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Constrained Euler Buckling: the von Karman approximation

Jiayu Wanga,∗, Stéphanie Deboeufa, Arnaud Antkowiaka, Sébastien Neukircha

a Sorbonne Université, CNRS, Institut Jean Le Rond d’Alembert, F-75005 Paris, France

Abstract

We consider the classical problem of the buckling of a planar elastica inside a rectangular cavity. We compute
the equilibrium solutions analytically in the (von Karman) small deflection approximation. We list the different
equilibrium states and their domain of validity in terms of the imposed horizontal ∆ and vertical H displacements. We
compute the horizontal P and the vertical F applied forces and show how they increase and scale when the compaction
ratio

√
∆/H is increased. Finally, we introduce an approximate response state, where the system adopts a periodic

configuration with a noninteger number of repeated folds. This solution represents an average response of the system
and brings information on its global behaviour.

Keywords: elastic rods, bifurcation diagram, contact, packing

1. Introduction1

The buckling of elastic beams is a classical subject,2

especially in the planar case (Euler, 1744), (Thomson3

and Tait, 1883, section 611, p. 148), (Goss, 2009),4

(Levien, 2009, Chap. 5). Analytical solutions are known5

for simple (Love, 1944; Bigoni, 2012) and less simple6

(Djondjorov et al., 2011) cases. The global buckling7

behavior is nevertheless often studied numerically, and8

the goal is to achieve a thorough understanding of the9

phase diagram of the problem (Domokos, 1994) which10

in some cases may be cluttered (Holmes et al., 1999,11

Fig. 7), (Domokos and Healey, 2005, Fig. 3), (Hen-12

derson and Neukirch, 2004, Fig. 16), (Coleman and13

Swigon, 2004, Fig. 4). The equilibrium solutions may14

be computed either by direct resolution of the equi-15

librium equations (boundary value problem – strong16

form approach), finite element method (weak form ap-17

proach), or minimization of the elastic energy (Char-18

rondière et al., 2024).19

The writhing and coiling of elastic rods in cavities20

has numerous applications. Examples comprise the he-21

lical buckling of tubings in the drilling industry (Lubin-22

ski and Althouse, 1962; Miller et al., 2015), the inter-23

action of endoscopes and arteries in vascular surgery,24

the stuff box crimpling in the textile industry (Hearle,25
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Email address: jiayu.wang@dalembert.upmc.fr (Jiayu

Wang)

