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Abstract

We take up Dedekind’s question "Was sind und was sollen die Zahlen?"
("What are numbers, and would should they be?"), with the aim to de-
scribe the place that Conway’s (Surreal) Numbers and Games take, or de-
serve to take, in the whole of mathematics. Rather than just reviewing the
work of Conway, and subsequent one by Gonshor, Alling, Ehrlich, and
others, we propose a new setting which puts the theory of surreal num-
bers onto the firm ground of "pure" set theory. This approach is closely
related to Gonshor’s one by "sign expansions", but appears to be signifi-
cantly simpler and clearer, and hopefully may contribute to realizing that
"surreal" numbers are by no means surrealistic, goofy or wacky. They
could, and probably should, play a central role in mathematics. We dis-
cuss the interplay between the various approaches to surreal numbers,
and analyze the link with Conway’s original approach via Combinatorial
Game Theory (CGT). To clarify this, we propose to call pure set theory the
algebraic theory of pure sets, or in other terms, of the algebraic structures
of the von Neumann universe. This topic may be interesting in its own right:
it puts CGT into a broad context which has a strong "quantum flavor", and
where Conway’s numbers (as well as their analogue, the nimbers) arise
naturally.
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Chapter 0

Introduction

0.1 The place of Conway numbers in mathematics

In the present work, I would like to contribute to Dedekind’s question Was
sind und was sollen die Zahlen?1 Dedekind’s idea to realize the real numbers by
"cuts" of the rationals has been taken up in an ingenious way by John Horton
Conway to construct, "out of nothing", an ordered Field, the Conway num-
bers, later called (following Donald Knuth’s book [K]) surreal numbers, see
[ONAG].2 In Conway’s own words, this Field comprises "All Numbers Great
and Small" – besides the real numbers, it contains infinitely big and small
numbers, such as all ordinal numbers, and it rightly deserves to be called the
absolute arithmetic continuum, see [E12, E20].

I first learned about Conway numbers as an undergraduate through a
chapter ([He]) in the beautiful book "Zahlen" [Eb], which follows the original
presentation [ONAG] of surreal numbers as a particular instance of Games.
According to his own writings, Conway got his amazing intuition from study-
ing Games. Several authors, most notably Alling [A], and Gonshor [Go], ad-
mitted to have difficulties with Conway’s approach, and proposed alternative
ones.3 Conway himself discusses such issues in an "Appendix to Part Zero" in
[ONAG], and I will come back to this at several places.

Following the ideas of Dedekind and Cantor, the natural, rational, and real
numbers can be constructed on the basis of set theory in the form later given
by Zermelo and Fraenkel (ZF), or others, where mathematical objects are re-
alized as pure sets. A particularly clear model of the universe of pure sets is
given by the cumulative von Neumann hierarchy, also called the von Neumann
universe. Therefore, if Conway numbers are full citizens of the mathematical
universe, one must ask: How can we realize the Conway numbers in the universe
of pure sets, that is, in the von Neumann hierarchy? The present work gives an

1What are numbers and what should they be? [Ded]
2I prefer the term Conway number because the word "surreal" is biased as established term in

history of arts, or as meaning "surrealistic". Since Conway is no longer among the living, it may
be time to honor him by remembering him as the creator of a new concept of "number".

3E.g., [A], p. 14: "...the author found Conway’s basic construction of his surreal numbers
[..] hard to follow – so much that he gave another construction of the surreals within a more
conventional set theory."
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https://en.wikipedia.org/wiki/Zermelo–Fraenkel_set_theory
https://en.wikipedia.org/wiki/Von_Neumann_universe
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answer to this question – an answer which is stunningly simple, and which,
hopefully, contributes to putting Conway numbers into the center of math-
ematics instead of considering them as an exotic and surrealist fresco on its
border. In the following, I give a concise description of this construction.

0.2 Numbers as sets of ordinals

The ordinal numbers are the prolongation of the natural numbers N into the
infinite range. Their theory is one of Georg Cantor’s greatest achievements,
and it belongs to the central issues of modern set theory. John von Neumann
discovered a system realizing not only the ordinals, but the whole universe of
sets, "out of nothing", starting from the empty set, VN0 = ∅, by a transfinite
induction procedure: VNα+1 = P(VNα) is the power set of the preceding stage,
and VNβ = ∪α<βVNα if β is a limit ordinal. The ordinal α itself is an element of
VNα+1, and the class of ordinals ON thus is a subclass of VN. Now we define:

Definition 0.1. A (Conway) number is a set of ordinals having a maximal element.
The maximal element b(x) of such a set x is called the birthday of x.

For instance, every finite and non-empty subset of N is a number, but the
first infinite ordinal ω = {0, 1, 2, 3, . . .} = N is a set of ordinals having no
maximal element, and thus is not a number. Likewise, ∅ is not a number. The
maximal element b(x) of x plays the rôle of a "full stop sign" at the end of a
phrase x: it is a necessary part of the phrase, though usually not pronounced.
As a consequence, an ordinal β is a number if, and only if, it has a maximal
element, i.e., if it is a successor ordinal in von Neumann’s system. To remain
in keeping with Conway’s notation, we therefore must define: for every von
Neumann ordinal α, the corresponding Conway ordinal αCo is given by

α := αCo := α+ 1. (1)

Just like the von Neumann hierarchy, numbers are organized in stages: for
every ordinal α, we let NOα be the set of numbers x such that b(x) < α. The
union of all NOα forms a proper class NO in VN, called the class of (Conway)
numbers, and containing in turn the class of (Conway) ordinals. In some text-
books on set theory (cf. [D], p. 88), the von Neumann stages VNα are repre-
sented like an icecream cone – their size exploses as a function of α ("tetra-
tion"). Now, there is another cone NO inside, whose size growths roughly
by 2α, still much faster than the linear growth of ON, but much gentler than
"tetration".

0.3 The number tree

As emphasized by Ehrlich ([E12, E20]), the structure of binary tree on NO is a
salient feature: this tree is the Hasse diagram of a natural partial order x ≺ y,
meaning "y is a descendant of x", or "x is an initial segment of y". Every
number x has exactly two immediate descendants (children), denoted by x+

and x−. We start by the root 0Co and represent right-descendants x+ by a
right branch and left-descendants x− by a left branch. Here is a figure of the
number tree NO4:
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{0}

{1} {0, 1}

{2} {1, 2} {0, 2} {0, 1, 2}

{3} {2, 3} {1, 3} {1, 2, 3} {0, 3} {0, 2, 3} {0, 1, 3} {0, 1, 2, 3}

The innocent-looking definition (1) is of utmost importance for all the follow-
ing, and it reflects some rather subtle issues to which Conway alludes by an
amusing anecdote told in the nice book [CG], beginning of Chapter 10, under
the headline "Sierpiński’s luggage". 4

0.4 Sign expansions: "Sierpiński’s luggage"

Our setting of surreal numbers is close to the approach via sign-expansions
used by Gonshor [Go]. Let us define:

Definition 0.2. The sign-expansion s = sx of a number x is defined by:

sx(α) :=

{+ if α is an element in x, i.e.: α < b(x) and α ∈ x,
− if α is a hole in x, i.e.: α < b(x) and α /∈ x,
0 if α is not in x, i.e.: if α ≥ b(x).

Here is the binary tree NO4, written in terms of sign-expansions (you may
adjoin as many zeroes to the right of each entry as you like):

000

−00 +00

−− 0 −+ 0 +− 0 + + 0

−−− −−+ −+− −++ +−− +−+ ++− +++

Compare this to the basic definition adopted in [Go], p.3: A surreal number is a
function from an initial segment of the ordinals into the set {+,−}, i.e., informally,
an ordinal sequence consisting of pluses and minuses which terminate. The empty
sequence is included as possibility. It is not quite clear to me what the words
"which terminate" shall mean: Does the empty sequence terminate? Does a
sequence of ω pluses "terminate"? Gonshor adds: For stylistic reasons I shall

4Wacław Sierpiński, the great Polish mathematician, was very interested in infinite numbers. The
story, presumably apocryphal, is that once when he was travelling, he was worried that he’d lost one piece
of his luggage. "No, dear!" said his wife, "All six pieces are here." "That can’t be true," said Sierpiński,
"I’ve counted them several times: zero, one, two, three, four, five." (He forgot to say: "full stop: six.")
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occasionally say that a(α) = 0 if a is undefined at α. This should be regarded as an
abuse of notation since we do not want the domain of α to be the proper class of all
ordinals. It is quite unsatisfying to start the basic definition of a theory by an
"abuse of notation", which, as often, reflects a fundamental problem – in our
case, the missing distinction between Conway and von Neumann ordinals.

0.5 The Conway reals

NO contains a canonical copy of R which we call the Conway reals, RCo. The set
RCo is a a disjoint union of the set of short numbers NOω (the finite subsets of
ω = N) with the set of long reals – those of the form x = X ∪ {ω}, with X ⊂ N

both infinite and co-infinite. The short numbers correspond to dyadic rationals:
NOω

∼= Z[ 12 ]. Under this correspondence, the number tree NO4 is represented
like this, where all Conway reals ought to carry an index Co omitted here:

0

−1 1

−2 − 1
2

1
2

2

−3 − 3
2 − 3

4
− 1

4
1
4

3
4

3
2

3

We call mirror Berlekamp algorithm (Theorem 2.16) the algorithm translating
sets (numbers x) into real numbers, and vice versa – indeed, it is a version of
Berlekamp’s Rule ([ONAG], p. 31), simpler than the original one because it is
performed using the left part of the tree, and not the positive (right) part. The
Conway reals RCo form model of R in the von Neumann universe. As far as
the order structure is concerned, this is easy:

0.6 Total order

Order structures of NO can all be described in terms of the natural order of
ordinals. There are partial orders, like �, or "older than", and there is a total
order ≤ (Theorem 2.26). To highlight the order theoretic viewpoint, one may
consider for any well-ordered set (M,<) the set NOM of numbers in M ,

NOM := {x ∈ P(M) | x has a maximum, denoted by b(x)}. (2)

All our order-theoretic definitions can be formulated for NOM . Total order
≤ and tree-order � have close relations among each other : in the figures of
the tree, the total order increases from left to right, the birthday from top to
bottom, and � according to the edges of the tree. In our setting, this is the
easy part.
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0.7 Conway cuts, and arithmetic operations

Extending the arithmetic structure of RCo to all of NO is an entirely differ-
ent problem. For the time being, I do not know a "direct" or "simple" algo-
rithm how to define and compute sum x + y and product xy of x, y ∈ NO, in
terms of sets or of sign-sequences. It needed Conway’s genius to find a pro-
cedure of defining the arithmetic structure, described in a very concise way
p.4-5 [ONAG]. Because of its importance we quote the whole paragraph:

Construction. If L,R are any two sets of numbers, and no member of L is ≥ any
member of of R, then there is a number {L|R}. All numbers are constructed this way.

Convention. If x = {L|R} we write xL for the typical member of L, and xR for
the typical member of of R. For x itself we then write {xL|xR}.

x = {a, b, c, . . . |d, e, f, . . .} means that x = {L|R}, where a, b, c, . . . are typical
members of L, and d, e, f, . . . the typical members of R.

Definitions.

Definition of x ≥ y, x ≤ y.

We say x ≥ y if (no xR ≤ y and x ≤ no yL), and x ≤ y iff y ≥ x. We write x 6≤ y
to mean x ≤ y does not hold.

Definition of x = y, x > y, x < y.

x = y iff (x ≥ y and y ≥ x). x > y iff (x ≥ y and y 6≥ x). x < y iff y > x.

Definition of x+ y.

x+ y = {xL + y, x+ yL|xR + y, x+ yR}
Definition of −x.

−x = {−xR| − xL}
Definition of xy.

xy = {xLy + xyL − xLyL, xry + xyR − xRyR |
| xly + xyR − xLyR, xRy + xyL − xRyL}.

Conway’s framework is quite different from the one proposed here, and
we follow the same strategy as Gonshor to translate between the settings: the
"Fundamental Existence Theorem" ([Go] Thm. 2.1, our Theorem 2.72) ensures
that every number x can be represented by a Conway cut (L,R) in NO. This
representation is not unique, but it can be used to define the arithmetic oper-
ations by the formulae given above. The "Fundamental Existence Theorem"
(Theorem 2.72) essentially corresponds to connectedness and completeness of the
binary number tree (Theorems 2.45, 2.41). This also entails that Alling’s axioms
of surreal number systems (recalled in Def. 2.79) are satisfied, and establishes
equivalence of our approach with all other known approaches to surreal num-
bers. Thus a first goal of the present work is achieved: we have given a simple
and rigorous definition of NO based on classical, "pure", set theory. Let me
explain what is meant by this term.
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0.8 Pure set theory, or: "What are the elements of π"?

We start this paper with a Chapter 1 on the von Neumann universe. The von
Neumann universe plays a paradoxical role in mathematics: on the one hand,
it is the canonical model of set theory – there is just one empty set, and by in-
duction, all other sets, too, are unique like individual persons, defined by their
place in the von Neumann hierarchy. On the other hand, everybody agrees
that this model has "nothing to do with the real mathematical life", and "no-
body considers mathematical objects as sets of sets of sets...", in other words,
that it is practically irrelevant.5 I would like to propose, be it just by curiosity
to see where it leads, as a sort of game or experiment, to take temporarily the
opposite position: to do as if the von Neumann hierarchy perfectly encoded
"the rules of the game of the mathematical universe", and do as if mathemat-
ical objects were indeed pure sets. I have been playing this game for some
time, and the longer I do so, the more it appears to make sense. To be more
specific, it seems to shed light onto a fundamental issue of modern mathemat-
ics, "classical", versus "quantum":

1. "Quantum" is discreteness and the tree-like structure of a world orga-
nized in hierarchies, molecules, atoms, particles called "elementary" on
some level, but appearing less elementary on the next higher level ; these
levels are organised in "stages", indexed by quantum numbers, e.g., the
one called "birthday" by Conway, and "rank" by von Neumann,

2. "Classical" mathematics thinks the world as a "continuum", ignoring the
notion of "rank" or "birthday". Sets are underlying to "spaces", whose
elements are considered to be "points": points have no internal structure
and no "individuality". Classically, "equality" always means "equiva-
lence under isomorphy", referring to some category; it makes no sense
to ask if two isomorphic objects "are the same, or not". A global "equality
relation" on the mathematical universe appears to be a fiction.

"Quantum" seems to be paradoxical and disturbing – traditionally, we all
think "classically", and tend to believe that this point of view is the only cor-
rect and mathematically reasonable one. To express this, some authors point
out that it makes no sense to ask questions like, for instance: "what are the
elements of π?"6 But why does it not make sense? The problem comes from
the notion of ordered pair. Let me explain:

The trouble with Kuratowski’s definition

The "elements of π" would depend on the model of R that we use; and these
models use standard constructions of mathematics: Cartesian products, equiva-
lence relations, functions, and so on. Most of it is based on the notion of ordered
pair. In set theory, the most commonly accepted definition of ordered pair is
the Kuratowski definition (see Eqn. (3.3)). However, there exist several variants of this definition,
and none of them is "natural" in any way. Halmos [Ha], p. 24/25, remarks:

5Cf. the detailed discussion p.125/26 in [D], which is very well-written reference on general
set-theory.

6E.g., [Lei], Introduction.

https://en.wikipedia.org/wiki/Ordered_pair#Kuratowski's_definition
https://en.wikipedia.org/wiki/Ordered_pair#Defining_the_ordered_pair_using_set_theory
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"The explicit definition of the ordered pair (by (3.3)) is frequently relegated to
pathological set theory," leading to "mistrust and suspicion that many math-
ematicians feel towards (this) definition". Indeed, every definition of the "el-
ements of π" that would use the Kuratowski definition is biased by this ar-
bitrary choice, and would not have much sense. Thus let us call natural (in
the sense of pure set theory) every construction of the field R in ZF-set theory
that does not refer, explicitly or implicitly, to the Kuratowski construction of
ordered pairs. As far as I see, all of the constructions described in the com-
prehensive overview [We] are not natural in this sense (recall that already the
usual constructions of Z and Q out of N do use ordered pairs). Now, it is
remarkable that, The construction of the Conway reals RCo is natural. It even
appears to be the only natural construction of R I know of. (Note that this
construction can easily be given without mentioning the general class NO sur-
rounding it.)7 Summing up, the question "what are the elements of π?" does
make sense in pure set theory, and it does have an answer (Example 2.18).

0.9 Approach by combinatorial game theory

My aim is to analyze, as completely as possible, the relations between stan-
dard set theory and foundations of surreal numbers. Of course, already Con-
way himself discusses such foundational issus, including the trouble with the
Kuratowski definition, at various places, e.g., in the Appendix to Part Zero
(p. 64–68 in [ONAG]), p.25–27 ("The logical theory of real numbers"), and in
the Epilogue, p. 225–228 loc. cit. He admits his dissatisfaction both with Gon-
shor’s and Alling’s approaches, on the grounds that the true nature of his
constructions belongs to the more general context of combinatorial game theory
(see Chapter VIII of [S] for a modern account). He writes ([ONAG], p.65/66):

Plainly the proper set theory in which to perform a formalisation would be one
with two kinds of membership, and would in fact be very much like the abstract
theory of games that underlies the next part of this book.

In Chapter 3, I try to carry out this idea. Implicitly, this is also done in [S],
however, the relevance for general pure set theory remains invisible there.
Historically and logically, combinatorial game theory developed in two steps:

(A) The theory of impartial games (Sprague, Grundy). H.W. Lenstra was one
among the first to notice that this theory corresponds exactly to what we
call "pure set theory": [Le], p.1, "Definition. A game is a set."

(B) The theory of partizan games, started by Conway, with Berlekamp and
Guy. The quote given above is a very precise definition: it is set theory
with two kinds of membership, say ∈L and ∈R, replacing ∈.

The "universe" for (A) is the von Neumann universe VN. We define the "uni-
verse" for (B), which we call the graded von Neumann universe V̂N. Our defini-

7Weiss, [We], completely underestimates the novelty of Conway’s approach: he writes, ...one
may view the surreal number system as providing yet another construction of the real numbers. However,
when one distills just the real numbers from the entire array of surreal ones, the construction basically
collapses to the Dedekind cuts construction. This is not true.

https://en.wikipedia.org/wiki/Combinatorial_game_theory
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tion is close to the "universe of games" P̃G defined in [S], p.398, but we insist
on the fact that it really concerns set theory, and not so much a certain and
quite specialised application of mathematics. Compressed into a simple slo-
gan: Von Neumann created the "ungraded (impartial) universe" out of nothing, and
Conway created the "graded (partizan) universe" out of nothing. However, there is
also a "diagonal imbedding" of the ungraded into the graded universe, so the
partizan theory appears to be strictly more general than the impartial one.

There exists an analog of the surreal numbers in the ungraded context:
this is the Field of nimbers, another beautiful invention of Conway’s ([ONAG],
Chapter 6). We recall the main results (Section 3.1). The structural analogy

ungraded von Neumann universe
Field of nimbers =

graded von Neumann universe
Field of surreal numbers

is strong, but it becomes clear that the technical realization is much more com-
plicated in the graded case, and that certain objects are not yet well identified
in this context. In my opinion, this is an important topic for further research.

This analysis of the logical and set-theoretic foundations of surreal num-
bers leads me to the conclusion that Conway was wrong when objecting against
Gonshor’s definition of surreal numbers that it requires a prior construction
of the ordinals, which are in ONAG produced as particular cases of the surreals
([ONAG], p. 226). Indeed, the ordinals are the backbone of the von Neumann
universe, and the purpose of axiomatic set theory is to ensure their existence
and consistency. If it were true that in ONAG they are "produced", then this
would mean that Conway’s "axioms" (quoted in Section 0.7) are at least as
strong as those of axiomatic set theory. But Conway’s "axioms" are too weak
and not formal enough – they not even imply the axiom of infinity! (The stage
NOω of short numbers would be a valid "model of Conway’s axioms", which
thus could be realized in a finitary structure.) Or maybe by using the word
"set" in his definition, Conway implicitly assumed that axiomatic set theory
underlies also his theory – but then his objection against Gonshor would be
self-contradictory. Of course, these remarks by no means prevent recognizing
the genius and the profoundness of Conway’s work, but they confirm the im-
pression that Philip Ehrlich once expressed by saying that Conway was his own
worst enemy in promoting the surreals. 8

0.10 Everything is number

The final chapter 4 is both a summary of the preceding ones and a (personal)
outlook on further research topics.

In his overview [E20], Philip Ehrlich puts the Conway numbers into the
wide context of "infinitesimalist theories of continua", and I’m grateful to him
for mentioning in this context also my own contribution (cf. [Be08]), under the
hashtag TDC (topological differential calculus). Indeed, my motivation and
interest in Conway numbers come from my work on foundations of differen-
tial calculus and number systems containing infinitesimals, and I do believe
that the present approach to Numbers will, ultimately, make it possible to see

8See https://mathoverflow.net/questions/29300/whats-wrong-with-the-surreals .

https://en.wikipedia.org/wiki/Axiom_of_infinity
https://mathoverflow.net/questions/29300/whats-wrong-with-the-surreals
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most, if not all, of the approaches discussed in [E20] in a common language
and framework.

