
HAL Id: hal-04839966
https://hal.science/hal-04839966v1

Submitted on 16 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Framework for Executing Long Simulation Jobs
Cheaply in the Cloud

Alan Nunes, Daniel Sodré, Cristina Boeres, José Viterbo, Lúcia Drummond,
Vinod Rebello, Luan Teylo, Felipe Portella, Paulo Estrela, Renzo Malini

To cite this version:
Alan Nunes, Daniel Sodré, Cristina Boeres, José Viterbo, Lúcia Drummond, et al.. A Framework
for Executing Long Simulation Jobs Cheaply in the Cloud. 2024 IEEE International Conference on
Cloud Engineering (IC2E), Sep 2024, Paphos, Cyprus. pp.233-244, �10.1109/IC2E61754.2024.00033�.
�hal-04839966�

https://hal.science/hal-04839966v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Framework for Executing Long Simulation Jobs
Cheaply in the Cloud

Alan L. Nunes, Daniel B. Sodré, Cristina Boeres, José Viterbo, Lúcia M. A. Drummond, and Vinod E. F. Rebello
Instituto de Computação, Universidade Federal Fluminense, Niterói, RJ - Brazil.

E-mail: {alan lira, danielbougleux}@id.uff.br, {boeres, viterbo, lucia, vinod}@ic.uff.br
Luan Teylo

Inria Centre at the University of Bordeaux, Bordeaux - France.
E-mail: luan.teylo@inria.fr

Felipe A. Portella, Paulo J. B. Estrela, and Renzo Q. Malini
Petróleo Brasileiro S.A. (Petrobras), Rio de Janeiro, RJ - Brazil.
E-mail: {felipeportella, paulo.estrela, renzo}@petrobras.com.br

Abstract—This paper presents the framework SIM@CLOUD
that optimizes cost-related resource allocation decisions for simu-
lation jobs in cloud environments. SIM@CLOUD offers compre-
hensive management of simulations throughout their execution
life-cycle in the cloud, including the selection of Virtual Machine
(VM) types across different regions and markets. By leveraging
Spot VMs and application checkpointing, the framework trans-
parently reduces the monetary costs associated with the execution
without client intervention. Historical data analysis enables the
prediction of simulation execution times, which is refined further
by a dynamic predictor for adaptive VM selection. SIM@CLOUD
is being deployed in an industrial setting and employs a cache-
based storage solution to improve access latency to in-house data
by VMs located in geographically distinct regions. An evaluation
carried out on AWS EC2, using real oil reservoir simulations,
demonstrates the effectiveness of the framework.

Index Terms—Cloud computing, Spot instances, High per-
formance computing, Scientific simulations, Resource and cost
management.

I. INTRODUCTION

Current simulation tools require substantial amounts of
computing power to handle the massive amounts of data
and calculations required to analyze complex phenomena
accurately and quickly [1]. Simulations are widely employed
in various fields, such as science, engineering, finance, and
healthcare, to perform predictions and optimize the respective
scenarios in ways that would otherwise be challenging, costly,
or impossible to achieve through alternative methods [2] [3].

With the ever-growing size and complexity of simulation
models and unpredictable computational demands, on-premise
infrastructures may occasionally fail to meet the necessary
processing needs [4]. Setting up new infrastructures for large
projects is seldom straightforward, as it can be costly and
may result in investments being tied up in local computing
resources that remain idle once the project is completed. In
contrast, cloud platforms offer almost limitless computing
resources and storage space that average users can rent as
necessary without the need for ownership and constant mainte-
nance of the equipment [5]. By leveraging resources provided
by cloud service providers, researchers and engineers can

potentially run complex simulations with enhanced efficiency,
cost-effectiveness, and less effort.

The myriad of computing options on offer from cloud
providers makes choosing the resources necessary to incur the
lowest cost a daunting task for users, especially given how the
relative cost of each cloud service or VM type can significantly
impact the decision [6] [7]. To keep cloud expenditure in
check, especially for heavy cloud users, organizations must
look closely at the different pricing options offered by cloud
providers like On-Demand, Spot, Reserved Instances, and
Saving Plans. Each option has advantages and considerations,
and choosing the right one depends on the organization’s
specific needs and budget [8] [9].

In this context, this paper presents SIM@CLOUD, a frame-
work whose goals are: to make wise resource allocation
decisions that may be too complex for users or impractical for
the resource provider to determine; to reduce monetary costs,
and; to manage the overall performance of simulation jobs
effectively in the cloud. SIM@CLOUD is designed to manage
the entire life cycle of simulations running in the cloud, includ-
ing being responsible for selecting the most appropriate VM
type across different cloud regions and markets (On-Demand
and Spot). This is achieved transparently without the need
for any intervention from the client. To make this possible,
the framework can request that the running simulation record
one or more checkpoints. These checkpoints can be used to
migrate the simulation to an alternate VM instance either out
of necessity (when the current Spot is about to be revoked) or
when it would be financially beneficial, for example, when
a spot instance type becomes available, or its price falls
sufficiently.

SIM@CLOUD also uses historical data from previous job
executions to identify and analyze execution patterns and
trends in resource usage. As a result, resource demands under
different conditions can be understood better in order to predict
simulation execution times. However, due to the computational
nature of the simulation jobs themselves and the fact that ap-
plications are subject to interference when using shared cloud

resources, the execution time of even the same simulation
may vary, possibly quite significantly. Therefore, a dynamic
predictor is also employed to constantly monitor the progress
and estimate the remaining execution time of the simulation.
While the motivation for these predictions is to facilitate the
identification of the most apt instance, its location, and in
which market, this is not their primary purpose. The principal
reasons why this information is necessary are the following:
HPC jobs are typically submitted to job schedulers that apply
priorities to jobs or allocate them to specific job queues
depending on their estimated execution times, while future
work aims to investigate the correlation between the likelihood
of a Spot instance being revoked, the relationship between its
price and the price of the equivalent On-Demand instance, and
the (remaining) execution time of the simulation.

As a case study to evaluate the effectiveness of the proposed
framework, we consider realistic oil reservoir simulations in
an production environment. Production oil reservoir simulation
studies involve three essential elements: (1) defining a reser-
voir exploitation strategy consisting of the number, positions,
and types of wells, injection flows, etc., (2) matching historical
performance to calibrate the flow model, including parameters
such as porosity and permeability, and (3) making predictions
about future production rates (oil, gas, and water flows), pres-
sure and saturation inside the reservoir, the composition of the
fluids produced, etc. These studies allow engineers to evaluate
different exploitation strategies using only a small fraction of
the cost required to implement them in the real world [10].
SIM@CLOUD was evaluated on resources available in AWS
EC2 using commercial reservoir simulation software with a
semi-synthetic reservoir simulation model, known as Pre-salt
100, as the workload. This model represents the complex
pre-salt reservoirs off the Brazilian coast, currently being
explored by Petrobras, a globally recognized energy company
and multi-million dollar public cloud user. Two versions are
considered: a 20-year simulation (called SHORT-PRE-SALT)
and a full 50-year simulation (called PRE-SALT).

The rest of this paper is organized as follows: Section II
summarizes some of the existing work on moving simulations
to the cloud. Section III introduces SIM@CLOUD, with its
main components being detailed in Sections IV to VI. An eval-
uation of running reservoir simulation experiments on AWS
using SIM@CLOUD under different scenarios is presented
in Section VII, highlighting the benefits of the framework in
terms of monetary costs. Finally, we close with a discussion
in Section VIII and final remarks in Section IX.

II. RELATED WORK

Cloud platforms have become increasingly popular for
scientific simulations due to advancements in specialized in-
frastructure and services tailored for scientific computing [11].
Eldred, Good, and Adams [12] presented a case study where
a 3D Geocellular modeling simulation was moved from an
on-premise cluster to a public cloud. This study aimed to
understand the challenges and practicalities of transitioning

simulations to the cloud and evaluating changes in applica-
tion provisioning models. Temelkovski, Kiss, and Terstyan-
szky [13] explored extending domain-specific desktop appli-
cations for scientific simulations onto diverse cloud platforms.
They utilized distributed heterogeneous clouds for molecular
docking experiments, extending a specific tool to leverage
various cloud computing resources through the CloudBroker
Platform. Their experiments showcased the capability to ex-
ecute simulations across different clouds and harness the on-
demand scalability offered by cloud computing. Subsequently,
Kiss [14] introduced the CloudSME Simulation Platform,
aiming to streamline the development and execution of large-
scale industrial and scientific simulations across heterogeneous
cloud environments, ensuring the scalability and elasticity
demanded by such applications.