2014), DNA viral capsids (Vetter et al., 2014), spider26

threads in liquid drops (Elettro et al., 2016); see other27

examples in Judah and Givli (2024). However, the buck-28

ling of elastic beams in cavities brings the complica-29

tion of inequality constraints (Villaggio, 1979) (arising30

from the contact condition) and their non-classical fea-31

tures in the bifurcation diagram (for example, corner32

points (Schulz and Pellegrino, 2000)). Their numeri-33

cal treatment involves more sophisticated approaches,34

among which are linear and nonlinear complementary35

problems (Daviet et al., 2011), interior point methods36

(Wachter and Biegler, 2006), or barrier potentials (Man-37

ning and Bulman, 2005).38

The present study considers the simpler case of a pla-39

nar beam buckled in a rectangular cavity. To our knowl-40

edge, this problem was first addressed by Chateau and41

Nguyen (1991), then Adan et al. (1994) considered the42

case where the constraining surface has imperfections,43

Domokos et al. (1997) studied pinned-pinned boundary44

conditions, and Pocheau and Roman (2004) unveiled45

the presence of multiple solutions and their self-similar46

aspect, as well as tilted solutions (Roman and Pocheau,47

1999, 2002). The effect of the thickness of the beam48

was studied by Chai (1998), while Tzokova (2020)49

combined Abaqus FEM and experiments on beams and50

plates, and Katz and Givli (2015) considered the case of51

springy walls, see also (Judah and Givli, 2024). Finally,52

the influence of shear deformations in the section of the53

beam has been studied by Bosten et al. (2023) where54

this contact problem is used as a benchmark scenario to55

Preprint submitted to Int. J. Sol. Struct. December 15, 2024



test finite element simulations.56

Here we use what is generally called the von Kar-57

man approximation (Woinowsky-Krieger, 1950; Erin-58

gen, 1952; Thomas, 2025). In this approximation, the59

moment balance is linearized, and a von Kármán-type60

axial strain measure, first introduced for the buckling61

of elastic plates (von Kármán, 1907; Eisley, 1964), is62

used. This model has been widely used in the litera-63

ture and has shown its efficiency in computing approxi-64

mate solutions for the equilibrium (Bazant and Cedolin,65

2010, Section 1.9), (Neukirch et al., 2021) and dynam-66

ics (Lacarbonara and Yabuno, 2006; Pandey et al., 2014;67

Thomas et al., 2016) of elastic rods in the weakly non-68

linear regime. It turns out that Kirchhoff himself intro-69

duced this approximated model in his book, see Kirch-70

hoff (1876, Eq. (16), p. 441). We show in this paper that71

constrained Euler buckling can be studied and partially72

understood with this von-Karman kinematics approxi-73

mation; see also (Chai, 1998; Judah and Givli, 2024).74

Paper contributions75

In the case of small vertical (H) and horizontal (∆)76

displacements:77

• We present an analytical study of the Euler buck-78

ling problem with contact constraints.79

• We give closed-form formulas for the vertical F80

and horizontal P forces and the number of folds81

as functions of H and ∆, and identify the scaling82

F H ∼ P∆.83

• We show that a reduced kinematic loading parame-84

ter
√
∆/H can be used to rationalize the bifurcation85

curves.86

• We introduce a cellular model, where the number87

of folds is a noninteger, that provides an all-in-one88

view of the response of the system.89

2. Problem setup90

2.1. The planar Elastica91

We consider an inextensible, unshearable, elastic
beam buckled inside a planar, rectangular cavity. The
beam has total length L, bending rigidity YI, and is hor-
izontally clamped at both ends. The shape of the beam
is studied parametrically as (x(s), y(s)), where s is the
arc length along the beam. We introduce the angle θ(s)
between the tangent to the beam and the horizontal axis
ex, see Figure 1. As the beam is considered inextensible
and unshearable, we have

x′(s) = cos θ(s) , y′(s) = sin θ(s) (1)

where (·)′ = d(·)/ds. We consider clamped boundary
conditions

x(0) = 0 y(0) = 0 θ(0) = 0 (2a)
x(L) = L(1 − ∆) y(L) = 0 θ(L) = 0 (2b)

where ∆ is the (dimensionless) end-shortening, ranging
from ∆ = 0 at buckling to ∆ = 1 when the two ends meet
and the elastica adopts a Lemniscate-like shape (Goss,
2009). Additionally, as the beam is constrained to stay
in a cavity of height H, we have the inequality constraint

∀s, 0 ≤ y(s) ≤ H (3)

The elastic deformation energy only involves the curva-
ture κ(s):

Eκ =
∫ L

0

1
2

YI κ2(s) ds where κ(s) = θ′(s) (4)

This quadratic deformation energy is associated with the
linear constitutive relation relating the internal moment
m(s) and the curvature

m(s) = YI κ(s) (5)

We look for equilibrium solutions of the system, that
is stationary points of this energy under constraints (2)
and (3). The equilibrium condition on the internal mo-
ment reads

m′(s) = nx(s) sin θ(s) − ny(s) cos θ(s) (6)

As we study the frictionless case, the horizontal com-
ponent nx(s) of the internal force is uniform across the
system and we note P = −nx(s). The vertical compo-
nent ny(s) is uniform in each free rod section and jumps
every time the rod contacts the lower or the upper wall.
Please also note that the moment m(s) and hence the
curvature κ(s) do not experience any jump at contact
points and hence are continuous along the entire rod
(Bigoni, 2012). We will note F the total (vertical) force
applied by the upper wall down to the rod, see Figure 1.
In this frictionless-contact case, the Hamiltonian invari-
ant (Dichmann et al., 1996; Kehrbaum and Maddocks,
1997)

Inv =
1
2

YI κ2(s) − P cos θ(s) + ny(s) sin θ(s) (7)

takes the same value in the entire system.92

2.2. The von Karman approximation93

In the limit where the rod is only slightly bent, the
deflection θ(s) stays small and we use the first terms in
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Figure 1: Planar elastica bent in a cavity. The left end is horizontally
clamped at the origin, while the right end is horizontally clamped on
a block constrained to slide along the horizontal axis. The elastica
has a total length L, and the angle θ is defined between the tangent to
the beam and the horizontal axis. An external force is applied to the
system at s = L, and we note its horizontal component −P.

the Taylor expansion of the sin and cos functions. The
equilibrium equations (1), (5) and (6) simplify to

x′(s) = 1 − (1/2) θ2(s) (8a)
y′(s) = θ(s) (8b)

YI θ′′(s) = −P θ(s) − ny(s) (8c)

Note that the only nonlinear remaining term is in (8a),94

see Thomas (2025) for more details.95

2.3. Non-dimensionalization96

In this equilibrium problem, we introduce non-
dimensionalized quantities

ŝ = s/L , x̂ = x/L , ŷ = y/L , Ĥ = H/L , θ̂ = θ

(9a)

P̂ =
PL2

YI
, F̂ =

FL2

YI
, m̂ =

mL
YI
, κ̂ = κ L

(9b)

Note that it boils down to choosing L as length unit and97

YI/L2 as unit force, as can be done in most equilib-98

rium problems of elastic rods. Please also note the non-99

dimensionalized version of the equations can be readily100

obtained by formally setting L = 1 and YI = 1 in the101

equations of Sections 2.1 and 2.2.102
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Figure 2: The total vertical force F applied on the rod from the upper
wall as a function of the height of the enclosing cavity. For ∆ =
0.02 and 0.03 and n = 1 and n = 2. Legend: Point-Contact state
(continuous line), Extended-Contact state (dashed line, only k = 1),
and Hanging-Fold state (dotted line).

