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and GRACE measurements
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Abstract 

Recently, an ongoing rise in temperature for both land and ocean areas is recorded resulting from the Earth’s warm‑
ing climate. As a result, droughts we observe are getting more frequent, longer and more severe, exerting sustained 
impacts on humans, ecosystems leading to famine, poverty, mass migration, or agricultural and economic losses. 
The changes in climate are successfully monitored by analyzing Total Water Storage (TWS). For years, TWS has been 
successfully determined using geodetic techniques, such as gravity field variations observed by the Gravity Recov‑
ery and Climate Experiment (GRACE) missions or station position changes monitored by the Global Positioning 
System (GPS). As well, geodetic‑derived data can be applied successfully to study of hydrometeorological events. To 
quantify droughts characteristics at different temporal and spatial scales, we recalculate the vertical displacements 
to Drought Severity Indices (DSI). We find that DSI based on GPS and GRACE are positively correlated at over 80% 
of stations around the world, highlighting both Americas and Europe as the most correlated areas. To validate results, 
we compare DSI based on GPS/GRACE with the Global Land Water Storage (GLWS) hydrological model, the traditional 
climate indices, and temperature anomalies. We show that GPS‑DSIs are strongly temporally consistent with both the 
Standardized Precipitation Index (SPI) and the Soil Moisture Index (SMI) climate indices at 85% of stations, indicat‑
ing weakly correlated areas at mid‑latitudes. We further show a high potential of geodetic data to assess drought 
characteristics within climate zones as well as global studies. We note that moderate conditions dominate for all 
climate zones, for which dry moderate conditions are observed for 40% of the months analyzed. As a result, we note 
warning conditions at least 52% of global stations with extreme drying DSI trends above a value of 2–3 per year. We 
note that the global water changes are dominated by 9 month droughts at over 72% of stations, indicating the aver‑
age drought duration around 12, 14, and 15 months for GPS‑, GRACE‑, and GLWS‑DSI, respectively. The obtained 
results from geodetic measurements more reliably characterize the type and phase of drought, as well as how these 
droughts cascade into freshwater, enabling appropriate mitigation strategies.
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1 Introduction
According to the National Oceanic and Atmospheric 
Administration (NOAA)’s Annual Climate Reports, 
the global surface temperature has increased by 1.1  °C 
above 1850–1900 in the last decade, with each consecu-
tive year being the warmest on record for both land and 
ocean areas (https:// www. ncei. noaa. gov/). The abrupt 
climate changes such as increases in temperature, atmos-
pheric evaporative demand (Wehner et al. 2021), or other 
anthropogenic activities such as land use change, water 
demand, and management (van Loon et al. 2022) result in 
more frequent and severe droughts (Dai 2013) spanning 
months and even years (van Loon and Laaha 2015). The 
most negative impacts of drought include the redistribu-
tion of species diversity, agricultural and economic losses, 
the reorganization of ecosystems, water scarcity, famine, 
poverty leading to loss of life, mass migration, or redefin-
ing coverage of future climate zones (Zhang et al. 2020; 
Cui et al. 2021). For example, Qiu (2010) showed that the 
recorded precipitation decreases by 60% since 2009 has 
resulted in economic losses of 2.5 billion US dollars due 
to crop failure in China. Hence, revealing the problems 
in drought monitoring is one of the primary challenges to 
scientists in the twenty-first century (Rodell and Li 2023).

To monitor the impacts of climate changes scientifi-
cally, the single, composited, or modeled meteorologi-
cal parameters or water storage components have been 
used (e.g., Scanlon et al. 2018; Rodell and Li 2023). Key 
variables such as temperature, snow water equivalent, 
and surface water or groundwater storage are measured 
point-wise (in situ) or are provided as climate and hydro-
logical models. However, in situ measurements generally 
span a short period and observations are not commonly 
shared (Bhanja et  al. 2019). In contrast, for climate and 
hydrological models, widely available parameters are pro-
vided almost in real time and include information from 
around the world. Nevertheless, their quality depends on 
a number of variables, such as the inaccuracy and short-
comings of input data, deficiencies (non-physical, empiri-
cal, or simplifications) in modeling assumptions, or the 
variety of forcing fields that impose simulation reliabili-
ties. Consequently, model-derived parameters may either 
under- or overestimate real global (Scanlon et  al. 2018; 
Schmied et  al. 2021) or regional (Scanlon et  al. 2016) 
hydrometeorological changes. For many years, modeled 
meteorological parameters or water storage components 
have been successfully used to quantify drought charac-
teristics at different temporal and spatial scales. Several 
drought indices have already been defined, such as the 
Standardized Precipitation Evapotranspiration Index 
(SPEI; Vicente-Serrano et al. 2010), the Palmer Drought 
Severity Index (PDSI; Palmer 1965), or the Surface Water 
Supply Index (SWSI; Shafer and Dezman 1982). However, 

they typically focus on only one hydroclimatic parameter, 
limiting reliable monitoring of the length and severity of 
droughts, and consequently are unable to represent the 
current climate scenario (Jain et al. 2015).

An alternative way to monitor climate change is to use 
the remote sensing-derived data provided by geodetic 
techniques, such as the Gravity Recovery and Climate 
Experiment (GRACE; Tapley et al. 2004) and the Global 
Navigation Satellite System (GNSS). The time-variable 
gravity sensed by GRACE has been successfully used to 
analyze global and regional mass variations in the hydro-
sphere, cryosphere, and oceans (Tapley et al. 2019) and is 
strongly correlated with both climate and anthropogenic 
variability (Scanlon et al. 2015). Among all, Pfeffer et al. 
(2021) emphasized that the Total Water Storage (TWS) 
changes from GRACE are spatially and temporally 
coherent with interannual signals driven by teleconnec-
tion modes such as NAO (North Atlantic Oscillation), 
ENSO (El Niño Southern Oscillation), PDO (Pacific Dec-
adal Oscillation) or with short-term changes affected by 
extreme hydroclimatic events including droughts and 
floods (Scanlon et  al. 2018; Klos et  al.  2023). Besides, 
Niu and Yang (2006) and Sun et  al. (2012) showed that 
GRACE annual and long-term signals can be used to cali-
brate and validate the global land surface as well as cli-
mate models. The site position series recorded by GNSS 
have been also extensively used to study hydrological 
variability (Knappe et al. 2019; Wang et al. 2022) through 
Earth’s surface deformation mass load variations via the 
elastic load theory (Farrell 1972) or through inverse pro-
cedure to determine TWS changes (Argus et  al. 2014). 
GNSS-observed displacements have been successfully 
used for studying changes in, e.g., water storage com-
ponents (Knowles et  al. 2020) as snow water equivalent 
(Ouellette et al. 2013), ice mass loss (Wang et al. 2017), 
or groundwater (Lenczuk et  al. 2023). Generally, GNSS 
displacements are fairly consistent with GRACE-derived 
TWS with a correlation over 0.6 for most cases (e.g., 
Ferreira et  al. 2019; Knowles et  al. 2020). Furthermore, 
GNSS displacements indicate a strong dependence with 
monsoon climate signals (Materna et  al. 2020), atmos-
pheric or precipitation cycles (Han 2017) or hydrologi-
cal model (Knappe et al. 2019). Argus et al. (2014) proved 
that GNSS-derived TWS changes show a high spatial and 
temporal coherency with regional water changes esti-
mated from GRACE and hydrological models revealing 
the physiographic properties of the region and climate 
processes (Fu et al. 2015) indicating various meteorologi-
cal phenomena (Milliner et al. 2018). As a consequence, 
a number of GNSS- and GRACE-based drought sever-
ity indices (DSI) have been used to improve the ability of 
drought monitoring at regional (e.g., Yao et al. 2022; Klos 

https://www.ncei.noaa.gov/
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et al. 2023) and global scales (e.g., Zhao et al. 2017; Ger-
dener et al. 2020) in the recent years.

In our research, we study global relationships of 
drought index based on geodetic measurements with 
hydrological, meteorological, and climatic changes. We 
estimate DSI series using vertical displacement time 
series observed by Global Positioning System (GPS) and 
derived from GRACE at 999 global GNSS stations. The 
reliability of the drought indices is overall assessed by 
comparisons to, e.g., traditional climate indices, mete-
orological variables, or literature. Here, we compare 
both GPS- and GRACE-derived DSIs (hereafter called 
“GPS-DSI” and “GRACE-DSI”) with DSI based on Global 
Land Water Storage (GLWS) hydrological model, two 
traditional climate indices (the Standardized Precipita-
tion Index (SPI) and the Soil Moisture Index (SMI)), as 
well as global temperature anomalies and extreme events 
reported in the literature.