Reservoir simulation is crucial in the Oil & Gas industry
for decision-making, enhancing drilling efficiency, and reduc-
ing ecological impacts. Eldred et al. [10] introduced High-
Performance Cloud Computing (HPCC) for efficient reser-
voir simulations, utilizing AWS and Eclipse software. Their
framework included a cost model based on HPC resource
use, showcasing benefits like flexibility, accessibility, and
cost savings. Noor et al. [15] explored the transition from
traditional to cloud-based reservoir simulation, emphasizing
benefits like process simplification and reduced hardware costs
with Software-as-a-Service. Their approach integrates cloud-
based simulation services with containerization, Kubernetes
optimization, and data analysis tools for efficient uncertainty
analysis and history matching. Flister and Hopstaken [16]
investigated reservoir simulations in a public cloud, focus-
ing on Azure’s HPC setup. They employed CycleCloud to
automate HPC cluster deployment, dynamically adjusting re-
sources based on workload demands. This approach optimized
resource usage for running simulations using tNavigator and
Eclipse reservoir simulators. They implemented job queues
based on VM types to differentiate between memory and CPU
power but did not incorporate spot instances or automated
submission to job queues.

Portella and Souza [17] offered an overview of reservoir
engineering and its simulation applications, focusing on a
project involving Petrobras. They described moving a por-
tion of the daily reservoir simulation demand to third-party
cloud providers, addressing challenges like Network Attached
Storage (NAS) synchronization and balancing between on-
premises and cloud provisioning. Computer Modelling Group
Ltd. (CMGL) offers CMG Cloud [18], a solution tailored for
reservoir simulations in cloud environments. CMG Cloud aims
to alleviate resource and budget constraints while ensuring
productivity. However, it focuses primarily on providing a
user-friendly interface for data submission, job monitoring,
and result retrieval. Notably, it lacks features to optimize costs
and does not consider the performance and pricing variability
of different VM instances, including Spot and On-Demand,
across multiple regions.

Our research aims to leverage Spot VMs effectively in an
attempt to minimize the monetary cost of an application’s

execution. These VMs offer computing resources at a notably
lower cost than their On-Demand counterparts but can be
terminated by the cloud provider at any moment. Portella
et al. [19] introduced the MScheduler framework to reduce
the costs of running long reservoir simulations on Spot VMs
while ensuring job completion in the event of Spot revocation.
However, that work does not consider the impact of data
transfer times, given that running reservoir simulation models
in the cloud often involves the use of significant amounts of
in-house data.

In this paper, we have incorporated the data transfer
time into the instance selection process in order to harness
multiple geographical regions. In addition, we advanced the
SIM@CLOUD framework in three key aspects. First, we have
employed a machine learning model to predict job execution
times, enhancing cost optimization — a novel approach not
previously utilized in cloud reservoir simulations. Second,
we developed a tool to estimate the remaining run time of
a simulation job, which helps in selecting an appropriate
instance type when the simulation needs to be reallocated.
Finally, when making its selection, SIM@CLOUD considers
the performance of the simulation on each available instance
type, and the instance’s current price.

III. SIM@CLOUD ARCHITECTURE

SIM@CLOUD is a framework designed to manage the
life cycle of simulations running in the cloud. As shown in
Figure 1, the framework is comprised of two main compo-
nents: the LAUNCHER and the EXECUTION MANAGER, both
home to distinct modules responsible for specific management
procedures during a simulation’s execution. To illustrate the
behavior of the framework, Figure 1 presents a step-by-step
example of operation.

First, a client submits their simulation request to the cluster
job scheduler, in this case, SLURM, setting execution-related
parameters such as the number of cores necessary to run the
simulation, the batch file, and the directory (work dir) where
the output files should be written. With these parameters,
SLURM starts the LAUNCHER on the head node, which
invokes the ML-PREDICTOR (Section V), a machine learning
component that estimates the execution time of the simulation.
The LAUNCHER then invokes the INSTANCE-SELECTOR mod-
ule (Section IV), which uses this estimated time along with
other application and environment characteristics (e.g., the
overhead to perform checkpoints) to decide the VM instance
type, the AWS region, and market where the simulation job
should be executed. With this decision, the simulation job
is now submitted to SLURM to allocate the chosen VM
instance and initiate the execution of the job. During the
execution, the EXECUTION MANAGER monitors the progress
of the simulation via the DYNAMIC-PREDICTOR module
(Section VI), which, when requested by the EXECUTION
MANAGER, predicts the remaining execution time. This can
be used to select a new VM instance on which to resume the
simulation if the Spot VM being used is being revoked or a

cheaper alternative to the current Spot or On-Demand instance
becomes available.

When running on a Spot VM, the EXECUTION MANAGER
uses the CHECKPOINT-RECORDER module to instigate the
simulation to record checkpoints at regular intervals. Addi-
tionally, this module manages the multiple checkpoint files –
maintaining a couple of recent files as a fail-safe measure
– and, when necessary, restarts the application from the
latest checkpoint available. The EXECUTION MANAGER is
also responsible for receiving the interruption metadata alert
provided by AWS that is sent two minutes before the Spot
VM’s lease is revoked [20]. Upon receiving the notification,
the CHECKPOINT-RECORDER initiates a final checkpoint to
preserve the simulation’s current progress.

Should the use of the Spot VM instance be revoked (either
by the LAUNCHER in an attempt to find a cheaper instance
after a price update or by AWS in the case of a Spot inter-
ruption), the INSTANCE-SELECTOR uses the remaining time
predicted by the DYNAMIC-PREDICTOR to help determine
the best instance on which to resume the simulation. This
revocation and restart process can repeat until the simulation
finally finishes. At this point, the LAUNCHER saves the exe-
cution information in the HISTORY-DATABASE and notifies
the client. The HISTORY-DATABASE stores all information
related to the simulation execution, such as the region, market,
type, price history of the selected VMs, and the simulation’s
execution time. This database enables posterior analysis of
the performance and monetary cost of executions. The num-
ber of revocations a job can be submitted to is limited by
SIM@CLOUD, and once reached, the job will be restarted
on the best On-Demand instance available. The limit can be
adjusted in relation to the estimated execution time of a job,
but for this paper, it is fixed at five.

Note that SIM@CLOUD employs a storage solution com-
posed of the following components: one shared file system
located in the on-premise cluster and a cache located in each
different region. This is an AWS-endorsed NetApp cache [21]
solution that links each cloud region eligible to run the
simulation, in particular for our experiments, the AWS regions
SA-EAST-1 and US-EAST-1. This cache setup ensures that data
written into one region is replicated in another, enhancing
availability and providing relatively fast access to all data
related to the simulation’s execution. It may also enable
organizations to comply with data sovereignty requirements
when the public cloud is the only computing environment
that hosts the data (e.g., the Brazilian government’s regula-
tions on minimum security requirements for the use of cloud
services [22]).

IV. THE INSTANCE-SELECTOR

The selection of a VM instance by SIM@CLOUD does not
require the intervention of the user or the system adminis-
trator. The INSTANCE-SELECTOR module selects an instance
based on its current price, the estimated execution time of
the simulation, and the amount of data that each simulation
requires to be transferred from the on-premise environment to

SLURM

ML
Predictor

Client

Launcher

Instance Selection

Region Brazil

Region US
Spot Instance

Execution
Manager

Checkpoint
Recorder
Dynamic
PredictorCACHE

History
Database

Job Log

SIMULATOR

CACHE

On-Premises
Storage

On-Premises Head Node

Spot Instance

Execution
Manager

Checkpoint
Recorder
Dynamic
Predictor

SIMULATOR

Remaining Time
DPredictor

The user submits a
simulation using

the launcher

1

2
The launcher invokes the
ML model to estimate the

simulation execution time.