Anticipating the results of section 4, we plot in Figure103

2 a typical bifurcation diagram where the vertical force104

F̂ = FL2

YI is plotted as a function of the height Ĥ = H/L105

of the cavity. We see that even if non-dimensionalized106

quantities have been used to draw the diagram, the dif-107

ferent curves still depend on both the Atlas number n (to108

be defined in Section 4) and the end shortening ∆. See109

also Figure 3 for the dual experiment where the end-110

shortening ∆ is varied while keeping the height Ĥ fixed.111

In this experiment, we find a dependence of the curves112

on both n and Ĥ. One of the goal of the present paper is113

to introduce rescaled quantities on the axes that induce114

partial collapses of the curves of Figures 2 and 3. More-115

over, we will show that the important loading measure116

is
√
∆/Ĥ.
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Figure 3: The total vertical force F applied on the rod from the upper
wall as a function of the end-shortening ∆. For H = 0.044 and 0.07
and n = 1 and n = 2. Legend: Point-Contact state (continuous line),
Extended-Contact state (dashed line, only k = 1), and Hanging-Fold
state (dotted line).
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To keep notations simple, we will drop the hats for117

the non-dimensionalized quantities in the remainder of118

the paper.119

3. The Arch solution120

Figure 4: The arch solution is the building block with which we com-
pute the Point-Contact, Extended-Contact, and Hanging-Fold states
presented in Section 4, as well as the cellular model presented in Sec-
tion 5. This solution is in contact with both the lower and upper walls,
has length ℓ, and inner force nx = −P and ny = − f .

We will describe the different solution types in Sec-
tion 4. They are all based on the following fundamental
equilibrium solution, which we denote as the ’Arch’ so-
lution, see Figure 4 and (Chai, 1998; Judah and Givli,
2024). This solution has boundary conditions (2a) at
s = 0. Its length is ℓ and the boundary conditions at
s = ℓ are

y(ℓ) = H and θ(ℓ) = 0 (10)

Hence the boundary value problem to solve is system
(8) with ny(s) ≡ − f together with (2a) and (10). The
solution is

m(s) =
f
√

P

sin
√

Ps − tan

√
Pℓ
2

cos
√

Ps
 (11a)

θ(s) =
f
P

1 − cos
√

Ps − tan

√
Pℓ
2

sin
√

Ps
 (11b)

y(s) =
f

P
√

P

√Ps − sin
√

Ps + tan

√
Pℓ
2

[
cos
√

Ps − 1
]

(11c)

where π ≤
√

Pℓ ≤ 2π. In the following, we will need
the two geometrical quantities H and x(ℓ), as well as the

energy Ek, which are here computed as

H = y(ℓ) =
f

P
√

P

√Pℓ − 2 tan

√
Pℓ
2

 (12a)

x(ℓ) =
∫ ℓ

0
1 − (1/2) θ2(s) ds

= ℓ − f 2

√
Pℓ

[
2 + cos

√
Pℓ

]
− 3 sin

√
Pℓ

2P2
√

P (cos
√

Pℓ + 1)
(12b)

Eκ =
1
2

∫ ℓ

0
m2(s) ds =

f 2

2P
√

P

√
Pℓ − sin

√
Pℓ

1 + cos
√

Pℓ
(12c)

Please note that, by symmetry, the moment at s = 0 and
s = ℓ have the same magnitude and opposite sign

m(ℓ) = −m(0) =
f
√

P
tan

√
Pℓ
2

(13)

4. The different equilibrium states121
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Figure 5: Vertical force F plotted as a function of the compaction ra-
tio H∆/H. This plot does not depend on the value of ∆. The threshold
H∆ is defined in Eq. (14). The black line corresponds to the con-
tinuous n model presented in Section 5. Legend: Point-Contact state
(continuous line), Extended-Contact state (dashed line), and Hanging-
Fold state (dotted line). We show Extended-Contact states where the
flat region is fragmented into k pieces. For n = 2, we show the limit
points between the different states.

In this section, we describe three different fundamen-
tal states the system visits as either H is lowered or ∆ is
increased (Domokos et al., 1997; Roman and Pocheau,
2002). For large values of H or small values of ∆, the
elastica buckles when the horizontal force P reaches the
threshold P = 4π2 (Euler, 1744). Contact with the upper
wall does not happen in this first regime where, in the
present von Karman approximation, P stays constant
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P = 4π2 while H is lowered or ∆ increased. Eventu-
ally, contact first happens when H and ∆ are such that
(Bigoni, 2012; Neukirch et al., 2021)

H∆ =
2
π

√
∆ (14)

We define the Atlas number n as half the number of122

rod segments spreading out from y = 0 to y = H (i.e.123

touching both walls), such as the Arch of Section 3. In124

the following section, we first describe the solution for125

n = 1 and then generalize formulas for any n value.126

This Atlas number has been called the number of folds127

in previous works.128

4.1. Point-Contact states129

We first describe configurations in which the elastica130

contacts the upper wall only at isolated point(s), see Fig-131

ure 1. We call these solutions Point-Contact states.132

When n = 1, we have ℓ = 1/2, the total force from
the upper wall F takes the value F = 2 f and the end
shortening is ∆ = 1 − 2x(ℓ). From the Arch solution,
Eqs. (12) and (13), we have

H =
F

4P
√

P

√P − 4 tan

√
P

4

 (15a)

∆ = F2

√
P

[
2 + cos(

√
P/2)

]
− 6 sin(

√
P/2)

8P2
√

P [cos(
√

P/2) + 1]
(15b)

m(ℓ) = −m(0) =
F

2
√

P
tan

√
P

4
(15c)

This branch of solutions starts at point A1 (see Figure133

2) when P = 4π2, F = 0, H = H∆ and ends with134

point B1 when P = 16π2, F = 3−1/2 64 π2
√
∆, and135

H = 3−1/2
√
∆.136

These formulas generalize directly to the case with
n ≥ 1 by setting ℓ = 1/(2n), F = 2n f , and ∆ =
1 − 2nx(ℓ). Using Eqs. (12) and (13) from the Arch
solution, we find