This paper makes a fivefold contribution to Earth and 
climate science. To the best of our knowledge, (i) there 
is still no global assessment of the impact of choosing 
different types of GRACE data on identifying droughts. 
We show that DSIs for both GRACE spherical harmon-
ics and mascons are commonly spatially coherent; over 
80% of analyzed stations are positively correlated with 
GPS-DSI. The highest agreement is observed in the mid-
latitudes characterized by intense hydrometeorological 
extreme events. (ii) Secondly, we prove the high poten-
tial of geodetic data to study characteristics (intensity, 
category, duration) of droughts that are not registered by 
traditional climate indices. We find that moderate con-
ditions and 9 month droughts dominate for time series 
from geodetic measurements. (iii) We are the first to 
identifying the roles of climate zones with droughts and 
floods globally by relating the characteristics of drought 
index variability, etc. We show strong temporal coher-
ence of DSI series within the single climate group for all 
analyzed datasets. (iv) We are as well the first to set hot 
spot regions of wetting and drying conditions worldwide 
using DSI cumulated trend. We note drying tendencies at 
least 52% of stations for geodetic measurements, mainly 
low-latitude areas. (v) We study the regional correla-
tions via cross-phase angle and period for Brazil, (for the 
first time) for Europe, Australia, and Africa regions. The 
obtained results indicate good agreement in amplitude 
and phase between GPS-DSI, GRACE-DSI, and SMI, for 
which both long- and short-term scales refer to dry and 
wet events recorded in the analyzed regions.

The article is organized as follows: in Sect. 2, we detail 
the used data such as satellite geodetic data, hydrological 
model, meteorological parameters, and assumed meth-
odology. Section 3 includes an overview of the obtained 

results with a detailed discussion. Then, the article is 
completed with conclusions.

2  Datasets and methods
2.1  GPS observations
We use the vertical displacements of GPS permanent 
stations distributed globally, except the Greenland and 
Antarctica areas. The 999 daily time series are provided 
by the Nevada Geodetic Laboratory (NGL; Blewitt et al. 
2018) and are processed using the Precise Point Position-
ing (PPP) method in GipsyX software version 1.0 (see 
more details at: http:// geode sy. unr. edu/ gps/ ngl. acn. txt). 
We eliminate the offsets (i.e., displacements due to crustal 
movements as earthquakes or technical, environmental, 
and human factors) using initially the NGL database and 
then manual inspection. The outliers are eliminated by 
applying the Inter-Quartile Range rule (IQR; Upton and 
Cook 1996). To correct the nontidal oceanic and atmos-
pheric loadings, we use products provided by the Earth 
System Modelling Group of Deutsches GeoForschun-
gsZentrum Section  1.3 (ESM GFZ; Dill and Dobslaw 
2013). To eliminate the postglacial rebound effect, we 
apply the ICE-6G_C model developed by Stuhne and Pel-
tier (2015). Afterward, the daily GPS-observed displace-
ments are averaged to monthly samples and truncated to 
January 2002 to December 2019 period to be consisted 
with GRACE and hydrological model.

2.2  GRACE and GRACE‑FO monthly solutions
We use the spherical harmonic coefficients GRACE 
release 06 (RL06) and GRACE-FO RL06.1 provided by 
the Jet Propulsion Laboratory (JPL) at the California 
Institute of Technology (Yuan 2018, 2019) and the Center 
for Space Research (CSR) at the University of Austin (Bet-
tadpur 2018; Save 2019). Spherical harmonics represent 
gravity filed variations up to degree and order 96 and are 
defined as the anomalies relative to GGM05C static grav-
ity field model (Ries et  al. 2016); note that nine months 
(four in 2004, three in 2012 and two in 2015) are available 
only up to degree and order 60 for JPL. The low-degree 
coefficients are replaced using Technical Note 14 (TN14) 
by following Sun et al. (2016) for degree-1, and the Sat-
ellite Laser Ranging (SLR) estimations for degree-2 and 
degree-3 coefficients. The details concerning all correc-
tions are available at https:// podaa ctools. jpl. nasa. gov/. To 
spatially average the spherical harmonic coefficients, we 
use two different filters, i.e., de-correlation DDK3 filter 
(“DDK”) and Gaussian smoothing with radius of 300 km 
(“Gauss”). Furthermore, we use recent solutions of mas-
cons (RL06.1_v03 and RL06.2). Both JPL (Watkins et al. 
2015) and CSR (Save et al. 2016) mascon solutions (here-
after abbreviated as “MSC JPL” and “MSC CSR”) have a 
global coverage and are provided on a 0.5° (MSC JPL) and 

http://geodesy.unr.edu/gps/ngl.acn.txt
https://podaactools.jpl.nasa.gov/
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0.25° (MSC CSR) grid, simplifying the separation of sig-
nals between the ocean and land. The specific data pro-
cessing details and used background models are available 
through https:// grace. jpl. nasa. gov/ and https:// www2. csr. 
utexas. edu/ websites. It should be noticed that for both 
GRACE data the missing months and the 11 months gap 
between both missions were filled using the autoregres-
sive TWS reconstruction approach proposed by Lenc-
zuk et  al. (2022). To estimate GRACE-derived vertical 
displacements for GPS locations, TWS-gridded changes 
are converted into spherical harmonic coefficients (Wahr 
et al. 1998; Wang et al. 2017) up to degree and order (d/o) 
equal to 120 (Save et  al. 2016) using Farrell load Love 
numbers (1972).

2.3  Drought Severity Index (DSI)
2.3.1  DSI estimation
To capture and assess the magnitude of the hydromete-
orological events using satellite geodetic data, we calcu-
late GPS- and GRACE-based DSI values using Zhao et al. 
(2017) approach, for which DSIs are defined as the stand-
ardized anomalies of vertical displacements ( VD ) caused 
by TWS changes as follows:

where i and j mean year ranged from 2002 to 2019 and 
month from January to December, respectively. VDj and 
σj are the mean and standard deviation values of verti-
cal displacements in month j. It should be noticed that 
displacements are assuming the Earth’s elastic response 
to mass loading and reflect the opposite changes to 
TWS. Consequently, for wet conditions DSI is negative, 
while for dry conditions—positive. Thus, DSI detects 
both drought and wet events indicating exceptionally 
wet conditions for values less than − 2.0, extremely wet 
from − 1.99 to − 1.60, very wet from − 1.59 to − 1.30, 
moderately wet from − 1.29 to − 0.80, abnormally wet 
from − 0.79 to − 0.50, near normal conditions from − 0.49 
to 0.49, abnormally dry from 0.50 to 0.79, moderate 
drought from 0.80 to 1.29, severe drought from 1.30 to 
1.59, extreme drought from 1.60 to 1.99, and exceptional 
drought for values higher than 2.0.

2.3.2  Reliability of DSIs
To assess the reliability of GPS-/GRACE-DSI and to get 
clearer insights of hydrometeorological events, we com-
pare geodetic-based DSIs with (i) DSI determined from 
Global Land Water Storage (GLWS), (ii) climate indices 
such as the Soil Moisture Index (SMI) and the Standard-
ized Precipitation Index (SPI), and (iii) the global surface 
temperature change (Table 1).

(1)DSIi,j =
VDi,j − VDj

σj
,

We use the newest 2.0 version of GLWS hydrological 
model with a spatial resolution of 0.5° per 0.5° within 
January 2003 to December 2019 period. Monthly GLWS 
TWS is derived by assimilating GRACE TWS changes 
into the Water-Global Assessment and Prognosis 
(WaterGAP) Global Hydrological Model (WGHM) via 
the Ensemble Kalman filter (Gerdener et al. 2023). GLWS 
includes the global anomalies of TWS excluding Green-
land and Antarctica relative to January 2003 to December 
2016 mean baseline. The missing months of GRACE data 
reflect the average of an assembly in which each element 
is dynamically consistent with the model. To be consist-
ent with GPS and GRACE, GLWS TWS is recalculated 
to vertical displacements using converted spherical har-
monic up to d/o equal to 360 (Wahr et  al. 1998; Wang 
et  al. 2017), and then, DSI is estimated following Zhao 
et al. (2017).

SMI is computed as weighted average of three parame-
ters, i.e., root zone soil moisture from LISFLOOD model 
(https:// ec- jrc. github. io/ lisfl ood- model/), land surface 
temperature derived from Moderate Resolution Imag-
ing Spectroradiometer (MODIS), and skin soil moisture 
defined by the Climate Change Initiative (CCI) Euro-
pean Space Agency (ESA) group (https:// clima te. esa. int/ 
en/). The weights are calculated following Cammalleri 
et  al. (2017) approach, and then, parameters are stand-
ardized on 2001–2016 period. SMI is calculated on a 
30 days moving window and spans from January 2001 to 
December 2022. The product is globally provided at a 0.1° 
per 0.1° spatial resolution. We also use the SPI index as 
proposed by McKee et al. (1993). SPI is calculated using 
the historical precipitation anomalies from the Global 
Precipitation Climatology Centre (GPCC; http:// gpcc. 
dwd. de/). Monthly SPI values are provided on a global 
grid of 1° per 1° for range of various timescales from 1 
to 48 months since January 1981. Specifically, we use the 
SPI-12 product which reflects 12  months of accumula-
tion period that is used to analyze hydrological changes 
(Secci et al. 2021).

In the case of global surface temperature change, we 
use the GISS Surface Temperature Analysis (Hansen and 
Lebedeff 1987) version 4 (GISTEMP v4) (Lenssen et  al. 
2019) that contains combined changes of sea surface tem-
perature records and meteorological station measure-
ments over land and ocean areas. GISTEMP represents 
values in an equal-area grid of 8000 boxes covering the 
Earth that are interpolated using the modified Kriging 
method. The data uncertainty is obtained using the fifth-
generation European Centre for Medium-range Weather 
Forecasting atmospheric reanalysis (ERA5) and ERSSTv4 
product provided by NOAA/NCEI (Huang et al. 2017).