Both "TDC" and the present approach to Conway numbers reflect the Pytha-
gorian idea that everything is number, and "pure set theory" as defined above is
its prolongation even further. In the last chapter, we put forward some more
arguments which might support such a point of view. As a sort of preliminary
conclusion, this leads me to answer the question "what are Conway numbers
and what should they be?" They should, eventually, become to us as familiar
as the real numbers; as long as this is not the case, they "are" given by their
simplest model, and to my feeling this is the model proposed in Chapter 2.

I acknowledge that all original and deep ideas in this realm are due to John
Horton Conway, and my contribution simply is a modest, and possibly quite
naive, try to clarify the place that these ideas may deserve to take in the main-
stream mathematical universe. If the reader, and future mathematicians, may
retain something new it is probably the idea that ordinals, Conway numbers,
and the von Neumann universe should be seen as a kind of trinity, created on
the same grounds and enriching the understanding of each other.

Notation.

We use standard notation of set theory, and write VN for the class of the von
Neumann universe, and ON for the class of ordinals. The only deviation to
standard notation is that we denote ordinal addition by α ⊕ β, to distinguish
it from the Hessenberg sum α + β (which is also the Conway-sum), and simi-
larly α⊗ β for the usual ordinal product, reserving α · β for their Hessenberg-
Conway product. In our approach to Conway numbers, we will use several
(partial) order relations simultaneously, denoted by �,≤,⊑,⊆,... When a < b
in some ordered set, we use "French notation" for open, resp. closed intervals:

]a, b[ = {x | a < x < b},
[a, b] = {x | a ≤ x ≤ b},
[a, b[ = {x | a ≤ x < b}.

(3)

Recall that a subset I is called convex if, whenever a, b ∈ I , then also the in-
terval [a, b] belongs to I . We say that b is an immediate successor of a, or a is
an immediate predecessor of b, if a < b and ]a, b[= ∅. Ordinal intervals, that is,
intervals in ON, are denoted by double brackets, e.g.,

[[β, γ]] = {α | β ≤ α ≤ γ},
]]β, γ[[ = {α | β < α < γ}. (4)



Chapter 1

The von Neumann universe

1.1 The Beginning of Infinity

For convenience of the reader, we recall the construction of the von Neumann
universe VN, in the spirit of "naive set theory" ([Ha]), not going into details of
axiomatic set theory. The von Neumann universe is the "universe of all pure
sets", that is, the universe of all sets all of whose elements are sets. To construct
it, start from (0), and build up "stages" using (1) and (2):

(0) (Empty set.) There exists a set ∅ having no elements.

(1) (Power set.) For every set M , there is a set P(M) whose elements are all
the subsets of M . Note that A ⊂ B implies P(A) ⊂ P(B).

(2) (Ascending unions.) Assume M is a chain (i.e., a set of sets which is
totally ordered for inclusion: for all a, b ∈ M , we have a ⊂ b or b ⊂ a).
Then there is a set S =

⋃
a∈M a which is the union of all sets a ∈ M .1

Thus, the beginning of this hierarchy is defined as follows: let VN0 := ∅, and

VN1 = P(∅) = {∅},
VN2 = P(P(∅)) = P({∅}) = {∅, {∅}},
VN3 = P({∅, {∅}}) = {∅, {∅}, {{∅}}, {∅, {∅}}},

VNn+1 = P(VNn).

Since VN0 = ∅ ⊂ VN1, we get by complete induction that VNn ⊂ VNn+1, for
all n ∈ N. Therefore, by Principle (2), the union

⋃
n∈N

VNn should exist. An
element x of this union is called of rank n if n is the smallest integer such that
x ∈ VNn+1. To get a more intelligible notation, we let

I := {∅} = {{}}, (1.1)

II := {I} = {{∅}} = {{{}}}, (1.2)

III := {∅, I} = {∅, {∅}} = {{}, {{}}}, (1.3)

1This seems more intuitive than the stronger axiom of union that ∪M exists for any set of sets.
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so VN1 = {∅}, VN2 = {∅, I}, VN3 = {∅, I, II, III}. The only pure set of rank 0
is ∅, the only one of rank 1 is I, there are 2 = 4 − 2 sets of rank 2, namely II

and III, and there are 16 − 4 = 12 sets of rank 3. Let us give their list, with
order number in colex-order, as follows. By "depth 1" we mean the description
of a set by a plain list of its elements, by "depth 2 we replace again each of
those elements by its list of elements, and we leave to reader to give a "depth
3"-description, replacing I by {∅}. As symbols for these sets we use roman
letters. Horizontal lines indicate stratification by rank.

Table 1.1: The beginning of infinity

order number symbol rank depth 1 depth 2
0 ∅ 0 ∅ ∅
1 I 1 {∅} {∅}
2 II 2 {I} {{∅}}
3 III 2 {I, ∅} {∅, {∅}}
4 IV 3 {II} {{I}}
5 V 3 {II, ∅} {{I}, ∅}
6 VI 3 {II, I} {{I}, ∅}
7 VII 3 {II, I, ∅} {{I}, {∅}, ∅}
8 VIII 3 {III} {{I, ∅}}
9 IX 3 {III, ∅} {{I, ∅}, ∅}
10 X 3 {III, I} {{I, ∅}, {∅}}
11 XI 3 {III, I, ∅} {{I, ∅}, {∅}, ∅}
12 XII 3 {III, II} {{I, ∅}, {I}}
13 XIII 3 {III, II, ∅} {{I, ∅}, {I}, ∅}
14 XIV 3 {III, II, I} {{I, ∅}, {I}, {∅}}
15 XV 3 {III, II, I, ∅} {{I, ∅}, {I}, {∅}, ∅}
16 XVI 4 { IV } {{II}}

The elements with order number 0, 1, 3, 11, . . ., that is, Nn+1 = 2Nn +Nn, are
the von Neumann ordinals, and those with order number 0, 1, 2, 4, 16, . . ., that
is, Zn+1 = 2Zn , are the Zermelo ordinals, see below, Remark 1.2.

1.2 Von Neumann ordinals and von Neumann stages

The general von Neumann stages are indexed by ordinal numbers, which form
a proper class ON generalizing the natural numbers N. Like the natural num-
bers, ordinals are well-ordered: Every non-empty set of ordinals contains a min-
imal element. Von Neumann’s insight was that there exists a natural "model"
of the ordinals given by pure sets, such that the order relation gets modelized
by the element-relation. We shall use this model. However, since there exist
other models of ordinals by pure sets (see Remark 1.2), we will call them the
von Neumann ordinals, and will write αvN instead of α, if necessary. We use
the same three principles as in the construction of VN: start with 0vN = ∅, and
define the (von Neumann) successor of an ordinal αvN by

(α + 1)vN := αvN ∪ {αvN}. (1.4)

https://en.wikipedia.org/wiki/Lexicographic_order#Colexicographic_order
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Thus,

1vN = {∅} = {0vN}, 2vN = {0vN, 1vN} = {∅, {∅}}, 3vN = {0vN, 1vN, 2vN} . . .
where we have already met 1vN = I and 2vN = III and 3vN =XI (the set with
order number 11 in Table 1.1). An ordinal β is a successor ordinal, β = α + 1,
if and only if it has maximal element (namely, α). An ordinal β that does not
have a maximal element is called a limit ordinal. Every limit ordinal β is the
union (supremum) of its preceding ordinals:

β =
⋃

α∈β

α = ∪β. (1.5)

In particular, we consider ∅ as limit ordinal, and the smallest infinite ordinal
ω is the next limit ordinal:

ω = ω0 =
⋃

n∈N

nvN = {0vN, 1vN, 2vN, . . .} = N. (1.6)

Existence and consistency of these constructions is ensured by axiomatic set
theory, which we will not recall here.2 As a result, the class ON of von Neu-
mann ordinals is a subclass of VN, such that each rank in VN is represented by
exactly one ordinal, and it satisfies:

1. ∅ is an ordinal,

2. for two ordinals α, β, either α = β, or α ∈ β, or β ∈ α,

3. if α ∈ β and β ∈ γ, then α ∈ γ, so ∈ defines a total order on ON,

4. every non-empty set of ordinals contains a smallest element.

It follows that α ≤ β iff α ⊂ β, and α ∪ β is the ordinal max(α, β) and α ∩ β
the ordinal min(α, β). Not only the chain of ordinals has no end, but also the
chain of limit ordinals has no end: by induction, the ordinals ω + n for n ∈ N

are defined, etc., and we get, e.g.,

ω · 2 := ∪n∈N(ω + n),

ω2 := ∪n∈N(ω · n), . . . ,
ωω := ∪n∈N(ω

n), . . . ,

ε0 := ω ∪ ωω ∪ ωωω ∪ . . . .

There are ever and ever larger limit ordinals, and beyond ε0 it becomes in-
creasingly difficult to define them: there is no "general algorithm" to do this.
Now we can more formally define the construction of VN:

Definition 1.1. The von Neumann hierarchy is the collection of sets VNα, for
each ordinal α, given by: for successor ordinals,

VNα+1 := P(VNα),

and for limit ordinals:
VNα :=

⋃

β ordinal,β<α

VNβ .

2In particular, the "NBG-versus-ZF discussion" (cf. [A], p.15) is unimportant for the present
work: all "proper classes" we deal with reduce to honest sets, by intersecting them with α-stages.
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Set theory tells us that we then have the principle of transfinite induction,
or principle of ǫ-induction: assume a property P (α) holds for an ordinal α whenever
P (β) holds for all β ∈ α; then P (α) holds for all ordinals. Or: Assume a property
holds for a pure set x whenever it holds for all elements of x. Then it holds for all pure
sets.

We conclude this section by some general remarks. By (naive) pure set theory
we mean a study of things one can do with pure sets by taking seriously the
definition of the von Neumann hierarchy. That is, retain and study features of
sets seen as elements of VN, for instance, the rank of a set, or the theory of ON
and of NO. We’ll see in Chapter 3 that pure set theory is just another way of
looking at the theory of impartial combinatorial games, and then propose a setting
of "pure set theory with two different kinds of membership relation", to cover
the theory of partizan games. Results can be interpreted as being about "games",
or about "pure sets", whatever the reader may prefer.

Remark 1.2 (Zermelo-ordinals). Another model of the ordinals by pure sets is attributed to E. Zermelo:
start with 0Z := ∅, and define successors by

(α+ 1)Z := {αZ}. (1.7)

The litterature is not clear about Zermelo’s definition of limit ordinals λZ . One
possibility would be

λZ := ∪α<λαZ . (1.8)

This system is less satisfying than von Neumann’s, but would lead to the same
hierarchy VN, with essentially the same rank function. Another, quite radical,
choice (indexed by X) would be to choose VNα itself as ordinal αX . The order
number of nX in Table 1.1 is wn+1 − 1 with wn as follows:

Remark 1.3. The cardinality wn of the stages VNn for n ∈ N growths by
tetration (see Section 1.3.2): it is given inductively by w0 = |VN0| = 0, and
wn+1 = 2wn , so wn = H4(2, n), starting with the values

n : 0 1 2 3 4 5 6
wn : 0 1 2 4 16 216 = 65536 265536 ≃ 1020.000

As has been remarked,w6 exceeds by far the number of atoms in the physical universe,
so the von Neumann hierarchy certainly has "room enough" to modelize any
physical system one may imagine. My point of view is that the stages VNn

look like interesting mathematical objects in itself, and that it may be worth
studying them as algebraic structures in their own right (Chapter 4).

1.3 Ordinal arithmetic, and hyperoperations

By induction, the successor operation α 7→ α + 1 on ordinals gives rise to
several binary operations on ordinals:

1. Usual ordinal arithmetic, going back to Cantor himself: we will denote
ordinal addition by ⊕ and ordinal multiplication by ⊗. These operations
are associative and "continuous in the second argument", but fail to be
commutative.

https://en.wikipedia.org/wiki/Transfinite_induction
https://en.wikipedia.org/wiki/Epsilon-induction
https://mathoverflow.net/questions/273292/where-did-zermelo-first-model-the-natural-numbers-by-iterates-of-the-singleton-o
https://en.wikipedia.org/wiki/Tetration
https://en.wikipedia.org/wiki/Eddington_number
https://en.wikipedia.org/wiki/Ordinal_arithmetic#Addition
https://en.wikipedia.org/wiki/Ordinal_arithmetic#Multiplication
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2. The so-called natural sum and natural product, going back to Hessenberg,
and which we will denote by + and ·. They are commutative, associa-
tive, and distributive, but fail to be continuous in one of the arguments.

Our choice of notation is dictated by the link with surreal numbers: the Field
operations there will correspond to + and ·, and not to ⊕ and ⊗.

1.3.1 Ordinal arithmetic

Definition 1.4. By transfinite induction, for a pair of ordinals (α, β), we define

ordinal addition α⊕ β by α⊕ 0 = α, and

α⊕ (β + 1) := (α⊕ β) + 1

α⊕ β :=
⋃

β′<β(α⊕ β′) if β is a limit ordinal,

ordinal multiplication α⊗ β by α⊗ 0 = 0,

α⊗ (β + 1) := (α⊗ β)⊕ α

α⊗ β :=
⋃

β′<β(α⊗ β′) if β is a limit ordinal,

ordinal exponentiation α⊕⊗ β by α⊕⊗ 0 = 1, and

α⊕⊗ (β + 1) := (α⊕⊗ β)⊗ α

α⊕⊗ β :=
⋃

β′<β(α⊕⊗ β′) if β is a limit ordinal.

Theorem 1.5. When restricted toN, these operations give the usual operations +, ·, αβ

of natural numbers. For general ordinals, these operations are no longer commutative,
but ⊕ and ⊗ are still associative, and they are left distributive, i.e.,:

α⊗ (γ ⊕ β) = (α⊗ γ)⊕ (α⊗ β),

α⊕⊗ (γ ⊕ β) = (α⊕⊗ γ)⊗ (α⊗ β).

Proof. Textbooks on set theory. (See, e.g., https://www.math.uni-bonn.de/ag/logik/teaching/2012WS/Set
for full details.)

To illustrate non-commutativity:

1⊕ ω =
⋃

n∈N
(1 + n) = ω,

ω ⊕ 1 = ω + 1.

2⊗ ω = ∪n∈N(2n) = ω,

ω ⊗ 2 = ω ⊕ ω > ω.

Some more properties: ordinal addition admits left subtraction: when α ≤ β,
there exists a unique γ such that β = α⊕ γ. It follows that every ordinal α has
a unique decomposition

α = λ⊕ n = λ(α)⊕ n(α), λ limit ordinal, n ∈ N. (1.9)

Also, there is a left division with remainder: given α, and β 6= 0, we can write

α = β ⊗ u⊕ v, with unique u and v < β. (1.10)

https://en.wikipedia.org/wiki/Ordinal_arithmetic#Natural_operations
https://www.math.uni-bonn.de/ag/logik/teaching/2012WS/Set%20theory/oa.pdf
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Taking β = ω, we get α = ω ⊗ u⊕ v, with v ∈ N. Decomposing u again in this
way, etc., we get after finitely many steps the Cantor normal form of an ordinal

α =
N⊕

i=1

ωui ⊗ vi, where u1 > . . . > uN ≥ 0, vi ∈ N \ {0}. (1.11)

Continuity (1.13) has the good effect that "infinite sums" make no problem:

Definition 1.6. Assume given ordinals nα for all ordinals α < γ. Then the
(generically) infinite sum ⊕α<γnα is defined by transfinite induction via:

⊕

α<γ

nα :=
{ ⊕α<β nα ⊕ nβ if γ = β + 1
∪β<γ(⊕α<βnα) if γ is a limit ordinal.

1.3.2 The hyperoperations

The sequence of operations ⊕,⊗,⊕⊗ can be extended, to finite or infinite rank.
For a, b, n ∈ N, the classical hyperoperations Hn(a, b) ∈ N are defined by:

(1) initial conditions

H0(a, b) = b+ 1, H1(a, 0) = a, H2(a, 0) = 0, Hn(a, 0) = 1 if n ≥ 3,

(2) recursion formula

Hn+1(a, b+ 1) = Hn(a,Hn+1(a, b)). (1.12)

Then, by complete induction, it follows, among other things, that

H1(a, b) = a+ b (sum),

H2(a, b) = ab (product),

H3(a, b) = ab (exponentiation),

H4(a, n) = a(a
(a...)) with n terms: this operation is called tetration,

Hn(a, 1) = a if n ≥ 1,

Hn+1(a, 2) = Hn(a, a); for instance aa = H3(a, a) = H4(a, 2).

Remark 1.7. Following Doner and Tarski [DT], the hyperoperations can be ex-
tended to ordinal numbers a, b, n. We shall keep n finite, and define Hn(α, β)
for ordinals α, β, as follows: H0 is just the ordinal successor function. The re-
cursion formula (1.12) remains the same for successor ordinals β+1. To define
Hn(a, b) for limit ordinals b, we demand continuity in b:

Hn(a, b) = Hn(a,
⋃

b′<b

b′) =
⋃

b′<b

Hn(a, b
′). (1.13)

By transfinite induction, Hn(a, b) is then defined for all ordinals a, b (n finite).

Then H1(a, b) = a⊕ b is ordinal addition, but H2(a, b) would fail to define
a ⊗ b, because of non-commutativity of ⊕. For this reason, Doner and Tarski
use a slightly different definition: their operations On(a, b) are defined by the
recursion

On+1(a+ 1, b) = On(On+1(a, b), a)

https://en.wikipedia.org/wiki/Ordinal_arithmetic#Cantor_normal_form
https://en.wikipedia.org/wiki/Hyperoperation
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and the initial datum O0(a, b) = a ⊕ b. Then O1 is indeed ordinal multiplica-
tion, and O2 is ordinal exponentiation (but O3 is not ordinal tetration).

The first of Cantor’s epsilon-numbers can be defined by ε0 = H5(ω, 2). It
cannot be finitely expressed by addition, multiplication and exponentiation
of lower ordinals. And there are ever and ever larger ordinals that cannot be
attained from below by the sequence of hyperoperations.

1.3.3 Hessenberg sum and product of ordinals

Besides the (Cantor) operations of ordinal calculus, there are also the Hessen-
berg, or natural, operations on ordinals (sum and product), which are associa-
tive and commutative. There are several different definitions of theses opera-
tions, but I have not been able to find a reference where this is systematically
treated. I mention some of them, without going into details:

Definition in terms of surreal numbers

The Hessenberg operations are the restriction of sum and product from sur-
real numbers NO to the (Conway) ordinals. For this reason we denote them
by + and · . Conway’s construction does not need a prior definition of the
Hessenberg operations, so it can indeed be used to define them. However,
Gonshor [Go], p. 13, and Alling [A], p. 133, use the natural sum in the formal-
isation of their inductive proofs, so they assume it to be defined beforehand.
(From a logical viewpoint, this seems to be unnecessary, and it is merely a
technical question of organizing inductive proofs on several variables.)

Definition in terms of the Cantor normal form

This seems to be the most common definition: using the Cantor normal form
(1.11), ordinals are added and multiplied "as one would expect", using asso-
ciativity and commutativity: let α = ⊕k

i=1ω
αi and β = ⊕ℓ

j=1ω
βj ; these finite

sums with decreasing αi, resp. βj are the same for both symbols ⊕ and +.
Then

α+ β := ⊕k+ℓ
i=1ω

γ
i (1.14)

where γ1, . . . , γk+ℓ are the exponents α1, . . . , αk, β1, . . . , βℓ sorted in nonin-
creasing order. Using the Hessenberg sum, the Hessenberg product is defined
by

α · β :=
∑

1≤i≤k
1≤j≤ℓ

ωαi+βj . (1.15)

Order theoretic definition

Carruth ([Ca]) shows that α + β is a mimal natural well-order on the disjoint
union of α and β, and α·β a minimal natural well-order on the Cartesian product
α × β. For our purposes, this approach is unsuitable, since the notions of
disjoint union and Cartesian product are more problematic in pure set theory
than the operation we wish to define.

https://en.wikipedia.org/wiki/Epsilon_number
https://en.wikipedia.org/wiki/Large_countable_ordinal
https://en.wikipedia.org/wiki/Ordinal_arithmetic#Natural_operations
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Definition by transfinite induction

Avoiding the use of the Cantor normal form, in a spirit similar to the work
[DT] mentioned above, one may define the Hessenberg operations induc-
tively. We may keep the recursion (1.12) for successor ordinals, but modify
Condition (1.13) from the limit case in the following way:

H̃n(a,
⋃

b′<b

b′) =
⋃

b′<b

max(H̃n(a, b
′), H̃n(b

′, a)), (1.16)

i.e., by forcing it to be commutative in the limit (then by induction commu-
tativity holds for all ordinals). Then H̃1(a, b) = a + b is the Hessenberg sum
of a and b, and one can show that H̃2(a, b) is the Hessenberg product of ordi-
nals. 3 However, this definition destroys continuity with respect to limits, and
therefore one has to be very careful with possibly infinite sums.