Hu =
Fu

4Pu
√

Pu

(√
Pu − 4 tan

√
Pu

4

)
(16a)

∆ = Fu
2

√
Pu

[
2 + cos(

√
Pu/2)

]
− 6 sin(

√
Pu/2)

8Pu
2 √Pu [cos(

√
Pu/2) + 1]

(16b)

m(ℓ)
n
= −

m(0)
n
=

Fu

2
√

Pu
tan
√

Pu

4
(16c)

with Hu = n H, Pu = P/n2, and Fu = F/n3. These137

branches of solutions each start at point An when Pu =138

4π2, Fu = 0, Hu = H∆ and end at point Bn when Pu =139

16π2, Fu = 3−1/2 64 π2
√
∆, and Hu = 3−1/2

√
∆. Using140

(16a) et (16b), one can write a single equation for Pu141

having the form ∆/H2
u = ϕ(Pu). For 4π2 ≤ Pu ≤ 16π2,142

the function ϕ(·) is monotonously increasing, taking val-143

ues from (π/2)2 to 3, which means that, for all n, there144

is always a unique Point-Contact solution.145
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Figure 6: Horizontal force P plotted as a function of the compaction
ratio H∆/H. This plot does not depend on the value of ∆. The con-
tact threshold H∆ is defined in Eq. (14). The black line corresponds
to the continuous n model presented in Section 5. Legend: Point-
Contact state (continuous line), Extended-Contact state (dashed line),
and Hanging-Fold state (dotted line). We show Extended-Contact
states where the flat region is fragmented into k pieces. For n = 2,
we show the limit points between the different states. Gray dots cor-
respond to experimental data from Figure 5 of Deboeuf et al. (2024).

For this point-contact state, the vertical force F and146

the horizontal force P are plotted in plain line against147

the height H of the cavity for different values of the end148

shortening ∆ in Figures 5 and 6. We remark that, con-149

trary to Figure 2, the rescaling with H∆ induces a col-150

lapse of the bifurcation curves, which now do not de-151

pend on the value of ∆. Furthermore, we show in Fig-152

ures 7 and 8 (continuous line) that, using the Atlas num-153

ber n, the Point-Contact branches all collapse on a single154

curve, for any ∆ and any n. We also plot in Figures 6155

and 8 the experimental data from Figure 5 of Deboeuf156

et al. (2024), where ∆ < 0.16, 0.042 ≤ H ≤ 0.085, and157

1 ≤ n ≤ 4. In these data, friction tends to increase the158

measured horizontal force P which otherwise is in good159

agreement with the present theory.160

As the first contact occurs, when H = H∆, the vertical
force F increases from F = 0. This is repeated for each
n as we have F = 0 each time nH = Hu = H∆. At this
point, we compute the slope of the function F = F(H)
by performing a Taylor expansion of Eqs. (16a) and
(16b) for Hu near H∆ and find

Fu =
16 π4

10 − π2 [H∆ − Hu] + . . . (17)
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The large value of the prefactor (nearly 1.2 · 104) shows161

that the vertical force steeply increases as one com-162

presses the system vertically.163

At Pu = 16π2, when the Point-Contact branch ends,
the deflection angle at the inflexion point s = ℓ/2 takes
the value

θmax =
Fu

Pu
=

4
√

3

√
∆ (18)

This maximum value yields an upper bound for ∆ if we164

require θmax to stay small, e.g. θmax < 0.5 implies ∆ <165

0.06.166

4.2. Extented-Contact states167
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Figure 7: Vertical force F plotted as a function of the rescaled quan-
tity H∆/(nH) − 1. For the Point-Contact and Extended-Contact states
the plot does not depend on the Atlas number n. The entire plot does
not depend on the value of ∆. The single black point at (0.02, 130)
corresponds to the response of the cellular model. Legend: Point-
Contact state (continuous line), Extended-Contact state (dashed line,
only k = 1), and Hanging-Fold state (dotted line).

In Figure 2, as the vertical force F is increased above168

point B, the system exhibits a region where the contact169

with the upper (or lower) wall is flat; We call these so-170

lutions Extended-Contact states, see Figure 1. For these171

solutions, both the deflection angle θ(s) and the moment172

m(s) at the start of the flat region vanishes, and conse-173

quently the Hamiltonian invariant Inv = −P, see Eq. (7).174

It has been explained that the total length 2ℓ′ of flat con-175

tact may be distributed within several sections of the176

system with no change of its energy Eκ (Pocheau and177

Roman, 2004).178

When n = 1, we have 2ℓ + 2ℓ′ = 1. The value of
ℓ is fixed through the condition m(ℓ) = 0 which yields
ℓ = 2π/

√
P, see (13). Using the Arch solution (12) with

F = 2 f , we find

H =
πF

P
√

P
(19a)

∆ = 1 − [2x(ℓ) + 2ℓ′] =
3π
4

F2

P2
√

P
(19b)

m(ℓ) = m(0) = 0 (19c)