Finally, SMI, SPI, and temperature values are interpo-
lated to GPS locations using four surroundings values.

https://grace.jpl.nasa.gov/
https://www2.csr.utexas.edu/
https://www2.csr.utexas.edu/
https://ec-jrc.github.io/lisflood-model/
https://climate.esa.int/en/
https://climate.esa.int/en/
http://gpcc.dwd.de/
http://gpcc.dwd.de/
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2.4  Study of consistency between DSIs
We quantify the consistency between GPS- and GRACE-
based DSIs by means of two key metrics: the concordance 
correlation coefficient and the variance reduction. These 
metrics allow us to assess the similarity and agreement 
between the temporal patterns of GPS- and GRACE-
derived datasets, considering both the correlation and 
amplitude aspects. Temporal coherence of GPS- and 
GRACE-DSI is assessed by estimating the concordance 
correlation coefficient (rxy; Lin 1989). Unlike Pearson’s 
correlation coefficient, which only measures the strength 
of the linear relationship between two series, rxy also con-
siders the similarity in the amplitudes of two compared 
series. It is estimated using the following formula:

where xk , yk are two time series being compared for k-th 
time, x , y represent the means of x, and y. N  is a number 
of observations (months) for both x and y time series.

To assess the consistency of amplitude and phase 
between GPS- and GRACE-DSI, we calculate variance 
reduction parameter following Gaspar and Wunsch 
(1989) approach:

It is assumed that varred values greater than 50% repre-
sent agreement between GPS- and GRACE-DSI in phase 
and amplitude (Peidou et al. 2023). Values of 100% mean 
perfect consistency. Negative values appear with large 
differences in amplitude and phase.

We further utilize the wavelet coherence parameter 
to analyze the relationship between GPS-DSI and other 
datasets, including GRACE, GLWS, and SMI. It allows to 
determine the correlation between two selected datasets 
in the time–frequency space. The wavelet coherence is 
based on the analytic Morlet wavelet (Kronland-Martinet 
et al. 1987) and is computed using (Azad et al. 2022):

where Cx(a, b) and Cy(a, b) denote the continuous wavelet 
transforms of x and y time series at scales a and time b of 
the wavelet transform. C∗

x (a, b) is the complex conjugate 
of Cx(a, b) , and S indicates the smoothing over both time 
and scale.

(2)

rxy =

2
N

N
∑

k=1

(xk − x)(yk − y)

1
N

N
∑

k=1

(xk − x)2 + 1
N

N
∑

k=1

(yk − y)2 + (x − y)2
,

(3)varred =

(

1−
var

(

[GPS−DSI] − [GRACE−DSI]
)

var([GPS−DSI])

)

· 100.

(4)

∣

∣S(C∗
x (a, b)Cy(a, b)

∣

∣

2

S
(

∣

∣Cx(a, b)
∣

∣

2
)

· S
(

∣

∣Cy(a, b)
∣

∣

2
) ,

3  Results and discussion
3.1  Consistency between GPS‑ and GRACE‑based DSIs
3.1.1  Concordance correlation coefficient and variance 

reduction
In Fig. 1, we present the maps of concordance correlation 
coefficient (left column) and variance reduction (right 
column) values calculated between DSI based on GPS 
and different types of GRACE JPL data. In the case of rxy, 
we find over 80% of stations being positively correlated 
with GPS for all GRACE data; at least 30% of stations are 
characterized with correlation greater than 0.5. In case of 
mascons, we obtain the largest rxy for stations located in 
both Americas and Europe, mostly in the central parts of 
the continents, for which rxy over 0.6 is predominant. For 
spherical harmonics coefficients, we get values compara-
ble to mascons in spatial and temporal domain, although 
spherical harmonics yield smaller rxy compared to mas-
cons, with values being 0.1 and 0.2 lower for 20% and 
30% of stations situated, respectively, in the central parts 
of North America and Europe. For both mascons and 
spherical harmonics, negatively correlated stations are 
found at single points spread around the world, mostly 
over island and coastal areas. We observe almost 5% 
more negatively correlated stations for spherical harmon-
ics relative to mascons. We notice that the regions with 
maximum correlation overlap with extreme TWS trends 
(e.g., central USA or southern Brazil) and TWS annual 
amplitudes (e.g., Amazon river basin, eastern Africa, or 
southern Europe) areas described by Scanlon et al. (2018). 
Moreover, they spatially coincide with areas undergoing 
high precipitation anomalies, as documented by Gu and 
Adler (2023). Specifically, the precipitation anomalies are 
prevalent in subtropical and mid-latitude regions, includ-
ing central parts of North America and South America, 
southwest USA, northern part of Australia, tropical west 
and southern parts of Africa, and Eurasia. Then, we ana-
lyze the results for stations located within the four main 
climate groups according to the Köppen–Geiger clas-
sification (Kottek et  al. 2006), i.e., tropical (red), (semi-)
arid (yellow), temperate (green), and continental (purple 
areas) (background colors in Fig. 1). The tropical climate 
covers near the equator areas, mainly within 15° N and 
S latitude. Through the low (mostly from 15 to 30°) lati-
tude in both hemispheres, a (semi-)arid climate group 
is located. The temperate and continental zones cover 
the middle and high latitudes, mostly from 25° to 70° N 
and S. Since GLWS does not include TWS changes for 
Greenland and Antarctica ice sheets, we exclude lati-
tudes higher than 60° in both hemispheres that represent 
polar climate zone. Within individual climate zones, we 
get the largest median concordance with GPS for conti-
nental and temperate zones equal to 0.4 and 0.3 for mas-
cons and spherical harmonics, respectively. In (semi-)
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arid and tropical zones, the median rxy is smaller by 0.1. 
It is explained by a large number of negatively correlated 
stations located in Asia and Australia. In other regions 
within (semi-)arid and tropical climate zones, such as 
Amazon, south and east parts of Africa, the rxy exceeds 
0.4.

Then, following Peidou et al. (2023) we analyze the var-
iance reduction (Fig. 1, right column) to assess the con-
sistency of amplitude and phase between DSI determined 
from GPS and GRACE. The obtained results are spatially 
comparable to extreme values of concordance. Overall, 
the results highlight better consistency between GPS-
DSI and mascon-derived GRACE-DSI compared to those 
obtained from spherical harmonics. We observe the 

higher DSI agreement for central parts of both the Amer-
icas and Europe. For mascons, positive  varred is found at 
91% of stations. The maximum values are dominant in 
inland areas with median values equal to 35%. The main 
disagreement with GPS is noticed along the coasts of 
continents and in Western Australia. In the case of spher-
ical harmonics, we get positive  varred for 9% and 17% of 
stations less than for mascons using, respectively, DDK 
and Gaussian filters. The median values are around 24% 
for both filters. The poor agreement occurs at stations 
located on the east coast of the USA and South Amer-
ica, the western part of Australia, and the island areas. 
Regions exhibiting  varred values exceeding 50% in both 
GRACE datasets, including the central parts of North 

Fig. 1 Concordance correlation coefficient (left column) and the variance reduction (right column) estimated between GPS‑ and various 
GRACE‑based DSI series determined from vertical displacements. Two different forms of GRACE data, i.e., mascon solution (“MSC JPL”; top map) 
and spherical harmonic coefficients (middle and bottom maps), are used. We use two various spatial averaging of spherical harmonic coefficients, 
i.e., DDK3 filter (“DDK JPL”; middle map) and Gaussian smoothing with radius of 300 km (“Gauss JPL”; bottom map). The histograms of concordance 
correlation coefficient (left column) and the variance reduction (right column) of DSIs estimated for selected 999 stations are presented for all used 
datasets. The background represents the four main climate groups according to the Köppen–Geiger climate classification scheme: tropical (red), 
(semi‑)arid (yellow), temperate (green), and continental (purple)
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America, Brazil, and southern parts of Europe, coincide 
with areas experiencing substantial long-term climate 
changes and human activities. These changes encompass 
variations in precipitation (increase or decrease), transi-
tions between dry and wet periods, depletion of ground-
water, and expansion of irrigation agriculture (Rodell 
et  al. 2018). The highest agreement is also observed for 
regions of most intense hydrometeorological (drying/
wetting) events occurring in the mid-latitudes, i.e., cen-
tral and north parts of North America, Europe, South 
and East Africa, and central part of South America 
(Rodell and Li 2023). The observed local inconsistency 
may be explained by differences in GRACE root data 
processing (e.g., leakage effects, spatial filtering, mas-
con definition) or GPS error sources (such as multipath 
effects, ephemeris error, or error due to orbital eccentric-
ity). Studying the results for the individual climate zone, 
the results are similar for both type of GRACE datasets 
(mascon and spherical harmonic) and both used spatial 
filters (“Gauss” and “DDK”) (Fig.  1). We notice agree-
ment in amplitude and phase between GPS- and all three 
GRACE-based DSIs for over 70% of stations located at 
continental zone. For the other climate groups, at least 
50% of stations for GRACE (i.e., both forms of data and 
both spatial filters) are in agreement with GPS, excluding 
only GRACE spherical harmonic smoothed by Gaussian 
filter within the tropical zone. We get the median values 
up to 30% for continental zone, and 20% for (semi-)arid 
and tropical zones for both GRACE mascons and spheri-
cal harmonics datasets (Table 2).