3
The estimated time is then

utilized by the Instance
Selection, which defines the

instance type, the region,
and the market.

During execution, the Execution Manager uses the Dynamic Predictor to
estimate the remaining time of the simulation. In the case of spot instances,

the Manager also records checkpoints using the Checkpoint Recorder.

5
Finally, when the simulation is finished,

the Launcher saves the data related to the
execution in the history database.

7

The Launcher submits the
simulation to SLURM, which

allocates the selected
instance in the defined

region and market.

4

In the case of Spot Revocation, the Launcher will select another instance,
and the simulation will restart from the last checkpoint. The instance can

be either a Spot or On-Demand one. The region can also be changed.
6

Fig. 1: A general overview of the SIM@CLOUD architecture. The green-colored components are those developed and presented
in detail in this work, while the blue ones are off-the-shelf components integrated into the framework.

the cloud region in question. In addition, several static cloud
performance parameters, obtained through prior benchmark-
ing, are taken into consideration, such as the simulation’s
estimated performance on each usable instance type, the
network bandwidth from the on-premise environment to each
cloud region, the corresponding relative overhead of writing
data back, and the average delay to record a checkpoint.

An overview of the instance selection strategy is outlined in
Algorithm 1, which also takes into account several parameters,
including a predefined list of suitable VM types (VMSET).
From this list, the On-Demand VM with a performance most
similar to nodes of the on-premise cluster, in the region
closest to the on-premise storage, with enough CPU cores
and memory to execute the simulation, is chosen as the
baseline or reference VM instance (VMREF). The strategy
also considers the data transfer bandwidth from the on-premise
environment to the cloud infrastructure of each region R
(BWR). This value is used to provide an indication of the
delay the simulation is likely to experience waiting for the
I/O operations at initialization to complete. Of course, the
bandwidth will be significantly higher if the same data is used
subsequently in the same region, because of the cache. The
CP-OHDR represents the slowdown when an instance in the
region R writes a checkpoint, relative to doing the same in
SA-EAST-1, the closest region to the on-premise cluster (thus
CP-OHDSA-EAST-1 is normalized to one).

Although Algorithm 1 is based on the work in [19], there
are three clear distinctions. Whereas in [19], the application’s
execution time was a parameter provided by the user; here,
this is estimated by the ML-PREDICTOR and the DYNAMIC-
PREDICTOR. Algorithm 1 considers the I/O time to migrate
the data from the on-premise environment to the cloud; and
even in this case, the volume of data is not required from
the user as SIM@CLOUD automatically computes this tsize
by scanning the simulation job’s file directory and summing
the respective file sizes. Finally, the algorithm considers the
simulation’s distinct performances on different instance types.

Table I explains the notation used in Algorithm 1. The
algorithm requires three parameters: tsize, restarted, and
VMREF, and uses a set of predefined constants, such as
the checkpoint interval (INTERVAL), the checkpoint delay,
CP-LAT, and the previously discussed CP-OHDR and BWR.

Firstly, Algorithm 1 obtains the simulation time from ei-
ther the ML-PREDICTOR or the DYNAMIC-PREDICTOR, in
which the estimate, made on a previous instance type, is
normalized to the performance of VMREF. If a Spot VM is
chosen and revoked by the provider, the algorithm is notified
via restarted and, for all subsequent selections, the value
provided by the DYNAMIC-PREDICTOR is used. Secondly,
VMREF is chosen as the initial candidate for vmbest, and
its execution cost is calculated. The algorithm then iterates
through all the available VM types in VMSET. The I/O

TABLE I: Notation used in Algorithm 1.

Predefined Values

VMSET
The set of instance types available, with their corresponding
region, market, price, and performance factor PF .

PF (vmi)
A measure of the performance of the simulation model on
vmi relative to VMREF.

INTERVAL
The simulation time that should elapse between consecutive
checkpoints.

CP-LAT
The average simulation time lost while recording a check-
point.

CP-OHDR
Slowdown factor to write a checkpoint from a VM in region
R relative to the region of VMREF.

BWR
Estimated I/O bandwidth between the on-premise cluster and
region R.

Input Parameters and Variables

tsize
The total volume of simulation data to be transferred from
the on-premise environment to the cloud cache.

restarted
A boolean variable that indicates whether or not the simula-
tion is being restarted.

VMREF The baseline reference On-Demand VM instance.

makespan
The estimated execution time provided by the ML-
PREDICTOR or the remaining execution time estimated by
the DYNAMIC-PREDICTOR.

n ckp Estimated total number of checkpoints likely to be recorded.
time ckp Total time required to record n ckp checkpoints.
price(vmi) Price of instance vmi per hour.

vmbest
The VM on which the simulation is estimated to incur the
lowest cost.

COSTbest
The estimated cost to execute the remainder of the simulation
on vmbest.

time required to move the simulation’s data to the respective
region and the estimated simulation time on that instance is
computed. In the case of a Spot VM, the checkpoint overhead
is considered by predicting the number of checkpoints and
their duration from the parameters INTERVAL, makespan,
CP-LAT, and CP-OHDR. If a lower cost is found, vmbest
and COSTbest are updated. Finally, after evaluating all of the
instances in VMSET, vmbest, the instance that will incur the
lowest estimated cost, assuming revocations do not occur, is
returned.

V. THE ML-PREDICTOR

Employing a machine learning-based (ML) predictor was
driven by two reasons: (i) users may not always provide pre-
cise estimations for their application’s execution time, and (ii)
the need for SIM@CLOUD to be transparent and user-friendly
by requiring minimal user input. The ML-PREDICTOR was
built using Weka [23], an open-source software that imple-
ments traditional ML algorithms for data mining tasks.

The Job Log (the output log history of a job scheduler)
contains the raw dataset used to build and retrain the ML-
PREDICTOR at predetermined intervals. The analysis here is
based on a recorded set of 5,070,674 jobs submitted from
April 9, 2021, to December 31, 2023, to the on-premise cluster
of Petrobras through SLURM [24], an open-source workload
manager widely employed in clusters and in data centers
worldwide. The job records were gathered via SLURM’s
scontrol command, which allows the streaming of extensive
information about each job to a separate text file. Of the jobs

Algorithm 1: Makespan prediction, performance, price and
I/O overhead based VM Selection

Input: tsize, restarted, VMREF
1: {*** Step 1: Makespan Estimation ***}
2: if NOT restarted then
3: makespan← ML-PREDICTOR()
4: else
5: makespan← PF (VMREF)

PF (vmprev)
× DYNAMIC-PREDICTOR()

6: end if
7: {*** Step 2: VM Selection ***}
8: vmbest ← VMREF
9: COSTbest ← price(vmbest)×makespan

10: for vmi ∈ VMSET do
11: R← Region(vmi)
12: MAKESPAN′ ← PF (vmi)×makespan + (tsize

BWR
)

13: if vmi is Spot then
14: n ckp← ⌈PF (vmi)×makespan/INTERVAL⌉ − 1
15: time ckp← n ckp× (CP-LAT × CP-OHDR)
16: MAKESPAN′ ← time ckp + MAKESPAN′

17: end if
18: if COSTbest > (price(vmi)× MAKESPAN′) then
19: vmbest ← vmi

20: COSTbest ← price(vmi)× MAKESPAN′

21: end if
22: end for
23: return vmbest

submitted, 4,027 were purposefully relocated to Amazon EC2
and executed in VMs with computing resources comparable
to the on-premise nodes. A filtering technique was applied
that takes into consideration the following rules: (i) discard
jobs with an error status, (ii) discard test jobs, and (iii)
discard jobs not related to specific scripts. The raw dataset
was reduced from 5,070,674 to 2,834,851 job records after
filtering, representing a reduction of 44.09%. Since each job
record comprised 46 attributes of varying types and values,
three main actions defined the most relevant attributes for the
training and testing datasets: Attributes Analysis, Attributes
Transformation, and Attributes Subset Selection.

The Attributes Analysis determines which attributes should
be discarded or transformed. Some free-form attributes, in
which users could enter unstructured text, required strategic
transformation to allow the extraction of relevant information.
The timestamp attributes were transmuted into categories, so
the hour of the day (ranging from 0 to 23) and day of the week
(ranging from 0 to 6) could be extracted. Some attributes were
discarded, as they lacked helpful information with regard to
the goal of estimating the execution time. Some correlated
attributes, i.e., attributes that can be derived from each other,
were also removed.