Definition of "sums of pure sets", Conway-style

Remarkably, the operations + and ⊕ extend to associative operations on the
whole von Neumann universe. Such "Conway-style" definitions really belong
already to Chapter 3, see Theorems 3.5 and 3.11. However, concerning · and
⊗, the situation is more complicated: "Conway-style" definitions still work,
but the operations thus defined tend to have less nice properties.

3Concerning the natural sum, this is the definition mentioned at the wikipedia page : We can
also define the natural sum of α and β inductively (by simultaneous induction on α and β) as the smallest
ordinal greater than the natural sum of α and γ for all γ < β and of γ and β for all γ < α . Concerning
the natural product, I do not know about references.



Chapter 2

A construction of Conway

numbers

2.1 Numbers and their quanta

We recall basic definitions and examples already given in the introduction:

Definition 2.1. A (Conway) number, surreal number, or just number, is a set x of
(von Neumann) ordinals having a maximal element max(x). (In particular, x
is non-empty.) This maximal element is called the birthday of x and denoted
by b(x). We say that x is older than y, if b(x) < b(y).1 We say that an ordinal α

– is an element in x if α ∈ x and α < b(x); we then let sx(α) = +;

– is a hole in x if α /∈ x and α < b(x) ; we then let sx(α) = −;

– is not in x if α ≥ b(x); then we let sx(α) = 0.

The Function sx : α 7→ sx(α) is called the sign-expansion of x (cf. Def. 0.2).

The birthday b(x) is an element "of x" , but not "in x": one may think of it
as the "boundary of x", being neither "in x" nor "outside of x".

Definition 2.2. The opposite x♯ of a number x is the number obtained by ex-
changing the signs + and − in the sign-expansion; that is, exchanging "ele-
ments in x" and "holes in x":

x♯ := {α | α < b(x), α /∈ x} ∪ {b(x)}.

Example 2.3. The empty set ∅ is not a number. The set N = ω is not a number:
in fact, no limit ordinal is a number since it has no maximum. No infinite
subset of N is a number, since it has no maximum.

Definition 2.4. A short number is a non-empty and finite subset of N.

A long Conway real is a number of the form x = X ∪ {ω}, where X ⊂ N is a
subset that is both infinite and co-infinite (i.e., N \X is infinite). The birthday
of such a number is ω.

1Conway says "simpler than" instead of "older than", but other authors use the term "simpler
than" for the relation �, see Def. 2.30; for this reason we rather avoid it.

21
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A Conway real is either a short number, or a long Conway real.

For instance, the set P of prime numbers in N defines a long Conway real
P∪{ω}. We’ll see that there is a structure-preserving bijection between "usual"
reals R, and the set RCo of Conway reals (Section 2.3).

Example 2.5. Every successor ordinal α+1 has a maximum, namely α, hence
is a number. In particular, n+ 1 = {0, . . . , n} is a (short) number, and I = {0}
is the oldest of all numbers. There exist numbers that are finite sets but are not
short: for instance, x = {ω} is such a number (it is not a real number).

Definition 2.6. For every (von Neumann) ordinal α, the corresponding Con-
way ordinal is the number defined by α := αCo := (α + 1)vN, see Equation (1).
Its birthday is α.

Definition 2.7. To every number x, we associate two other numbers, its right
child x+ and its left child x− :

x+ := x ∪ {b(x) + 1},
x− := x ∪ {b(x) + 1} \ {b(x)}.

The maximal element is b(x) + 1, whence, in both cases: b(x±) = b(x) + 1.

The preceding definition leads to the structure of the binary tree of numbers
– see Section 2.5.

Quanta

To every number x we associate certain ordinals or integers, which we call
quanta of x. The most fundamental quantum of x is its birthday b(x). Another
fundamental quantum of x is its tipping element (tipping point), the first place
where a sign change occurs in the sign expansion:

Definition 2.8 (Tipping Point). The tipping element of a number x is the ordinal

t(x) := min{α ∈ x | α+ 1 /∈ x, or ∃β /∈ x : α = β + 1}. (2.1)

By definition, t(x) is an ordinal belonging to x, and since b(x) satisfies the
condition inside the set description, such an ordinal exists, and we always
have t(x) ≤ b(x).

Definition 2.9 (Omnific integer). The (omnific) integer part of a number x is the
number

[x] := {α ∈ x | α ≤ t(x)}.
An omnific integer is a number x such that t(x) = b(x), equivalently, x = [x].

Definition 2.10 (Absolute) Sign). The (absolute) sign of a number x is

sgn(x) := +1 if 0 ∈ x, sgn(x) := −1 if 0 /∈ x. (2.2)

We’ll give more explanations and define other quanta in due course.
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2.2 The class NO: the Conway hierarchy

Just like the ordinals ON, the Conway numbers form a class, NO:

Definition 2.11 (Limit and successors, stages, boundary, the class NO).

• A number x is called a successor number if its birthday b(x) is a successor
ordinal, and a limit number if b(x) is a limit ordinal.

• For every ordinal α, the α-stage of numbers is the set

NOα := {x | x is a number with b(x) < α}
Stages form a hierarchy: α < β ⇒ NOα ⊂ NOβ . Note that NOα ⊂ VNα+1.

• For every ordinal α, we define the boundary of NOα

∂(NOα) := NOα+1 \ NOα = {x | x is a number with b(x) = α}.

• By NO we denote the (proper) class of all Conway numbers, formally:

NO =
⋃

α∈ON

NOα ⊂ VN.

Example 2.12 (Short numbers). A non-empty subset x ⊂ N is a number iff
it is finite, iff it is short. The set of all short numbers is NOω . Every short
number, except 0Co, is a successor number. For small values of α, we have
(with notation as in Table 1.1): NO0 = ∅,

NO1 = {{∅}} = {I} = II,

NO2 = {{0}, {1}, {0, 1}}= {I, II, III} = XIV,

NO3 = {{0}, {1}, {0, 1}, {2}, {0, 2}, {1, 2}, {0, 1, 2}}= {I, II, III,VII,VIII, IX,X}.

One observes that the share of NOα ⊂ VNα+1 is 1
2 for α = 1, it is 3

4 for α = 2,
it is 7

16 for α = 3, and then quickly tends to 0. Besides ∅, the "simpleset" pure
sets which are not numbers, are IV, V, VI, VII, XII, XIII, XIV, and XV (those in
Table 1.1 containing a II at depth 1).

Remark 2.13. The class of all Conway ordinals is the class of all von Neumann
successor ordinals. There is a Bijection between Conway ordinals and von
Neumann ordinals, just as there is one between all natural numbers and all
strictly positive natural numbers. In other terms, the Birthday Map b : NO →
ON has a Section α 7→ αCo. Note also that the rank of x in the von Neumann
universe is the successor of b(x), i.e.,

rank(x) = b(x) + 1. (2.3)

Remark 2.14 (Numbers in a well-ordered set). For every well-ordered set M ,
one can define similarly the set of numbers in M ,

NOM := {x ∈ P(M) | x has a maximum b(x) := max(x) }.
Since M is order isomorphic to some ordinal α, this is just the definition of
NOα in another form. This definition stresses the point of view that the theory
of surreal numbers can be considered as a topic in order theory, notably via
the interplay of several partial orders that can all be defined on NOM .
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2.3 Conway reals

An advantage of our approach is that the imbedding of the "usual" reals R into
the Conway-hierarchy can be defined in a simple and algorithmic way. Recall
Definition 2.4 of the set RCo of Conway reals. We will define two bijections,
inverse to each other,

RCo → R, x 7→ r(x), R → RCo, r 7→ x(r), (2.4)

satisfying a relation saying that x♯ corresponds to the usual negative:

r(x♯) = −r(x), x(−r) = (x(r))♯. (2.5)

Therefore it suffices to define r(x) only for x with negative sign (i.e., 0 /∈ x), or
only for x with positive sign (i.e., 0 ∈ x). The latter is the algorithm attributed
at p. 31 [ONAG] to Elwyn Berlekamp, defined for positive reals. However,
it turns out that for negative x the formalisation is somewhat simpler. The
reason is that, in this case, the tipping element t(x) (Def. 2.8) is equal to the
minimal element min(x) ∈ x, which is not the case for positive numbers. The
following algorithm starts by finding the integer part [x] of a number x, and
this in turn corresponds to determining the tipping element of x.

Example 2.15. Let x = {2, 3, 5}. Then min(x) = 2 = t(x), and [x] = {2}.

Let y = x♯ = {0, 1, 4, 5}. Then t(y) = 1 = min(y♯)− 1, and [y] = {0, 1} = 1Co.

Theorem 2.16 (The mirror Berlekamp algorithm). There is a bijection from the
(usual) reals R onto the set RCo of Conway-reals, given as follows:

1. Let x be a Conway real with negative sign, i.e., 0 /∈ x, i.e., min(x) ∈ N,
min(x) > 0. Let X = x ∩ N. Define the "usual" real number

r := r(x) := −min(x) +
∑

m∈X,m>min(x)

(
1

2
)m−min(x).

If 0 ∈ x, then the corresponding usual real is defined to be r(x) = −r(x♯).

2. In the other direction, let r ∈ R be negative, and expand

r = −r0 +

∞∑

k=1

ak2
−k, r0 ∈ N∗, ak ∈ {0, 1}.

Avoid ambiguity of such representation by replacing "long ends" (∃m : ∀k >
m : ak = 1) always by the corresponding finite sum. If the expansion is finite,
the corresponding Conway real is the short number

x = x(r) = {r0} ∪ {r0 + k | k ∈ N, ak = 1},

and if the expansion is infinite, the corresponding Conway real is the long real

x = x(r) = {r0} ∪ {r0 + k | k ∈ N, ak = 1} ∪ {ω}.

If r > 0, then let x(r) = (x(−r))♯.
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Under this correspondence, short numbers correspond to the ring Z[ 12 ] of dyadic ra-
tionals, the finite Conway ordinals correspond to N, and {n} corresponds to −n, for
all n ∈ N. Ordinal arithmetics on NCo corresponds to usual arithmetics on N.

Proof. Both maps x 7→ r(x) and r 7→ x(r) are well-defined and inverse to each
other: the main point is that, since X in Def. 2.4 is co-infinite, "long ends" do
not appear, and hence the expansion of r(x) is finite if, and only if, the set x
is finite (cf. also [Go], p.33). It is now obvious from the definitions that both
constructions define inverse bijections. The algorithm shows that x = {n}
corresponds to r = −n (there is no fractional part), so nCo = {0, . . . , n} = {n}♯
corresponds to r = n. The statement about ordinal arithmetics is obvious from
this correspondence.

The following is an equivalent version of the preceding algorithm. For
positive reals, it corresponds to the original “Berlekamp algorithm”.

Corollary 2.17. The bijection from the preceding theorem can also be described as
follows: let x ∈ RCo, X = x ∩N. If x has positive sign, then [x] = t(x) is its integer
part, and

r(x) = [x] +
∑

m∈X,m>t(x)

1

2m−1−t(x)
.

If x has negative sign, then [x] = −t(x) is its integer part, and

r(x) = [x] +
∑

m∈x,m>t(x)

1

2m−t(x)
.

Proof. Notice that the definition of the tipping element matches exactly the
behaviour of the usual integer part: if x ∈ RCo is an (omnific) integer, then
t(x) = b(x), corresponding to the fact that [−r] = −[r] for a “usual” integer.

If r > 0 is not a usual integer, then [−r] = −([r] + 1), which corresponds to
the fact that, if x is not an omnific integer, and 0 ∈ x, then t(x) + 1 = min(x♯)
(cf. Example 2.15; and Examples 2.18).

Example 2.18. The following Conway-reals x give "usual" reals r = r(x):

x = {1, 2} gives r = −1 + 1
2 = − 1

2 ,

x = {0, 2}, with t(x) = 0, gives r = 0 + 1
22−1 = 1

2 ,

x = {1, 2, . . . , n} gives r = −1 +
∑n

m=2 2
m−1 = − 1

2n−1

x = {0, n}, with t(x) = 0, gives r = 1
2n−1

x = {2, 3, 5, 7, 11} gives r = −2 + 1
2 + 1

23 + 1
25 + 1

29 = −1.34375

x = P ∪ {ω}, P = set of prime numbers, gives r = −2 +
∑

p∈P
p>2

22−p

x = {1, 3, 5, 7, . . . , ω} gives r = −1 +
∑∞

k=1
1
4k = − 2

3

x = {0, 2, 4, . . . , ω} gives r =
∑∞

k=0
1

21+2k = 2
3

Conversely, the following usual reals r give Conway-reals x:
√
2 = 1.4142... gives {0, 1, 4, 5, 7, 9, . . . , ω}

e = 2.71828... gives {0, 1, 2, 4, 6, 7, 9, . . . , ω}
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Example 2.19 ("What are the elements of π?"). In his paper [Lei], Tom Leinster
writes: ... accost a mathematician at random and ask them

‘what are the elements of π?’,

and they will probably assume they misheard you, or ask you what you’re talking
about, or else tell you that your question makes no sense. If forced to answer, they
might reply that real numbers have no elements. But this too is in conflict with ZFC’s
usage of ‘set’: if all elements of R are sets, and they all have no elements, then they are
all the empty set, from which it follows that all real numbers are equal...

So, here is an answer to that question: π = 3, 1415926535897932... corre-
sponds to the sign expansion given in [WW], or [CG], p. 288, Figure 10.8,
starting with

π ≃ +++(+−)−−+−−+−−−−++++++−++−+ ...

which gives (the first four elements just say that the integer part is t(π) = 3):

πCo = {0, 1, 2, 3, 7, 10, 14, 15, 16, 17, 18, 19, 21, 22, 24 . . . , ω}

These examples suggest several number theoretic questions :

(1) How to characterize x = x(r) corresponding to rational reals r?

(2) How to characterize x = x(r) corresponding to algebraic reals r?

(3) How to characterize x = x(r) corresponding to transcendental reals r?

(4) What can we say about r = r(x) for a "random" sequence x?

Here, we’ll just give an answer to question (1): a Conway real is rational if, and
only if, it is short, or has a finite pattern repeated ω times. This has already
been proved by Moritz Schick ([Sch], Bemerkung 6.19).2 Before stating the
result, let us consider some more examples of rational Conway numbers:

Example 2.20. Consider long Conway reals x = {m + 4n | n ∈ N} ∪ {0, ω}.
Using the Berlekamp algorithm, with m = 2, 3, 4, 5,

x = {0, 2, 6, 10, . . . , ω} gives r = 1
2 + 1

25 + 1
29 + . . . = 1

2

∑∞

k=0
1

(24)k = 8
15

x = {0, 3, 7, 11, . . . , ω} gives r = 1
22 + 1

26 + 1
210 + . . . = 1

2
8
15 = 4

15

x = {0, 4, 8, 12, . . . , ω} gives r = 1
23 + 1

27 + 1
211 + . . . = 1

2
4
15 = 2

15

x = {0, 5, 9, 13, . . . , ω} gives r = 1
24 + 1

28 + 1
212 + . . . = 1

2
2
15 = 1

15

To represent a rational r = k
15 with 0 < k < 15 by a set x, write k = k02

0 +
k12

1 + k22
2 + k32

3 in base 2, with ki = 0 or 1; then take the union of the sets
shown above, for all i with ki = 1. For instance, to represent 1

5 = 2
15 + 1

15 , we
take the union of the last two numbers shown, that is:

x = {0, 4, 5, 8, 9, 12, 13, . . . , ω} corresponds to r = 2
15 + 1

15 = 1
5 .

To represent, e.g., 1
10 , shift the non-zero part of x(15 ) one step “to the right”.

To represent, e.g., 3
10 = 1

2 · 9
15 , take the representation of 1+8

15 , and then shift it
again “one step to the right”:

x = {0, 3, 6, 7, 10, 11, . . . , ω} corresponds to to 3
10 .

2For this and related questions, see also https://mathoverflow.net/questions/214354/nice-sign-expansions-of-special-su

https://mathoverflow.net/questions/214354/nice-sign-expansions-of-special-surreal-numbers 
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Theorem 2.21. A Conway real x is rational if, and only if, its sign expansion starts
with a finite sequence, and then repeats another finite sequence ω times, followed by
zeroes; equivalently, with notation to be introduced in Section 2.7, if and only if,

x = y ⊕ z ⊗ ω, with short numbers y, z.

This representation becomes unique if we require b(y) and b(z) to be minimal (then
call y the "prefix", and z the "repetitor" of x).

Proof. Let x be a Conway real having a representation as in the theorem. By
the Berlekamp algorithm, the corresponding real r = r(x) will have a frac-
tional part that can be expressed by certain integer combinations of geometric
series with ratio a power of 1

2 , and so will be a rational number.

Conversely, every "usual" rational r = a
b is thus obtained. To see this,

we may assume that r > 0, since the statement is obviously invariant under
taking negatives (opposites), and moreover that 0 < r < 1, by changing the
"prefix", if necessary. If b is a power of 2, then r is a short number, and con-
versely every short number in the unit interval is obtained this way. If b is
odd, apply the following

Lemma 2.22. Every rational number r = a
b with 0 < r < 1 and odd b can be

represented in the form r = c
2d−1

with 0 < c < 2d − 1, for some d ∈ N.

Proof. Since b is odd, the element 2 is invertible in Z/bZ. Thus it is of finite
order in the group (Z/bZ)×, so there is d ∈ N with 2d ≡ 1 mod b, so there is
k ∈ N with 2d − 1 = kb, whence a

b = ka
kb = ka

2d−1 .

In this case we proceed as in the example above (where 2d − 1 = 24 − 1 =
15): we use geometric series with ratio 1

2ℓ
for some ℓ ≥ 1. If ℓ ∈ N is the

length of a periodic pattern M , then the sum
∑∞

k=0 2
−ℓk+m = 1

2m
1

1−2−ℓ =

2ℓ−m 1
2ℓ−1

will appear. Various Mi with length ℓ give rise to various mi, so the

corresponding real number has the form of a finite sum
∑

i
2ℓ−mi

2ℓ−1
= u

2ℓ−1
, and

all such numbers are represented in the form given by the theorem.

When b = 2kb′ with odd b′, then the Conway real corresponding a
b′ can

be realized as in the preceding step, and the Conway real corresponding to
a
b = 1

2k · a
b′ can be deduced, as in the example.

Finally, uniqueness of an expression x = y ⊕ z ⊗ ω is best explained by
using the notation related to concatenation, see Section 2.7.

2.4 The total order on NO

The bijection between RCo and R will be compatible with all relevant struc-
tures. Let us start with total order.

Definition 2.23. Recall that the symmetric difference of two sets x and y is

x∆y = (x \ y) ∪ (y \ x) = (x ∪ y) \ (x ∩ y),
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so x = y iff x∆y = ∅. We say that an ordinal α discriminates between two num-
bers x and y if α belongs either to x or to y, i.e., if α ∈ x∆y. The discriminant3

of two numbers x 6= y is the ordinal

δ := δ(x, y) := min(x∆y).

The discriminant belongs to exactly one of x or y. Let x < y if it belongs to y:

Theorem 2.24. The following prescription defines a total order on NO: x < y iff

x 6= y, and: min(x∆y) ∈ y .

Equivalently, this order can be characterized as the lexicographic order on sign-
expansions (cf. Def. 0.2), where the set S = {+,−, 0} is ordered by − < 0 < +.

Proof. If x 6= y, the non-empty set x∆y admits a minimum δ (principle of
well-order). This minimum must belong to x \ y or to y \ x, but cannot belong
to both since these sets are disjoint. In particular, it belongs either to x or to
y. Therefore, if x 6= y, then either x < y or y < x, whence antisymmetry and
totality. To prove transitivity, assume η := min(x∆y) ∈ y and ζ := min(y∆z) ∈
z, and distinguish cases:

• η /∈ z. Then ζ ≤ η, and ∀ξ ∈ x \ z: (either ξ /∈ y, then ξ ≥ η ≥ ζ)(or ξ ∈ y,
then y ≥ ζ), so in this case min(x∆z) = ζ ∈ z.

• η ∈ z. We distinguish again:

– If ζ /∈ x, then µ := min(ζ, η) = min(x∆z) ∈ z.

– If ζ ∈ x, then ζ ≥ η. It follows that ∀ξ ∈ x \ z : ξ ≥ η (by distin-
guishing the two cases ξ ∈ y; ξ /∈ y), whence η = min(x∆z) ∈ z.

Recall the lexicographic order of sign-expansions: s <ℓ s′ if there is an
ordinal α such that s(β) = s′(β) for all β < α, and s(α) < s′(α). When s = sx
and s′ = sy with x 6= y, then (β < α ⇒ β /∈ x∆y), so min(x∆y) ≥ α. The
condition s(α) <ℓ s

′(α) gives three possible values for the pair (s(α), s′(α)):

1. (−, 0), i.e., (α /∈ x and max(x) > α)) and α = max(y), so min(x∆y) =
α = max(y) ∈ y.