3.1.2  Correlation and RMS
We study the relationship of correlation between DSIs 
and RMS of DSI differences (Fig.  2) to assess the tem-
poral consistency between GPS and GRACE. The dot 
colors present the results obtained for different climate 
zones i.e., tropical (A), (semi-)arid (B), temperate (C), 
and continental (D) that allow to analyze changes in dif-
ferent climate groups. Overall, we notice similar cor-
relation across all pairs of datasets, for which increasing 
values correspond to decreasing RMS. Positively cor-
related stations dominate for all climate groups and all 
GRACE data. The slopes of linear relationships between 
correlation and RMS of differences values estimated from 
GPS and GRACE range from −0.9 to −0.7 for all climate 
zones. It reveals an almost (inversely) proportional rela-
tionship between RMS of DSI differences and correla-
tion. The smallest slope value is found for tropical zone; 
however, slope is almost twofold for continental zone 
for all GRACE datasets. The large changes for continen-
tal zone are related with RMS of differences over 2.5 for 
correlations between − 0.1 and 0.1 that we observe at 
stations located in the north part of North America and 
Scandinavia. For the other climate groups, we get the 
slope values equal to − 0.7 and RMS around 1.3. The larg-
est correlations and smallest RMS are mostly found at 
inland stations for which strong rxy and  varred (Fig. 1) are 
noticed.

3.1.3  Comparison of DSI based on GRACE data provided 
by JPL and CSR processing centers

We then perform similar calculations to those shown 
in Figs.  1 and 2; however, we compare GRACE 

Fig. 2 RMS of difference calculated between GPS‑DSI and GRACE‑DSI with respect to correlation. We present results obtained for mascon solution 
(“MSC JPL”; left graph), and spherical harmonic coefficients filtered by DDK3 (“DDK JPL”; middle graph) and Gaussian smoothing with radius 
of 300 km (“Gauss JPL”; right graph) provided by JPL. The colored dots present the results obtained for four main climate groups according 
to the Köppen–Geiger classification, i.e., A—tropical (red), B—(semi‑)arid (yellow), C—temperate (green), and D—continental (purple)
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mascon solution and spherical harmonics provided by 
CSR processing center (Table 2 and Fig. 3). We compare 
the obtained GRACE-DSI from both CSR and JPL centers 
by determining the rxy,  varred, and the annual amplitude 
of DSI differences estimated between GPS and GRACE. 
The results are presented in Fig. 3, indicating the median 
with the 25th and 75th percentiles values as the bottom 
and top edges of the box, and the individually outliers 
plotted using red dots. We note significant resemblance 
between JPL (blue) and CSR (black boxplots) datasets. 
The rxy values are almost identical for both GRACE JPL 
and CSR datasets. However, the median values are about 
0.1 greater for mascons than for both spherical har-
monics. We observe the weakest correlations between 
GPS and GRACE spherical harmonics spatially aver-
aged using Gaussian smoothing (Fig. 3, left graph). Very 
similar results are found for  varred parameter (Fig.  3, 
center graph). Median values are within 20–30% for all 
GRACE datasets. For JPL mascon solution, we note bet-
ter GRACE agreement with GPS and less divergence of 
DSI values compared to CSR. For spherical harmonics, 
DSI values are about 5% and 10% greater, respectively, 
for DDK and Gaussian smoothing for both JPL and CSR. 
We show that seasonal variations between GPS- and 

GRACE-DSI series are minor (Fig.  3, right graph). The 
median annual amplitude of DSI differences is up to 0.2, 
excluding GRACE JPL spatially averaged using Gaussian 
smoothing with median equals to 0.3. Almost 75% of the 
stations are characterized with an amplitude of difference 
of less than 0.5. Moreover, we notice amplitudes greater 
by 0.2 and 0.1, respectively, for JPL spherical harmonics 
filtered using DDK and Gaussian smoothing.

We further analyze the spatial coherence of results we 
obtained for GRACE datasets provided by JPL and CSR. 
The values of concordance with GPS are consistent at 
least 92% of stations for both GRACE centers. 90% of sta-
tions are positively correlated and at least 25% of them 
are correlated over 0.5. The differences occur mainly at 
unrelated stations scattered over the world. For example, 
for JPL we find concordance smaller by 0.3 than for CSR 
at 5% of stations for spherical harmonics. The largest dis-
crepancies between data from both centers are observed 
for entire Australia (except eastern part of continent) 
for spherical harmonics, and its western and northern 
parts for mascon solutions (not shown). For example, 
we obtain concordance smaller by 0.2 for CSR than for 
JPL for both GRACE mascons and spherical harmonics 
in West Australia. In the case of amplitude, we find that 

Table 1 Data used for calculations

Data availability Spatial resolution Temporal 
resolution

Analyzed data Source

GPS 1994–present Point Days Monthly data for 01/2003–12/2019 NGL

GRACE 04/2002–present  ~ 200–300 km Months CSR, JPL

GLWS 01/2003–12/2019 0.5° Months University of Bonn

SMI 01/2001–12/2022 0.1° Months Global Drought Observatory

SPI 01/1981–12/2021 1° Months Global Drought Observatory

Temperature 01/1880–12/2023 2° Months NASA Goddard Institute for Space Studies

Fig. 3 Descriptive statistics of concordance correlation coefficient (left graph), variance reduction (middle graph) and annual amplitude of DSI 
differences (right graph) between GPS‑DSI and GRACE‑DSI. Blue and black boxes represent GRACE data provided by JPL and CSR processing 
centers, respectively. On each box, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th 
percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers; however, the outliers are plotted individually 
using the red dots
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negatively correlated stations are characterized with 0.1 
smaller amplitudes of DSI for CSR mascons. For spherical 
harmonics, the largest discrepancies are found at stations 
with correlation ranging from − 0.1 to 0.1. It is noticed at 
stations located at different climate zones and probably 
stems from the application of different background mod-
els in both type of GRACE data.

3.2  GPS‑DSI comparison to traditional climate indices
The climate changes are commonly analyzed using tra-
ditional climate indices based on modeled meteoro-
logical parameters. Hence, to assess the reliability of 

GPS-DSI to study hydroclimatic and hydrometeorologi-
cal changes we analyze anomaly correlation coefficients 
between GPS-DSI, and SPI and SMI that are based on 
precipitation and soil moisture (Fig.  4), respectively. 
The presented maps point to related spatial patterns 
of correlation for both traditional climate indices with 
GPS-DSI. We note a similar change at 85% of stations 
and correlation greater than 0.5 for 39% and 47% of 
them, respectively, for SPI and SMI. Nonetheless, there 
are some unambiguous regions such as Australia, Oce-
ania, and the northwest part of Europe, which are char-
acterized with correlations lower by 0.2–0.3 for SPI 

Table 2 Statistics calculated for concordance correlation coefficient and variance reduction estimated between GPS‑ and GRACE‑DSIs

The statistic are calculated for different climate zones i.e., tropical (A), (semi-)arid (B), temperate (C), and continental (D)

GRACE data type Parameter Concordance correlation coefficient Variance reduction (%)

A B C D A B C D

MSC
JPL

Mean 0.41 0.39 0.44 0.48 23 22 28 38

Median 0.38 0.35 0.42 0.41 21 25 26 36

Minimum  − 0.42  − 0.51  − 0.44  − 0.42  − 46  − 36  − 40  − 21

Maximum 1.00 1.00 1.00 1.00 83 93 99 96

DDK
JPL

Mean 0.25 0.24 0.32 0.35 19 21 27 34

Median 0.27 0.22 0.32 0.33 21 25 29 35

Minimum  − 0.42  − 0.56  − 0.47  − 0.26  − 49  − 42  − 55  − 24

Maximum 1.00 1.00 1.00 1.00 96 89 98 93

Gauss JPL Mean 0.23 0.25 0.33 0.36 22 23 24 32

Median 0.21 0.25 0.31 0.33 20 22 25 34

Minimum  − 0.32  − 0.51  − 0.30  − 0.24  − 53  − 44  − 48  − 25

Maximum 1.00 1.00 1.00 1.00 90 88 98 93

Fig. 4 Anomaly correlation coefficient estimated between GPS‑DSI and two traditional climate indices: SPI and SMI. The histogram of anomaly 
correlation coefficient of DSIs estimated for selected 999 stations is presented for both climate indices. The background represents the four 
main climate groups according to the Köppen–Geiger climate classification scheme: tropical (red), (semi‑)arid (yellow), temperate (green), 
and continental (purple)
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compared to SMI. As a result, the average correlation 
values are greater by 0.1 for SMI than for SPI. Neverthe-
less, for both cases the strongest agreement are found 
for near the equator and low-latitude areas. The weakly 
correlated areas occur mostly on middle latitudes, 
which are affected by different variables. For example 
in Latin America, sensitivity to warming of ocean water 
may contribute to the observed differences (Sutton 
2018). In the central part of Asia, Zhang et  al. (2019) 
showed that the discrepancies may stem from under-/
overestimation of the dominant TWS components such 
as groundwater and snow water equivalent. In the case 
of the individual climate groups, we notice two major 
similarities of GPS-DSI and climate indices. First, in the 
(semi-)arid zone, 50% of stations are characterized with 
anomaly correlation greater than 0.5 for both SPI and 
SMI indices. The observed good agreement at only half 
of the number of stations is probably a consequence of 
the limited impact of precipitation and potential evapo-
transpiration in extremely arid area (Cammalleri et  al. 
2017; Řehoř et  al. 2023). Second, we obtain the low-
est agreement for the continental zone, for which the 
anomaly correlation exceeding 0.5 shows a notable sim-
ilarity between SMI and SPI, with SPI exhibiting this 
characteristic in only 6% more stations (i.e., 31% of sta-
tions). However, the median value of correlation for SPI 
remains higher by 0.1 compared to SMI. For other two 
analyzed climate zones, we get a stronger agreement 

between GPS-DSI and SMI for which we note cor-
relation higher by an average of 0.2 than for SPI. This 
agreement between GPS and SMI may be explained by 
the observed decrease in soil relative available water, as 
monitored by GPS. This decrease has been identified as 
significant ‘hotspots’ areas by Řehoř et al. (2023), with a 
water decrease by 5% per decade.