The Attributes Transformation involves pre-processing at-
tributes that are not feasible for training an ML model due
to the variety of values. Among them, the nodes, script,
and work dir attributes were transformed as follows. The
nodes attribute contains the list of nodes that executed a
job. Its values were truncated, retaining only their first four
characters. The resulting attribute was named nodes prefix.
The script attribute contains the string representing the batch
script submitted by a job. Its values were transformed through
regular expression patterns to obtain, when available, the name
and version of the reservoir simulator used by the job. The
resulting attribute was named employed simulator. Finally, the

work dir attribute contains the string representing the job’s
working directory (logical path). Its values were transformed
into common prefix paths, as it was assumed that near-identical
paths are indicative of jobs with similar durations, reducing
their data dimensionality without a substantial decline in
prediction performance. The resulting attribute was named
work dir common prefix.

The Attributes Subset Selection extracts an appropriate sub-
set of attributes regarding the ML problem to be solved. The
supervised machine learning paradigm is routinely adopted for
the job duration prediction task. In this paradigm, an algorithm
receives a set of labeled training data, i.e., whose values
are known, and makes predictions for data not seen during
the training [25]. The regression method is widely used to
predict the duration of the job, and is of a numerical type.
On the other hand, the classification method can be used to
categorize and predict the duration interval associated with
a job. The latter approach was adopted in this work, as it
has previously indicated a higher prediction performance in
comparison to some regression models [26]. In this sense,
a nominal attribute representing the duration of jobs had to
be set as the target attribute. Therefore, the values of the
elapsed attribute, which stores the job’s duration in seconds,
are transformed into classes (or bins) of job duration, with
lower and upper bounds that describe the duration range of
the jobs, as shown in Table II. The 15 classes of duration
intervals were defined considering three spans: 30 minutes
for short-term jobs (classes 0 and 1), one hour for medium-
term jobs (class 2), and steps of two hours for long-running
jobs (class 3 onwards). The chosen granularities have prac-
tical utility for the VM selection stage as they were chosen
to address the unbalanced distribution of job durations, the
majority being predominantly short-term jobs. The resulting
attribute was named job duration class and designated as the
target attribute. Finally, the subset of nontarget attributes was
selected through the Weka’s InfoGainAttributeEval evaluator,
which assessed the worth of each attribute regarding the target
one for a random sample containing 1% (50,707 jobs) of
the raw dataset. Table III summarizes the nontarget attributes,
selected assuming a minimum worth score of 0.011.

TABLE II: Classes of the target attribute job duration class.

Class Duration Interval
(in seconds) Class Duration Interval

(in seconds)

0 [0, 1800) 8 [43200, 50400)
1 [1800, 3600) 9 [50400, 57600)
2 [3600, 7200) 10 [57600, 64800)
3 [7200, 14400) 11 [64800, 72000)
4 [14400, 21600) 12 [72000, 79200)
5 [21600, 28800) 13 [79200, 86400)
6 [28800, 36000) 14 [86400, ∞)
7 [36000, 43200) — —

The J48 model, available on Weka and often referred to
as a statistical classifier, was used to train and evaluate the
ML-PREDICTOR, as it provided better results than some
regression models in previous tests [26]. It implements the

TABLE III: Subset of selected non-target attributes.

Attribute Description

work dir common prefix
Common prefix of the job’s
working directory (logical path).

username User who submitted the job.
groupname Group name associated with the job.
account Account associated with the job.
employed simulator Name and version of the reservoir simulator.
tres req Trackable resources requested for the job.

ntasks
Number of parallel processes
executed by the job.

partition
Partitions (queues) in which the job
was submitted for.

time limit Timelimit in seconds for the job execution.
nodes prefix First four characters of nodes that executed the job.
qos Scheduling priority defined for the job execution.

queue wait
Time in seconds in which the job
was queueing until started.

job submit hour of day class
Class associated with the hour of the day
in which the job was submitted.

job eligible hour of day class
Class associated with the hour of the day
in which the job was eligible to start.

job start hour of day class
Class associated with the hour of the day
in which the job started.

alloc node Nodes allowed to execute the job.

C4.5 [27] algorithm, one of the most renowned decision tree
algorithms, which uses the concept of information entropy.
At each node of the tree, the attribute that most effectively
divides the set of samples into subsets enriched in one class
or another is selected, given that the division criterion is
the normalized information gain, i.e., the entropy difference.
The filtered dataset was randomly split into two parts: 80%
(2,267,881 jobs) as the training dataset and the remaining
20% (566,970 jobs) as the test dataset. The trained predictor
correctly classified the job duration interval of 76.01% of the
test instances.

When predicting the duration interval of jobs executed
outside the data collection period, specifically for 45,007
jobs executed in the first ten days of January 2024, the
accuracy was 57.79%. As stated in recent work [28], there
are two main reasons for this drop in prediction performance:
(i) accuracy degrades over time due to the non-stationary
factor of workloads (changing job profiles), which is typical
across most job records; and (ii) SLURM’s records, although
extensive concerning the overall characteristics of the jobs,
lacks fine-grained information about the executed application.
Both causes are being investigated and addressed, the first
through a data drift policy that detects and tracks changes
in data distribution, properties, or behavior over time, and
the second through an extended dataset that reunites the
information from both SLURM’s records and the parameters
of the reservoir simulation, such as the physical system (e.g.,
geology and fluids data) and the production strategy (e.g.,
number and location of wells, water flows injection). Finally,
the ML-PREDICTOR module supports more complex machine
learning models, such as Ensemble algorithms that combine
the predictions of multiple models. Although complex models

can capture intricate patterns and nonlinear relationships in the
data, they are much more challenging to interpret and are prone
to overfitting, noise, or bias. Therefore, using interpreting
models, such as J48, is a prudent choice for several reasons,
including allowing data scientists to comprehend how the
model makes predictions and identify any potential biases or
errors. In addition, the interpretability of models can provide
valuable insights into the underlying structure of the data and
help in feature selection and model optimization.

VI. THE DYNAMIC-PREDICTOR

The behavior of reservoir simulations can be affected by
a number of factors, including the choice of fluid modeling
(e.g., black oil, compositional); the sparse matrix solver, and
numerical parameters adopted (e.g., the maximum number of
simulation days per time step); the size and resolution of the
geological model; and the number, positioning, and scheduling
(i.e., openings and closings) of the wells. Simulation tools
iterate through models one step at a time, with each “time
step” potentially having a different duration for efficiency and
accuracy [29]. Larger time steps reduce the total number of
iterations and tend to shorten the Total Execution Time (TET)
of the simulation. However, large time steps may sacrifice
precision, necessitating recalculations with smaller time steps.
Additionally, simulation execution times are influenced by the
hardware architecture, CPU cores, memory, and I/O bandwidth
due to parallelization. The DYNAMIC-PREDICTOR estimates
the remaining run time of a reservoir simulation based on the
application’s log generated during its execution. This log file
provides the user with key information about the state of the
simulation model after each completed time step.

To evaluate the progress rate of a simulation and predict
the TET , the DYNAMIC-PREDICTOR adopts the concept of a
sliding time window to represent a sample temporal period of
the simulation. Associated with each window of approximately
N simulation days is its corresponding execution time. Note
that the number of time steps may vary between different
windows. To derive the execution time for a window, the last
time step to be completed and the last modification date of
the log file are monitored at regular intervals that define a
Monitoring Interval. Associated with each Monitoring Interval
i is the Simulation Period SP (i) elapsed since the start of the
simulation, which is calculated by scanning the output log
file and aggregating the number of simulation days processed
during each completed time step. The Current Execution Time
(in seconds) CET (i) is the difference between the time at
which the log file was created and the time at which it was
last updated. At the end of each Monitoring Interval i, the
DYNAMIC-PREDICTOR computes: the average progress rate
PR(i) during the last time window between an earlier interval
j and i as PR(i) = (CET (i)− CET (j))/(SP (i)− SP (j))

The Estimated Remaining Time, ERT (i), depends on the
number of remaining simulation days, so the DYNAMIC-
PREDICTOR presumes that ERT (i) = PR(i) × (TSP −
SP (i)) will be an acceptable approximation, given that the
simulator obtains TSP from the simulation’s stop condition,

be it the last simulation date, a maximum number of time
steps, or a maximum wall clock time.