This branch of solutions starts at point B1 (see Figure179

2) when ℓ′ = 0, P = 16π2, F = 3−1/2 64 π2
√
∆, and180

H = 3−1/2
√
∆ and ends when the flat region buck-181

les, that is when Pℓ′2 = π2 (buckling threshold of a182

clamped-clamped beam of length 2ℓ′). As we do not183

know whether the flat region stands in one piece or is184

fragmented in k pieces, we can only give lower and up-185

per bounds on the end of the branch, as follows.186

If the flat region stands in one piece, k = 1, the branch187

ends at its lower bound, point C1, when ℓ′ = 1/6, P =188

36π2, F = 72
√

2 π2
√
∆, and H = (

√
2/3)
√
∆.189

In this n = 1 case, the flat region can be, at most, frag-190

mented into three pieces. This yields the upper bound191

for the end of the branch with ℓ′ = 3/10, P = 100π2,192

F = 100
√

40/3 π2
√
∆, and H =

√
2/15

√
∆.193

0.2 0.4 0.6 0.8 1.0

HΔ

n H
-1

50

100

150

200

250

300

350

P

n2
- 4π2

n=1

n=2

n=3

n=4

Figure 8: Horizontal force P plotted as a function of the rescaled
compaction ratio H∆/H. For the Point-Contact and Extended-Contact
states the plot does not depend on the Atlas number n. The entire plot
does not depend on the value of ∆. The single black point at (0.02, 41)
corresponds to the response of the cellular model. Legend: Point-
Contact state (continuous line), Extended-Contact state (dashed line,
only k = 1), and Hanging-Fold state (dotted line). Gray dots corre-
spond to experimental data from Figure 5 of Deboeuf et al. (2024).

When n ≥ 1, we have 2nℓ + 2ℓ′ = 1, F = 2n f , and
the condition m(ℓ) = 0 still yields ℓ = 2π/

√
P. As in

6



Section 4.1, formulas (19) are directly generalized to

Hu =
πFu

Pu
√

Pu
(20a)

∆ = 1 − [2nx(ℓ) + 2ℓ′] =
3π
4

Fu
2

P2
u
√

Pu
(20b)

m(ℓ) = m(0) = 0 (20c)

This rescaling of the Extended-Contact solution for any
n and any ∆ is illustrated in Figures 7 and 8 (dashed
line) where we see that all the (n ≥ 1) Extended-
Contact solution branches collapse. This branch of so-
lutions starts at point Bn when ℓ′ = 0, Pu = 16π2,
Fu = 3−1/2 64 π2

√
∆, and Hu = 3−1/2

√
∆ and ends when

the flat region buckles. As the flat region could be frag-
mented into k pieces (with k = 1 to k = 2n + 1), the
branch of solutions ends when

ℓ′ = k/(4n + 2k) and ℓ = 1/(2n + k) (21a)

Pu = 4π2
(

2n + k
n

)2

(21b)

Fu = 8π2
√
∆

√
2/3

(
2n + k

n

)5/2

(21c)

Hu =
√
∆

√
2/3

√
n

2n + k
(21d)

which means that for large n and with a flat region194

fragmented into a maximum number of pieces (k =195

2n + 1) the vertical force can take values up to F ≃196

2000 n3
√
∆ ≃ 140∆2/H3, and the horizontal force val-197

ues up to P ≃ 600 n2 ≃ 100∆/H2.198

4.3. Hanging-fold states199

Along the Extended-Contact solution branch, when200

the flat region is in one piece, k = 1, a new branch bifur-201

cates as the compression force P exceeds the buckling202

threshold given in (21b). A hanging fold is created, re-203

placing the flat region, see Figure 1. We call these con-204

figurations Hanging-Fold states. Please note that a con-205

figuration having a fold and a flat region is not possible,206

as it would imply two different values of the Hamilto-207

nian invariant Inv: the invariant value for solutions with208

a flat region is Inv = −P and the invariant value for so-209

lutions with a fold is Inv = −P + (1/2) κ2(ℓ) > −P.210

When n = 1, we have 2ℓ + 2ℓ′ = 1 where the value
of ℓ′ is fixed by Eq. (A.1) in Appendix A. We have
F = 2 f and ∆ = 1 − 2 [x(ℓ) + x(ℓ′)] where x(ℓ) is given
by Eq. (12b) and x(ℓ′) by Eqs.(A.2) and (A.3) in Ap-
pendix A. Further using (12a) for the height H, we find

H =
F

2P
√

P

√Pℓ − 2 tan

√
Pℓ
2

 (22a)

∆ = F2


√

Pℓ
[
2 + cos

√
Pℓ

]
− 3 sin

√
Pℓ

4P2
√

P (cos
√

Pℓ + 1)

+
1/2 − ℓ

8P2

1 − cos
√

Pℓ

1 + cos
√

Pℓ

 (22b)

P =
(
π

1/2 − ℓ

)2

(22c)

This branch starts at point C1 (see Figure 2) when ℓ =211

1/3, ℓ′ = 1/6, P = 36π2, F = 72
√

2 π2
√
∆, and H =212

(
√

2/3)
√
∆ and ends at point D1 when ℓ = 1/4, ℓ′ =213

1/4, P = 16π2, F = 0, and H = H∆/2.214

When n ≥ 1, we have 2nℓ + 2ℓ′ = 1 where the
value of ℓ′ is still given by Eq. (A.1) in Appendix A.
We have F = 2n f and ∆ = 1 − 2 [nx(ℓ) + x(ℓ′)] where
x(ℓ) is given by Eq. (12b) and x(ℓ′) by Eqs. (A.2) and
(A.3) in Appendix A. As in Section 4.1 and 4.2, we use
Hu = n H, Pu = P/n2, and Fu = F/n3 to write the gen-
eralization of Eqs. (22) to any n ≥ 1 value

