding KL difference.

Matrix Best KL KL Difference ϵ = R ∗ 0.5 KL Difference against Time [s]
(n x n) (e−3) |newR−R| (e−3) (e−3) 16x16 matrix (e−3) (e−3)
16x16 1.2451 1395.2
15x15 2.2361 0.991 0.622 2.8 783.7
14x14 2.3985 0.162 1.118 4.9 340.8
13x13 2.7820 0.383 1.199 7.1 315.1
12x12 2.0978 0.684 1.391 10.0 223.6
11x11 2.9157 0.817 1.0489 11.3 0.1571
10x10 11.5080 8.592 1.457 13.7 102.4
9x9 29.8988 18.390 5.754 67.6 71.3
8x8 21.0032 8.895 14.9494 77.0 48.9
7x7 33.6406 12.637 10.5016 759.7 24.3
6x6 29.6560 3.984 16.8203 790.5 18.0
5x5 263.8485 234.192 14.828 919.5 7.6
4x4 573.4026 309.554 131.92425 1292.5 6.0
3x3 584.1693 1.076 286.7013 1384.6 0.03

16x16 matrix and all reduced matrices (from 15 to 3 states) as presented in
the fifth column of Table 2. The last column indicates the computational time
complexity of the BESTA algorithm. The first value gives the computational
time spent by the first phase of the BESTA algorithm 3 (lines 1-4), which takes
0.6527 s plus the first pass of the while loop (to reduce the 16x16 matrix to the
15x15 matrix). The other values of the last column (from n=15 to 3) give the
computational time spent for the corresponding pass of the while loop only.
For example, for n = 10, the time spent to calculate the reduction of the initial
chain is the sum of all values from line 1 to line 7. Obviously, as explained in
Section 3.5, the time and error bound increase when performing the BESTA
algorithm.

We can observe from the fifth column of Table 2 that the best matrix, in
terms of the number of states and its similarity to the initial matrix (measured
by the KL divergence), is the 10x10 matrix. The KL difference between the
10x10 matrix and the initial matrix is close to that of the 11x11 matrix, and
it is also the last reduced matrix that has the lowest KL difference compared
to the values obtained from the 9x9 matrix to the 3x3 matrix.

The error bound (K-L divergence rate in column 3 of Table 2) is a function
of the number of aggregated states (column 1 of Table 2). The error bound

indicates that R(ϕ)
(
P ||Q̂n

)
(the best KL given in Equation 2) increases slowly

from n=15 to n=10. Due to the ϵ-based stopping condition, the best partition is
obviously the one that corresponds to k=n-1. Of course, we reject this obvious
solution and let the algorithm find the best compromise between reducing the
number of states and losing information.

Deterministic and Heuristic Criteria for Optimized Markov Chain Aggregation 19

4.2.2 Semantic Conservation.

Let’s extend the example of weather forecasting presented at the end of Sec-
tion 2 by adding six new states. The state Sunny is now renamed to Sunny-
with-wind and is associated with two additional states: Sunny-without-wind
and Sunny-heat-wave. Similarly, the state Rainy is renamed to Rainy-with-
hail and is expanded with two new states: Rainy-with-wind and Rainy-with-
thunder. Finally, the original state Cloudy is expressed more specifically using
three states: Cloudy-altostratus, Cloudy-stratus, and Cloudy-cumulus. Fig-
ure 7 shows the transition graph of this new Markov chain, with probabilities
defined to maintain a similar ratio to the original (Figure 1).

Fig. 7: Transition graph of the previous weather forecasting example with 6
new additional states.