In practice, simulations do not exhibit constant rates of
progress during their execution, and therefore this approach is
highly susceptible to time-varying, non-negligible prediction
errors. To help address this, N is sufficiently large so that
there is enough historical data to identify cyclic events and
sustained progress rates but short enough to adjust its estimate
quickly without extenuating fluctuations in its predictions.
Furthermore, instead of providing a single ERT value, several
variations of this linear extrapolation approach are applied
simultaneously to return an interval for the estimate. The
smaller the interval, the higher the confidence one might have
in the tool’s prediction.

DYNAMIC-PREDICTOR currently employs four variations of
the sliding-time window concept, while others can be easily
added later:
• Naive Window where PR(i) is determined over the total

period of the simulation completed so far. If PR(i) slows
over time, this prediction can be used as a lower bound;

• Fixed Sliding Window calculates PR(i) based on the
behavior over the last N simulation days;

• Adaptive Sliding Windows - Before calculating PR(i) for
a given window, the window’s interval and duration may
be adjusted, should temporary but significant slowdowns
be detected. To detect such changes in the simulation’s
behavior, the tool analyzes the progress rate between suc-
cessive time steps. The following variants are currently
utilized: The Optimist reduces the interval of the window
by ignoring periods where slowdown events occur; The
Pessimist reduces the time interval of the window so that
it begins at the time step at which the slowdown in the
progress rate was first detected.

Fig. 2: Changing estimates of the total execution time by the
four predictors during the simulation’s execution.

Figure 2 presents the behavior of the four predictors for
PRE-SALT 100 × 100 (from the year 2000 to 2048), during
its execution of ≈ 33, 575.88 seconds. Each dot represents an
individual estimate of TET by a single predictor; the closer to
the blue line (the actual total execution time), the better. The
further the simulation progresses (i.e., moves to the right), the
more accurate each of the predictors becomes. As expected,
Figure 2 shows that the predictions during the first ≈ 2, 500
simulation days are not as precise as the others since, during
this period, the simulation exhibits higher progress rates than
during the rest of the simulation, which leads to the predictor

underestimating the TET . Unfortunately, these progress rates
can vary over time as they depend on the characteristics of the
simulation, the model, and the data. To avoid having to design
an overly complex generic dynamic predictor for different
types of simulation, SIM@CLOUD opts to rely more on the
ML-PREDICTOR during the initial phase of the simulation’s
execution.

Experimental evaluations with a variety of distinct models
have provided positive indications of the predictor’s poten-
tial. For example, the DYNAMIC-PREDICTOR predictions are
within 10% of the total execution time of the Pre Sal 100×100
49-year simulation for 82% of its duration.

VII. EXPERIMENTAL EVALUATION

This section experimentally demonstrates the automated
management of SIM@CLOUD and gives some indication of
the gains in terms of monetary costs. Table IV presents the
values of the predefined parameters obtained during a prior
phase to benchmark cloud performance in different regions.
Due to space limitations, the tests conducted are not fully re-
ported here, but instead are detailed in the Web Supplementary
Material at https://gitlab.com/u693/simCloud.

TABLE IV: Predefined parameters used in the experiments.

Parameters Values

VMREF c5a.24xlarge
VMSET c5.24xlarge, c5a.24xlarge, c6a.24xlarge, c6i.32xlarge
INTERVAL 1800 seconds
CP-LAT 13 seconds
CP-OHDUS-EAST-1 2.25
CP-OHDSA-EAST-1 1.0
BWUS-EAST-1 55 MB/s
BWSA-EAST-1 250 MB/s

In order to evaluate the impact of Spot revocations on the
cost and makespan of simulations under SIM@CLOUD, it
is essential to have some control over when AWS reclaims
the Spot instance. Here, the process is emulated by adhering
to the AWS recommended guidelines for evaluating Spot
instances [30]. The method involves using the Amazon EC2
Metadata Mock (AEMM) tool to replicate the two-minute
warning issued prior to Spot revocation. Using AEMM, an-
other tool was developed to mimic Spot revocations by: 1) cal-
culating the VM’s revocation time using a Poisson distribution;
2) updating the VM’s metadata to include a termination alert;
and 3) shutting down the Spot VM. The discrete probability
distribution is well suited to predict the occurrence of events
within a specific time frame, including the timing of Spot VM
terminations, as supported by several studies [31]–[33]. With
a parameter λ representing the average number of revocations
per hour, the termination time is determined by sampling
the Poisson distribution and multiplying the result by 3,600
seconds, thus defining τ as the duration for which the VM will
be available. The tool tracks the VM’s uptime and generates
a termination alert at τ − 120 seconds. For the evaluation,
four termination rates were considered (λ): 0.1, 0.5, 0.8, and
1.0. As λ increases, the probability of terminating a Spot VM

sooner increases, with λ = 1 representing executions with a
high likelihood that the Spot is reclaimed within the first hour.

A. The influence of Spot market price variability

The effect of varying Spot market prices and availability
over time is illustrated by Figure 3. The same set of ex-
periments was executed at two different times, in this case,
an interval of one week between each set. Each experiment
comprises a series of four executions, one for each value
of λ, of the same SHORT-PRE-SALT simulation. This series
is executed three times to define the set, with the average
execution times and costs being presented in the figure.

Fig. 3: Comparison between two time shifted series of exe-
cutions, Execution1 and Execution2, of the SHORT-PRE-SALT
model, one week apart.

In Execution1 (the blue lines), Spot market conditions meant
that SIM@CLOUD generally explored several newer genera-
tion Spot instances (c6a and c6i) to obtain shorter runtimes.
In contrast, in Execution2 (the orange lines), the majority of
executions relied on older generations of instances (c5 and
c5a). For the experiment of the second week, Execution2,
the prices of all Spot instances were significantly higher
(almost the double in some cases) and varied during the
execution to a greater degree than during the experiment of
the week before. The differences were large enough to change
the SIM@CLOUD’s preferred instance types. Furthermore,
with higher prices being a reflection of demand, this also
means that SIM@CLOUD’s first choice instance may not have
been available, and a less optimal choice might have had
to be selected. On the other hand, in the case of λ = 0.8
of Execution1, the availability of a c6i Spot instance at an
unusually low price allowed one execution to execute quicker
without significantly increasing the average cost. However, one
of the Execution2 experiments with λ = 1.0 suffered five
revocations and was finalized on an On-Demand c6i instance,
causing this execution to be four times more expensive than
the others with the same λ value. Thus, no single instance type
always provides the cheapest execution. So, while Execution1
exhibited better performance and lower costs compared to
Execution2, the variability in price and availability underscores
the need for an instance selection algorithm that checks the
prices of instances before every job submission.

B. Reducing costs with Spot instances

Figures 4a, 4b and 4c present the average makespans
and monetary costs of the SIM@CLOUD Instance selection

https://gitlab.com/u693/simCloud

scheme, for three executions per failure rate, for the SHORT-
PRE-SALT and PRE-SALT simulation models, respectively. As
can be seen in the three figures, compared to the baseline,
VMREF, i.e., the reference On-Demand VM (and one of the
cheapest instances in VMSET at the time) in the home region
(SA-EAST-1), SIM@CLOUD was able to reduce the monetary
cost significantly in all scenarios, while also shortening the
execution time in some.