2. (0,+), i.e., max(x) = α and (α ∈ y, max(y) > α), so again min(x∆y) ∈ y.

3. (−,+), i.e., α /∈ x, α ∈ y, and max(x),max(y) > α, so min(x∆y) = α ∈ y.

Therefore x ≤ℓ y implies x ≤ y, and since both are total orders, the converse
then also holds, and both orders agree.

Remark. The property defining the order can be rewritten as: x ≤ y iff

x ⊂ y or [(x \ y) 6= ∅ and (y \ x) 6= ∅ and min(x \ y) > min(y \ x)]. (2.6)

3We take this terminology from [Ba], 13.5: "The smallest ordinal to discriminate between two
Numbers is called their discriminant."
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Definition 2.25. We define the absolute value of a number x by

|x| :=
{ x if x ≥ 0
x♯ if x < 0.

.

Theorem 2.26. The total order ≤ has the following properties:

(1) it extends the partial order given by inclusion of subsets of ON,

(2) the pseudo-complement map ♯ is an order-reversing bijection fixing 0Co,

(3) for each ordinal α and each surreal number x with b(x) = α:

the right child x+ is an immediate successor of x for ≤ in NOα+1, and

the left child x− is an immediate predecessor of x for ≤ in NOα+1.

(4) The following inequalities are expressed by set-membership:

0Co ≤ x if and only if 0 ∈ x, iff sgn(x) = 1.

0Co ≤ x < 1Co if and only if (0 ∈ x) ∧ (1 /∈ x); iff: t(x) = 0.

1Co ≤ x if and only if {0, 1} ⊂ x.

αCo ≤ x if and only if αCo ⊂ x.

(5) αCo is a maximal element in NOα, and {α} is a minimal element in NOα.

Proof. (1): If x ⊂ y, then x∆y = y \ x, and min(x∆y) ∈ y.

(2): The sign-expansion of x♯ is related to the one of x by exchanging + and
−, that is, by reversing the order on the set S = {−, 0,+}, and thus ♯ reverses
the order of the lexicographic order.

(3) follows again from the definition of ≤: clearly, x− < x < x+; and if
x− < y < x, we distinguish the cases b(y) ≤ α and b(y) = α + 1. Both cases
can be ruled out by the definition of ≤, so the interval ]x−, x[∩NOα+1 is empty;
similarly for ]x, x+[.

(4) Since 0Co = {∅}, the definition of the order shows that 0Co ≤ x iff ∅ ∈ x,
iff {0} = 0Co ⊂ x. Similarly, for every Conway ordinal αCo, we have αCo ≤ y
iff αCo = {0, . . . , α} ⊂ y.

By Definition 2.8 of t(x), the condition t(x) = 0 amounts to 0 ∈ x, 1 /∈ x.

(5) x ∈ NOα implies x ⊂ αCo; now use (1) to get x ≤ αCo.

For the other statement, apply (2).

Theorem 2.27. The bijection R → RCo from Theorem 2.16 is order-preserving.

Proof. Since both ♯ and r 7→ −r are order-reversing, it suffices to prove that
the restriction to negative reals is order-preserving. Let x, y be Conway reals,
and X = x ∩ N, Y = y ∩ N. Assume x < y < 0, so min(x∆y) ∈ y. Then
min(x) ≥ min(y) (for min(x) < min(y) implies min(x∆y) = min(x) ∈ x). If
min(x) < min(y), then certainly r(x) < r(y), since the fractional part of the
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sum belongs to the real interval [0, 1[. Assume that min(x) = min(y) = M and
consider the difference

r(y)− r(x) =
∑

m∈Y,m>M

(
1

2
)m−M −

∑

n∈X,n>M

(
1

2
)n−M .

It is positive if, and only if, the first term which does not cancel out belongs
to an index m ∈ Y , and this index is precisely min(x∆y); thus r(y) > r(x) iff
y > x.

Infinite and infinitesimal numbers

Now we know that NO is totally ordered and that the continuum R ∼= RCo is
an ordered subset of NO, it is obvious that NO must contain many "infinite"
and many "infinitesimal" numbers.

Definition 2.28. A number x is said

– positive infinite, x ≫ 1, if ∀n ∈ N : x > n,

– negative infinite, x ≪ −1, if ∀n ∈ N : x < −n,

– infinitesimal, x ≈ 0, if ∀n ∈ N : {1, 2, . . . , n} < x < {0, n}.

We denote by I the (proper) class of all infinitesimal numbers.

Directly from Theorem 2.26, it follows that x

– is negative infinite iff x ∩ N = ∅,

– is positive infinite iff x ∩ N = N,

– infinitesimal and positive iff x ∩N = {0},

– infinitesimal and negative iff x ∩ N = N∗, where N∗ = N \ {0}.

Example 2.29. Consider numbers x = X ∪ {ω} where X = x ∩N ⊂ N.

– For X = ∅, we get x = −ωCo,

– for X = N, we get x = ωCo,

– for X = {0}, we get ε := {0, ω} ≈ 0Co, with ε > 0,

– for X = N∗, we get x = ε♯ = −ε ≈ 0Co,

– for X = {0, 1}, we get x = {0, 1, ω}, which will be 1Co + ε,

– for X = {0, 2, 3, 4, . . .}, we get a number which will be 1Co − ε,

– for X = {2, 3, 4, . . .}, we get a number which will be −1Co − ε,

– for X = {1}, we get a number which will be −1Co + ε.

In general, if X is finite (so is a short number), then x = X + ε, and if X is
cofinite in N, then x = X♯ − ε. Moreover, it will turn out that ε = 1

ω .

2.5 Descendance: the binary tree of numbers

Besides the total order ≤, there exist several partial orders on NO, for instance,
inclusion of numbers, as sets, x ⊂ y, or "older than". The most important
partial order is "descendance" x � y; some authors also use the terms "simpler
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than", meaning that the sign expansion of x is an "initial segment" ([Go]) of the
one of y. Its Hasse diagram is a complete binary tree.

Definition 2.30 (Descendance). We say that a number y is a descendant of x,
and x an ancestor of y, and we write x � y, if

b(x) ≤ b(y), and [[0, b(x)[[ ∩ x = [[0, b(x)[[ ∩ y,

This means that "below the birthday of x, both numbers coincide".

Definition 2.31 (Initial inclusion). We define initial inclusion of a number x in
y, and write x ⊑ y, iff x coincides with y up to, and including, b(x):

x = [[0, b(x)]] ∩ y.

This implies that x ⊂ y, and b(x) ≤ b(y).

Theorem 2.32 (Elementary properties of descendance).

1. Both relations � and ⊑ are partial orders.

Moreover, x ⊑ y if, and only if, [x ⊂ y and x � y].

2. If y ≺ z, then: z is an immediate successor of y for ≺ iff b(z) = b(y) + 1.

Every number x has exactly two immediate successors ("children") for ≺, namely
its left and right children x±, defined in Def. 2.7.

3. A number x is a successor number (Def. 2.11) if, and only if,

it is of the form x = y+ or x = y− for some number y, i.e., iff

it has an immediate predecessor ("parent") for �.

4. if x < y, then y is an immediate successor of x for initial inclusion, if and only
if : x 6= y and y = x∪{b(y)}. In particular, every number has infinitely many
immediate successors for initial inclusion.

Proof. 1. is immediate from the definitions.

2. Assume y is an immediate successor of x for ≺. If b(y) = b(x), then
clearly x = y, so this is impossible. If b(y) = b(x) + 1, then y is determined
up to choice of the element b(x), leading to the 2 cases y = x+ and y = x−,
which are immediate successors. If b(y) ≥ b(x) + 2, then distinguish two
cases: either, b(x) ∈ y, or b(x) /∈ y. In the first case, x � x+ � y, and in the
second, x � x− � y, so y is not an immediate successor. Therefore we must
have b(y) = b(x) + 1, and we end up with the only possibilities y = x+ or
y = x−.

3. If x = y±, then b(x) = b(y) + 1 is a successor ordinal. Conversely, if
b(x) = α+ 1, then let y = (x \ {b(x)}) ∪ {α}; then x = y+ if α ∈ x and x = y−
if α /∈ x, so x has a "parent" for �.

4. Immediate from definitions.
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The binary tree of numbers is the Hasse diagram of the partial order �: it
starts with top vertex 0Co = {0vN}, linking each vertex x with vertices x− and
x+, and so on: for µ, σ ∈ {±}, define xµσ := (xµ)σ , and present the part of the
number tree descending from x in the form

x
ւ ց

x− x+

ւ ց ւ ց
x−− x−+ x+− x++

(2.7)

and so on for sequences of +’s and −’s. E.g., for NO3,

{0}
ւ ց

{1} {0, 1}
ւ ց ւ ց
{2} {1, 2} {0, 2} {0, 1, 2}

For NO4 see the figures given in the Introduction, and the internet for figures of infinite stages.
Note, however, that numbers whose birthday is a limit ordinal never have im-
mediate predecessors. The horizontal stractification is given by birthday; the
boundary ∂(NOα) of a stage is a horizontal line. The partial order < amounts
to moving in the tree to the right: in fact, x < y holds if, and only if, x � y and
x+ � y. For �, it is obvious that 0Co is a "common ancestor" of all numbers,
and it is the "oldest ancestor" of any two numbers x and y. There is also a
youngest one, which is a meet x ∧ y of x and y in the sense of lattice theory.
This may seem "obvious" when looking at figures of the number tree, but of
course needs a rigorous proof: recall Definition 2.23.

Definition 2.33. For two numbers x 6= y, let δ := δ(x, y) := min(x∆y). It
follows that x ∩ y ∩ [[0, δ[[ = x ∩ [[0, δ[[ = y ∩ [[0, δ[[. We define a number

yca(x, y) := (x ∩ y ∩ [[0, δ[[) ∪ {δ}.

Theorem 2.34. Any two numbers x, y have a unique youngest common ancestor
u, that is, there is a unique number u whose birthday is maximal, subject to the
condition that u � y and u � x. It is given by u = yca(x, y), and it satisfies

if x ≤ y, then x ≤ yca(x, y) ≤ y.

Proof. Let u = yca(x, y). Clearly u � y and u � x. And there cannot be
another such number with greater birthday, since α > δ implies that α cannot
belong to both x and y.

Let x < y. Then δ /∈ x, whence x < yca(x, y). And δ ∈ y, so yca(x, y) < y.

Links between tree structure and total order

The last statement of Theorem 2.34 establishes an important link between the
partiel order � and the total order ≤. It has several consequences. Recall that
a subset or subclass I of NO is convex if x, z ∈ I, x ≤ y ≤ z implies y ∈ I .

https://upload.wikimedia.org/wikipedia/commons/4/49/Surreal_number_tree.svg
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Lemma 2.35. Every non-empty convex subclass I of NO contains a unique element
with minimal birthday.

Proof. Existence: since I is not empty, it contains some element with some
birthday α. By well-order, the set {b(x) | x ∈ I, b(x) ≤ α} has a minimal
element µ. Uniqueness: Let x, z ∈ I elements having this minimal element µ
as birthday. Theorem 2.34 implies that y := yca(x, z) belongs to I , since I is
convex. But b(y) < b(x) if y 6= x, so it follows that x = y = z.

Definition 2.36. For all numbers x and ordinals α, we define the α-truncation
of x to be the number

[x]α :=
{

x if b(x) ≤ α,
(x ∩ [[0, α[[) ∪ {α} if b(x) > α.

Note that, if b(x) > α and α ∈ x, then [x]α = x ∩ [[0, α]]. In particular,

[x]t(x) = [x]

is the omnific integer part of x (Def. 2.9).

Lemma 2.37. For two numbers y, z we have [z]b(y) = y if, and only if, y � z.

Proof. Both conditions imply that b(y) ≤ b(z), and then express that y is an
initial segment of z.

Theorem 2.38 (Monotonicity of truncation). If x ≤ y, then [x]α ≤ [y]α.

As a consequence, for all numbers y, the class I of all x with y ≺ x, is convex.

Proof. Let x < y, i.e., δ(x, y) ∈ y, so the discriminant does not belong to x.
Then the same holds for the truncations, whence δ([x]α, [y]α)) ∈ [y]α, and so
[x]α < [y]α.

By Lemma 2.37, x ∈ I iff [x]b(y) = y. Let x, z ∈ I and x < u < z. Then
y = [x]b(y) ≤ [u]b(y) ≤ [z]b(y) = y, whence [u]b(y) = y, so u ∈ I .

Example 2.39. The convex set I may be an interval:

[x]1 = {1} iff 0 /∈ x, iff x < 0 ;

[x]1 = {0} if x = {0} = 0Co

[x]1 = {0, 1} = 1Co iff 0 ∈ x and b(x) > 0, iff x > 0.

One can show that I is an interval if y is a successor number, but in general
not so if y is a limit number.

2.6 The number tree is connected and complete

In some regards, the descendance relation � is more important than the total
order ≤: the "topology of NO” is not the "usual interval topology" for the
total order (open intervals in NO are proper classes, not sets), but it is rather
given by closed sets, where a set of numbers U is "closed" if it contains all its
limits under forming descending sequences from elements of U . Thus the
"topological" properties of the number tree are crucial for the theory: the tree
is connected and complete.
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Definition 2.40. A sequence of numbers is given by an ordinal-indexed family
(xα)α<λ of numbers such that α < β < λ implies b(xα) ≤ b(xβ), where the
ordinal λ is the length of the sequence. We say that such a sequence converges
if there exists a number x (its limit) such that

(a) for all α < λ, we have xα � x,

(b) x is minimal for (a), i.e., if x′ satisfies (a), then x � x′.

In view of Thm. 2.32, (b) is equivalent to saying that b(x) is minimal for (a).

Theorem 2.41. A sequence of numbers (xα)α<λ converges if, and only if, it is a
chain with respect to the partial order �, that is:

∀α < β < λ : xα � xβ .

In this case, the number x is unique, called the limit of the sequence, denoted by
x = limα→λ xα, and it is given by:

x =
⋃

α<λ

Xα ∪ {σ}, where Xα = xα \ {b(xα)}, and σ = sup{b(xα) | α < λ}.

Proof. The condition for convergence is necessary: if both xα and xβ are initial
segments of x, and xα is older than xβ , then xα is also an initial segment of xβ .

Let us show that it is sufficient: if the sequence is a chain, then the sets Xα

satisfy α < β ⇒ Xα ⊂ Xβ , so X :=
⋃

α<λ Xα is an ascending union. Like
every set of ordinals, it has a supremum (minimum of ordinals bigger than all
its elements), which by definition is σ. Thus x = X ∪ {σ} is a set of ordinals
having a maximum, namely σ, hence is a number. By its definition, this num-
ber satisfies xα � x, for all α < λ, and its birthday σ is indeed minimal for this
condition, so x is a limit.

If x′ is another limit, then x′ must contain the set X , and from minimality
it follows that b(x′) = σ, whence x′ = x, so the limit is unique.

Definition 2.42. A maximal chain, or path in the number tree, is a chain (xγ)γ<λ

that admits no proper refinement, i.e.:

if z satisfies xγ � z � xβ , then there exists δ ∈]]γ, β[[ such that z = xδ

(in particular, xγ+1 is a child of xγ , so xγ+1 = (xγ)+ or (xγ)−).

Example 2.43. Let x = {0, 2, 4}. A path joining 0Co to x is:

x0 = {0}
x1 = {0, 1} = (x0)+

x2 = {0, 2} = (x1)−

x3 = {0, 2, 3} = (x2)+

x4 = {0, 2, 4} = (x3)−

Example 2.44. Let x = {1, ω}. A path joining 0Co to x is:

x0 = {0}
x1 = {1} = (x0)−
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x2 = {1, 2} = (x1)+

x3 = {1, 3} = (x2)−

x4 = (x3)−, . . . , xn+1 = (xn)−, . . . , xω = {1, ω}.

Visualizing these paths in the number tree exhibits the algorithm how to con-
struct a path joining 0Co to a number x: at level γ,

– if γ ∈ x, then turn right,

– if γ /∈ x, then turn left.

Theorem 2.45. The number tree is connected: for every number x, there exists a
unique path (xγ)γ<λ such that x0 = 0Co and x = limα→λ xα. Explicitly, this path
is given by the family of truncations of x (Def. 2.36), with λ = b(x) if x is a limit
number, and λ+ 1 = b(x) if x is a successor number,

∀γ < λ : xγ = [x]γ = (x ∩ [[0, γ[[) ∪ {γ}.

Proof. The family (xγ)γ<b(x) defined in the theorem is a chain starting at 0Co.
Indeed, if β < γ, then xβ ≺ xγ , since b(xβ) = β, so

xβ ∩ [[0, b(xβ)[[ = (x ∩ [[0, β[[) = (xγ ∩ [[0, β[[).

This chain is maximal. Indeed, it is seen by induction that any chain (zγ)γ≤α

for ≺ is maximal if, and only if, b(zγ) = b(z0) ⊕ γ for all γ ≤ α. (If it were
not maximal, then one could refine it; but this is impossible by the birthday-
condition.) The condition b(xβ) = β holds for the chain in question, which
hence is maximal, that is, it is a path. Finally, since b(x) ∈ x, it follows that

xb(x) = (x ∩ [[0, b(x)[[) ∪ {b(x)} = x,

so the path joins x0 = {0} = 0Co to x = xb(x).

Remark 2.46. The preceding result allows to define properties or Functions
on NO, by transfinite induction, via

(1) successor rules, using x+ and x−, and a

(2) limit rule, for limα→λ xα.

Here is an example: we define another quantum of x.

Definition 2.47. The width, or pseudo-cardinalw(x), of a number x is the ordinal
inductively defined by:

(1) w(x+) = w(x)⊕ 1, w(x−) = w(x),

(2) w(0Co) = 0 and w(limα→λ xλ) = supα<λ w(xλ).

For a short number x, the width is its cardinal minus one. For a long real
number x, we always have w(x) = ω, which agrees with its cardinal. Also
w(αCo) = α for every ordinal, so w(x) measures the "size", or "width", of a
number, but it is not the same as its cardinal. This quantum appears in the
description of Conway’s omega-map.
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Left and right predecessors of a number

The path joining 0 to x splits naturally into two parts, with edges "turning
right" (giving rise to a + in the sign expansion) and edges "turning left" (giving
rise to a sign −), see the examples above. The numbers where the path turns
right are smaller than x, they form the "left set", and those where the path
turns left are greater than x, they form the "right set":

Definition 2.48. To each number x, we associate two sets of numbers, called
its canonical left, resp. right, sets, defined in terms of the truncation (Def. 2.36)

Lx := {[x]γ | γ ∈ x, γ < b(x)},

Rx := {[x]γ | γ /∈ x, γ < b(x)}

Lemma 2.49. The canonical left set of x is a maximal chain with respect to initial
inclusion <. Moreover,

Lx = {z | z < x} = {z | z � x, z < x},

Rx = {z | z � x, z > x}.

Proof. For γ ∈ x, let xγ = x ∩ [[0, γ]]. Clearly, β < γ implies xβ < xγ , so we
have chain for initial inclusion, and since the left set is indexed by all elements
of x, this chain is maximal. Moreover, the definition of the total order < shows
that a < b iff (a ≺ b and a < b). Similarly for the right set.

See Theorem 2.77 for a sort of converse of this construction.

Topology of NO: closed sets

The notion of "limit in NO" (Def. 2.40) calls for defining a "topology" on NO.
Since NO is a proper class, the usual duality between "open" and "closed" sets
breaks down (the "complement of a set" in NO is not a set), and it will be more
convenient to base the idea of "topology" on closed sets, since the "open" sets
would rather correspond to proper classes - e.g., intervals of the total order on
NO are proper classes, whereas we have many "closed" small sets:

Definition 2.50. Let U be a set (or class) of numbers.

1. A limit point of U is a number x such that x = limγ→α xγ for a chain
(xγ)γ<λ such that all xγ belong to U .

2. The closure c(U) or U of U is the union of U with the set (or class) of its
limit points.

3. The set (or class) U is closed if U = U .

This definition matches the one given in [BH1], Section 5.2, and as shown
there it has properties that one may expect from closure in a topological set-
ting.



CHAPTER 2. A CONSTRUCTION OF CONWAY NUMBERS 37

2.7 Extending ordinal arithmetic to Conway numbers

Recall that we denote by ⊕,⊗,⊕⊗ the three operations of usual (Cantor) ordinal
arithmetic on ON. These extend to NO in a fairly straightforward way, and
it will be convenient to use the same symbols. Concerning ⊕ and ⊗, such
results can be found in [BH1], Section 3.2. In fact, the first operation, ⊕, called
concatenation, is heavily used in [Go] without a suitable formalisation, and in
Game Theory, the notation x : y is also used, see [S], p. 89, [ONAG], p.31, but
this notation appears to be dangerous, and hides the relationship with usual
ordinal addition.