The goal is to show how the BESTA algorithm is able to propose the opti-
mal aggregation scheme (L = {{Sunny}{Rainy,Cloudy}}) according to the
extension of the Markov chain of weather forecasts presented in Section 2.
Figure 8 shows the KL values for each step of the execution of the BESTA
algorithm on the 9-dimensional Markov chain of extended weather forecasts.
The KL value increases until the reduced 3-dimensional Markov chain, which
has been chosen as a stopping condition of the BESTA algorithm. Figure 9 con-
firms the effectiveness of the BESTA algorithm. Each state graph is presented
to observe the semantic effect of the proposed reduction process. Figure 9
(f) shows the 3-dimensional Markov chain that predicts weather where states
Cloudy and Rainy are quasi-merged in front of the group of states Sunny.

The lumping quality measure is taken as the error in the steady-state dis-
tribution of the aggregated matrix relative to that of the initial matrix. Indeed,
the last reduced Markov chain is composed of three states: (Sunny-with-heat-

20 Laurent Capocchi, Jean-Fraçois Santucci

wave / Sunny-without-wind / Sunny-with-wind), (Cloudy-altostratus / Rainy-
with-hail / Cloudy-cumulus / Cloudy-stratus), (Rainy-with-thunder / Rainy-
with-wind). The corresponding steady state is π = [0.400, 0.413, 0.186], which
is close to the previous steady state obtained in Section 2 π = [0.3333, 0.6666]
for partition L = {{Sunny}, {Rainy,Cloudy}}. The reduced Markov chain
must preserve the stationary distribution of the original Markov chain. The
reduced model is easier to interpret since it describes the dynamics between un-
derstandable and stable groups of states. The probability that today is cloudy
or rainy is 0.666 in the initial weather forecast example (not extended), com-
pared to 0.413 + 0.186 = 0.599 with the reduced extended version presented
in this section. Similarly, the probability that today is sunny is 0.333 in the
not-extended version, compared to 0.400 in the extended one.

Fig. 8: KL values during the BESTA algorithm execution on the 9-dimensional
extended weather forecasting Markov chain.

4.3 Discussion and Comparison

We specifically study the case of a continuous-time M/M/1 queue [6] for dis-
cussion and comparison. The term M/M/1 comes from Kendall’s notation:
the two M’s specify the probabilistic law governing arrivals and services (in
this case, a Markovian process), and the 1 specifies that only one server pro-
cesses the queue. The process described above is represented by the following
stochastic matrix P (ergodic):

Deterministic and Heuristic Criteria for Optimized Markov Chain Aggregation 21

(a) (b)

(c) (d)

(e) (f)

Fig. 9: State Graphs of Markov chains resulting of the BESTA function execu-
tion from the weather forecasting 9-dimensional Markov chain for the first step
(a) to the last one (f). At each step, the aggregation of two states gives the op-
timal reduced Markov chain. For example, the states Sunny with heat wave
and Sunny without wind are aggregated at the end of the 1st step (a). The
solid line between the states Cloudy cumulus and Cloudy stratus denotes a
probability value greater than 50%.

22 Laurent Capocchi, Jean-Fraçois Santucci

P =


0 1 0 0 · · ·
λ −(λ+ µ) µ 0 · · ·
0 λ −(λ+ µ) µ · · ·
...

...
...

...
. . .

 ,
where the symbols λ and µ are used to represent the arrival and service

rates, respectively, in an M/M/1 queue. The service rate, is the rate at which
customers are served by the server and it determines the speed at which cus-
tomers are processed and the overall performance of the system. However, the
other metrics also play important roles in understanding the behavior of the
M/M/1 system. The waiting time is the time a customer spends waiting in
the queue before being served, and is affected by both the arrival rate and the
service rate. The service time is the time required to serve a customer and
is determined by the service rate. It is through the respect of the previous
parameters that we will address the issue of defining the stopping condition
of the BESTA algorithm. We will also rely on these parameters to validate
our approach against three traditional methods for reducing P : Partial Sum,
Gerschgorin, and Markov Chain Indexing methods that are mentioned in the
Section 5.

4.3.1 Benchmark with Common Methods

To show why the lumping algorithm may be more effective than other reduc-
tion algorithms for Markov chains, we compare the BESTA algorithm with
the following alternative reduction methods: (i) Partial Sum with 1e−5 for
the tolerance for convergence as usually defined (ii) Markov Chain Indexing
Method and (iii) Gerschgorin.