(a) SHORT-PRE-SALT Execution1

(b) SHORT-PRE-SALT Execution2

(c) PRE-SALT

Fig. 4: Costs and Makespans for (a) SHORT-PRE-SALT and (b)
PRE-SALT. The dashed lines represent the baseline execution
(using the cheapest On-Demand VM in the home region)

Even in the worst-case scenario (λ = 1.0), the savings in
terms of monetary costs were as high as 43.87% for SHORT-
PRE-SALT Execution2, and up to 90.39% for SHORT-PRE-
SALT Execution1. While in the case of the former, this was
achieved at the expense of the makespan, which increased
9.28% in this exact scenario as a consequence of the need
for checkpointing when exploiting Spot VMs, SHORT-PRE-
SALT Execution1 obtained an average reduction of 10.42% in
the makespan. In addition, revocation and restart overheads
are incurred whenever a Spot VM is reclaimed, during which
the time to select a new VM, boot it up, and restart the
simulation are included. Thus, when the failure rate increases,
an increase in the makespan may be observed, as shown quite
clearly in Figure 4b. For λ = 0.5 and λ = 0.8, the monetary
reduction for the SHORT-PRE-SALT Execution2 was 81.78%
and 81.46%, respectively, against an increase in the makespan
of 0.70%, and 2.48%. For Execution1, cost reduction was
slightly better, 90.13% and 90.07%, respectively, while the
makespans also decreased by 13.52% and 18.35%.

In particular, significant gains can be seen in both metrics
for the case where λ = 0.1: reductions of 91.58% (Execu-
tion1) and 85.74% (Execution2) in the monetary costs and
15.97% and 3.92%, respectively, in terms of the makespans.
In this scenario, the selection heuristic acquired a Spot VM
with better performance than the baseline VM at a lower price.
Furthermore, the relatively short execution time of SHORT-
PRE-SALT tends to mean that no Spot revocations occur, and
therefore, no additional overheads were incurred to migrate the
simulation. This case demonstrates the ability of the selection
heuristic to explore cheaper resources in the Spot market.

For the PRE-SALT model, the results shown in Figure 4c are
somewhat analogous to those of the SHORT-PRE-SALT model;
however, here, average reductions in both the monetary costs
and makespans, in relation to the baseline, in all scenarios were
obtained. For the scenario where λ was 0.1, SIM@CLOUD
achieved an average reduction in the cost of 85.88% and
in the makespan of 6.50%. For cases where λ = 0.5, 0.8,
and 1.0, SIM@CLOUD was able to lower costs by 80.19%,
82.59%, and 49.11%, respectively. Meanwhile, the makespans
were shorter by 14.96%, 2.38%, and 8.42%, for the respective
scenarios. Note that the execution times are also greatly
affected by the availability of Spot instances in a given region
at the time of job submission. While Spot instance prices can
change during execution, the principal reason for the higher
costs for both models when λ = 1.0 is due to SIM@CLOUD
selecting an On-Demand instance to terminate the respective
simulations, given that the execution reached the limit of
allowed revocations.

These results demonstrate the effectiveness of
SIM@CLOUD in reducing the overall monetary cost
independently of the simulation’s execution time. Furthermore,
for longer simulation models, even under high failure rates,
smaller makespans can be achieved with cost reductions in
relation to the On-Demand reference VM.

To better understand the results obtained by SIM@CLOUD,
let’s analyze two distinct scenarios for the PRE-SALT execution
(Fig. 4c): the best-case scenario, in terms of the number of VM
revocations, when λ = 0.1 but no Spot revocations occurred,
and; the worst-case scenario when λ = 1.0, where several
revocations occurred during execution. Table V details the
scheduling breakdown of the execution of each scenario, while
the results in Figure 4c presented the average values of three
executions.

In the best-case revocation scenario (λ = 0.1),
SIM@CLOUD selected a Spot VM of type c6a.24xlarge in SA-
EAST-1 (the region closest to the on-premise cluster) that did
not suffer revocation and was therefore used for the entire exe-
cution. At the moment of job submission, this instance offered
the best cost-performance. During the execution, the price
of the Spot instance varied between US$0.76 and US$0.81
per hour, so that the total execution cost reached a total of
US$6.93. Since there was no need to restart the simulation, no
request was made to the DYNAMIC-PREDICTOR for an ERT .
Given that the ERT depends on the instance that was used, the
value provided by the DYNAMIC-PREDICTOR is adjusted to

TABLE V: Individual executions of the PRE-SALT model for λ = 0.1 (best-case scenario) and λ = 1.0 (worst-case scenario).

λ Instantiation Selected VM Region Market Exec. Time (s)* ERTref (s) ML-PREDICTOR Cost**

0.1 t0 c6a.24xlarge SA-EAST-1 Spot 31,456 36,000 (s) US$6.93

1.0

t0
t1
t2
t3
t4
t5

c6a.24xlarge
c5.24xlarge
c6a.24xlarge
c6i.32xlarge
c6a.24xlarge
c6i.32xlarge

SA-EAST-1
SA-EAST-1
SA-EAST-1
SA-EAST-1
SA-EAST-1
US-EAST-1

Spot
Spot
Spot
Spot
Spot

On-Demand

3,718
10,921

263
3,718

263
11,864

Total:30,747

32,627
27,429

-
20,506

-

36,000 (s)

US$22.69
* “Exec. Time” is the wall clock time from job submission to termination, and thus, in addition to executing the simulation,
this also includes the time required to allocate the VMs, the overhead of the rollback/restart procedure, and any additional
recomputation by the simulator.
** If an On-Demand VMREF in the region SA-EAST-1 were used, the cost to simulate the PRE-SALT model would have been
US$51.32, with an execution time of 32,620 seconds. Alternatively, with the faster On-Demand c6i.32xlarge instance in the
region US-EAST-1, it would have taken 28,248 seconds and incurred a cost of US$42.69.

represent the remaining time on the reference VM (VMREF).
Note that the ML-PREDICTOR classified the simulation as a
class 7 job with an estimated running time between 36,000
and 43,200 seconds, if executed on the VMREF, a c5a.24xlarge
instance. Using the lower bound of this range, and the instance
performance factors (PF), SIM@CLOUD can estimate that
the execution will require at least 30,787 seconds on the
selected c6a.24xlarge instance.

For the worst-case revocation scenario (λ = 1.0), the
execution faced five Spot revocations that resulted in a total
monetary cost of US$22.69 and a total execution time of
30,747 seconds. As indicated in Table V, except for the revo-
cation at the end of t4, the framework migrated the simulation
to another Spot VM four times. Moreover, the simulation was
migrated to different VM types and across various regions:
the final On-Demand VM selected being a c6i.32xlarge in
US-EAST-1. While On-Demand instance prices in SA-EAST-
1 are approximately 50% higher than their corresponding
instances in US-EAST-1, the same instances in the Spot market
in SA-EAST-1, at the moment of execution, were 22% to 37%
cheaper, the only exception for the VMs in VMSET, being
c5a.24xlarge, our VMREF, which was 40% more expensive.

Having again chosen the best Spot option, that VM was
revoked after a little more than an hour. After a revocation,
to avoid selecting the same instance type in the same region
immediately in sequence, SIM@CLOUD places this option in
quarantine for a predefined period of time. The motivation
is the high likelihood of that instance being revoked again by
AWS in the short term future. The framework thus utilized the
estimate provided by the DYNAMIC-PREDICTOR, normalized
to the VMREF instance (ERTref), to choose from the re-
maining choices in VMSET, the Spot VM c5.24xlarge again
in SA-EAST-1. This second instance was also revoked after
three hours, time enough for the first instance to be freed from
quarantine and available for selection at the end of t1.

The instances selected for steps t2 and t4 were revoked
within 5 minutes of being requested. As this time also in-
cludes instantiating and booting the VM and the overheads
(associated with I/O and rollback recovery) to restart the

simulation, this meant that the simulation could not advance
sufficiently for the DYNAMIC-PREDICTOR to provide a re-
vised ERT , and forced SIM@CLOUD to use the previous
ERT value (or, should one not be available, use the difference
between the ML-PREDICTOR’s estimate and the sum of the
execution times of the previous steps). After a given number
of revocations (in this case, five), SIM@CLOUD opts to
move the execution to On-Demand market in order to avoid
further delays. The number of revocations can be adjusted to
investigate trade-offs between cost and execution time.