Definition 2.51. The pseudo-inverse x∗ of a number x is defined by: α ∈ x∗ iff

– either α = b(x),

– or 0 < α < b(x) and α /∈ x,

– or [ α = 0, if 0 ∈ x ].

In a formula: x∗ = ({0, b(x)} ∩ x) ∪ (x♯ ∩ [[1, b(x)[[).

We refer to ♯ and ∗ as the first and second main involution of NO.

In the number tree, ∗ is visualized as the union of the "symmetry of the
right part at the vertical axis x = 1", with the "symmetry of the left part at the
vertical axis x = −1".

Lemma 2.52. The pseudo-inverse satisfies:

1. b(x∗) = b(x)

2. (x∗)∗ = x

3. (x∗)♯ = (x♯)∗

4. 0∗Co = 0Co, 1∗Co = 1Co, (1♯Co)
∗ = 1♯Co, and

5. ∀x 6= 0Co : (x+)
∗ = (x∗)−, (x−)

∗ = (x∗)+.

Proof. Immediate, except maybe for the third equality: we compute

(x♯)∗ = {α | α ∈ x ∩ [[1, b(x)]] or [α = 0 if 0 /∈ x]} = (x∗)♯.

In other terms, (x♯)∗ = x∆{0}, where a∆b is the symmetric difference.

Theorem 2.53. For each pair of numbers (x, y), we can define three new numbers
x ⊕ y, x ⊗ y and x ⊕⊗ y, uniquely defined via transfinite induction by the following
rules: initial conditions,

x⊕ 0 = x

x⊗ 0 = 0

x⊕⊗ 0 = 1.

Succession rule in the second argument:

1. x⊕ y+ = (x⊕ y)+

x⊕ y− = (x⊕ y)−
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2. x⊗ y+ = x⊗ y ⊕ x

x⊗ y− = x⊗ y ⊕ x♯ (where x♯ is given by Def. 2.11)

3. x⊕⊗ y+ = x⊕⊗ y ⊗ x

x⊕⊗ y− = x⊕⊗ y ⊗ x∗ (where x∗ is given by Def. 2.51),

Continuity with respect to limits in the second argument (see Def. 2.40)

1. x⊕ (limα→λ yα) = limα→λ(x⊕ yα)

2. x⊗ (limα→λ yα) = limα→λ(x⊗ yα)

3. x⊕⊗ (limα→λ yα) = limα→λ(x⊕⊗ yα)

The operations ⊕ and ⊗ are associative, but non commutative, and we have the fol-
lowing "left distributive laws" (where, by convention, ⊕⊗ binds stronger than ⊗):

x⊗ (y ⊕ z) = x⊗ y ⊕ x⊗ z

x⊕⊗ (y ⊕ z) = x⊕⊗ y ⊗ x⊕⊗ z.

x⊕⊗ (a⊗ b) = (x ⊕⊗ a)⊕⊗ b

The Birthday Map b : NO → ON, and its Section α 7→ αCo, are Morphisms:

b(x⊕ y) = b(x) ⊕ b(y),

b(x⊗ y) = b(x) ⊗ b(y),

b(x⊕⊗ y) = b(x) ⊕⊗ b(y).

Compatibility with the main involutions is given by

(x⊕ y)♯ = x♯ ⊕ y♯

(x⊗ y)♯ = x♯ ⊗ y = x⊗ y♯

(x⊕⊗ y)∗ = x⊕⊗ y♯

(1⊕ x)∗ = 1⊕ x♯, ((−1)⊕ x)∗ = (−1)⊕ x♯

Proof. If • is one of the three operations, then for fixed x, the value of x • y
is defined by transfinite induction on the birthday of y, using the first set of
rules for induction on successor numbers y (recall that every such number is
of the form z+ or z−, see Theorem 2.32), and the continuity condition for limit
numbers y. We have to define ⊕ first, since it is used to define ⊗, just like ⊗ is
needed for the definition of ⊕⊗.

In the same way, all other statements may be proved by transfinite induc-
tion, copying the corresponding arguments proving the corresponding rules
for ordinal arithmetic on ON.

Remark. See [BH1], Rk.3.2 for a definition of ⊕ and ⊗ a la Conway by cuts.

Lemma 2.54. The sign sequence of x ⊕ y is obtained by juxtaposition of those from
x (first, written on the left) and y (second, written on the right). More formally,

x⊕ y = {α ∈ ON | α ∈ x \ {b(x)}, or ∃β ∈ y : α = b(x) ⊕ β}.
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In other terms, α ∈ x⊕ y iff α = α0 ⊕ α1, where

either [α0 ∈ x, α0 < b(x) and α1 = 0 ] or [ α0 = b(x) and α1 ∈ y ].

Proof. By straightforward transfinite induction.

In the number tree, the graph of x ⊕ y corresponds to "grafting the graph
of y onto the one of x". The two immediate successors of x are obtained as in
the theorem, and by iteration

x++ = x⊕ 1Co ⊕ 1Co = x⊕ {0, 1, 2} = x⊕ 2Co,

x+− = x⊕ 1Co ⊕ (−1)Co = x⊕ {0, 2} = x⊕ (
1

2
)Co,

x−+ = x⊕ (−1)Co ⊕ 1Co = x⊕ {1, 2} = x⊕ (−1

2
)Co,

x−− = x⊕ {2} = x⊕ 2♯Co.

This implies, e.g., that 0−+ = {1, 2} = (−1)Co ⊕ 1Co. In general:

Definition 2.55. For each number x and each sign σ ∈ {+,−}, we let

σx :=
{ x if σ = +
x♯ if σ = −.

Theorem 2.56. Infinite ordered concatenations of numbers are well-defined: given
numbers xα for all α < γ, for some ordinal γ, the (generically) infinite concatenation
z =

⊕
α<γ xα exists in NO. The order of "summation" is the natural order of the

indices. Its birthday is the ordinal b(z) =
⊕

α<γ b(xα) (see Def. 1.6). Every number
x can (uniquely) be represented in the form

x =
⊕

α<b(x)

(sx(α)1Co). (2.8)

Proof. By induction. If γ is a successor ordinal, the sum is defined by adding
a new term, and if γ is a limit ordinal, it is the limit of a chain.

Theorem 2.57. The Map "left translation by a",

Ea : NO → desc(a) ⊂ NO, x 7→ a⊕ x

is a Bijection onto the class of descendants of a. It preserves order and tree-structure.
In particular, for a = 1, resp. a = −1, we get Bijections

E1 : NO → desc(1) = {x ∈ NO | x > 0}, x 7→ 1Co ⊕ x,
E−1 : NO → desc(1♯) = {x ∈ NO | x < 0}, x 7→ (−1)Co ⊕ x.

They intertwine the main involutions: E1(x
♯) = (E1x)

∗, and E−1(x
♯) = (E−1x)

∗

Proof. Clearly a � a ⊕ x. Conversely, if a � y, then x is the "tail of a in y"
([Go]), p.3), given by

x = {α⊖ b(a) | α ∈ y, α > b(a)}

where α⊖β = γ iffα = γ⊕β for ordinals, so Ea is a Bijection. The intertwining
property is direct from the definition of ♯ and ∗.
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Computing the sign-expansions of ⊗, the following lemma states that the
sign expansion of x⊗y is given by repeating the one of x for each + in the one
of y, repectively, of x♯ for each − in the sign-expansion of y:

Lemma 2.58. For each pair of numbers (x, y),

x⊗ y =
⊕

α<b(y)

(sy(α)x).

The sign-expansion of x⊗ y is given by

sx⊗y(b(x)⊗ α⊕ β) = sy(α) · sx(β). (2.9)

Proof. The first claim is proved by induction, and the second is a direct conse-
quence.

Example 2.59. x⊗ ω is ω times juxtaposition of the sequence of x with itself,

ω ⊗ x is a juxtaposition of sequences of ω plusses or minusses.

Clearly the element (−1)Co commutes with all numbers under ⊗, so that

(x⊗ y)♯ = x⊗ y ⊗ (−1)Co = x⊗ (−1)Co ⊗ y = x♯ ⊗ y = x⊗ y♯.

(In fact, the only numbers that commute with all others under ⊗ are 0Co, 1Co, (−1)Co.)

Lemma 2.60. For every number a and sign σ ∈ {+,−}, let

aσ :=
{
a if σ = +
a∗ if σ = −.

Then, for every pair of numbers (x, y),

x⊕⊗ y :=
⊗

α<b(y)

xsy(α).

In particular, it follows that a⊕⊗αCo = ⊗γ∈αa is a concatenation product of α factors

a, and a∗ = a⊕⊗ 1♯Co, and

a⊗ a = a⊕⊗ 2Co = a⊕⊗ {0, 1, 2},

a⊗ a∗ = a⊕⊗ {0, 2},

a∗ ⊗ a = a⊕⊗ {1, 2}
a∗ ⊗ a∗ = a⊕⊗ {2},

a⊗ a⊗ a = a⊕⊗ 3Co = a⊕⊗ {0, 1, 2, 3}, etc.

Proof. By induction.

Remark 2.61. One could continue and define ordinal tetration, and other
higher hyperoperations Hn(a, x), on Conway numbers, following the pat-
tern started above: the only problem is to figure out the "correct definition"
of Hn(a,−1), i.e., to define higher order "main involutions of NO"; then induc-
tion together with distributivity entirely determines Hn(a, x) for all x.

Remark 2.62. What other properties of ordinal calculus carry over to NO?
For instance, what about (left) division with remainder, and some analog of
the Cantor normal form? How would this be related to the "Conway normal
form"? This is a topic for subsequent work. See also Section 4.2.2.
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Purely infinite numbers

Definition 2.63. A number y is called purely infinite [Go] (or indivisible integer,
[ONAG]), or star, [Sim]), if there is a number x such that y = ω ⊗ x. In other
terms, the sign sequence is given by blocs of ω pluses or minuses, according
to the pattern of x. The class of all purely infinite numbers is denoted by (ω)
or J.

Example 2.64. ω ⊗ 1 = ω,

ω ⊗ 2 = ω ⊕ ω = {0, 1, 2, . . . , ω ⊕ ω}
ω ⊗ 2♯ = ω

♯ ⊕ ω
♯ = {ω ⊕ ω}

ω ⊗ {1, 2} = {ω, ω + 1, . . . , ω + ω}. In general,

ω ⊗ x = ω ⊗ (
⊕

α<b(x)

sx(α)1) =
⊕

α<b(x)

sx(α)ω (2.10)

can be seen as the concatenation of strings which take the sign expansion of
a number, and repeat each sign ω times (cf. [Sim], 7.3, who adds the remark:
"this is another fractal view of NO.") The Map

NO → J, x 7→ ω ⊗ x (2.11)

is a Bijection. From distributivity it follows that this map is an isomorphism
of binary trees. (This an example of a "surreal substructure", cf. [BH1]).

Omnific integers and purely infinite numbers

Lemma 2.65. Every omnific integer has a unique representation

x = xJ ⊕ y,

where xJ = ω ⊗ z is purely infinite, and y ∈ Z is a usual integer. Conversely, every
such sum defines an omnific integer.

Proof. Decompose t(x) = λ(x) ⊕ n(x) into a limit ordinal plus a natural num-
ber and let xJ := x ∩ [[0, λ(x)]] ∪ {λ(x)}. Two cases arise:

(a) if λ(x) ∈ x, then y = {0, 1, . . . , n(x)} is such that x = xJ ⊕ y,

(b) if if λ(x) /∈ x, then y = {n(x)} is such that x = xJ ⊕ y.

In both cases, we get a decomposition as claimed.

Theorem 2.66. Every number x has a unique decomposition

x = z ⊕ u,

where z = [x] ∈ OZ and 0 ≤ u < 1. In other terms, NO/OZ ∼= [0, 1[.

Proof. Existence: let z := [x]; clearly, z � x so there exists a number u with
x = z ⊕ u. From the definition of the tipping element t(x), it follows that
t(x) ∈ x, so 0 ∈ u, but 1 /∈ u since the sign expansion of x changes sign at t(x).
This means that 0 ≤ u < 1 (Theorem 2.24).
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Uniqueness: all arguments can essentially be reversed, showing that u
must be defined by the first sign change that occurs in the sign-sequence of
x, leading to b(z) = t(x).

2.8 Natural arithmetic on NO (Conway arithmetics)

Conway addition + and multiplication · on NO behaves with respect to ⊕
and ⊗ just like natural (Hessenberg) operations on ON behave with respect to
Cantor ordinal arithmetic. The fact that they are not continuous with respect
to limits makes them harder to define (and appear "less natural" from a point
of view of pure set theory!), but one gains commutativity and the full field
structure of NO. We first state the fundamental results, due to Conway, and
then turn to discussing strategies of proof.

Theorem 2.67 (Sum of numbers). For each pair of numbers (x, y), there is a unique
number z = x+ y such that b(z) is minimal, subject to the condition:

for all numbers x′, x′′, y′, y′′,

b(x′) < b(x), b(x′′) < b(x), x′ < x < x′′ ⇒ x′ + y < x+ y < x′′ + y,

b(y′) < b(y), b(y′′) < b(y), y′ < y < y′′ ⇒ x+ y′ < x+ y < x+ y′′.

• Addition is associative, commutative, has neutral 0Co and inverses −x = x♯.

• Monotonicity holds throughout: (NO,+,≤) is an Ordered Group.

• The above definition of x+ y holds also if we quantify over

all numbers x′, x′′, y′, y′′, such that

x′ ≺ x, x′′ ≺ x, x′ < x < x′′, resp.

y′ ≺ y, y′′ ≺ y, y′ < y < y′′.

Theorem 2.68 (Product of numbers). For each pair of numbers (x, y), there is a
unique number xy such that b(xy) is minimal, subject to the condition:

for all numbers x′, x′′, y′, y′′,

b(x′) < b(x), b(y′) < b(y), x′ < x, y′ < y ⇒ x′y + xy′ − x′y′ < xy,

b(x′′) < b(x), b(y′′) < b(x), x < x′′, y < y′′ ⇒ x′′y+xy′′−x′′y′′ < xy,

b(x′) < b(x), b(y′′) < b(y), x′ < x, y < y′′ ⇒ xy < xy′′ + x′y − x′y′′,

b(x′′) < b(x), b(y′) < b(y), x < x′′, y′ < y ⇒ xy < x′′y + xy′ − x′′y′.

The element 1Co := {0, 1} is neutral. Moreover, (NO,+, ·,≤) is a Commutative
Ordered Ring. On the class of Conway ordinals, the ring operations correspond to the
"natural (Hessenberg) operations".

In the definition of xy, we could also quantify over numbers x′, x′′, y′, y′′, where
the above condition b(x′) < b(x) is replaced by x′ ≺ x, etc.

Theorem 2.69. Every non-zero number x has a multiplicative inverse in NO, and
thus NO is an Ordered Field.

Theorem 2.70. The Conway reals RCo form a subfield of NO, and the bijection be-
tween R and RCo from Theorem 2.16 is a field isomorphism.
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Ideas of proof. First of all, we show that every number x can be represented
(non-uniquely) by a Conway cut: x = [〈Lx, Rx〉] (see next subsection). Such a
cut may be chosen timely, that is, elements x′, . . . of Lx and Rx have strictly
lower birthday than x itself (Definition 2.74). Then, assuming that x + x′,
x+ x′′, etc., are already defined, Conway defines a new cut by the formula

〈{x+ y′, x′ + y | x′ ∈ Lx, y
′ ∈ Ly}, {x+ y′′, x′′ + y | x′′ ∈ Rx, y

′′ ∈ Ry}〉.
He shows that this is indeed a cut, and it defines the number z = x + y, by
transfinite induction.4 Moreover, the number x+y thus defined does not depend
on the choice of the cuts defining x and y. Our version of Theorem 2.67 simply
states this formula in another way (if we quantify over all numbers with lower
birthday, this means that our formulation corresponds to choosing the maxi-
mal possible timely cut, the Cuesta-Dutari (CD) cut, and if we quantify over
numbers preceding for ≺, we choose the canonical cut, Def. 2.76). Similarly for
the product: our version of Theorem 2.68 is equivalent to Conway’s formula,
[ONAG], p.4, in terms of cuts,

〈{x′y + xy′ − x′y′, x′′y + xy′′ − x′′y′′|x′ ∈ Lx, y
′ ∈ Ly, x

′′ ∈ Rx, y
′′ ∈ Ry} |

{x′y + xy′′ − x′y′′, x′′y + xy′ − x′′y′|x′ ∈ Lx, y
′ ∈ Ly, x

′′ ∈ Rx, y
′′ ∈ Ry}〉,

where we use quantifiers corresponding to the CD-cuts defining x and y, resp.
the canonical cut if we use ≺. Properties like associativity, distributivity, or
those of the additive inverse, have to be checked, again by transfinite induc-
tion. Writing up all of these arguments in full detail takes some place (see
[Sim] for a full and relatively compact presentation; see also the following
chapter 3).

By induction, one sees that the sum of Conway ordinals is the same as their
natural sum, which is also defined by induction (see Section 1.3.3, Equation
(1.16)): when β is a successor ordinal, we get the same recursion as for ordinal
addition (hyperoperation H1),

αCo + (β + 1)Co = 〈{α}|∅〉+ 〈{β + 1}|∅〉 = 〈{α+ β + 1}|∅〉 = (α+ (β + 1))Co,

and if β is a limit ordinal, then since commutativity is imposed by the Conway
definition, we get the modified recursion, Equation (1.16), which corresponds
exactly to the inductive definition of the natural sum of ordinals. Similarly, the
inductive definition of the modified hyperoperation H2 corresponds exactly to
Conway’s inductive definition of αCo · βCo.

Finally, the culminating point of Conway’s ingenious approach to the Field
NO is the proof that every non-zero number x admits a multiplicative inverse
(Theorem 2.69) – again, a relatively compact presentation is given by Simons
[Sim]. Norman Alling ([A], p. 160), having filled all the technical details left
out by Conway, remarks: [this technical work] "does not reduce the author’s
admiration of Conway’s insight. Indeed, to see that the ring NO is a field
seems remarkable indeed. To prove it in the way that Conway did seems to
the author little short of inspired."

4Cf. [ONAG], p. 5: "such multiple inductions can be justified in the usual way in terms
of repeated single inductions". However, Gonshor prefers to organize such multiple inductions
differently, [Go], p. 13: "We define addition by induction on the natural sum of the lengths on the
addends." (Idem [A], p. 133, and Note p. 138.) Possibly, this has some technical advantages, but I
see no conceptual reason to do so.
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2.8.1 Cut representation of a number

Every number can be represented by certain cuts. This idea, which origi-
nates in Dedekind’s construction of the real numbers, is basic in Conway’s
approach. First recall various definitions of cuts (see, e.g., [A], 1.20 and 4.02):

Definition 2.71. Let (N,<) be a totally ordered set (or class).

• A Conway cut in (N,<) is given by an ordered pair 〈L,R〉 of sets L,R ⊂
N such that L < R, that is: ∀a ∈ L, ∀b ∈ R : a < b.

• If moreover N = L ∪ R, then the cut is a Cuesta-Dutari (CD) cut in N .
(Then N has to be a set itself!)

• If moreover L 6= ∅, R 6= ∅, it is a Cuesta-Dutari-Dedekind (CDD) cut.

The Cuesta-Dutari completion of (N,<) is the disjoint union N ∪ CD(N) of N
with the set CD(N) of all its Cuesta-Dutari cuts.

Theorem 2.72 (Fundamental Existence Theorem, cf. [Go], Th. 2.1).

1. Every Conway cut 〈L,R〉 in NO determines a unique number c = [〈L,R〉]
such that:

(1) L < c < R, i.e., ∀a ∈ L, ∀b ∈ R : a < c < b,

(2) b(c) is minimal with respect to (1).

Moreover, if y is a number such that L < y < R, then c � y.

2. Let α be some fixed ordinal. For every Cuesta-Dutari cut 〈L,R〉 in NOα, the
number c from the preceding item belongs to the boundary ∂(NOα). Con-
versely, every number c ∈ ∂(NOα) gives rise to a CD-cut in NOα:

Lc = {y | b(y) < α, and y < c}, Rc = {z | b(z) < α, and z > c}.

Both constructions are inverse to each other. Thus NOα+1 = NOα ∪ ∂(NOα)
is the CD-completion of NOα.

Proof. 2. Assume (L,R) is a CD-cut in NOα. We prove by transfinite induction
on α that a unique number c satisfying (1) and (2) exists and that b(c) = α.

When α = 0, so NO0 = ∅, Condition (1) is empty, so Condition (2) charac-
terizes c as the number with minimal birthday, c = 0Co.

Assume the statement holds for all ranks β < α. The pair 〈Lβ , Rβ〉 :=
〈L ∩ NOβ, R ∩ NOβ〉 forms a CD-cut of NOβ . By induction, there exist unique
numbers cβ with b(cβ) = β and

Lβ < cβ < Rβ .