We generated a 20-dimensional M/M/1 Markov matrix with service rate
of 40 and arrival rate of 20. It is not necessary to generate a larger matrix,
as we do not aim to demonstrate the ability of our approach to reduce this
matrix. This has already been proven before. We applied the four aforemen-
tioned matrix reduction algorithms, including BESTA, to this matrix without
any stopping condition until we obtained the smallest possible matrix of di-
mensions 3x3. At each reduction step, the matrix is reduced by one state and
the parameters of the reduced matrix queue are displayed.

Figure 10 shows the normalized evaluation of the four metrics for each re-
duction step using the four reduction algorithms. We can quickly see that the
BESTA algorithm intersects give the best results quite for all reduction steps
(stars corresponding to the BESTA algorithm are near to the solid line that
corresponds to the original value of the metrics). Therefore, we can conclude
that if the stopping condition is based on a combination of the metrics (Av-
erage Service Time, Service Rate, and Average Waiting Time), we can assert
that the BESTA algorithm may stop between the 7th and the 10th step to give
the an optimal matrix (which is capable of representing the M/M/1 Markov
chain in terms of the four metrics) between 13x13 and 10x10. In fact, for these

Deterministic and Heuristic Criteria for Optimized Markov Chain Aggregation 23

Fig. 10: Comparison of the BESTA algorithm against the three following
popular Markov chain reduction algorithms: Gerschgorin, Chain Indexing and
partial Sum algorithms. The curve have been normalized and the Original ones
allows to display the metrics (Average Waiting Time, Average Service Time
and Service Rate) of the original 20x20 M/M/1 chain (without reduction).

dimensions, the metrics are closest to the original ones if the BESTA method
is chosen. We can notice out that in the of the service rate, the BESTA and
the partial sum give the same values.

4.3.2 The Stopping Condition Issue

The stopping condition ϵ plays an important role in balancing the trade-off
and must keep track of the process between different iterations in order to
be able to plan the end of iterations when the difference between the current
computed KL and the previous one is large enough to decide to stop the loop.

24 Laurent Capocchi, Jean-Fraçois Santucci

We introduce this stopping condition, which consists in finding the appropriate
ϵ which can be defined as a tracking error that may not exceed a specific value
(expressed as a percentage, for example). This stopping condition allows the
algorithm progress to be assessed in a relative fashion by comparing the result
of different iterations. Typically, the stopping condition is invoked at the end
of an iteration of the algorithm. At this point, it will be decided whether to
continue the execution of the algorithm or abort it. In addition to detecting
situations where algorithms should be stopped, stopping criteria should be
lightweight in terms of computational complexity. The simplest approach to
stopping is to calculate how well the state of the current algorithm satisfies a
given quality threshold. Local criteria use information that is not present in
the context of the iteration but only in the context of this local criterion. In our
case, the stopping condition, which is based on ϵ is expressed by the difference
between the current KL and the previous one. Empirically, we have defined
that to obtain the optimal aggregated Markov chain, the previous deviation
of the KL should not exceed 50%.