3.3  Drought characteristics: duration and severity
Then, we focus on assessment of the characteristics of 
droughts using geodetic techniques. We determine the 
(median) drought duration and its category using GPS 
and GRACE data, and we compare them with results 
obtained from GLWS model (Fig. 5). The drought dura-
tion is defined as the number of months between the 
start and end of the drought (Mao et al. 2017) and is esti-
mated as sum of duration of all droughts divided by the 
total number of their occurrences (Xu et al. 2019). How-
ever, to exclude any non-real changes stemming from 
geodetic techniques we take for DSI analysis only the 
periods lasting at least 3 months. We obtain the median 
length of drought around 12, 14, and 15 months for GPS, 
GRACE and GLWS, respectively. Droughts longer than 
1  year occur mostly in a nearly unbroken belt around 
the Earth at low latitudes, mostly within 15° in both 
hemispheres. The longest droughts (even up to 2  years 
and longer) are found at mid-latitudes areas (e.g., cen-
tral and western parts of North America, eastern part of 

Fig. 5 Median drought duration estimated using GPS‑, GRACE‑, GLWS‑DSI based on vertical displacements. GRACE‑based determinations are 
obtained with the use of JPL mascon solution. The background represents the four main climate groups according to the Köppen–Geiger climate 
classification scheme: tropical (red), (semi‑)arid (yellow), temperate (green), and continental (purple). The histograms present the proportion 
of the number of months (in %) of dominated drought category i.e., abnormal (“abn”) and moderate (“mod”) dry/wet conditions within analyzed 
2002–2019 period. Results are presented for each climate zone for GPS‑, GRACE‑ and GLWS‑DSI (red, black and green curves, respectively). Note 
that the normal condition dominated for all climate zones is eliminated and is not presented in histograms
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South America) for all datasets (Fig. A1). The results of 
the longest droughts are similar, but there are also some 
exceptions such as in Europe, to which we obtain shorter 
droughts for GPS. As a consequence, the number of 
droughts is greater for GPS than for GRACE and GLWS. 
For example, for GRACE and GLWS 1 year droughts are 
also obtained in drought-prone regions (Meza et al. 2020) 
such as Europe (except the western part of continent), 
eastern part of Africa, and Australia. It is also captured 
by GPS; however, there are observed hotspots covering 
smaller regions than sensed by GRACE and modeled 
using GLWS, marked by orange and red dots in Fig.  5 
or red and black dots in Fig.  A1 (left column). We also 
find much more droughts for GPS than for others data 
in Europe, north part of Asia, whereas more droughts 
are noticed for south part of Africa and west part of Aus-
tralia for GRACE and GLWS (maps in right column). 
The smallest and largest number of droughts we obtain 
coincides, respectively, with the most intense areas of wet 
and dry periods presented by Rodell and Li (2023). The 
indicated regions in Europe, Africa, and Australia coin-
cide with extreme drought duration trend estimated by 
Zeng et  al. (2022) using climate indices and for which 
trend is greater than 1  month per decade. Moreover, 
these regions are under drought over 50% of the analyzed 
time that are simulated by different configurations of 
HadCM3C climate model and PDSI climate index (Taylor 
et al. 2012). We find that 9 month droughts predominate, 
occurring at 72%, 87%, and 95% of stations, respectively, 
for GPS, GRACE, and GLWS. GPS reveals droughts 
shorter than 9 months occur mostly on island or even in 
coastal areas. For GPS and GRACE, we also notice some 
6 month droughts for eastern Europe that coincide with 
the 3–6  month periods of European rivers discharge 
(Eriyagama et al. 2009). In the case of the climate zones 
analysis, at least 9 months droughts are observed at more 
than 70%, 80%, and 90% stations, respectively, for GPS, 
GRACE, and GLWS. The median length of drought is 
about 12  months for tropical, temperate, and continen-
tal climate groups for all used datasets. For (semi-)arid 
zone, the median drought duration is 13 months for GPS, 
while for GRACE and GLWS is over 15  months. In the 
case of individual stations analysis, the longest droughts 
monitored by DSIs series span from 2 years for stations 
located at tropical zone (east part of South America) 
to as long as 4  years for stations located at continental 
zone (west and central parts of North America). Further, 
we study the frequency of occurrence of the dominant 
drought categories in single climate zones; however, we 
exclude the normal condition that is predominant in each 
zone. Results are presented as histograms in Fig. 5. The 
drought category for GPS, GRACE, and GLWS data is 
classified following the approach proposed by Zhao et al. 

(2017). We note coherent results for used datasets for 
which moderate drought conditions (i.e., DSI from 0.80 
to 1.29) dominate for all climate zones. They are found for 
at least 60% of the analyzed months. The dry conditions 
are observed for at least 40% of months of GRACE- and 
GLWS-DSI series for tropical, (semi-)arid, and continen-
tal zones. For GPS-DSI, we note the similar number of 
dry and wet months. Nevertheless, there are significant 
differences between all datasets, notably for stations 
located in (semi-)arid zone. We notice that mainly GLWS 
overestimates the drought category observed by GPS and 
GRACE and shows abnormal dry conditions (i.e., DSI 
from 0.5 to 0.79) for almost 40% of months.

3.4  Wetting and drying areas
We classify regions into hotspot regions of intensively 
drying and wetting regions and estimate the linear trend 
of cumulated DSI values (Fig.  6). Global drought con-
ditions analysis of GPS-DSI indicates some hotspots 
of trends that overlap with significant DSI trends esti-
mated using GRACE and GLWS. The drying tenden-
cies are mainly identified in low-latitude regions such as 
Australia, South Africa, northern part of South Amer-
ica, and northeastern part of North America that are 
characterized with DSI trend greater than 2–3 per year 
(DSIs are unitless). The Australian, South African, and 
American regions coincide with the strongest and most 
robust droughts projected by CMIP5 and CMIP6 climate 
models (Ukkola et  al. 2020). Overall, the wetting trends 
are noticed at 52% of stations for GPS-, and at 65% and 
56% of them for GRACE- and GLWS-determined DSIs, 
respectively. We indicate that the number of dry events 
increased in the second half of the analyzed period, 
while the number of wet events is consistently decreas-
ing. It could have direct consequences for food availabil-
ity, people migration, or regional conflicts in the coming 
years. The almost areas with positive trends agree well 
with regions characterized by estimated temperature rate 
above 0.1  °C/yr (Fig.  6, bottom map) and drying trends 
determined by Jensen et  al. (2019) from CMIP5 mod-
els. They have been already noted drying conditions for 
Europe, especially for western, central, and eastern areas, 
for which GPS-DSI indicates drying with hotspot regions 
of wetting. The most significant wetting conditions are 
found in the eastern parts of North America, Asia, and a 
few stations in the south parts of South America for GPS, 
GRACE, and GLWS. Nonetheless, there are some regions 
indicating different conditions. For example, GLWS-DSI 
reports wetting trends compared to GRACE-DSI drying 
trends for the west part of North America. It is probably 
related to underestimation of TWS changes by model 
for registered dry to wet progression period (Rodell et al. 
2018). The significant climate changes are also registered 
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for European regions which have been subjected to more 
intense and more frequent local flash droughts over 
the past years (Walker et  al. 2023). All changes are no 

detectable by GRACE causing the differences between 
trends estimated for GPS-DSI and GRACE-DSI. For 
example, the lack of significant trends for GRACE-DSI 
in these regions may be attributed to the dampening 
effect of GRACE data spatial averaging. Consequently, 
the results are different and highlight mostly drying con-
ditions for GRACE and GLWS; however, there are wet-
ting conditions for GPS that coincide with SPI results. 
We further analyze the zonal average trends presented 
as time series in Fig.  6. In the equatorial region (within 
15°N and 15°S latitudes), the wetting trends occur more 
frequently for each estimated DSIs. However, the wet-
ting trend is observed closer to 15° in northern hemi-
sphere. For the northern mid-latitudes regions (15°N to 
50°N), the drying trends are dominated and range from 
1 to 2 per year and are clearly dominant for GRACE and 
GLWS. It agrees with estimated temperature rate over 
0.15 °C/yr, as observed in the bottom map of Fig. 6. GPS-
DSI and SPI indicate some negative values around 40° lat-
itude. For all data, the averaged trend below − 1 per year 
is noted in the southern mid-latitudes. For the higher lat-
itudes, the trends for GPS- and GRACE-DSI are consist-
ent. We observe wetting tendences for latitudes higher 
than 50° in southern hemisphere for which temperature 
rate less than 0.08 °C/yr is registered. The drying trends 
are found in northern hemisphere rising to the minimum 
values above 80°S latitude. In the case of SPI, the chang-
ing trends are relatively stable in the northern hemi-
sphere and do not follow the significant trend changes 
estimated from GPS and GRACE. The SPI-derived trends 
fluctuate around 0 per year.