These executions highlight SIM@CLOUD’s ability to re-
duce monetary costs by leveraging the Spot market, even in
scenarios with several revocations. For the worst-case scenario,
more than 60% of the simulation was executed on Spot VMs
(18,883s on Spot versus 11,864s on On-Demand), directly
impacting the monetary cost. As seen in the baseline case,
presented in Figure 4c, using the VMREF, an On-Demand
c5a.24xlarge VM in SA-EAST-1, for the entire simulation
would result in a much higher cost (more than twice as much,
US$51.32) and a slightly longer execution time (32,620s).
Note, too, that VMSET included an oversized c6i.32xlarge
instance rather than the cheaper c6i.24xlarge version to show
that even expensive instances can be viable options in both
the Spot and On-Demand markets.

VIII. DISCUSSION

One of our goals was to compare the SIM@CLOUD frame-
work with the solution provided by AWS. However, after
further investigation, it turns out that such a comparison would
be unfair since the tools that AWS currently provides their
clients with to request Spot instances suffer from a couple
of limitations. First, AWS suggests that users do not request
specific VM types, but instead specify a list of minimum
capacity requirements. Second, the user should choose one
of three allocation strategies: Lowest Price (which chooses the
cheapest Spot VM, but has a higher chance of being revoked);
Capacity Optimized (which will try to choose an instance type
with the lowest chance of being revoked), and; Price-Capacity
Optimized (that looks for the lowest priced instance with high
availability). None of these strategies guarantee, or are even

likely, to choose the instance that provides the lowest cost.
Secondly, the scope of these strategies is limited to a single
region. SIM@CLOUD overcomes both of these limitations.

Therefore, instead of directly comparing the allocation
strategies of AWS with our approach, we briefly analyze
the impact imprecision in makespan predictions has on the
selection of the VM by SIM@CLOUD. To exemplify this
analysis in a more intuitive way, we will consider the scenario
of choosing between the same instance type in the Spot and
On-Demand markets of the same region. This same analysis
can be extended in a similar fashion to the more general
case of heterogeneous instance types and different regions,
as considered by SIM@CLOUD. Let xs be the total execution
time (makespan) of the simulation, ps, the current hourly price
of the Spot instance under consideration (here, let us assume
that this price does not change during the execution), and ys be
the duration (portion) of the makespan that characterizes the
overhead for checkpoints. In turn, xo and po are, respectively,
the makespan on the On-Demand instance and its hourly
price. The instance selected as the cheapest option is thus
determined by comparing the costs of the two options, the
Spot instance being selected over the On-Demand one if the
following condition is true:

xs.ps < xo.po =⇒ xo + ys
xo

<
po
ps

=⇒ ys
xo

<
po − ps

ps
(1)

The left-hand side of these equations shows that the
makespan plays a role in determining the cheapest market. To
illustrate this numerically, consider the following hypothetical
case. Let the Spot instance price be US$3.00 per hour, the
On-Demand instance price be US$3.10 per hour, and the
checkpoint INTERVAL be 30 minutes. Consider the following
two scenarios: In Scenario 1, the ML or dynamic predictor
provides an accurate execution time xo1 equal to 59 minutes,
with an additional time, ys1, of 1.5 minutes required to record
the single checkpoint if a Spot VM is chosen. In this case,
the Spot option would be chosen since the monetary cost of
the On-Demand one would be US$182.9/60 against a cost of
US$181.5/60 for the Spot instance. In Scenario 2, suppose that
an imprecisely estimated execution time xo2 > xo1 equal to 61
(xo2 was provided, implying an additional time ys2 of 3 min-
utes to record two checkpoints if a Spot VM is chosen. Now, in
this case, the On-Demand instance would be chosen, since its
estimated cost would be US$189.10/60 versus US$192.00/60
for the Spot one. Hence, although the only difference in the
metrics was a 3.4% overestimation of the execution time, the
framework would choose the more expensive market, incurring
an additional expense of US$1.4/60.

This might appear to the reader as an obstacle to embracing
the proposal, especially given the extreme difficulty of predict-
ing the execution time of applications running in the cloud.
Furthermore, one might expect that the excess expenditure
would continue to increase with longer executions. This is
not true, and erroneous instance selections by SIM@CLOUD
are not as common as one might expect. Although our ex-
pectations have always been that the makespan predictions

would be imprecise, the principal motivation for adopting this
approach is the simplicity and speed of the selection algorithm.
Secondly, the inequality of Equation 1 can be approximated
by Equation 2 which is not affected by the precision of the
makespan prediction:

T1ckpt

INTERVAL
<

po − ps
ps

(2)

Where T1ckpt = CP-LAT × CP-OHDR is the delay due to
a single checkpoint. Note that the makespan does not appear
in Equation 2 and that the variables po, ps, and T1ckpt are
known beforehand and all depend on the cloud infrastructure
being used. This equation implies that the decision of which
instance to choose depends on the relationship between the
checkpointing overhead and the price difference. This also
means we can predict when a misprediction may cause the
algorithm to make the wrong choice. For the hypothetical
example above, the Spot instance should always be chosen
if its price is lower than 95.238% of its On-Demand price po.
Notice that for Scenario 2, if the Spot price was US$2.94 (i.e.,
less than 95% of the On-Demand price), the Spot would now
be chosen as the estimated total cost would be US$188.16/60.
For the experiments in Section VII, as T1ckpt has a lower
value than our hypothetical example, this percentage threshold
tends to be even higher. In practice, it is unlikely that the spot
price would be so close to that of the On-Demand one for most
instances, or at least for any significant period of time. If it
were, by choosing the On-Demand instance, the absolute value
of the overspend, if the selection were incorrect, is bounded
and small, as it does not increase with longer execution times.
In the case of the hypothetical example, independently of the
actual execution time, the most one could overpay by is only
US$0.07377.

The above example aimed to illustrate the robustness of
SIM@CLOUD to imprecise makespan predictions, in the case
of identical On-demand and Spot instances in the same region.
Depending on the relative prices of the instances, there is
a small window where the execution time can influence the
instance selection. This analysis can be extended analogously
to the more general case of Algorithm 1, where the makespan
considers not only the estimated simulation time and check-
pointing costs but also the data transfer overhead, all of which
vary according to the instance type and region being used.

IX. CONCLUSION AND FINAL REMARKS

SIM@CLOUD is a framework tailored for executing sim-
ulations in the cloud while aiming to reduce the monetary
costs associated with leasing instances. While solutions for
executing reservoir simulations in the cloud exist (e.g., those
offered by CMGL), the VM selection approach proposed here
has the advantage of exploiting the price differences of Spot
and On-Demand VMs across multiple EC2 regions to reduce
a company’s cloud expenditure. The strategies deployed in
SIM@CLOUD prioritize monetary cost mitigation while con-
sidering the potential time implications of VMs accessing data
from non-local regions. In an effort to enhance its decisions,

SIM@CLOUD employs techniques to predict the makespan
of the simulation. Using a real-world SLURM job submission
log to build a reservoir simulation runtime predictor, the ML-
PREDICTOR incorporates relevant attributes that distinguish
and classify jobs. Given the dynamic nature of the simulations
and the computing environment, the DYNAMIC-PREDICTOR
iteratively estimates the remaining time of a simulation already
in progress. The results obtained in a real cloud environment
demonstrate SIM@CLOUD’s practicality. While the work in
this paper has focused on AWS EC2 (for commercial reasons),
the SIM@CLOUD framework is cloud provider agnostic and
is being extended to support other cloud providers and multi-
cloud environments.

With regard to performance modeling, work continues to
study different scheduling trade-offs for reservoir simulations
in terms of resource utilization, energy consumption, per-
formance, and monetary costs when using various instance
families. Additional studies on the correlation between Spot
instance availability and the probability of its revocation, the
performance variability of cloud instances, and the impact of
I/O operations on performance are being investigated.

ACKNOWLEDGMENTS

This research was supported financially by Petróleo
Brasileiro S.A. – Petrobras, by the Brazilian Federal Fund-
ing Agency CNPq (Conselho Nacional de Desenvolvimento
Cientı́fico e Tecnológico) through grants CNPq/AWS num-
ber 421828/2022-6 and Project Universal/CNPq number
404087/2021-3, and by the Rio de Janeiro State Funding
Agency (FAPERJ) through grant CNE/FAPERJ number E-
26/201.012/2022(271103).