5 Related Work

There are several effective algorithms to reduce a Markov chain, including
the following non-exhaustive list: (i) The GTH reduction algorithm [42]: This
algorithm uses the power-balancing method to reduce a Markov chain by elim-
inating transient states (ii) The PageRank reduction algorithm [38]: This al-
gorithm uses a version of the famous Google algorithm to reduce a Markov
chain using the notion of visit probability to eliminate transient states (iii) The
Gerschgorin reduction algorithm [24]: This algorithm uses the Gerschgorin the-
orem to reduce a Markov chain by identifying strongly connected states and
combining them into a single state (iv) The lumping reduction algorithm [39]:
This algorithm uses a state grouping method to reduce a Markov chain by
combining similar states into a single state (v) The Kronecker reduction al-
gorithm [26]: This algorithm uses the Kronecker decomposition to reduce a
Markov chain by identifying recurrent sub-chains and grouping them into a
single state (vi) The QBD reduction algorithm [17]: This algorithm uses the
quasi-banded diagonal block method to reduce a Markov chain to a quasi-
diagonal form that can be more easily solved (vii) The Partial Sum (used
in [5]) that involves summing a finite number of terms of a power series to ob-
tain an approximation of the reduced transition probability matrix. and (viii)
Markov Chain Indexing Method [23] that groups together states that have
similar properties or behavior. Whereas the mentioned algorithms operate by
either eliminating transient states, identifying strongly connected states, or
grouping similar states based on various criteria, the proposed approach in
this paper uses a KL-based reduction prioritizes preserving the probabilistic
structure of the Markov chain by minimizing the information loss between the
original and reduced representations. This approach ensures that the reduced

Deterministic and Heuristic Criteria for Optimized Markov Chain Aggregation 25

Markov matrix maintains fidelity to the original while achieving dimensionality
reduction.

As mentioned in the Introduction section, the lumpability process can be
based on the KL divergence metric (or an equivalent metric) as can be found
in [19,13,18,12,15,11,36,37,31,30,29]. We may highlight that the last three ar-
ticles [31,30,29] mainly address the aggregation of Markov chains that appear
in Markov decision process-based reinforcement learning as in [20]. In [12], due
to the large number of partition functions, the partition problem is addressed
by combining a parameterization of the randomized partition policy and a
simulation-based gradient descent algorithm instead of using Rank and Selec-
tion (R&S) or other classic optimization approaches [34]. In the parameteriza-
tion approach, a vector θ = [θ1, θ2, . . . , θi, . . . , θN] ∈ ℜN is introduced [25] and
associated with a randomized partition policy νϕ (i, θ) where

∑
ϕ νϕ (i, θ) = 1.

Recent advancements in dimensionality reduction techniques for both con-
tinuous and discrete-time Markov chains have introduced the utilization of
the graph transformation algorithm for computing the matrix of microstate
First Transition Probabilities (MFTPs) within the original Markov chain [21].
The authors illustrate that the graph transformation, typically applied in
continuous-time Markov chains, can be extended to discrete-time counter-
parts, facilitating model representation and numerical analysis. Despite the
demonstration of this approach’s viability on a 32-dimensional matrix, the
findings exhibit a noteworthy degree of resilience. The proposed study shares
similarities with this research; however, it aims to validate its methodology on
larger matrices.

The paper aims to approximate the original Markov process, retaining its
key characteristics while simplifying its complexity. Through a user-centric
heuristic, it proposes state aggregation to decrease dimensionality while pre-
serving the essence of the original chain. Utilizing total variation metrics, the
approach seeks to derive a lower-dimensional process that closely mimics the
behavior of the original Markov process, thereby reducing computational com-
plexity.

6 Conclusion

The contribution of this paper is to provide a method for reducing Markov
chains based on a reduction criterion that can be either the desired final size
of the chain or a percentage of similarity. We present a concrete example to
demonstrate that this new method allows for reducing a Markov chain while
preserving the semantics of the system modeled by the chain. This paper pro-
poses a novel approach to speeding up the process of reducing large ergodic
Markov chains by combining deterministic and heuristic algorithms. The ap-
proach involves balancing two conflicting objectives: (i) minimizing the size of
the computed aggregation, and (ii) ensuring that the aggregation is as similar
as possible to the original chain to preserve its global dynamical properties.
The paper utilizes several conceptual characteristics, including (i) the KL met-

26 Laurent Capocchi, Jean-Fraçois Santucci

ric and the lumpability concept for comparing Markov chains, (ii) the notion
of mean first passage time associated with ergodic Markov chains, and (iii) a
property introduced in [22] that links the lumpability concept with the mean
first passage time notion. The proposed algorithms have been implemented in
Python and compared using a benchmark consisting of a set of large Markov
chains, which are available in the accompanying Git repository [8].