3.5  Regional analysis
To study regional hydrometeorological changes, we 
choose regions characterized by extreme climate condi-
tions, i.e., extreme values of estimated DSI cumulated 
trend and temperature rate (maps in Fig. 6) and regions 
characterized by the weakest agreement between both 
geodetic measurements, i.e., different values of estimated 
DSI cumulated trend (maps in Fig. 6) and low correlation 
(maps in Fig. 1). We select four regions located in differ-
ent hemispheres and characterized by different climate 
conditions: (i) the east parts of Brazil (10°−30°S latitude 
and 40–50°W longitude) and (ii) Europe (45°−60°N lati-
tude and 15–30°E longitude), (iii) the west part of Aus-
tralia (28–38°N latitude and 115–125°E longitude), 
and (iv) the south part of Africa (25–35°S latitude and 
10–30°E longitude). First two regions are characterized 
with DSI cumulated trend over 3 and 2 per year deter-
mined from GPS and GRACE, and temperature rate 
over 0.11 °C/yr and 0.20 °C/yr, respectively. The last two 
regions are characterized with various conditions, i.e., 
stations within Australian region indicate DSI cumulated 

Fig. 6 Map of trend estimated for cumulated DSIs determined 
for GPS‑observed, GRACE‑derived, GLWS‑predicted vertical 
displacements and SPI traditional climate index. We used GRACE 
JPL mascon solutions. The zonal average trend values (right) were 
determined using smoothing with a 1° moving window. The 
bottom map presents the rate of global surface temperature in °C/
yr. The green dashed lines in upper map indicate the areas selected 
to regional analysis discussed in Figs. 7 and 8
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trend over 3 and near 0 per year determined from GPS 
and GRACE; however, in African region we note a corre-
lation around 0 between DSI based on GPS and GRACE 
data.

3.5.1  Wavelet coherence analysis
In Fig. 7, the correlations of GPS-DSI with GRACE-DSI, 
GLWS-DSI and SMI (respectively, from left to right col-
umn) via cross-phase angle and period are presented. In 

the case of Brazil region (first row), we find strong con-
sistency between GPS and other drought indices for 1.5 
to 3 years signals during 2002–2019 period. The obtained 
correlation exceeds 0.7. We further observe the intermit-
tent positive coherences (over 0.5) on a short time period 
of 3–8 months near 2007, 2011, 2013–2014, 2016–2017, 
and 2018/2019 that are related to droughts recorded in 
Brazil caused mostly by below-average precipitation 
(Knowles et  al. 2020). We note that GPS- and GRACE/

Fig. 7 Wavelet coherence between GPS‑DSI and DSI estimated from GRACE JPL mascon solution (left column), GLWS (middle column), and Soil 
Moisture Index (right column). The rows show the results obtained for the eastern Brazil, the eastern Europe, the western Australia, and the southern 
Africa regions, respectively, from first to fourth row. Warmer and cooler colors reflect, respectively, the high and low coherence between DSI 
series. The direction of the arrows specifies a phase relationships between time series where horizontal arrow indicates the same (to right) 
and opposite (to left) phase. The vertical upward arrows assert that the GPS‑DSI is advancing by 90°, and the vertical downward arrows confirm 
that GPS‑DSI is delayed. The dashed white line is the cone of wavelet influence representing the area with greater influence of the wavelet 
transform edge effect
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GLWS-DSIs are in phase (arrows pointing to the right). 
For SMI, arrows mainly point to the right-down indicate 
that GPS is advanced by 3 months. It may means that soil 
moisture is lag behind meteorological changes moni-
tored by GPS that have been already noticed by Tian et al. 
(2022) for the Yangtze river basin. However, we note that 
GLWS-DSI and SMI are strongly correlated with GPS-
DSI for long periods in the eastern Brazil for which we 
obtain relatively stable coherence between 4 year DSI 
signals. The 4 year signals for GRACE are consist with 
GPS in 2018–2019, which are not captured by SMI. For 
European region (second row), we notice significant 
relationships of GPS-derived and other data on a short 
time scale up to 9 months. Overall, we obtain coherency 
of more than 0.6 around 2005, 2008–2009, 2012–2013, 
2017–2018 that stems from the heavy rains and rapid 
temperature variations (Paprotny et  al. 2018) that are 
captured by all used datasets. These time intervals coin-
cide with a sudden DSI decrease or increase by values of 
1–2 (Fig. 8). DSI signals are in phase for most of periods, 
excluding 2017 for GLWS and 2019 for SMI, for which 
GPS is advancing by 2–3 months. In the following years, 
i.e., 2018–2019, the normal conditions were recorded 
in the Eastern Europe, which are indicated by GPS and 
SMI (correlation over 0.8). GRACE and GLWS overes-
timate the normal conditions for GPS-DSI by showing 
(extremely) wet conditions (Fig.  8). We find the strong 
coherence over 0.6 for signals longer than 2 years for the 
entire period and for 1.5 year signals since 2011/2012 
for all datasets which coincide with regularly appear-
ing extreme dry and wet events recorded in Europe. For 
example, a high correlation between GPS- and GRACE-
DSIs up to 2008 for 1–2 year signals reflects extreme 
DSI variations related to systematic heatwaves and heavy 
rains in central and eastern parts of Europe (Zeder and 
Fischer 2020). For Australian region (third row), we note 
a strong correlation (over 0.6) between GPS-DSI and 
other data on a 3- or 4 month signals, even to seasonal. 
Overall, it is observed around 2002–2003, 2006–2007, 
2010 for GRACE-DSI, 2007, 2009, 2013–2014, 2019 for 
GLWS-DSI and 2006, 2011, 2013–2015, 2019 for SMI. 
These significant signals stem from a long-term tempera-
ture increases (Tangdamrongsub et al. 2021) and coincide 
with a rapid DSI variations by values up to ± 3 (Fig. 8). For 
most of periods, GPS is advancing by 3–6 months or is 
even in the opposite phase with GRACE- and GLWS-
DSIs for 2011–2012 period. In the following years GPS 
is more sensitive than GRACE and GLWS to recorded 
short-term temperature variations in the western Aus-
tralia areas (Fig. 8). We notice the high relationships (cor-
relations over 0.7) for 2 − 4 year signals for 2007–2017, 
2003–2015, and 2010–2020 for GRACE-DSI, GLWS-
DSI, and SMI, respectively. These period intervals 

coincide with regularly appearing extreme dry and wet 
events recorded in Australia. For GRACE-DSI and SMI, 
we find coherency for annual signals, respectively, for 
2006–2007, 2017–2019, and 2007–2008, 2013–2019 
that reflect a rapid DSI decreases and increases related 
to droughts and regularly heavy rains (Khaki 2020). In 
the case of South Africa (fourth row), we notice strong 
consistencies between GPS and GRACE-DSI, GLWS-
DSI, SMI for 1 to 2  years signals during 2013–2019, 
2010–2016, 2013–2017 periods, respectively, for which 
correlation exceeds 0.8. We find that GPS- and GRACE-/
GLWS-DSIs are in phase; however, GPS is delayed by 
2–3  months compared to SMI. We further observe the 
intermittent positive coherences (over 0.4) on a short 
time period of 3–9  months in 2007, 2011–2012, 2016, 
2017, 2019 for GRACE-DSI, 2007, 2012, 2017 2018 for 
GLWS-DSI and 2004, 2008, 2011–2014, 2015–2018 
for SMI. Those periods relate to droughts and floods 
recorded in South Africa that are caused mostly by vari-
ations in precipitation (Archer et  al. 2019). For most of 
periods, GPS is delayed by 2–4 months, except 2007 and 
2004 for which GPS is advanced, and except 2011 and 
2008, 2013 for which GPS is in phase with GRACE-DSI 
and SMI, respectively. The high correlations in the last 
analyzed years in all data are the result of regular and 
heavy rainfall in consecutive rainy seasons, since at least 
2015 (Almazroui et  al. 2020). Those periods are mainly 
captured by GRACE-DSI and SMI.