REFERENCES

[1] F. Zhu, Y. Yao, W. Tang et al., “A high performance framework
for modeling and simulation of large-scale complex systems,” Future
Generation Computer Systems, vol. 51, pp. 132–141, 2015, Special
Section: A Note on New Trends in Data-Aware Scheduling and Resource
Provisioning in Modern HPC Systems.

[2] E. Winsberg, Science in the Age of Computer Simulation. University
of Chicago Press, 2019.

[3] ——, “Computer Simulations in Science,” in The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, 2022.

[4] S. J. E. Taylor, A. Anagnostou, N. T. Abubakar et al., “Innovations
in Simulation: Experiences With Cloud-Based Simulation Experimenta-
tion,” in Winter Simulation Conference, 2020, pp. 3164–3175.

[5] M. A. S. Netto, R. N. Calheiros, E. R. Rodrigues et al., “HPC Cloud for
Scientific and Business Applications: Taxonomy, Vision, and Research
Challenges,” ACM Computing Surveys, vol. 51, no. 1, 2018.

[6] D. Ma and J. Huang, “The pricing model of cloud computing services,”
in Proceedings of the 14th Annual International Conference on Elec-
tronic Commerce. Association for Computing Machinery, 2012, pp.
263–269.

[7] N. Dimitri, “Pricing cloud IaaS computing services,” Journal of Cloud
Computing, vol. 9, no. 1, p. 14, 2020.

[8] I. Menache, O. Shamir, and N. Jain, “On-demand, Spot, or Both:
Dynamic Resource Allocation for Executing Batch Jobs in the Cloud,”
in 11th International Conference on Autonomic Computing. USENIX
Association, 2014, pp. 177–187.

[9] L. Teylo, L. Arantes, P. Sens, and L. M. d. A. Drummond, “A Bag-
of-Tasks Scheduler Tolerant to Temporal Failures in Clouds,” in 2019
31st International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), 2019, pp. 144–151.

[10] M. E. Eldred, A. Orangi, A. A. Al-Emadi et al., “Reservoir Simula-
tions in a High Performance Cloud Computing Environment,” in SPE
Intelligent Energy International Conference and Exhibition, 2014.

[11] D. Salomoni, I. Campos, L. Gaido et al., “INDIGO-DataCloud: A
platform to facilitate seamless access to e-infrastructures,” Journal of
Grid Computing, vol. 16, pp. 381–408, 2018.

[12] M. Eldred, A. Good, and C. Adams, “Simulation as a service - a case
study of provisioning scientific simulation software via a cloud service,”
in 2nd Int. Workshop on Emerging Soft. as a Service and Analytics, 2015.

[13] D. Temelkovski, T. Kiss, and G. Terstyanszky, “Molecular docking
with Raccoon2 on clouds: extending desktop applications with cloud
computing,” in CEUR Workshop Proceedings, 2017.

[14] T. Kiss, “Scalable multi-cloud platform to support industry and scientific
applications,” in 41st Int. Convention on Information and Communica-
tion Technology, Electronics and Microelectronics, 2018, pp. 150–154.

[15] Z. Noor, Q. Wang, N. Govindaraju et al., “Transitioning a Legacy
Reservoir Simulator to Cloud Native Services,” in Int. Petroleum Tech.
Conf., 2020.

[16] M. S. Flister and K. Hopstaken, “Running Reservoir Simulations in
the public cloud; A case study of a cost-controlled method, running
tNavigator and Eclipse in an Azure HPC environment,” in EAGE/AAPG
Digital Subsurface for Asia Pacific Conference, 2020.

[17] F. A. Portella and F. M. de Souza, “Reservoir Simulation in the Cloud,”
in High Performance Computing in Clouds: Moving HPC Applications
to a Scalable and Cost-Effective Environment. Springer, 2023, pp.
265–282.

[18] Computer Modelling Group, “CMG Cloud: Your Guide,” Online, 2021,
Available at https://www.cmgl.ca/solutions/cloud/. Last visited on March
7th, 2024.

[19] F. A. Portella, P. Estrela, R. Malini, L. Teylo, J. Berral, and L. M.
de A. Drummond, “MScheduler: Leveraging Spot Instances for High-
Performance Reservoir Simulation in the Cloud,” in 14th IEEE In-
ternational Conference on Cloud Computing Technology and Science.
Napoli, Italy: IEEE, 2023.

[20] AWS, “Spot instance interruption notices,” Mar 2024.
[Online]. Available: https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/spot-instance-termination-notices

[21] NetApp, “Netapp global file cache,” Mar 2024. [Online]. Available:
https://www.netapp.com/data-management/global-file-cache/

[22] A. H. R. Pereira, “Instrução Normativa nº 5, de 30 de agosto de
2021,” Aug 2021. [Online]. Available: https://www.in.gov.br/en/web/
dou/-/instrucao-normativa-n-5-de-30-de-agosto-de-2021-341649684

[23] M. Hall, E. Frank, G. Holmes et al., “The WEKA Data Mining Software:
An Update,” SIGKDD Explor. Newsl., vol. 11, no. 1, pp. 10–18, 2009.

[24] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple Linux
Utility for Resource Management,” in Job Scheduling Strategies for
Parallel Processing. Springer, 2003, pp. 44–60.

[25] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine
Learning. MIT Press, 2018.

[26] A. L. Nunes, F. Portela, P. Estrela et al., “Prediction of Reservoir
Simulation Jobs Times Using a Real-World SLURM Log,” in XXIV
Symp. on High Performance Computing Syst. SBC, 2023, pp. 49–60.

[27] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers, 1993.

[28] M. Kuchnik, J. W. Park, C. Cranor, E. Moore, N. DeBardeleben, and
G. Amvrosiadis, “This is why ML-driven cluster scheduling remains
widely impractical,” Carnegie Mellon University, Tech. Rep., 05 2019.

[29] L. Gasparini, J. R. Rodrigues et al., “Hybrid parallel iterative sparse lin-
ear solver framework for reservoir geomechanical and flow simulation,”
Journal of Computational Science, vol. 51, p. 101330, 2021.

[30] AWS, “Best practices for handling ec2 spot instance interruptions,” Feb
2024. [Online]. Available: https://aws.amazon.com/fr/blogs/compute/
best-practices-for-handling-ec2-spot-instance-interruptions/

[31] L. Teylo, L. Arantes, P. Sens, and L. M. de A. Drummond, “Scheduling
Bag-of-Tasks in Clouds Using Spot and Burstable Virtual Machines,”
IEEE Transactions on Cloud Computing, 2023.

[32] L. Teylo, A. L. Nunes, A. C. Melo, C. Boeres, L. M. d. A. Drum-
mond, and N. F. Martins, “Comparing SARS-CoV-2 Sequences using
a Commercial Cloud with a Spot Instance Based Dynamic Scheduler,”
in The 21st IEEE/ACM International Symposium on Cluster, Cloud and
Internet Computing (CCGrid 2021), 2021, pp. 247–256.

[33] R. C. Brum, W. P. Sousa, A. C. M. A. Melo, C. Bentes, M. C. S.
de Castro, and L. M. d. A. Drummond, “A Fault Tolerant and Deadline
Constrained Sequence Alignment Application on Cloud-Based Spot
GPU Instances,” in The 27th International European Conference on
Parallel and Distributed Computing (Euro-Par 2021). Springer, 2021,
pp. 317–333.

https://www.cmgl.ca/solutions/cloud/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-instance-termination-notices
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-instance-termination-notices
https://www.netapp.com/data-management/global-file-cache/
https://www.in.gov.br/en/web/dou/-/instrucao-normativa-n-5-de-30-de-agosto-de-2021-341649684
https://www.in.gov.br/en/web/dou/-/instrucao-normativa-n-5-de-30-de-agosto-de-2021-341649684
https://aws.amazon.com/fr/blogs/compute/best-practices-for-handling-ec2-spot-instance-interruptions/
https://aws.amazon.com/fr/blogs/compute/best-practices-for-handling-ec2-spot-instance-interruptions/

	Introduction
	Related Work
	SIM@Cloud Architecture
	The Instance-Selector
	The ML-Predictor
	The Dynamic-Predictor
	Experimental Evaluation
	The influence of Spot market price variability
	Reducing costs with Spot instances

	Discussion
	Conclusion and Final Remarks
	References