The comparison was performed through a set of experiments that con-
firmed the following: (i) the benefits of deterministic improvement, as the best
partitioning was obtained when the class number was equal to k = n − 1,
where n is the number of states in the Markov chain; (ii) the efficiency of a
heuristic criterion and the cost-effective applicability of the reduction Markov
chain algorithm, even on large chains; and (iii) the originality of the solution
for resolving the conflicting problem, achieved by controlling the aggregation
algorithm using a threshold (ϵ) or a target number of aggregated states.

Future work will concentrate on several investigations, briefly described as
follows: (i) We will seek to compare the proposed approach to reduce a given
Markov chain by attempting to guide a simulation-based method towards rel-
evant areas of the state space when searching for the optimal partition (com-
plemented by an approach based on Neural Nets or Support Vector Machines
to minimize the risk of not exploring relevant parts of the state space); (ii) We
plan to consider semi-Markov models [2], whose behavior depends on the time
value (the probability of a state change depends on the amount of time that
has elapsed since entry into the current state) since the DEVS [40] formalism’s
properties fit very well with the resolution of temporal Markov problems [9],
and (iii) We envision using metaheuristic-based chaotic structures [16]. Chaos
theory is a novel approach that has been used in various applications, such
as multi-criteria optimization problems [35]. Although the method has some
limitations and there are cases where it is unsuccessful, several analytical and
experimental results obtained by us classify this new method as a potentially
useful tool in applications.

Conflict of Interest

The authors declare that they have no conflict of interest.

Data Availability Statement

The data used to support the findings of this study are available at https:

//github.com/capocchi/MarkovLumping.

References

1. Understanding and Choosing the Right Probability Distributions, pp. 899–917. John
Wiley & Sons, Ltd (2012). DOI https://doi.org/10.1002/9781119197096.app03

https://github.com/capocchi/MarkovLumping
https://github.com/capocchi/MarkovLumping

Deterministic and Heuristic Criteria for Optimized Markov Chain Aggregation 27

2. Akimenko, T.A., Larkin, E.V.: The method of successive simplifications of the semi-
markov process. In: 2019 8th Mediterranean Conference on Embedded Computing
(MECO), pp. 1–5 (2019). DOI 10.1109/MECO.2019.8760165

3. Amjad, R.A., Blöchl, C., Geiger, B.C.: A generalized framework for kullback–leibler
markov aggregation. IEEE Transactions on Automatic Control 65(7), 3068–3075 (2020).
DOI 10.1109/TAC.2019.2945891

4. Aoki, M.: Some approximation methods for estimation and control of large scale systems.
IEEE Transactions on Automatic Control 23(2), 173–182 (1978). DOI 10.1109/TAC.
1978.1101705

5. Barsotti, F., De Castro, Y., Espinasse, T., Rochet, P.: Estimating the transition matrix
of a markov chain observed at random times. Statistics & Probability Letters 94, 98–105
(2014). DOI https://doi.org/10.1016/j.spl.2014.07.009

6. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applications.
Wiley-Interscience, USA (1998)

7. Buchholz, P.: Exact and ordinary lumpability in finite markov chains. Journal of Applied
Probability 31(1), 59–75 (1994)

8. Capocchi, L.: Git repo to reproduce results. https://github.com/capocchi/

MarkovLumping. Online; accessed september 18 2021

9. Cardelli, L., Grosu, R., Larsen, K.G., Tribastone, M., Tschaikowski, M., Vandin, A.: Al-
gorithmic minimization of uncertain continuous-time markov chains. IEEE Transactions
on Automatic Control 68(11), 6557–6572 (2023). DOI 10.1109/TAC.2023.3244093

10. Cho, G., Meyer, C.: Markov chain sensitivity measured by mean first passage times. Lin-
ear Algebra and its Applications 316(1-3), 21–28 (2000). DOI 10.1016/S0024-3795(99)
00263-3. URL http://meyer.math.ncsu.edu/Meyer/PS_Files/SensitivityByMFP.pdf