3.5.2  Temporal coherence analysis
We next focus on studying the sensitivity of both geo-
detic techniques to detect hydrometeorological events 
(Fig. 8). For each region, we estimate a mean DSI series 
for GPS, GRACE, GLWS, SPI, and SMI datasets. This is 
performed by estimating a mean signal plus its standard 
deviation for stations located within each region, show-
ing a spatial variability within the selected region. For 
eastern Brazil (first graph), from 2004 to 2014, we 
observe regular variations in temperature, which are cap-
tured by all datasets, excluding SPI that underestimates 
some of them (e.g., 2005, 2007, 2011, 2013, 2016, or 
2018). Mostly dominated by longer dry periods than wet 
ones. After 2014, the precipitation in Brazil region 
increased (Rodell and Li 2023) and we observe a decline 
in temperature anomalies that lead to dominant wet 
events. It is reflected by systematic decrease in DSI val-
ues, especially captured by GLWS-DSI. The first three 
years reflect flash droughts driven mainly by El Niño and 
rapid Atlantic water warming that led to extreme 
droughts (Chen et al. 2009) projected clearly by GPS-DSI 
and SMI. The major drought in 2004 coincides with the 
rapid 1 °C anomaly temperature increase and is captured 
by all estimated drought indices. Then there is a 
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Fig. 8 Time series of DSI determined from GPS‑observed, GRACE‑derived, GLWS‑predicted vertical displacements, and SPI and SMI climate indices 
for the eastern Brazil, the eastern Europe, the western Australia, and the southern Africa regions, respectively, from first to fourth row. For GRACE 
determinations, we use JPL mascon solution. The shaded area is understood as a spatial variability within the region. The drought indices are 
compared with global surface temperature anomalies presented in °C
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noticeable decrease in DSIs by 1.5–2 between 2007 and 
2010 reflecting a slow recovery from the dry years (Rodell 
et al. 2018). We note smaller DSI values determined from 
GPS than GRACE and GLWS that may be related with 
local wet events occurred in coastal areas. However, they 
are spatially averaged and underestimated by GRACE 
and model. Over 2010–2019, we observe a tendency 
toward more wet conditions with few dry events related 
with DSI decrease. The significant impact of flooding is 
found in 2010/2011 and 2011–2015 (Espinoza et al. 2014) 
that reflects rapid DSI decrease up to 4 (from around + 2 
to − 2) after 2011 determined either from GPS, or 
GRACE and GLWS. In 2013, the historical unprece-
dented compound dry and hot conditions were recorded 
in Brazil (Geirinhas et al. 2022) that are captured as peak 
by 1.5 in DSI series. Another extreme dry period coin-
cides with a late 2015 major drought (Jiménez-Muñoz 
et al. 2016) whose impact is seen over the next two years, 
as reflected by GPS-DSI increases but underestimated by 
GRACE-DSI. For Europe (second graph), the extreme 
temperature anomaly ranges ± 3 °C and mostly coincides 
with recorded periods of dry and wet events. In late 2002, 
intense rainfall of long duration induced extreme flood-
ing spanning countries of Eastern Europe (Ulbrich et al. 
2003) that is captured as decrease by almost 2 in DSI 
series for GPS and GRACE. SMI detects it as a DSI 
decrease by 1. Then, heavy rains are monitored in 2013–
2014 (Grams et al. 2014) for which we note DSI decreases 
by 3 for GPS, GRACE, GLWS and by 2 for SMI. In the 
following years, there are regular long-term changes 
interrupted by meager rainfall amounts and near-record 
levels of global temperature anomaly leading to severe 
drought, subsequent crop loss, or forest fires in 2010–
2011 (Spinoni et  al. 2015). It is related with the largest 
GPS- and GRACE-DSI values and DSI rise by 1 and 2, 
respectively, for SMI and SPI. The anomaly temperature 
also peaks to 3 °C. In 2012, we notice DSI decrease by 4 
for SMI and by 3 for SPI that reflect the widespread 
flooding after a wave of heavy rains (Spinoni et al. 2015). 
It is coincided with observed 2 to 3  °C temperature 
declines. The year 2013 is characterized with normal 
conditions with short-term increased amounts of rainfall 
for the last few months (Grams et al. 2014). While these 
conditions are effectively captured by GPS-DSI and SMI, 
however, they are overestimated by DSIs estimated from 
GRACE and GLWS. In next years, a large area of south-
eastern and central parts of Europe was affected by 
cyclone causing floods and landslides, which are cap-
tured either by GPS-DSI and SPI. In 2018 and 2019, 
extremely dry conditions with anomaly temperatures 
exceeding 2  °C are registered across mainly central and 
eastern parts of Europe (Blauhut et al. 2022). Both events 
are captured only by GPS as a DSI increase by almost 2. 

Nevertheless, 2019 drought is also noticed by SMI and 
SPI series as index increase of 1. In the case of Australia 
(third) and Africa (fourth) regions, the poor correlation 
between both geodetic measurements may come from 
the weak concordance of long-term signals (more than a 
year) presented in Fig. 7. However, in Australia, we note 
that GPS and GRACE are characterized by a good tem-
poral consistency with other datasets, especially during 
extreme hydrometeorological events. We observe similar 
changes in several periods (e.g., 2005, 2006–2009, 2009–
2010 2011–2012, 2016–2017), which correspond to peaks 
in time series representing extreme conditions recorded 
in the west part of continent. Those periods coincide with 
extreme droughts described by Wang et al. (2021), which 
are detected as a DSI increase by at least 2 for all used 
data. For example, during 2006–2009 period the pro-
longed severe drought is recorded in Mainland Australia 
affecting over 60% of continent areas. It is observed by 
both GPS and GRACE, coinciding with DSIs values over 
1.5 and temperature up to 3 °C lasting 1.5 year. The sig-
nificant variations in 2011 and 2016 reflect the impact of 
both ENSO and the Indian Ocean Dipole (IOD) events 
on the hydrological droughts (Forootan et al. 2019). SPI 
and SMI detect these variations as a DSI increase by 1–2. 
The extreme dry conditions in 2011 are effectively cap-
tured by DSIs estimated from GRACE, GLWS, SPI and 
SMI. However, GPS-DSI indicates moderate conditions 
in 2011 underestimating the index value. For 2016, 
GRACE-DSI series do not capture dry conditions point-
ing to wet ones. Then, heavy rains are monitored in 2005, 
2009–2010 (Forootan et al. 2019) for which we note DSI 
decreases by 2–3 for GPS, GRACE, GLWS and by 1 for 
SPI and SMI. In the following years, there are regular 
near seasonal changes interrupted by moderate rainfall 
amounts and high global temperature anomaly. It is 
related with DSI ranging between − 1 and 1.5 and 
between − 1 and 1 for both SMI and SPI climate indices, 
respectively. The temperature anomaly ranges ± 1.5  °C. 
The systematically DSI decrease in the last 3 analyzed 
years is driven mainly by rainfall in consecutive rainy sea-
sons (Wang et al. 2021), which is effectively captured by 
GPS, GRACE, and GLWS; however, it is underestimated 
by SPI and SMI. Finally, in 2019 we observe the tempera-
ture anomaly ranges ± 1  °C and significantly DSI 
decreases indicating Australian flash flood (Liu et  al. 
2020). For the selected southern Africa region (fourth 
graph), from 2002 to 2015, we observe the dominance of 
the positive temperature anomaly reflecting mostly dry 
conditions (DSI > 0) by all datasets (e.g., 2002/2003, 2004, 
2006, 2008, 2010, 2011, 2012/2013 and 2014) confirming 
drought periods described by Malherbe et  al. (2016) 
using SPI. Most of them show extreme conditions. Some 
of the periods such as 2004, 2006 and 2010, 2011 are 
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underestimated by, respectively, GRACE and GPS com-
pare to literature. The first five years reflect exceptional 
droughts driven mainly by rapid decrease in precipitation 
(Hastenrath et al. 2017) projected clearly by all DSI series 
as DSI decrease by 2. These periods coincide with tem-
perature increase up to 2 °C. Droughts are interrupted by 
heavy rains recorded in 2003, 2005, and 2007 (Vogel et al. 
2010) that are picked up by all estimated drought indices. 
However, GLWS overestimates conditions monitored by 
both geodetic-derived DSIs and climate indices in 2003. 
Furthermore, we note smaller DSI values determined 
from GRACE than GRACE and GLWS. It may be related 
with GRACE data spatial resolution that is smaller than 
other data. For all wet periods, DSI decreases coincide 
with short-period temperature declines ranging from − 2 
to − 1  °C. Then there is a noticeable decrease in DSIs by 
up to 2 during 2015 extreme drought. The negative DSI 
values even though droughts reflect a crust poroelastic 
response to groundwater pumping within sedimentary 
basin (Bonsor et al. 2018). Then, in spite of a temperature 
of around −3 °C in 2016 we find dry conditions indicating 
the most intense drought event caused by the El Niño 
over Southern Africa associated with a pronounced 
dipole of opposing rainfall anomalies (Kolusu et al. 2019). 
This event is underestimated by GRACE and GLWS, and 
is not captured by SPI and SMI. The significant impact of 
flooding is found in 2018/2019 (Scanlon et al. 2022) that 
reflects rapid DSI decrease up to 3 after mid-2018 deter-
mined either from GPS, GRACE and GLWS. It coincides 
with SPI and SMI decreases by 1–1.5 and temperature 
anomalies around − 1 °C with maximum −1.5 °C in 2019.