Hu =
Fu

2Pu
√

Pu

(√
Puℓu − 2 tan

√
Puℓu
2

)
(23a)

∆ = F2
u


√

Puℓu
[
2 + cos

√
Puℓu

]
− 3 sin

√
Puℓu

4P2
u
√

Pu (cos
√

Puℓu + 1)

+
1/2 − ℓu

8P2
u

1 − cos
√

Puℓu

1 + cos
√

Puℓu

}
(23b)

Pu =
1
n2

(
π

1/2 − ℓu

)2

(23c)

where we have introduced ℓu = nℓ. The explicit pres-215

ence of the Atlas number n in Eq. (23c) implies that,216

contrary to what was found in Sections (4.1) and (4.2),217

there is no for-all-n collapse of the solution branches218

for the Hanging-Fold states, as can be seen in Figures 7219

and 8. The n ≥ 1 branches start when ℓ = 1/(1 + 2n),220

ℓ′ = 1/(2+4n), P = 4π2(1+2n)2, F = 8π2
√
∆
√

2/3 (1+221

2n)5/2 √n, and H =
√

2∆/
√

3n(1 + 2n) and ends when222

ℓ = ℓ′ = 1/(2 + 2n), P = 4π2 (1 + n)2, F = 0, and223

H = H∆/(1 + n).224

We recall that the description of the sequence of the225

different states we have made in this section 4 holds both226

when H is constant and ∆ increased or when ∆ is con-227

stant and H decreased: The important quantity defining228

the state of the system is the compaction ratio H∆/H.229
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5. The continuous n approximation: The cellular230

model231

Figure 9: In the cellular model, the system is the repetition of the
Arch solution with L = 2nℓ. As the Atlas number n takes non-integer
values, the boundary condition at s = L is unsatisfied. The importance
of this defect decreases as n gets large and is in fact already minor for
small n values.

As the compaction ratio H∆/H = 2
√
∆/(πH) is in-

creased, the system repeatedly visits the Point-Contact
state with an increasing Atlas number n. When n be-
comes large, the precise boundary conditions at the rod
extremities become less important, that is the integer
character of n is no longer critical and one could ap-
proximate the system’s response with a model where n
is a non-integer quantity, see Figure 9. We look for the
equilibrium of such a cellular system by minimizing the
total potential energy

Etot = 2nEκ + 2nx(ℓ)P + y(ℓ)F (24)

where we work in the dead loading case (i.e. for pre-
scribed P and F) as it yields simpler calculations than
the (equivalent) rigid loading case (i.e. for prescribed ∆
and H). We use Eqs. (12) with 2nℓ = 1 and F = 2n f ,
and find

Etot(z) = P +
F2

2P2 z
[
µκ(z) − µx(z) + µy(z)

]
(25a)

with µκ(z) =
z − sin z
1 + cos z

(25b)

µx(z) =
z (2 + cos z) − 3 sin z

1 + cos z
(25c)

µy(z) = 2z − 4
sin z

1 + cos z
(25d)

with z =
√

P ℓ. The minimum is reached for z = ze such
that ze = tan ze, that is ze ≃ 4.5. For this solution, we

have µe = µx(ze) = µy(ze) = 2µκ(ze) ≃ 14 and

P =
ze µe

2
∆

H2 ≃ 31
∆

H2 (26a)

F =
ze µe

2
∆2

H3 ≃ 31
∆2

H3 (26b)

n =
√
µe

8ze

√
∆

H
≃ 0.62

√
∆

H
(26c)

2nEκ =
ze µe

4
∆2

H2 ≃ 16
∆2

H2 (26d)

Eq. (26c) is to be compared to Eq. (2.19) of Tzokova232

(2020) Phd dissertation, which also introduced a contin-233

uous approach based on the vertical force F peaks. The234

total curvature energy of the cellular system, 2nEκ, is235

plotted in Figure 10 and compared to the total curvature236

energy of the different states introduced in Section 4. In237

this Figure 10, we see that the cellular model is approxi-238

mately a convexification of the energy of the ’exact’ sys-239

tem: Non-integer n values of the cellular model appear240

as approximate phase transitions between the integer-n241

states of the ’exact’ system.242

Using the scalings introduced in Section 4, we can
rewrite these quantities as

Pu =
P
n2 = 4z2

e ≃ 81 and Fu =
F
n3 =

8
√

2 z5/2
e

√
µe

√
∆ ≃ 130

√
∆

(27)
(See Appendix B for the different other ways to express
these quantities). These quantities are plotted in Figures
5, 6, 7, 8, and 10 as black lines. Another important
quantity is the maximum value of the deflection angle θ
which happens at the inflection point s = ℓ/2. In this
continuous n model, we have

θmax =
cos(ze/2) − 1

cos(ze/2)
Fu

Pu
≃ 1.3

Fu

Pu
≃ 2.1

√
∆ (28)

which near the value found for the Point-Contact state,243

see Eq. (18), and therefore yields the same limit ∆ <244

0.06 to stay in the small angle, θmax < 0.5, regime.245

In Figure 11 we plot the vertical force F as a function
of the horizontal force P, with properly rescaled axes.
As explained earlier, for Point-Contact and Extended-
Contact states this (P, F) diagram does not depend on
the values of ∆ or n. Moreover, we see that the rela-
tion is almost linear, with a slope value approximately
given by the cellular model: 130