Then the family (cγ)γ<α forms a maximal chain in the number tree. Indeed,
this follows from Theorem 2.38: for all β < γ < α, we have [cγ ]β = cβ (the
projections x 7→ [x]β are monotonic, so if this property would not hold, then
we would have a contradiction to the fact that cβ defines a CD-cut), whence
cβ � cγ . And the chain is maximal since b(cβ) = β.
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According to Theorem 2.41, the maximal path (cγ)γ<α has a limit c. Again,
by monotonicity (Theorem 2.38), this limit c is the cut number sought for.

1. It suffices to show that the class I := {x ∈ NO | L < x < R} is not
empty, for clearly it is convex, and therefore by Lemma 2.35 then admits a
unique element c with minimal birthday.

Since L and R are sets, they are included in NOα for some ordinal α. Define
L̃ := {x ∈ NOα | ∃a ∈ L : x ≤ a} and R̃ := {x ∈ NOα | ∃b ∈ R : x ≥ b}.
Then (L̃, R̃) is a Conway cut. If the class I were empty, then the corresponding
class Ĩ for this cut would be empty, too, and (L̃, R̃) would be a CD-cut of NOα.
According to Part 2., it would admit a cut number, in contradiction with our
assumption that Ĩ is empty.

If L < y < R, then we have one of the following: y ≤ c, so y ≤ yca(y, c) ≤
c, or c ≤ y, so c ≤ yca(y, c) ≤ y. In both cases, minimality of b(c) implies that
yca(y, c) = c, that is, c � y.

2.8.2 The canonical cut

Definition 2.73. Two Conway cuts 〈L,R〉 and 〈L′, R′〉 are called equivalent if
they generate the same number, i.e., if [〈L,R〉] = [〈L′, R′〉]. (Conway says
they are "equal", and uses the sign for equality, but this way of talking is not
adequate in the present context.)

Definition 2.74. Following [A], p. 125, we say that a Conway cut 〈L,R〉 is
timely if its cut number is "new", in the sense that

∀x ∈ L ∪R : b(x) < b([〈L,R〉]).

Example 2.75. The number 0Co has only one timely cut representation: (L,R) =
(∅, ∅). All other cuts with L < 0 and R > 0 also represent 0Co, but are not
timely.

By Theorem 2.72, every number x is represented by its timely CD-cut

L = {y | y < x, b(y) < b(x)}, R = {y | y > x, b(y) < b(x)}.

The CD-cuts are the most "saturated" timely cuts: the sets L and R are the
biggest possible. On the other hand, one may wish to work with cuts such
that the sets L and R are "the smallest possible" – in [Go], Theorem 2.8 such a
choice is called canonical representation of a surreal number:

Definition 2.76. The canonical cut of a number a is the one given by the left
and right families of its branch, see Def. 2.48 and Theorem 2.77: a = [〈La | Ra〉]
with

La = {x | x � a, x < a},

Ra = {x | x � a, x > a}.

Theorem 2.77 (Canonical cut). The pair 〈La, Ra〉 just defined is a timely Conway
cut defining a, i.e., [〈La, Ra〉] = a.
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Proof. From the very definition, x < a < y for all x ∈ La, y ∈ Rb.

Let c := [〈La, Ra〉] be the number defined by this cut. Then c � a (by
Theorem 2.72, 1), so if b(c) < b(a), then the very definition of La and Ra

implies that c ∈ La or c∈Lb: contradiction. So b(c) = b(a) and c = a.

2.9 Equivalence with other approaches

We end this chapter by discussing the equivalence of our approach with other
known approaches to Conway numbers. From the very beginning, it is clear
that our basic definition (Definition 2.1) is equivalent to Gonshor’s one, and
our approach really is a transcription of Gonshor’s one ([Go]) into a more
rigorous set-theoretic setting. Next, let us discuss the relation with Alling’s
approach [A].

2.9.1 Cuesta-Dutari completions

For every totally ordered set N , its CD-completion N ∪ CD(N) (cf. Def. 2.71)
carries a natural total order:

Lemma 2.78. If (N,<) is totally ordered, then there is a total order on N ∪CD(N),
given for elements x, y ∈ N and CD-cuts (A,B), (A′, B′) by the prescription:

x < y if x < y in (N,≤),
x < (A,B) if x ∈ A,
(A,B) < y if y ∈ B,

(A,B) < (A′, B′) if A ⊂ A′.

Proof. Straightforward by distinction of cases – see [A], 4.02.

As we have seen (Theorem 2.72, 2), NOα+1 is the CD-completion of NOα.
Starting from NO0 = {0Co}, one can thus construct, by transfinite induction,
all higher stages by CD-completions and limits of preceding ones. This defines
NO as ordered class, and it can be used to "reconstruct" NO by starting from
the empty set – see [A]. However, this approach does not simplify in any way
the definition of the arithmetic structure on NO.

2.9.2 Allings axiomatic approach

The following definition is given in [A], Section 4.03:

Definition 2.79. For every ordinal β, a class of surreal numbers of height β is a
triple consisting of

(a) an ordered class (F,<),

(b) a function b : F → [0, β[, such that

(c) for every Conway cut (L,R) in F with b(L), b(R) < α < β,

there is a unique c ∈ F such that L < c < R and b(c) is minimal.

The class is called full if, under assumptions as in (c), we have b(c) ≤ α.



CHAPTER 2. A CONSTRUCTION OF CONWAY NUMBERS 47

Theorem 2.80. Any two full classes of surreal numbers of height β are isomorphic
to each other under a unique isomorphism (order and birthday-preserving bijection).

Using this result, Alling ([A], p. 131) concludes that, since all known con-
structions of Conway numbers satisfy these properties, they give isomorphic
results.

2.9.3 The full binary tree of numbers

We have shown that (NO,�) forms a full (complete and connected) binary
tree. Since the binary tree contains all order theoretic aspects of NO, the whole
theory can be reconstructed on these grounds (see [E11, E12, E20]).

2.9.4 Badiou’s Number and Numbers

Given a number x in our sense, let

W := b(x) its birthday and F := x ∩W = x \ {b(x)}, a subset of W .

Conversely, given an ordinal W and subset F ⊂ W , we find x = F ∪ {W}.

Badiou ([Ba], Section 12.2) defines a Number to be such a pair N = (W,F ) =
(W (N), F (N)), and calls W the matter of N , and F the form of N . He also
considers the residue R(N) = W \ F , so that (W,R(N)) corresponds to our
number x♯.

Badiou states and proves a series of results very similar to the ones pre-
sented here; however, he often uses long phrases instead of mathematical for-
malism, and this makes the development hard to read and to check. Never-
theless, the whole presentation is mathematically sound and contains several
interesting ideas (e.g., emphasizing the role of the discriminant). 5

2.9.5 Conway’s original approach: combinatorial game theory

We’ll discus the link with this approach in full detail in Chapter 3.

5Badiou’s main interest is, of course, in philosophical questions, and this hides or even ob-
scures the purely mathematical contents of his work. Professional mathematicians generally dis-
like such mixture of philosophy and mathematics – see, e.g., the very negative review of [Ba]
by Reuben Hersh in the Mathematical Intelligencer 31 (3), 2009, p. 67-69, which should be
compared with the more in-depth review by J. Kadvany, Notre Dame Philosophical Reviews,
https://ndpr.nd.edu/reviews/number-and-numbers/ .

https://ndpr.nd.edu/reviews/number-and-numbers/


Chapter 3

Set theory and Game theory

The definition of surreal numbers given in the preceding chapter is close to
Gonshor’s sign-sequence approach. Conway’s original approach is to define
numbers as special instances of games. His definition of number ([ONAG], p.
4) has the same structure as the one of a game ([ONAG], p.78/79):

Construction. If L,R are any two sets of games, there is a game {L|R}. All
games are constructed this way.

Conway puts forward two main arguments why this approach should be the
"good one" (cf. [ONAG], Epilogue, p. 225/26):

(a) The greatest delight, and at the same time, the greatest mystery, of the Surreal
numbers is the amazing way that a few simple "genetic" definitions magically
create a richly structured Universe out of nothing.

(b) The sign-sequence definition has also the failing that it requires a prior con-
struction of the ordinals, which are in ONAG produced as particular cases of
the surreals. To my mind, this is another symptom of the same problem, be-
cause the definitions that work universally should automatically render such
prior constructions unnecessary.

Concerning (b), see remarks in the Introduction (Section 0.9): I think this ar-
gument cannot be maintained. Concerning (a), it certainly expresses a deep
feeling Conway had about his own creation, and it has to be taken seriously.
However, Conway seems to overlook that the same "delight" and "mystery"
already must have been experienced by the founders of set theory, and in par-
ticular by von Neumann, when he "created the richly structured universe VN

out of nothing". For this reason, in this chapter, I will try to define a clear
framework for the approach by Combinatorial Game Theory (CGT), so that
one can compare both approaches on firm grounds. I closely follow the pre-
sentation from [S], with some deviations.

Logically and historically, CGT developed in two steps:

• the theory of impartial games (Sprague, Grundy, 1930ies),

• the theory of partizan games ([ONAG], Chapter 1, [WW]).

48
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Although surreal numbers only arise in the latter, it is necessary to start with
the former. For me, the main point is that the theory of impartial games is
what I call "pure set theory" – this has very clearly been remarked by Lenstra
[Le]. Thus, it can be considered as a topic in pure, foundational mathematics,
and in the following section we shall present it like this.

In the second section, we will define the analog setting for partizan games:
following Conway, [ONAG], p.66,

Plainly the proper set theory in which to perform a formalisation would be one
with two kinds of membership.

This is exactly what we will do.

3.1 Pure set theory, and impartial games

By "pure set theory" we mean the algebraic theory of VN, the universe of pure
sets, by taking seriously its structure – a set is a set of, set of... sets. As said in
Section 0.8, this way of looking at pure sets has a "quantum" taste, as opposed
to the "classical" viewpoint on sets. In this sense, game theory is "quantum set
theory".

Definition 3.1. An (impartial) game is just a pure set G. In this context VN

is called the universe of impartial games, and an element g ∈ G is also called
an option of G. An n-th order element g ∈n G, or position of G, is inductively
defined:

g ∈1 G iff g ∈ G, and g ∈n+1 G if ∃u ∈n G: g ∈ u.

A complete chain, or run, in a game G is given by a sequence of pure sets

G = G0 ∋ G1 ∋ G2 ∋ . . . ∋ Gn = ∅,

where n ∈ N. Thus every position arises in some complete chain.

All runs are of finite length: there is no point in defining x ∈α A for infinite
ordinals α, because by construction of the von Neumann universe, there are no
infinite descending chains of sets (this can be seen as a consequence of the axiom of foundation).
Note that second order elements appear quite frequently in "usual" maths (via
various systems of sets), but third and higher order elements hardly ever.

Theorem 3.2. There are two types of (impartial) games: every game G is either fuzzy
or of zero type, defined inductively as follows: G is

1. of zero type if all elements G1 ∈ G are fuzzy,

2. fuzzy, if there exists an element G1 ∈ G of zero type.

Proof. Clearly, G = ∅ is of zero type, and not fuzzy. By induction, assume the
claim true below a certain rank α, and G of rank α. Then both conditions are
well-defined propositions, and one is just the negation of the other, so G must
be either of zero type or not (i.e., fuzzy).

https://en.wikipedia.org/wiki/Axiom_of_regularity#No_infinite_descending_sequence_of_sets_exists
https://de.wikipedia.org/wiki/Mengensystem
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Game interpretation. "Playing G" means to fix a run G = G0 ∋ G1 ∋ . . . ∋
Gn = ∅ where n ∈ N. The "first" player (W: White) chooses G1, the "second
player" (B: Black) G2, etc. In a fuzzy game, W has a "winning strategy" (she
just has to choose a zero-type element G1 ∈ G, and then B is lost), in a zero-
type game, B has one. To be precise, this is normal-play convention. There is
also another convention, called misère-play, which is less natural: G is

1. of misère zero type if either G = ∅, or there is an element G1 ∈ G of misère
fuzzy type,

2. of misère fuzzy type if G 6= ∅, and all G1 ∈ G are of misère zero-type.

Then an analog of the above theorem holds, with same proof; but the excep-
tion for G = ∅ has to be stated explicity, if we wish that ∅ be of misère zero-
type (see [S], Chapter V, for misère-play theory). This makes misère-play more
cumbersome, and we will not pursue this.

Definition 3.3. To every pure set G we associate an ordinal Γ(G), its Grundy
number, as follows. For every set A of ordinals, the excluded minimum is the
ordinal

mex(A) := min{α | α ordinal, α /∈ A}. (3.1)

Note that mex(A) = 0 iff 0 /∈ A. Now define, by induction,

Γ(G) := mex{Γ(g) | g ∈ G}. (3.2)

Example. We compute the Grundy numbers for the pure sets from Table 1.1:

Table 3.1: The first Grundy numbers

order nr. symbol rank depth 1 Grundy nr. outcome
0 ∅ 0 ∅ 0 zero-type
1 I 1 {∅} 1 fuzzy
2 II 2 {I} 0 zero-type
3 III 2 {I, ∅} 2 fuzzy
4 IV 3 {II} 1 fuzzy
5 V 3 {II, ∅} 1 fuzzy
6 VI 3 {II, I} 2 fuzzy
7 VII 3 {II, I, ∅} 2 fuzzy
8 VIII 3 {III} 0 zero-type
9 IX 3 {III, ∅} 1 fuzzy
10 X 3 {III, I} 0 zero-type
11 XI 3 {III, I, ∅} 3 fuzzy
12 XII 3 {III, II} 1 fuzzy
13 XIII 3 {III, II, ∅} 1 fuzzy
14 XIV 3 {III, II, I} 3 fuzzy
15 XV 3 {III, II, I, ∅} 3 fuzzy
16 XVI 4 { IV } 0 zero-type

By induction, always Γ(x) ≤ rank(x), and, Γ(α) = α for all ordinals α.
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Theorem 3.4. A game G is of zero-type iff Γ(G) = 0, and fuzzy iff Γ(G) > 0.

Proof. Since Γ(G) = 0 iff 0 /∈ {Γ(g) | g ∈ G}, the condition Γ(G) = 0 means,
by induction, that no element g ∈ G is of zero-type, hence all elements of G
are fuzzy, hence G is of zero type. Conversely, Γ(G) > 0 means, by induction,
that some element of G is of zero-type, hence G is fuzzy.

Let us call Grundy-Map, and write Γ : VN → ON, for the collection of maps
ΓVNα

: VNα → α. The fiber over 0 is the class of zero-type games. The class
of fuzzy games is characterized by non-zero Grundy numbers. A key result
of [ONAG], Chapter 6, is that there are algebraic structures turning Γ into a
morphism.

3.1.1 Disjunctive, and other sums of pure sets

Conway realized that, via transfinite ǫ-induction, one can define various alge-
braic laws on universes such as VN or ON. Let us call "Conway-style" the way
of defining such laws:

Theorem 3.5. The following three operations are well-defined by transfinite induc-
tion, for pure sets F and G:

F ∗1 G := {F ∗1 g, f ∗1 g | f ∈ F, g ∈ G},
F ∗2 G := {F ∗2 g, f ∗2 G, f ∗2 g | f ∈ F, g ∈ G},
F ∗3 G = {F ∗3 g, f ∗3 G | f ∈ F, g ∈ G}.

Then all three laws are associative, and ∗2 and ∗3 are also commutative. The empty
set ∅ is a two-sided unit element, for all three operations.

Proof. Note that ∅ ∗i ∅ = ∅, for i = 1, 2, 3, since the conditions are empty. By
transfinite induction, this implies that ∅ ∗i G = G = G ∗i ∅. Indeed, assume
∅ ∗i g = g = g ∗i ∅ holds for all elements g of G; then

∅ ∗i G = {∅ ∗i g | g ∈ G} = {g | g ∈ G} = G = G ∗i ∅.

For fixed F , and g ∈ G, by induction, elements F ∗i g, etc., have lower rank
than F ∗i G, so the latter is defined by transfinite induction, and by another
induction, F ∗i G is thus defined for all pure sets F and G. Associativity is,
in the words of Conway [ONAG], a "one-line proof" (which we write in three
lines...), just using the definition and the induction hypothesis, e.g.,

(F ∗1 G) ∗1 H = {(F ∗1 G) ∗1 h, (F ∗1 g) ∗1 h, (f ∗1 g) ∗2 h | f ∈ F, g ∈ G, h ∈ H}
= {F ∗1 (G ∗1 h), F ∗1 (g ∗1 h), f ∗1 (g ∗2 h) | f ∈ F, g ∈ G, h ∈ H}
= F ∗1 (G ∗1 H).

Likewise, by induction, it is seen that ∗2 and ∗3 are commutative.

Definition 3.6. We call the operation ∗3 the disjunctive sum of two impartial
games (pure sets), denoted in this context by + :

F +G := F ∗3 G = {f +G,F + g | f ∈ F, g ∈ G}.
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Example 3.7. I+ I = {I} = II,

I+ II = {II} =IV,

II+ II = {I+ II} =XVI.

Since 1 + 1 = II is not an ordinal, the class of ordinals is not stable under
disjunctive sum. The following definition remedies this.

Definition 3.8. For two ordinals α, β, we define recursively their nimber sum

α ⋄ β := mex{α ⋄ β′, α′ ⋄ β | β′ ∈ β, α′ ∈ α}.

Theorem 3.9. The Grundy-map Γ is a morphism from + to ⋄: for all G,H ,

Γ(G+H) = Γ(G) ⋄ Γ(H).

Nimber-sum is associative, commutative, and α ⋄ β = 0 iff α = β.

In particular, Γ(G+H) = 0 iff Γ(G) = Γ(H).

Proof. By the definitions,

Γ(α+ β) = mex{Γ(α′ + β),Γ(α + β′) | α′ < α, β′ < β}.

By an inductive argument, we see that this equals α⋄β. It follows that nimber
sum is associative. Similarly, it follows that Γ(G+H) = Γ(G) ⋄ Γ(H). Finally,
it is shown by induction that 0 ∈ α ⋄ β iff α 6= β. From this, it follows that
Γ(G+H) 6= 0 iff Γ(G) 6= Γ(H).

Definition 3.10. We write G ≡ H iffΓ(G) = Γ(H), i.e., iffG+H is of zero-type.

By the theorem, ≡ is an equivalence relation, and equivalence classes [G]
correspond to ordinals Γ(G). Games with disjunctive sum form a Monoid,
and their equivalence classes under ≡ form a Group, isomorphic to (ON, ⋄).

Although this is not needed for the theory of impartial games, let us return
to the "sums" ∗1 and ∗2 :

Theorem 3.11. The (von Neumann) ordinals are stable under ∗1 and ∗2, and:

α ∗1 β = α⊕ β is the ordinal sum of ordinals α and β,

α ∗2 β is the Hessenberg sum of α and β.

Proof. By transfinite induction. E.g.,

α ∗1 β = {α′ ⊕ β, α⊕ β′ | α′ < α, β′ < β} = α⊕ β

since (if β > 0), each ordinal γ < α⊕ β can be written, γ = α⊕ β′ with β′ < β,
and vice versa. For ∗2, the proof is similar (consider the examples α = ω,
β = 1, resp. α = 1, β = ω.)

See [S], p.41, for several examples of "sums" of similar type as ∗i (defined
in the partizan setting), and which are all associative.

https://en.wikipedia.org/wiki/Nimber#Addition
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3.1.2 Product, and the Field of nimbers

The definition of multiplication is more delicate than the definition of addi-
tion. For instance, usual ordinal, or Hessenberg multiplication does not ex-
tend to VN in a way admitting all desired properties. Concerning "impartial
pure set theory", we define:

Definition 3.12. The product of two pure sets F,G is inductively defined by

F ·G := {(f ·G) + (F · g) + (f · g) | f ∈ F, g ∈ G},
and the nimber product of two ordinals inductively by

α ◦ β := mex{(α ◦ β′) ⋄ (α′ ◦ β) ⋄ (α′ ◦ β′) | β′ ∈ β, α′ ∈ α}.

By induction, just like for addition, we see that Γ(G · H) = Γ(G) ◦ Γ(H).
But whereas the product on VN fails to have the properties of a product in a
Ring, the product on ON has excellent properties – the following is the main
result of [ONAG], Chapter 6, cf. [S], Section VIII.4:

Theorem 3.13. The class of ordinals ON together with nimber addition and nimber
multiplication is a Field of characteristic 2.

The Field of nimbers is the analog, in the impartial theory, of the Field of
numbers for partizan games. In loc. cit., more is proved about the nimbers:
e.g., for every finite ordinal n, the Galois field F22n is a subfield of the nim-
bers, and (N, ⋄, ◦) is a subfield, isomorphic to the direct limit of these. Just
as for numbers, there are two viewpoints: either, view the nimbers as the or-
dinals together with special laws defining a Field structure, or view them as
VN, quotiented by ≡, together with a rather natural sum, and a less natural
product.