The results obtained for both GPS and GRACE tech-
niques are coherent at different frequencies as well. The 
decomposed signals (Fig.  A4, A5) show good tempo-
ral agreement for short-term, seasonal and long-term 
signals. For example, the significant DSI changes in 
short-term signals indicate extreme hydrometeorologi-
cal events for both GPS and GRACE series. The esti-
mated seasonal changes are time-coherent with regional 
interannual hydrological changes. Further, we find con-
sistent multi-year variations between GPS- and GRACE-
DSIs that overlap with ENSO signals for the long-term 
component.

To further highlight the potential of geodetic measure-
ments to study regional hydrometeorological changes, in 
Figure A3 we also present the DSI time series estimated 
using GPS-observed, GRACE-derived, GLWS-predicted 
vertical displacements, and SPI and SMI traditional 
climate indices for the ten river basins (Fig.  A2). We 
choose the river basins by reference to basins indicated 
as the major to study water availability by Lakshmi et al. 
(2018) that cover the largest area (Scanlon et  al. 2016). 
The river basin shapes are downloaded from the Food 

and Agricultural Organization of the United Nations 
(FAO-UN). We additionally assume the requirement of 
availability of (at least 3) GPS stations. Finally, we show 
basins on all continents, excluding Africa, for which 
an appropriate number of stations are available only 
for the Orange river basin. (We have been already dis-
cussed the results for Orange river in Figs. 7, 8 as south 
part of Africa region.) The results for the selected basins 
show the strong temporal coherence between geodetic-
derived DSIs and other drought indices. We identify the 
advantages of the determined indices to detect and ana-
lyze dry and wet events, as can be verified by comparing 
our results with those shown in previous literature (e.g., 
Scanlon et al. 2016, 2018; Ferreira et al. 2023; Tangdam-
rongsub 2023; Zhong et al. 2023).

4  Summary and conclusions
We study GPS- and GRACE-DSI series based on ground 
displacements estimated for 999 GPS locations spread 
across the world. For GRACE-type data, we analyze both 
spherical harmonics and mascon solutions provided by 
two different processing centers. The obtained results 
are compared with traditional climate indices and tem-
perature. For detailed discussion, we select four regions 
located in both hemispheres and characterized with vari-
ous hydroclimatic variability, i.e., the east parts of South 
America and Europe, the west part of Australia, and the 
south part of Africa.

The global study highlights strong temporal and spa-
tial coherency between GPS- and all GRACE-DSIs. We 
find concordance correlation coefficient values greater 
than 0.5 for at least 30% of stations, while over 80% of 
them are positively correlated. The largest concordance is 
observed for both Americas and Europe, mainly in cen-
tral continental areas. In the case of climate zones, the 
strong correlated regions occur in continental and tem-
perate zones. They overlap with the regions characterized 
by extreme TWS trends (e.g., central US or southern Bra-
zilian regions) and annual amplitudes (e.g., Amazon river 
basin, eastern Africa, or southern European regions). 
The negatively correlated stations are mostly spread over 
island and coastal areas. Similar results we obtain for 
variance reduction parameter for which the positive val-
ues are found at 91% of stations for both type of GRACE 
data. The poor agreement is observed along the coastal 
areas and in Western Australia. For the central parts of 
North America, Brazil, and southern parts of Europe, we 
indicate the strongest agreement in DSIs annual ampli-
tude and phase between GPS and all GRACE data. The 
climate zones analysis indicates the increasing correla-
tion values correspond to decreasing RMS of DSI differ-
ences for which the slopes of linear relationships range 
from − 0.9 to − 0.7. The smallest slope value is found for 
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tropical climate zone; however, it is almost twice as large 
for continental zone.

We indicate the significant resemblance for DSI based 
on GRACE data provided by two different processing 
centers. The even better (temporal and spatial) agree-
ment with GPS is observed for both JPL and CSR mas-
cons for which the median values are 0.1 greater than 
for spherical harmonics. DSI based on mascons are also 
characterized with better phase and amplitude agree-
ment with GPS-DSI. The seasonal variations in DSIs are 
similar for all GRACE data. For example, almost 75% of 
stations are characterized with amplitude of DSI differ-
ence smaller than 0.5 with median up to 0.2.

The results obtained using traditional climate indi-
ces demonstrate that GPS-DSI coincides with SPI and 
SMI. We notice similar temporal changes at 85% of sta-
tions for GPS-DSI and both traditional indices. We find 
correlation greater than 0.5 for more than 40% of sta-
tions. The weakly correlated areas are noticed mostly at 
middle latitudes, e.g., Latin America, the central part of 
Asia, and island areas. Moreover, there are two major 
similarities for individual climate zones i.e., (i) 50% of 
stations are characterized with anomalies greater than 
0.5 for both SPI and SMI for the (semi-)arid zone, and 
(ii) the lowest agreement is observed in continental zone 
for which correlations exceeding 0.5 are found for SPI 
for only 6% more stations than for SMI. We show that 
GPS- and GRACE-DSIs are characterized with similar 
drought characteristics as obtained using GLWS-DSI and 
temporally coherent with temperature anomalies. For 
example, we find that 9 month droughts dominate for all 
three datasets and are observed at least 72% of stations. 
The shorter droughts are mostly found in island areas or 
even in coastal areas for GPS. We indicate the average 
length of drought near 12, 14, and 15 months for GPS-, 
GRACE-, and GLWS-DSI, respectively. Droughts longer 
than 1  year occur in a nearly unbroken belt around the 
Earth at low latitudes, mostly within 15° in both hemi-
spheres. In the case of drought category, we notice that 
moderate conditions dominate for all climate zones for 
which drying conditions are observed for at least 40% of 
all analyzed months. We need to point out that results we 
obtain indicate an increase in the number of dry events 
in the second half of analyzed period, while the number 
of wet events has been consistently decreasing. We find 
that at least 52% of stations are characterized with posi-
tive DSI cumulated trend and coincide with regions char-
acterized by temperature rates over 0.1 °C/yr and drying 
hot spots indicated by Jensen et al. (2019).

Our regional drought indices analysis highlights that 
DSI based on geodetic measurements are even more sen-
sitive to monitor and detect physical hydrometeorological 
events than traditional climate indices. It is pointed out 

by studying the variation in DSI values in the recorded 
dry and wet events occurring in Brazil, Europe, Australia, 
and Africa areas. For example, we find strong consist-
ency between GPS-DSI and GRACE-DSI/GLWS-DSI/
SMI for long- (i.e., 1.5 to 3 years) and short-term (i.e., 3 
to 8 months) signals in Brazil that are related to dry peri-
ods. The analyzed drought indices estimated from GPS, 
GRACE, GLWS are mostly in phase; however, GPS-DSI 
is led by 3 months in comparison with SMI. For Europe, 
DSI series are in phase for most of extreme periods and 
are characterized with strong relationships on a short 
and a long time scale, respectively, up to 9  months and 
over 2 years. In the case of Australian region, we note a 
correlation over 0.6 between GPS-derived and other data 
on a 3 or 4 months signals, even to seasonal. These sig-
nals stem from a short-period temperature increases and 
coincide with a rapid DSI variations by values up to ± 3. 
For most of periods, GPS is advancing by 3–6 months or 
is even in the opposite phase with GRACE- and GLWS-
DSIs for 2011–2012 period. For South Africa, we notice 
a strong consistency between GPS and the estimated 
drought indices for 1 to 2  years signals during at least 
6 year periods, for which correlation exceeds 0.8. GPS- 
and GRACE-/GLWS-DSIs are mostly in phase. How-
ever, GPS is delayed by 2–3  months compare to SMI. 
Further, we highlight that GPS-DSI is characterized by 
a large level of consistency with GRACE-DSI signals at 
different temporal scales estimated using nonparametric 
wavelet decomposition (Fig.  A4, A5). We note the sen-
sitivity of short-term signals to extreme hydrometeoro-
logical events, the seasonal to interannual hydrological 
changes, and multi-year variations coincided with ENSO 
signals for the long-term component for both GPS- and 
GRACE-DSI series.

The following analysis highlights that adopting the 
geodetic techniques to drought analysis is a notable step 
toward improving the reliability of extreme events detec-
tion in the context of local and regional studies. GPS and 
GRACE indicate the ability to detect hydroclimatic and 
hydrometeorological changes for both long- and short-
term scales, even better than traditional climate indices 
since traditional climate indices underestimate or are 
not able to capture recorded extreme events. It is also 
well illustrated in the selected ten river basins shown in 
Figure  A2, A3 in Online Appendix. The strong ampli-
tude and phase agreement between geodetic-derived 
DSIs with temperature anomalies, hydrological model, 
etc. increase the ability for enhancing our understand-
ing of evolving drought characteristics (e.g., patterns, 
occurrences, category, duration) providing a synoptic 
insight of processes related with water mass variations. 
That may be essential for affording vital information for 
understanding climate changing and efficiently managing 
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water resources. Our research highlights the challenges 
and benefits of using traditional climate indices and geo-
detic measurements across global and regional scales. 
These insights are crucial for accurately interpreting 
localized analyses such as point-wise analyses. The pre-
sent study provides a strong background to many (future) 
researches that are based on various drought indices and 
the assessment of their reliability.
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