81−4π2 ≃ 3.1. Addition-
ally, we plot the numerical results of the fully nonlinear
system (1)-(6) for Point-Contact and Extended-Contact
solutions to measure how much the nonlinearities cause
a deviation from the virtually linear (P, F) relation, see

8



1 2 3 4 5

HΔ

H

200

400

600

800

1000

2 n Eκ

Δ

n=1

n=2

n=3

n=4

Figure 10: Curvature energy of the system as a function of the com-
paction ratio H∆/H. Point-Contact states (continuous line), Extended-
Contact states (dashed line, only k = 1), and Hanging-Fold states (dot-
ted line) are shown for n = 1 to n = 4. The black line corresponds to
the continuous-n model, Eq. (26d), and is approximately a convexifi-
cation of the energy of the system.

gray dots in Figure 11 and (Wang et al., 2025). This
linear relation implies that

F H ∼ P∆ (29)

which means that the work done by the horizontal and246

vertical loads are comparable.247

6. Global phase diagram248

In a typical experiment, one imposes the value of ∆249

and H and observes the state of the system. In Fig-250

ure 12, we plot the limit of the ranges of the exis-251

tence of the different states for n = 1 and n = 2 and252

see that a clear arrangement materializes, linked to the253

compaction ratio H∆/H (for simplicity reasons, we only254

consider Extended-Contact states with their flat region255

in k = 1 piece). Nevertheless, as shown in Figure 13,256

where n H is plotted as a function of
√
∆, this arrange-257

ment is not conserved as n is increased: point An+1258

(of slope 2
π

n
n+1 ) moves relatively to point Cn (of slope259 √

2n
2n+1/

√
3) and crosses it as n ≃ 7.1. At a larger n260

value (n ≃ 9.7), the same point An+1 even crosses point261

Bn (of slope 1/
√

3). And at n ≃ 16.8 it is point An+2 that262

crosses Cn. Eventually, for any fixed integer j, when263

n→ ∞ the arrangement is such that An+ j is reached be-264

fore Bn (in terms of compaction ratio H∆/H values). In265

contrast, the points Bn and Cn keep their relative posi-266

tioning: Bn > Cn > Bn+1 > Cn+1 > . . . > Bn+ j > Cn+ j,267

for any n and j. Overall, we conclude that for n < 8 (and268

under the assumption k = 1), we will observe sequen-269

tially the three states: Point-Contact, Extended-Contact,270

y = 3.3 x

50 100 150 200 250 300

P

n2
- 4π2

200

400

600

800

1000

F

Δ n3

n=1

n=2

n=3

n=4

Figure 11: Evolution of the horizontal P and the vertical F forces as H
is decreased or ∆ is increased. Point-Contact state (continuous line),
Extended-Contact state (dashed line, only k = 1), and Hanging-Fold
state (dotted line). For the Point-Contact and Extended-Contact states
the plot does not depend on the Atlas number n. The single black point
at (41, 130) corresponds to the response of the cellular model. The
black line, with slope 3.3, is drawn as a guide to the eye to show the
roughly linear behavior of the Point-Contact and Extended-Contact
states. Gray dots correspond to numerical solutions of the nonlin-
ear system (1)-(6) where only Point-Contact and Extended-Contact
states are shown, a total of 1298 points with H ∈ (0.02, 0.15) and
∆ ∈ (0.006, 0.4).

and finally Hanging-Fold, before switching to the n + 1271

mode. In contrast, for n ≥ 8, we will not observe the272

Hanging-Fold state and will switch directly form the nth
273

Extended-Contact state to the n+1th Point-Contact state.274

Note that all these arrangements depend on the value275

of k taken for the number of fragmented pieces of the276

flat region in the Extended-Contact state (here k = 1),277

with kmax = 2n + 1. In Figure 14 we plot a high n part278

of the bifurcation diagram, with k = 3, and show the279

behavior of the system will exhibit multistability and280

hysteresis. We consider we have loaded the system by281

increasing H∆/H up to the point U0 lying at the end of282

the k = 3 segment of the 25th Extended-Contact branch.283

Upon increasing H∆/H further, and if k does not in-284

crease, the system will jump on the point U1 on the 26th
285

Point-Contact branch. We then start unloading. The286

system will reach point U2 on the 25th Hanging-Fold287

branch and, upon further decrease of H∆/H, will jump288

toward on of the points U3, U4, or U5. Resuming the289

loading will close the hysteresis loop.290

7. Discussion and Conclusion291

We have detailed the different equilibrium configura-292

tions a planar beam may adopt when buckled in a rect-293

angular cavity (Section 4). We have shown that they are294

all based on an Arch solution that spans from the lower295

to the upper wall (Section 3). For each solution type,296
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Figure 12: An attempt to draw a global bifurcation diagram for the
Constrained Euler Buckling problem. Here, we give the state of the
system for given values of H and ∆, and for Atlas numbers n = 1 and
n = 2. A clear arrangement of the different solutions appears, but this
arrangement does not hold for any n, as is shown in Figure 13.