3.2 Partizan games, graded sets

Impartial games correspond to usual, pure set theory, and partizan games cor-
respond to a similar theory, where now the proper set theory in which to perform
a formalisation would be one with two kinds of membership. In principle, this is car-
ried out in [S], Chapter VIII, albeit in a different language. As stressed in the
introduction, the main issue is about ordered pairs: there seems to be no natural
operation in pure set theory that modelizes "the" Cartesian product of sets, (nor
"the" disjoint union, that is, the set theoretic coproduct). Every such construction
depends on choices, or on "contexts", specific to a given situation. The usual
convention of set theory is to define ordered pairs via the Kuratowski construction

〈a, b〉 := {{a, b}, {a}} (3.3)

and Cartesian products as the set of all ordered pairs,

a× b := {〈x, y〉 | x ∈ a, y ∈ b}. (3.4)

This has the desired properties. But any other injective family of maps f =
fα : VNα × VNα → VNα+k (for some k ∈ N) could serve to define the notion
of ordered pair, and the choice f((a, b)) = 〈a, b〉 (with k = 2) appears to be
arbitrary. Note also that in general (a× b)× c 6= a× (b× c). As far as I see, all
known variants of the Kuratowski construction share these inconvenients.

https://en.wikipedia.org/wiki/Nimber#Multiplication
https://en.wikipedia.org/wiki/Cartesian_product
https://en.wikipedia.org/wiki/Disjoint_union#Set_theory_definition
https://en.wikipedia.org/wiki/Ordered_pair#Kuratowski's_definition
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The graded von Neumann universe

Our aim is to define a hierarchy having the same properties as the von Neu-
mann hierarchy VN, but with two kinds of membership, ∈L (left member) and
∈R (right member) instead of just one type ∈. Technically, it will be defined as
a subclass of VN, by using one of the current definitions of ordered pair 〈x, y〉 of
pure sets x, y. For convenience, think of the Kuratowski definition (3.3), but
any other would be equally convenient. The imbedding of our new universe
in VN will depend on this choice, but its "intrinsic" properties won’t.

Definition 3.14. Fix some definition of "ordered pair" in pure set theory, to be
denoted by

a ⊔ b := ordered pair, often also denoted by (a, b). (3.5)

If z = x ⊔ y is an ordered pair, we call x = zL its left component, and y = zR its
right component. We define a subclass V̂N of VN, which we call the graded von

Neumann universe, as follows: let V̂N0 = ∅,

V̂Nα+1 = P(V̂Nα)× P(V̂Nα) = {y = yL ⊔ yR | yL, yR ∈ P(V̂Nα)}
for successor ordinals α+ 1, and if λ is a limit ordinal, we let

V̂Nλ =
⋃

α<λ

V̂Nα.

Elements of V̂Nα are called partizan games, or graded sets (of rank at most α).
Elements a, b . . . of yL are called left elements (left options) of y, and elements
v, w, . . . of yR right elements (right options) of y; we write

a ∈L y for a ∈ yL, v ∈R y for v ∈ vR.

Thus y = {a, b, . . .}⊔{v, w, . . .} is, in our notation, the set which Conway often
writes like this: y = {a, b, . . . | v, w, . . .}.

Remark 3.15. Our notation a⊔b for the ordered pair should remind the idea of
"disjoint union with first set a and second set b". This also justifies Conway’s
notation, which would be an excellent way to describe such disjoint unions, if
it were not in conflict with set-builder notation – we wish to use the vertical
bar to indicate set-builder conditions, and hence do not use Conway-notation.

Remark 3.16. Following Simons, [Sim], it is sometimes useful to turn {L,R}
into a group with neutral element R, and to write P or O for an element of this
group. So, ξ ∈P x means ξ ∈ xP . The letters L,R look like new "urelements"
of set theory. One could also use A,B for "Arthur" and "Bertha" ([ONAG],
p. 71). Probably, in pure set theory, it would be better to use I, 0, but we are
going to follow the convention from CGT.

Remark 3.17. As a class, our V̂N is the same as the class P̃G defined on pages
53/54 and 398 in [S], but our labelling by ordinals α, and hence the following
rank definition, is slightly different: e.g., we start with V̂N0 = ∅, whereas for
α = 0, the definition in loc. cit. yields P̃G0 = {0} = {〈∅, ∅〉}, and likewise
for all limit ordinals λ, the definition from loc. cit. directly yields our V̂Nλ+1.
In other terms, the stages in loc. cit. are rather labelled by "Conway ordinals",
than by "von Neumann ordinals".
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Definition 3.18. The (graded) rank of a graded set (partizan game) G is the least
α such that G ∈ V̂Nα+1.

For n ∈ N, we have card(V̂Nn+1) = 22·card(V̂Nn). For n = 1, the only element
of V̂N1 is the "zero-game" ("graded zero")

0G := ∅ ⊔ ∅. (3.6)

Here is V̂N2 and some elements of V̂N3 (our order-numbers are ad hoc):

Table 3.2: Beginning of the graded universe

order nr. CGT symbol rank depth 1 Conway notation type
0 0G 0 ∅ ⊔ ∅ {|} ≡ 0
1 1G 1 {0G} ⊔ ∅ {0 |} > 0
2 (−1)G 1 ∅ ⊔ {0G} {| 0} < 0
3 ∗ 1 {0G} ⊔ {0G} {0 | 0} ‖0
4 2G 2 {1G} ⊔ ∅ {1|} > 0
5 ↑ 2 {0G} ⊔ {∗} {0|∗} > 0
6 ↓ 2 {∗} ⊔ {0G} {∗|0} < 0

We leave to a machine the task of giving a list of the 28 = 256 elements of V̂N3.

Remark 3.19. By construction, V̂N is included in VN, but there are also con-
verse inclusions. By induction, we define three Imbeddings of VN into V̂N:

1. iL, Left Imbedding: iL(y) := {iL(x) | x ∈ y} ⊔ ∅,

2. iR, Right Imbedding: iR(y) := ∅ ⊔ {iR(x) | x ∈ y},

3. iD, Diagonal Imbedding: iD(y) := {iD(x) | x ∈ y} ⊔ {iD(x) | x ∈ y}.

The image of iL consists of "positive" elements, and the one of iR of "negative"
elements (see below). The Diagonal Imbedding can be (and is, in [S]) used to
consider the theory of impartial games (preceding section) as a "subtheory" of
the theory of partizan games.

Definition 3.20. For a single partizan game G, there is an opposite game Gop

defined by: g ∈L Gop iff g ∈R G, and g ∈R Gop iff g ∈L G.

More interestingly, by induction for all partizan games one can define the
Conway-opposite G♯ (which Conway denotes by −G) by

G♯ := {g♯|g ∈R G} ⊔ {g♯|g ∈L G}.

In Simons’ convention (Remark 3.16): g ∈P G♯ iff g♯ ∈P+L G.

At lowest ranks, opposite and Conway-opposite coincide: from the four
elements of V̂N2, 0G and ∗ are fixed, and 1G and (−1)G are exchanged.
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Theorem 3.21 (The four outcome classes). Every graded set (partizan game) G
is either positive or not positive, and either negative or not negative, defined
inductively: G is

1. (a) positive, G ≥ 0, if: ∀g ∈R G: not(g ≤ 0),

(b) not positive, ¬(G ≥ 0), or: not(G ≥ 0), if : ∃g ∈R G: g ≤ 0,

2. (a) negative, G ≤ 0, if: ∀g ∈L G: not(g ≥ 0),

(b) not negative, ¬(G ≤ 0), or: not(G ≤ 0), if: ∃g ∈L G: g ≥ 0,

and Case i.(a) is the logical negation of Case i.(b). Therefore, every partizan game G
is of exactly one of the following four types:

1. G ≡ 0: G is both positive and negative (also: "of zero type"),

2. G‖0: G is both not positive and not negative (also: "fuzzy"),

3. G > 0: G is positive and not negative (also: "strictly positive"),

4. G < 0: G is negative and not positive (also: "strictly negative").

Moreover, the operator ♯ exchanges "positive" and "negative", hence exchanges G >
0 and G < 0, and it preserves G ≡ 0 as well as G‖0.

Proof. By induction: note that the zero-grame 0G = ∅̂ has no left and no right
elements, so it is positive and negative, and not (not positive or not negative).
If the claim holds at graded rank below α, and G has graded rank α, then
all four statements are well-defined propositions, and (not positive/not neg-
ative) is the logical negative of (positive/negative). Therefore the properties
are well-defined, and we get the four cases. By induction, it is clear that ♯
exchanges > and <, but preserves ≡ and ‖.

Game interpretation. See explanations p.72/73 concerning Theorem 50 in
[ONAG]. (A description by words seems more difficult, to me, than the for-
malism given above. There are two kinds of "runs", starting with ∈L, resp.
with ∈R, and "strategy" refers to an existence quantifier "∃": "make a good
choice". In the end,

G > 0: there is a winning strategy for L,

G < 0: there is a winning strategy for R,

G ≡ 0: there is a winning strategy for the "second" player,

G‖0: there is a winning strategy for the "first" player.

The letters L and R seem to be used here in several different ways, as names
for "players" – a kind of variable –, and as fixed "urelements" denoting an
absolute choice of order. From a logical point of view, this is rather confusing.)
Notice that we are in "normal-play convention": the zero-game satisfies 0G ≡
0, as it should. Analogous definitions for "misère-play convention" would
be clumsy, and will not be considered here. Next, one would like to define an
analogue of the "Grundy-map" Γ, but this turns out to be much more involved.
First of all, the arithmetic operations:
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Definition 3.22. We define inductively the disjunctive sum of G,H ∈ V̂N by
u ∈P G+H iff [ ∃g ∈P G: u = g +H , or ∃h ∈P H : g = G+ h ]:

G+H := {G+ h, g +H |h ∈L H, g ∈L G} ⊔ {G+ h, g +H |h ∈R H, g ∈R G}

(cf. Theorem 3.5 for the principle of such Conway-style definition).

Theorem 3.23. The disjunctive sum is associative and commutative, and has neutral
element 0G. The operator ♯ is an Automorphism of the additive monoid, of order two:
(G+H)♯ = G♯ +H♯, (G♯)♯ = G.

For every partizan game G, the game G+G♯ is of zero-type: G+G♯ ≡ 0.

Proof. By induction, via "one-line proofs": [ONAG], Chapter 1.

Definition 3.24. Following [ONAG, S], we write G−H := G+H♯, and let

1. G ≡ H iff G−H ≡ 0,

2. G‖H iff G−H‖0,

3. G > H iff G−H > 0, and we write G ≥ H iff G−H ≥ 0,

4. G < H iff G−H < 0, and we write G ≤ H iff G−H ≤ 0.

Theorem 3.25. The Relations ≤ and ≥ are preorders on V̂N (transitive and reflex-

ive), and define partial orders on the quotient V̂N/ ≡. The Relation G ≡ H is an

Equivalence Relation on V̂N, defining a Congruence Relation for the disjunctive sum

+, and compatible with with ♯. The quotient G := V̂N/ ≡ becomes an ordered abelian
Group, with Group inversion induced by ♯.

Proof. By induction: [ONAG], Chapter 1, see also [S] or [Sch].

Definition 3.26. One distinguishes between a game form G ∈ V̂N, and its equiv-
alence class, the game value [G] ∈ G = V̂N/ ≡. Here, under the "quotient"
V̂N/ ≡ (which would be a quotient of proper classes), we understand the hier-
archy of quotients of sets (V̂Nα/ ≡)α, indexed by ordinals α. In game theory,
one is rather interested in the game value, and therefore considers games as
"equal" if they have the same game form.

Definition 3.27. We define the Conway-product of two games by G ·H :=

{G · h+ g ·H − g · h,G · h′ + g′ ·H − g′ · h′|h ∈L H, g ∈L G, h′ ∈R H, g′ ∈R G}⊔
{G · h+ g′ ·H − g′ · h,G · h′ + g ·H − g · h′|h ∈L H, g ∈L G, h′ ∈R H, g′ ∈R G}.

Theorem 3.28. The Conway product is commutative, the game 1G is neutral for
multiplication, and G · 0G = 0G. Also, (G ·H)♯ = G ·H♯ = G♯ ·H .

Proof. By induction, via "one-line proofs": [ONAG], Chapter 1.

However, the Conway product does not descend to the quotient V̂N/ ≡,
and it is not even associative or distributive over disjunctive sum.

https://en.wikipedia.org/wiki/Preorder
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3.3 Numbers as games

We realize the class NO as explained in Chapter 2.

Definition 3.29. By induction, we define two Maps from NO to V̂N, associating
to a number x the "game of x": for G(x) we use the maximal cut representation
of x (the Cuesta-Dutari cuts), and for g(x) the canonical cut:

g : NO → V̂N, x 7→ {g(y) | y < x, y ≺ x} ⊔ {g(y) | y > x, y ≺ x},
G : NO → V̂N, x 7→ {G(y) | y < x, b(y) < b(x)} ⊔ {G(y) | y > x, b(y) < b(x)}.

Note that g(0Co) = ∅ ⊔ ∅ = G(0Co) is the zero-game. Denote by κ : V̂N →
V̂N/ ≡, E 7→ [E] the quotient Map, and [g] := κ ◦ g : NO → G and [G] := κ ◦G.

Theorem 3.30. We have [G] = [g], and we could have used any timely cut represen-
tation of numbers x in order to define the same map NO → G. The image of [G] is
given by all classes of games X such that all higher order elements y ∈n

O X (where
n ∈ N and O is a sequence of L and R of length n) satisfy:

∀a ∈L y, ∀b ∈R y : a < b. (3.7)

The Map [G] is strictly order preserving and in particular injective. Its image, with
disjunctive sum and Conway product, forms a Field, the Field of Conway numbers.

In order to prove the theorem, there are a lot of things to check. Every step
is by induction, and some of these steps are easy "one-line proofs" (Conway),
but some are not. In principle, everything is contained in [S], and our presen-
tation is just a bit more formal, following the spirit of "pure set theory". All
statements concerning order and the additive theory have rather easy "one-
line proofs". The characterization of the image of [G] paraphrases [S] p. 401:
"A long game x is a surreal number if: yL < yR for every subposition y of
x and every yL and yR." Statements concerning the multiplicative theory (in
particular, inverses), have mostly less straightforward proofs. Here, the pre-
sentation given by Simons [Sim] offers some interesting shortcuts: he uses the
group structure of {L,R} in order to simplify, or to unify, some of the com-
putations given by Conway. This seems to indicate that indeed some Z/2Z-
graded theory might be underlying the structures considered here; however,
it is not clear to me how to present such a theory in a conceptual way.

Compared to the impartial theory, the missing element in the partizan the-
ory is an analog of the Grundy-map Γ: there is no Map V̂N → NO of which G
or g would be a kind of Section. Possibly, what comes closest to this, are the
"left and right values of a game", defined for rather general games in [ONAG],
p.98: they do not take values in NO, but in pairs of Dedekind sections of NO, so
give rise to pairs of "gaps" ([ONAG], p. 37). But (p. 38 loc. cit.), the collection of
all gaps is not even a Proper Class, being an illegal object in most set theories. It is not
clear if and how these objects can be formalized in our framework, potentially
giving rise to a new algebraic Object, yet bigger and more comprehensive than
NO. Summing up , the "partizan theory of numbers" is much more intricate
than the corresponding one of the nimbers from the impartial case, and my
impression is that we are still lacking a good and conceptual understanding
of what is going on here.



Chapter 4

All things are number.

What is number?

Conway’s invention, or discovery, of the surreal numbers offers us the oppor-
tunity to think anew about age-old meta-mathematical hashtags, starting by
Pythagoras’ "Everything is number". In this last chapter, triggered by the ap-
proaches to surreal numbers described above, I add some personal remarks
concerning "number and numbers". I apologize, both to professional math-
ematicians and philosophers, if these remarks appear naive, and my hope
would be that scientists who are more competent then I am, might take them
up, or disprove them in case they are completely mislead.

4.1 Pure set theory, and the universe of mathematics

Let me recall from the Introduction, Section 0.8: I propose to call "pure set
theory" the set theory obtained by taking seriously the Credo of classical set
theory (ZF, NBG, or equivalent):

Every set is a set whose elements are sets.

Two sets are equal if they have the same elements.

Set theory based on this Credo is sometimes called material set theory.1 I prefer
the terms "pure", or "quantum": as advocated in Section 0.8, "pure" set the-
ory in this sense could be opposed to "common sense set theory" in the same
way as "quantum physics" could be opposed to "classical physics". Of course,
every working mathematician knows that in her or his domain, the "mate-
rial" viewpoint appears to be completely useless – just like quantum physics
made no sense in the world of classical physics. However, the approaches to
Conway numbers described in the preceding chapters might indicate that the
"pure", or "quantum", viewpoint deserves to be taken more seriously.

If you are willing to temporarily accept the viewpoint of pure set theory,
you realize that the main conceptual problem is the logical status of products
and coproducts in such an approach: every "material" definition, like the Ku-
ratowski definition, is flawed by arbitraryness, and after iteration becomes

1See, e.g., https://ncatlab.org/nlab/show/material+set+theory .
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totally uncontrollable, hence should be rejected (cf. Introduction, 0.8). We pro-
pose two different kinds of "solutions" to this dilemma:

• When working on a specific problem, located somewhere in the von
Neumann universe VN, one always can work with "local" definitions of
products and coproducts, by indexing objects by ordered pure sets that
are "far away" from the local setting (disjoint, higher order disjoint). In
other words, the material implementation of product and coproduct in
the universe would be relative and not absolute – so we need a kind of
"relativity theory for (co)product structures".

• If we insist in an absolute, global and material notion of product and
coproduct, then we need to work in a "graded universe", like V̂N, Defi-
nition 3.14. However, care must be taken not to mix up the theories of
VN and V̂N. The former can be imbedded into the latter – these are the
"impartial games", diagonally imbedded into the "partizan games". But
possibly one should rather use the language of "supermathematics", or
of "Bosons" and "Fermions"...

The mathematical universe

Language is an important issue for mathematics. For instance, the language of
Combinatorial Game Theory (CGT) is rich, colorful, often amusing and taking
up words from current English in a playful way – see [ONAG, WW, S]. Like-
wise, notation of CGT is rather ad-hoc, at the opposite end of Bourbaki-style
or category theory. For insiders, this certainly contributes to the beauty of the
subject, but unfortunately has the effect that the general mathematical reader
quickly gets lost and just "retains the music" without understanding anything
of the underlying hard mathematics. Therefore, although CGT certainly con-
tains important and deep results about the mathematical universe, VN or V̂N,
the general mathematical community is not (yet) prepared to understand and
to appreciate them.

The language of mathematical physics (MP) is taken much more seriously
in the mathematical community, for good reasons. Therefore I would like to
propose a switch in language, replacing terminology from CGT by terminol-
ogy from MP. The term mathematical universe has been introduced by Tegmark
[Teg], and popularized by his subsequent book [Teg2], mixing up ideas from
physics, philosophy, and mathematics. He states and defends what he calls
the Mathematical Universe Hypothesis (MUH):

Our external physical reality is a mathematical structure.

Since I am a mathematician, and not a physicist, I do not want to make any
statements about our external physical reality. But for discussing the MUH
seriously, it is necessary that mathematicians contribute to answer the ques-
tion: What is a "mathematical structure"? Tegmark’s answer ([Teg], Appendix
A) seems unsatisfactory, to me. I see two different ways to improve or correct
his explanations:

(A) Material: By "mathematical structure" is meant a pure set. Thus the
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MUH would be turned into the MMUH (material mathematical uni-
verse hypothesis):

Our external physical reality is the (graded) von Neumann universe.

(B) Categorical: By "mathematical structure" are meant all objects or mor-
phisms of all categories or higher categories we can think of. (The leads
to the CMUH: "categorical mathematical universe hypothesis")

Tegmark dismisses such a distinction: he postulates a kind of big "telephone
book" indexing all structures by (natural) numbers, such that isomorphic struc-
tures should have the same "telephone number". He does not ask what hap-
pens when we change the category, or if the "telephone book" itself is part of
reality, or not, and what consequences this would have. I have been sympa-
thizing with Answer (B) for a long time, and I still appreciate it. However, for
today let us try to promote Answer (A):

1. In mainstream, ZF-based mathematics, VN is the "universe of mathemat-
ics". So, it certainly is a legitimate candidate for the "mathematical uni-
verse" (or maybe, better after being upgraded to V̂N).

2. Answer (A) would be "quantum" in nature: it allows to think of a glob-
ally defined equality relation on the universe: two things are equal, or
not. Answer (B) would be "classical" in nature, and it would call for a
"relativity theory of equality" (e.g., some kind of type theory, see [Hott]):
equality is only defined locally, as isomorphy with respect to a certain
category. Since there are "categories of categories", it is absolutely neces-
sary to include higher order category theory into such an approach. Thus
(B) is more complicated than it might appear at a first glance, whereas
(A) avoids such complications.

3. In the other direction, adopting (A), it would always be possible to con-
sider (B) as a "classical limit", just by forgetting the globally defined
equality relation and replacing it by some locally defined isomorphy re-
lation. Thus "without loss of generality" we may adopt (A), since it does
not prevent us from working classically, if we want to.