11. Deng, K., Huang, D.: Model reduction of markov chains via low-rank approximation.
In: 2012 American Control Conference, pp. 2651–2656 (2012). DOI 10.1109/ACC.2012.
6314781

12. Deng, K., Mehta, P.G., Meyn, S.P.: A simulation-based method for aggregating markov
chains. In: Proc. of the 48th IEEE Conference on Decision and Control, combined withe
the 28th Chinese Control Conference, December 16-18, Shanghai, China, pp. 4710–4716.
IEEE (2009). DOI 10.1109/CDC.2009.5400533

13. Deng, K., Mehta, P.G., Meyn, S.P.: Optimal kullback leibler aggregation via spectral
theory of markov chains. IEEE Transactions on Automatic Control 56(12), 2793–2808
(2011). DOI 10.1109/TAC.2011.2141350

14. Deng, K., Mehta, P.G., Meyn, S.P., Vidyasagar, M.: A recursive learning algorithm
for model reduction of hidden markov models. In: 2011 50th IEEE Conference on
Decision and Control and European Control Conference, pp. 4674–4679 (2011). DOI
10.1109/CDC.2011.6160826

15. Deng, K., Sun, Y., Mehta, P.G., Meyn, S.P.: An information-theoretic framework to
aggregate a markov chain. In: American Control Conference, St. Louis, Missouri, USA,
June 10-12, pp. 731–736. IEEE (2009). DOI 10.1109/ACC.2009.5160607

16. Dhawale, D., Kamboj, V., Anand, P.: An effective solution to numerical and multi-
disciplinary design optimization problems using chaotic slime mold algorithm. Engi-
neering with Computers pp. 1–39 (2021). DOI 10.1007/s00366-021-01409-4

17. Ellaia, R., Imine, A., Sorel, Y.: An efficient quasi-birth-and-death reduction algorithm
for markovian models. Performance Evaluation 153, 102199 (2021). DOI 10.1016/j.
peva.2021.102199

18. Geiger, B.C., Petrov, T., Kubin, G., Koeppl, H.: Optimal kullback-leibler aggregation
via information bottleneck. IEEE Transactions on Automatic Control 60(4), 1010–1022
(2015). DOI 10.1109/TAC.2014.2364971

19. Geiger, B.C., Wu, Y.: Higher-order kullback-leibler aggregation of markov chains. In:
SCC 2017; 11th International ITG Conference on Systems, Communications and Cod-
ing, pp. 1–6 (2017)

20. Jia, Q.: On state aggregation to approximate complex value functions in large-scale
markov decision processes. IEEE Transactions on Automatic Control 56(2), 333–344
(2011). DOI 10.1109/TAC.2010.2052697

https://github.com/capocchi/MarkovLumping
https://github.com/capocchi/MarkovLumping
http://meyer.math.ncsu.edu/Meyer/PS_Files/SensitivityByMFP.pdf

28 Laurent Capocchi, Jean-Fraçois Santucci

21. Kannan, D., Sharpe, D.J., Swinburne, T.D., Wales, D.J.: Optimal dimensionality re-
duction of markov chains using graph transformation. The Journal of Chemical Physics
153(24), 244108 (2020). DOI 10.1063/5.0025174

22. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer (1976)
23. Kumar, K.N., Reddy, K.K.: Markovian semantic indexing:application to online image

retrieval system (2014)
24. Mall, R., Mehrkanoon, S., Suykens, J.A.: Identifying intervals for hierarchical clustering

using the gershgorin circle theorem. Pattern Recognition Letters 55, 1–7 (2015). DOI
https://doi.org/10.1016/j.patrec.2014.12.007