we have given their range of existence in terms of the297

imposed horizontal (∆) and vertical (H) displacements.298

We have explained how the global system is a repetition299

of the same solution and have introduced the Atlas num-300

ber n which counts the repeats. We have used rescaled301

quantities to illustrate how the vertical (F) and horizon-302

tal (P) applied forces vary as functions of the imposed303

displacements H and ∆, and we have shown that the304

state of the system during loading is entirely character-305

ized by the compaction ratio H∆/H = (2/π)
√
∆/H. Fi-306

nally, we have introduced a cellular model that yields307

an averaged response of the system as the loads are in-308

creased. The cellular model also clearly illustrates why309

it is much harder to compress and squash a beam inside310

a cavity than in the unconstrained case, see Figure 15.311

All the above results are based on the von Karman312

kinematic approximation and are then only valid as long313

as H and ∆ are small enough. As H > 0.2 and/or ∆ >314

0.1, the system enters the full nonlinear regime and, for315

example, the exact collapse seen in Figure 7 and 8 is no316

longer valid, Ying-Yang solutions may appear, and the317

forces F and P (together with the number n of repeats)318

will reach maximum values before decreasing (Deboeuf319

et al., 2024). The global bifurcation diagram, Figures320

12 and 13, gets more complicated and depends on the321

loading history due to the presence of large hysteresis.322

These features will be the subject of a subsequent report.323

Acknowledgments324

It is a pleasure to thank Paul Grandgeorge, Eytan325

Katzav, and Benoit Roman for numerous discussions.326

0.01 0.05 0.10 0.15
Δ

0.05

0.10

0.15

0.20

0.25

n H

An:
2

π

Bn:
1

3

Cn:
1

3

2 n

2 n + 1

An+1:
2

π

n

n + 1

no contact

Po
in
t-
C
on
ta
ct

Ex
ten
de
d-
Co
nt
ac
t (
k=
1)

Ha
ng
ing

-F
old

Po
int

-C
ont
act

(n+
1)
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hold for any n. The curves Bn and Cn keep their relative positioning,
but the curves An+ j all eventually cross Bn and Cn. For example, An+1
crosses Cn at n ≃ 7.1 and Bn at n ≃ 9.7.
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Figure 14: Hysteresis and multistability at large Atlas number.
Starting on point U1 and decreasing the compaction ratio H∆/H =
(2/π)

√
∆/H will cause the system to visit point U2 then jump on either

points U3, U4, or U5. Then increasing the compaction ratio will bring
the system to U0 where it will jump on U1 to close a hysteresis loop.
Point-Contact states are plotted as continuous red lines, Extended-
Contact states with k = 1 as dashed green lines, Extended-Contact
states with k = 2 as dashed blue lines, Extended-Contact states with
k = 3 as dashed magenta lines, and Hanging-Fold states as dotted
brown lines.

Appendix A. The planar elastica solution in the327

hanging-fold state328

We here compute some basic quantities attached to
the Hanging-fold state. In this state, part of the sys-
tem does not touch both walls. The rod equilibrium in
this part of the system is then a planar elastica solution,
see Figure A.16, with no vertical component in its inner
force. We therefore have to integrate system (8) with
ny(s) ≡ 0, and the boundary conditions (2a) together
with θ(ℓ′) = 0. The solution of θ′′(s) = −P θ(s) with
θ(0) = 0 is θ(s) = c sin

√
Ps. Enforcing θ(ℓ′) = 0 yields
√

P ℓ′ = π (A.1)

Additionally, the continuity of the bending moment at
the contact point (s = 0 in Figure A.16) implies that
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Figure 15: Buckling an elastica inside a tunnel is much harder than
in the unconstrained setup. The horizontal force needed to compress
an elastic rod increases much more rapidly in the constrained case
(orange) than in the unconstrained case (blue). Note that we have
considered the fully nonlinear version of the equilibrium equations
(1), (2), (4), (5), (6) for the unconstrained case, where P(∆) = 4π2 +

2π2 ∆ + . . . instead of P(∆) = 4π2 in the von Karman approximation,
see for example Bazant and Cedolin (2010, Fig. 1.26a).

Figure A.16: . The part of the system of the Hanging-fold state where
the rod does not touch both walls. The rod equilibrium is a planar
elastica solution with an unknown length 2ℓ′ and an internal force
nx = −P and ny = 0.

θ′(s = 0) = c
√

P equals the value given in Eq. (13).
This continuity constraint yields

c =
f
P

tan

√
Pℓ
2

(A.2)

Finally, we can compute the horizontal extent of the so-
lution as

x(ℓ′) =
∫ ℓ′

0
1 − (1/2) θ2(s) ds = ℓ′

(
1 −

c2

4

)
(A.3)

Appendix B. The cellular model formula in all vari-329

ables330

The solution of the cellular model (Section 5) may be331

expressed using different pairs of variables. We list in332

Table B.1 the different possibilities.333

P F 2nEκ –

(∆,H) 31 ∆H2 31 ∆
2

H3 16 ∆
2

H2 n = 0.62
√
∆

H

(∆, n) 81 n2 130 n3
√
∆ 40∆n2 H = 0.62

√
∆

n

(H, n) 81 n2 208 Hn4 104 H2n4 ∆ = 2.6 H2n2

Table B.1: Formulas for the forces P and F, the bending energy
2nEκ, the end shortening ∆, the height H, and the Atlas number n for
the cellular model, as functions of different pairs of variables.
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