4. Maybe Conway himself had similar ideas in mind when using language
from MP in CGT. E.g.: "the exact form of Mach’s principle is that the atomic
weight of G is at least 1 if and only if G exceeds the remote stars" ([ONAG],
p.218). It should be worth the effort to make such phrases understand-
able for a large mathematical public!

5. The hierarchical structure of VN or V̂N might turn out to be an extremely
useful feature for understanding the universe. Usual mathematical the-
ories just mimic the step from rank α to its successors α + 1 and α + 2
(e.g., topology, measure theory: theories working with certain "sets of
subsets"). Already the step from α to α + 3 is quite a challenge in con-
ventional approaches, but passing beyond a limit α+ λ may completely
change the mathematical structure – and beyond α + ǫ0 it may contain
mathematics of which so far we have no idea.
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It would be tempting to interprete the "unreasonable ineffectiveness of
mathematics in biology", pointed out by Israel Gelfand,2 by the fact that
present day mathematics, at best, understands the step from a stage to
its successor stage, but not the step going beyond the next limit.

6. What is "random", what is "determined", what "information" do we have?
Maybe a more profound theory of VN or V̂N will give answers.

The structure of VN or V̂N is all but "random": it is a well-defined math-
ematical structure that seems to be "completely determined". However,
already VN7 has more elements then our physical universe has atoms, so
there is no hope to "compute everything in VNn by brute force", even for
rather small n. So, if it is impossible to get "complete information" on
VNn, what does "information about VN" mean? For instance, will it be
necessary to introduce some total order on VNα to give each element an
"order number" (like the tape of a Turing machine)? – for finite α, there
is a natural order (see Table 1.1: the colex-order), but for infinite α, to fix
some order one would need to invoke the axiom of choice (which has
been avoided so far!): would this introduce an element of randomness
in the theory?

7. In Tegmark’s setting, one might say "the telephone book is the universe".
Thus self-reference would be inherently built into the concept of "uni-
verse". Neither (A) nor (B) can escape of this. See [R] for a logical and a
philosophical discussion of such issues.

8. The universe VN itself is a proper class and not a set, and therefore is
not an element of the universe. In the material setting (A), it is possible
to name things that are outside the universe. (E.g., the "gaps in NO",
defined in [ONAG], are outside the universe, too, yet one may conceive
such a concept.) In setting (B), this is more difficult, since an appropri-
ate language is missing. Again, see [R], for both a mathematical and
philosophical discussion of this issue.

9. In quantum theory, the complex numbers play a more important rôle than
the real ones. So, where are the complex, and the surcomplex, numbers
in VN or V̂N? There are natural models, see below, Section 4.3.

4.2 Intrinsic NO-theory

There is a lot of recent work dealing, in one way or another, intrinsically with
surreal numbers and related topics. With no pretention of being exhaustive,
let us quote [BH1, BH2, BKMM, BM, CE, Fo, GN, KM, Ly, RS, Sch], besides
the work of Ehrlich already quoted earlier – see also the conference report
[BEK] for an overview. By "intrinsic", we mean a viewpoint taking the exis-
tence of NO for granted, and pursuing the intrinsic theory of NO and other
closely related fields or Fields, mostly various kinds of "generalized power se-
ries fields", or "transseries fields". In most of this work, Gonshor’s definition
[Go] of NO is used, and Conway’s original one rather serves as a kind of mo-
tivation; more general games usually are not in the scope of such work. The

2cf. https://en.wikipedia.org/wiki/Unreasonable_ineffectiveness_of_mathematics .

https://en.wikipedia.org/wiki/Unreasonable_ineffectiveness_of_mathematics
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main tool used in "intrinsic NO-theory" is Conway’s omega-map x 7→ ωx, which
we have not yet mentioned in our approach. In the present text, I decided not
to develop this direction, since I feel it would start another work, less general
and more specialized than the focus of the present one, and I will just give the
definition of the omega-map in terms of our approach (Section 4.2.3).

4.2.1 Open problems and questions

The conference report [BEK], p. 3315–3317, contains an interesting list of "open
problems and questions" arising in what I call intrinsic NO-theory. Most of
these questions concern generalized power series fields and valuation the-
ory, in particular, related to exponential and logarithm series and derivations.
Other questions are of a more general nature, such as :

Question 2. Describe the field operations of NO using the sign sequence rep-
resentation.

Question 3. Let i =
√
−1. Is there a good way to introduce sin and cos on

NO and an exponential map on NO[i]? Is there a surreal version of the p-adic
numbers?

Question 16. Can one characterize the subset Q of NO in terms of sign-se-
quences?

Question 17. Can one extend the simplicity order of NO to functions? In
which sense + is the simplest function increasing in both arguments? Is exp
the simplest homomorphism from (NO,+) to (NO>0,×) such that for all n ∈ N

and positive infinite x we have exp(x) > xn?

Question 18. Can one describe an integer part of NO which is a model of
true arithmetic? The existence of such an integer part should follow by the
saturation properties of NO, but an one construct such an integer part explic-
itly (without the axiom of choice, say)?

Question 16 has been answered by Moritz Schick ([Sch], cf. our Theorem
2.21). Question 3 is, in our opinion, related to items to be discussed below
(Section 4.3). Question 17 about the "simplicity order of functions" is certainly
a very important topic, and which probably needs a general and abstract con-
text for formalizing a suitable answer. Question 2 really asks for a definition of
"Conway arithmetics" in the context of our definition of NO. In the following,
we give a sketch of a programme how to attack it.

4.2.2 An algebraic approach to Conway arithmetics

The above quoted Question 2 asks for defining sum x+ y and product x · y of
numbers x, y ∈ NO in "combinatorial terms", starting from the sign-sequence,
that is, the list of elements, of x and y. As we have seen, this is easy for the
Cantor-style operations ⊕,⊗,⊕⊗, since they are continuous in the second argu-
ment. Thus there might be some hope that the commutative, non-continuous
field operations could be derived from the Cantor-style operations in a sim-
ilar way as the "natural", Hessenberg operations are derived from Cantor’s

https://en.wikipedia.org/wiki/True_arithmetic
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ordinal arithmetic of ordinals. In the following, we sketch some ideas how
this could be achieved. The idea is quite naive: build up the arithmetic struc-
tures of NO from ON in steps, copying the procedure of building up R from
N. If we understand the combinatorial structure of each step well enough,
one might use this to give a "purely combinatorial" definition of the Conway
arithmetic operations. However, filling in the missing details would need a
more profound understanding from which, at present, we are still remote.

(1) We equip ON with its natural, Hessenberg operations (see Subsection
1.3.3). Let ZON be the Grothendieck Group of (ON,+), which we can
identify with the Image of the Map (here, ON are the Conway ordinals)

ON×ON → NO, (α, β) 7→ α− β. (4.1)

In other terms, ZON is the smallest Subgroup of (NO,+) containing the
Conway ordinals. It is a proper Subgroup of the omnific integers (OZ,+),
and it is stable under multiplication, so is a Ring.

Task: describe the combinatorial structure of addition and multiplica-
tion in ZON in terms of sign-expansions (set theory). See below.

(2) One may consider the short numbers NOω = Z[ 12 ] (dyadic fractions) to
be well-understood: they are added by the usual carry-rules, which give,
for instance, for all short numbers x,

x+ x+

2
= x+−,

x+ x−

2
= x−+. (4.2)

Let Z(2)
ON

be the class obtained from ZON by taking all finite successors of
elements x ∈ ZON. This should be a ring, tentatively a kind of scalar
extension of ZON by Z[ 12 ], and whose combinatorics should be closely
related to the one of Z[ 12 ].

(3) There should also be a well-defined Field of fractions QON of ZON, which
is a Subfield of NO, and which should extend Z

(2)
ON

in a way similar to the
extension from Z[ 12 ] to Q (cf. Theorem 2.21).

(4) Finally, explain in what sense NO itself can be considered as completion
of QON, or of Z(2)

ON
: can it be understood as a passage from "short reals" to

"long reals", tensored with ZON? What can we say about the intermediate
"Number Fields" and their combinatorial structure?

(5) If this approach makes sense, it could also give a hint to answer the
above quoted Question 3, "is there a surreal version of the p-adic num-
bers?" – there could be other "completions" of QON than NO, which one
would like to realize by certain subclasses of VN.

Comment concerning the Task from Item (1): An answer can be given by using
the Conway normal form, eqn. (4.4), and results by Gonshor [Go].

Theorem 4.1. The Grothendieck group ZON is the class of all surreal numbers x of
the form

x = ⊕n
i=1ω

βiri,

https://en.wikipedia.org/wiki/Grothendieck_group
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i.e., a finite ordinal type sum, with n ∈ N and ordinals β1 > . . . > βn ≥ 0 and
coefficients ri ∈ Z. Put differently, in the Cantor normal form (1.11) we allow the
coefficients to be usual integers instead of usual natural numbers. Equivalently, the
Conway normal form of x is given by the same formula, with ⊕i replaced by

∑
i

(Conway-sum of numbers). Thus, Conway and (generalized) Cantor normal forms
coincide in this case.

Proof. We repeatedly use [Go], Theorem 5.12 (c), saying that the sign sequence
of a number in Conway normal form (4.4) is given by juxtaposition of the sign
sequences for the successive ω

yo
βrβ , where yoβ is the "reduced" sequence of yβ .

Let u, v be Conway ordinals. We represent them in Cantor normal form.
Then, by the above quoted result, the Conway normal form of u is given by
the same expression (with ⊕ replaced by +), and the one of −v is given by the
same expression, replacing the coefficents k ∈ N by their negative −k ∈ Z.
The sum u− v = u+ (−v), taken in NO, is commutative, so we order terms in
order of decreasing exponents to get the Conway normal form of u − v. Ap-
plying the above quoted theorem again, this sum is given by "juxtaposition"
(since the exponents are ordinals and the coefficients integer, the "reduced"
sequence here is just the usual sequence), that is, by an ordinal type sum ⊕,
and we end up with an expression as given in the theorem. Conversely, every
such expression corresponds to some difference u − v, so they describe the
Grothendieck group ZON.

Remark. It seems that elements of the Grothendieck group correspond to the
"surintegers", defined p. 27 in [Re].

4.2.3 Conway’s omega map

In line with the approach just sketched, one can give a definition of Conway’s
important omega-map in terms of sign-expansions. In fact, this has already
been done by Gonshor, [Go], Thm. 5.11, and in the following we simply "trans-
late" his result into our setting. To state this, recall the operations ⊕,⊗,⊕⊗ on
NO, and from Definition 2.47 the width w(x) of a number x. By induction, one
gets immediately from its definition

w(a⊕ b) = w(a)⊕ w(b). (4.3)

Definition 4.2. By transfinite induction, for every number x, we define a num-
ber ωx by ω

0 = 1, and

ω
x+ = ω

x ⊕ ω ⊕⊗ (w(x) ⊕ 1)

ω
x− = ω

x ⊕ ω
♯ ⊕⊗ (w(x)⊕ 1)

ω
limα→λ xα = limα→λ ω

xα

Since, for ordinals, ⊕⊗ is usual ordinal exponentiation, and using (α ⊗ β)♯ =
α♯ ⊗ β, the formulae may also be written

ω
x+ = ω

x ⊕ ωw(x)⊕1

ω
x− = ω

x ⊕ (ω♯)w(x)⊕1.

As an immediate consequence, we get monotonicity:
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if x � y, then ω
x � ω

y .

Theorem 4.3. The number ωx defined above coincides with the number ωx defined
by Conway ([ONAG], p. 31), that is, Conway’s ω-map is

NO → NO, x 7→ ω
x.

Proof. The sign-expansion of Conway’s ωx computed by Gonshor, [Go], Thm.
5.11, p.80, coincides with the sign-expansion of the number inductively de-
fined above. (Gonshor denotes, for a number a, its width by a+, and aα =
w([a]α) is the width of the α-truncation of a, that is, the "number of pluses
in the initial segment of a of length α". In our notation, his formula can be
written

ωx = 1⊕
⊕

α<b(x)

sx(α)ω
(w([x]α)+1)

which by induction is the same as the number ωx defined above.)

Definition 4.4. A number y is called a monomial if there is a number x such
that y = ω

x. The class of all monomials is denoted by M.

By [ONAG], Theorem 21, every number x has a unique expression, its
Conway normal form,

x =
∑

β<α

ω
yβrβ , (4.4)

where α is some ordinal, the numbers rβ are non-zero reals, and the numbers
yβ form a descending sequence of numbers. Such expressions behave like
generalized power series with real coefficients, and they are added and mul-
tiplied like generalized series in the monomials. As mentioned above, this is
the point of departure of most recent work on intrinsic NO-theory.

4.3 The surcomplex numbers

Conway introduces the Field NO[i] of surcomplex numbers simply as the class
of all numbers x + iy with x, y ∈ NO, i2 = −1 ([ONAG], p.42). How can we
realize NO[i] inside the von Neumann universum VN? And if there are several
realizations, is there a "natural" one, comparable to the one of NO that we have
given? For the moment, I can only offer half of an answer.

Shifting ON and NO

First, some remarks on various "realizations" of ON and NO inside VN: there
are several ones, but the ones considered in Chapter 2 seem to be by far the
most natural ones. As explained in Section 1.2, besides the von Neumann real-
ization of the ordinals ON as pure sets, there are other realisations of ordinals:

– the Zermelo ordinals ONZ ,

– taking the set VNα as ordinal αX ,

– or any other choice αC ∈ VNα+1 \ VNα.

https://en.wikipedia.org/wiki/Surreal_number#Surcomplex_numbers
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In all cases, such ordinals would form a well-ordered class of pure sets starting
with 0 = ∅. Also, we could shift each of these classes, αS+1 := (α + 1)S .
For instance, the Conway ordinals are shifted von Neumann ordinals, αCo =
(α+ 1)vN. We can also shift by 2, etc.

To every such class we can associate the corresponding (surreal) numbers:
a number x is a set of ordinals belonging to the class in question, having a
maximal element. The theory of the "Conway numbers" thus obtained is, es-
sentially, isomorphic to the one developed in Chapter 2. However, it would
be less natural and might have some confusing features. For instance, if we
work with Zermelo ordinals instead of von Neumann ordinals, then the pas-
sage from a Zermelo ordinal αZ to the corresponding Conway number would
not be described by a simple shift +1, but by a much more complicated for-
mula (e.g., {1Z} = 2Z would correspond to the Conway number −1, and
{2Z} = 3Z to −2).

Defining CNO

Next we fix two realisations ONi, i = 1, 2, of ON in VN such that ON1 ∩ON2 =
∅. For instance, take ON1 = ONvN, the von Neumann ordinals, and ON2 =
ONZ+2, the shifted Zermelo ordinals, which start at 2Z = 0Z+2 = II, and
have no element in common with the von Neumann ordinals. Let NOi, i =
1, 2, be the classes of numbers defined by using the ordinals ONi, in the sense
explained above.

Definition 4.5. A surcomplex number is a subset z ⊂ ON1 ∪ON2 such that both
x := z ∩ON1 and y := z ∩ON2 have a maximal element. The number x ∈ NO1

is called the real part, and y ∈ NO2 the imaginary part of z. We define structures
on the class CNO of surcomplex number in the usual way from those of NO,
by identifying z with the pair (x, y).

Obviously, this gives a realisation of Conway’s Field NO[i] inside VN, and
it avoids using the Kuratowski pair definition. Indeed, what we have done is
what I meant by "local" definition of ordered pair: fixing the disjoint copies
NO1 and NO2 defines, locally, a direct product structure on the power sets of
stages of NO1 ∪ NO2. The drawback of this definition is, however, that no
choice of NO2 seems to be very natural, and that the maps NOi → CNO are
not given by set inclusion. For instance, taking ON2 = ONZ+2, as suggested
above, would give the zero element of CNO (in the notation of Table 1.1)

0CNO = {0VN, II} = {∅, II} = V.

Shuffle of von Neumann and Zermelo ordinals

To get a more natural realization of CNO, we define first the shuflle of NOvN ad
NOZ to be their union

NOvNZ := NOvN ∪NOZ ,

whose elements are called Co-Z-suffle ordinals, together with the total order
given as follows: we have 0vN = 0Z = ∅, 1vN = 1Z = I, 2Z = II < 2vN = III,
and so on:

αZ < αvN < (α + 1)Z < (α+ 1)vN < . . . ,



CHAPTER 4. ALL THINGS ARE NUMBER.
WHAT IS NUMBER? 68

and for limit ordinals, αZ < αvN. This total order is a well-order: if S ⊂ ONvNZ

is a non-empty set, then S ∩ONZ or S ∩ONvN is non-empty, so has a minimal
element, and the smaller of both minima is the minimal element of S.

Cocomplex numbers

Definition 4.6. A Cocomplex number (Conway complex number) is a set z of
Co-Z-shuffle ordinals having a maximal element, which we call again birthday
and denote by b(z).

This definition is tentative and ad-hoc: a full justification would be by
proving that the Cocomplex numbers have all the good properties that one
would expect from CNO. Tentatively, the first "new" number in the list, {2Z} =
3Z should correspond to a "very simple" complex, non-real number. For sym-
metry reasons, I would guess that it corresponds to the unit j (or −j) of the
Eisenstein integers Z[j] = Z⊕ jZ,

j := e2πi/3 =
1

2
+ i

√
3

2
(4.5)

rather than to the usual unit i of the Gaussian integers. Namely, this would
fit quite well with the following tentative table of correspondence, taking up
notation from Table 1.1:

Table 4.1: The beginning of cocomplex numbers

nr. sb. rk. depth 1 ordinal ∈ NO Cocomplex (speculative)
0 ∅ 0 ∅ 0vN = 0Z – –
1 I 1 {∅} 1vN = 1Z 0Co 0Co

2 II 2 {I} 2Z −1Co (−1)Co

3 III 2 {I, ∅} 2vN 1Co 1Co

4 IV 3 {II} 3Z – −j
5 V 3 {II, ∅} – – j
6 VI 3 {II, I} – – −j − 1
7 VII 3 {II, I, ∅} – – 1 + j
8 VIII 3 {III} – −2Co −2Co

9 IX 3 {III, ∅} – 1
2

1
2

10 X 3 {III, I} – − 1
2 − 1

2
11 XI 3 {III, I, ∅} 3vN 2Co 2Co

12 XII 3 {III, II} – – j − 1
13 XIII 3 {III, II, ∅} – – 1− j
14 XIV 3 {III, II, I} – – j + 2
15 XV 3 {III, II, I, ∅} – – 2− j
16 XVI 4 { IV } 4Z – −2j

Here, the 5th column names the (von Neumann and Zermelo) ordinals, the 6th
column names the surreal numbers (7 out of the 15 elements of rank ≤ 3), and
the 7th column is purely speculative and gives names to Cocomplex numbers.
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Note that all elements of rank ≤ 3 (except ∅, which is not a number) are indeed
Cocomplex numbers. Thus the list of "simplest complex numbers" should
start with zero, followed by the six Eisenstein units:

0, 1,−1, j,−j, 1 + j,−1− j.

Still by the same speculation, the "short Cocomplex numbers" then would be
the ring Z[ 12 , j], that is, the scalar extension of the Eisenstein integers by dyadic
rationals. The tree-structure should be hexagonal: every surcomplex number
that is not a limit number should have six successors – one in each main di-
rection of the hexagonal lattice, at distances which either are 1 or half of the
distance to the nearest neighbor, just like in the surreal number tree for a single
dimension. Of course, the main task would be to describe the Field structure
of the Cocomplex numbers in these terms. If there is such a construction, it
should have pleased Conway, since it would bring together two main strands
of his work, surreal numbers and his work on lattices, groups, and sphere
packings ([CSl], cf. [Be24]). It would be a strong argument in favor of consid-
ering the universe VN as a rich mathematical structure, deserving to be studied
in its own right.

Function theory: Question 3 revisited

Question 3 (Subsection 4.2.1) is certainly one of the most important topics con-
cerning analysis on surreal numbers: is there a general method of defining, or
"extending", real (smooth, or real-analytic) functions f to Functions fNO de-
fined on certain Domains in NO? For the time being, there exists no general
answer, but there are some examples, most notably Gonshor’s extension of
the exponential function, [Go], Chapter 10.

One might think that techniques used in non-standard analysis, defining
a non-standard extension ∗f to the field ∗R of hyperreal numbers (see [Eb],
Chapter 12), could serve here as a model. However, so far there seems to be
no link between non-standard analysis and analysis on surreal numbers, as
was predicted by Conway himself ([ONAG], p.44): So we can say that in fact the
field NO is really irrelevant to non-standard analysis. I’m not so sure if this should
be the last word.

Be this as it may, a "most natural realization" of the field of surcomplex
numbers should be important when considering the problem of extending
complex functions to NO[i], as suggested by "Question 3". Besides of the expo-
nential map and trigonometric functions, one might also think of the Riemann
zeta-function, and one may wonder if working on a "surreal/surcomplex Riemann hypothesis"
might help in attacking the original one.

https://www.reddit.com/r/math/comments/11h0pol/the_surcomplex_riemann_hypothesis/
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