25. Marbach, P., Tsitsiklis, J.N.: Simulation-based optimization of markov reward processes.
In: Proc. of the 37th IEEE Conference on Decision and Control, vol. 3, pp. 2698–2703
vol.3 (1998). DOI 10.1109/CDC.1998.757861

26. Meyer, C.D., Balaji, S.: Efficient computation of stationary probabilities for very large
markov chains. SIAM Journal on Scientific Computing 42(1), B107–B132 (2020). DOI
10.1137/19M1282698

27. Pillai, S., Suel, T., Cha, S.: The perron-frobenius theorem: some of its applications. IEEE
Signal Processing Magazine 22(2), 62–75 (2005). DOI 10.1109/MSP.2005.1406483

28. Rached, Z., Alajaji, F., Campbell, L.L.: The kullback-leibler divergence rate between
markov sources. IEEE Transactions on Information Theory 50(5), 917–921 (2004).
DOI 10.1109/TIT.2004.826687

29. Sledge, I., Pŕıncipe, J.: Reduction of markov chains using a value-of-information-based
approach. Entropy 21(4), 349 (2019). DOI 10.3390/e21040349

30. Sledge, I.J., Emigh, M.S., Pŕıncipe, J.C.: Guided policy exploration for markov decision
processes using an uncertainty-based value-of-information criterion. IEEE Transactions
on Neural Networks and Learning Systems 29(6), 2080–2098 (2018). DOI 10.1109/
TNNLS.2018.2812709

31. Sledge, I.J., Pŕıncipe, J.C.: Analysis of agent expertise in ms. pac-man using value-
of-information-based policies. IEEE Transactions on Games 11(2), 142–158 (2019).
DOI 10.1109/TG.2018.2808201

32. Sledge, I.J., Pŕıncipe, J.C.: Reduction of markov chains using a value-of-information-
based approach. Entropy 21(4) (2019). DOI 10.3390/e21040349

33. Sumita, U., Rieders, M.: First passage times and lumpability of semi-markov processes.
Journal of Applied Probability 25, 675–687 (1988). DOI 10.1017/S0021900200041462

34. Swisher, J., Hyden, P., Jacobson, S., Schruben, L.: A survey of simulation optimization
techniques and procedures. In: Proc. of the Simulation Conference, Winter, vol. 1, pp.
119 –128 vol.1 (2000)

35. Tang, R., Fong, S., Dey, N.: Metaheuristics and Chaos Theory (2018). DOI 10.5772/
intechopen.72103

36. Vidyasagar, M.: Reduced-order modeling of markov and hidden markov processes via
aggregation. In: 49th IEEE Conference on Decision and Control, pp. 1810–1815 (2010).
DOI 10.1109/CDC.2010.5717206

37. Vidyasagar, M.: A metric between probability distributions on finite sets of different
cardinalities and applications to order reduction. IEEE Transactions on Automatic
Control 57(10), 2464–2477 (2012). DOI 10.1109/TAC.2012.2188423

38. Wu, C., Cai, Y., Zhang, H.: Efficient markov chain reduction using the pagerank algo-
rithm. Journal of Computational Science 26, 86–93 (2018). DOI 10.1016/j.jocs.2018.
09.009

39. Yin, J., Chow, S.N., Petzold, L.R.: Lumping analysis in the dimensionality reduction
of markov state models. Multiscale Modeling & Simulation 16(1), 392–417 (2018).
DOI 10.1137/17M1135069

40. Zeigler, B., Muzy, A., Kofman, E.: Theory of Modeling and Simulation. 3rd Edition.
Academic Press, Inc., Orlando, FL, USA (2018)

41. Zhang, A., Wang, M.: Spectral state compression of markov processes. IEEE Transac-
tions on Information Theory 66(5), 3202–3231 (2020). DOI 10.1109/TIT.2019.2956737

42. Zhao, Y.Q.: Gth algorithm, censored markov chains, and rg-factorization (2021)

	Introduction
	Background
	Optimal Markov Chain Aggregation
	Experiments and Results Analysis
	Related Work
	Conclusion

