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Abstract
The current contribution introduces a nonsingular fixed-time sliding mode control (SMC) scheme for position
and velocity tracking of robot manipulators. The approach avoids singularities by introducing a new sliding
surface with the special attribute that the exponent employed to achieve fixed time convergence depends
on the tracking error and is smaller than one except when the error is exactly zero whereas the exponent
becomes one at zero, which makes the derivative at zero to be well defined. A new theoretical result has been
introduced in the form of a lemma to prove this innovative property. Furthermore, model uncertainties are
handled by means of a time varying gain given by a polynomial of the powers of the norms of the tracking
and velocities errors. The fixed-time convergence is proven employing Lyapunov theory and the result holds
globally. Simulation outcomes confirm the developed theory and the advantages of the proposed scheme are
shown qualitatively by comparing its performance with well-known equivalent control schemes.
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1 INTRODUCTION

Despite the highly nonlinear dynamics of robot manipulators, it is in theory rather direct to design model based control laws for
position tracking. Some of the main disadvantages in employing the dynamic model of the system is that there can be parameters
uncertainties, unmodeled dynamics and the fact that programming nonlinear equations can be demanding. To overcome these
drawbacks, one of the most widely employed strategies is robust control, where model uncertainties are compensated by
considering them as perturbations to be rejected.

To achieve exact position tracking, sliding mode control (SMC) theory is a well suited methodology1. In the recent years,
there has been a tendency to achieve fixed-time stability2. One of the first results in this field is given by Bhat and Bernstein3,
where for the first time a rigorous foundation is provided for the theory of finite-time stability of continuous autonomous systems
and a closer examination of finite-time stability as a possible objective in control design is motivated. Polyakov4 provides some
important lemmas and theorems to analyze two types of nonlinear control algorithms for uncertain linear plants.

A possible way to achieve fixed-time stability is the use of time varying gains in the design of controllers and/or observers.
There are multiple recent works based on this feature. For instance, Holloway and Krstic5 introduce a state observer with
time-varying gains for linear systems that tend to infinity as time approaches a prescribed convergence time. The observer is
shown to exhibit fixed-time stability with an arbitrary convergence time, which is prescribed by the user irrespective of initial
conditions. Zhang et al.6 present a fixed-time sliding mode control (FxTSMC) for the global fixed-time trajectory tracking of
robot manipulators subject to uncertain dynamics and bounded external disturbances. A fixed-time sliding surface is proposed
and a singularity-free FxTSMC is constructed. Lyapunov stability theory is employed to prove stability. However, the fixed-time
property is given to reach an arbitrarily small region around the origin, while the errors tend to zero asymptotically. Hou et
al.7 introduce a full-order terminal sliding mode surface based on the bi-limit homogeneous property, such that the sliding

Journal 2024;00:1–27 wileyonlinelibrary.com/journal/ © 2024 Copyright Holder Name 1



2 Arteaga ET AL.

motion is finite-time stable independent of the system’s initial condition. The control design is applied to servo motor systems.
Aldana-Lopez et al.8 design a differentiator algorithm with fixed-time convergence with an a priori user-defined upper bound
by means of time base generators (a class of time-varying gains). Orlov et al.9 introduce a hybrid differentiator for any time-
varying signals, whose second derivative is uniformly bounded. The proposed observer strategy is in successive applications of
rescaled and standard super-twisting observers with finite (time-varying and respectively constant) gains. Li et al.10 study the
leader-follower consensus problem for feedforward nonlinear time-delay multi-agent systems under a fixed directed topology.
To improve performance, bounded time-varying gains are employed. Zheng et al.11 consider also the problem of prescribed
finite-time leader-following consensus. A composite controller with a time-varying disturbance observer is presented. Stability is
analyzed by taking advantage of the properties of barrier Lyapunov functions and time-varying gains. Boukattaya and Gassara12

introduce a time-varying nonsingular terminal sliding mode (TSM), where the reaching phase existing in conventional TSM
control is suppressed to get global robustness of the system against uncertainties and disturbances. An application to n-links
rigid robotic manipulators is shown; however, a nominal model is required for implementation. Cui et al.13 investigate the
problem of prescribed time tracking control for Euler-Lagrange systems in the presence of modeling uncertainties, and time-
varying state constraints. The goal is achieved by using two proportional-integral (PI)-like control schemes with time-varying
gains. However, only pre-specified precision is achieved and not exact tracking. Razmjooei et al.14 present a time-varying
chattering-free disturbance observer-based position tracking control law of serial robotic manipulators to track a reference signal
in a finite time. Time-varying gains are provided for the convergence of the position tracking error to a neighborhood of zero in a
finite time, while exact tracking is not achieved. Rsetam et al.15 propose a robust FxTSMC by using a fixed-time sliding mode
observer (FxTSMO) for the trajectory tracking problem of an aerial flexible joint robot attached to drones system. A cascaded
fixed-time sliding mode observer (CFxTSMO) is constructed to estimate the unmeasurable variables and lumped disturbances
simultaneously in fixed-time, and to reduce the estimation noise. Steeves and Krstic16 design robust feedback control laws
using time-varying backstepping for linear and nonlinear systems, where bounded disturbances (of unknown bound) corrupt
the measurements. The particular high-gain control designs are shown to be practically feasible, i. e. they achieve particular
fixed-time input-to-state stability (ISS) results with respect to the disturbance by uniformly bounded inputs, for linear time
invariant (LTI) systems and nonlinear systems modeling robotic manipulators. However, structural conditions are imposed on the
disturbances. Hua et al.17 study the global prescribed-time stabilization problem for a class of time-delay nonlinear systems with
uncertain parameters by using two time-varying gains with special properties, in which one is introduced into virtual controllers
to achieve prescribed-time convergence and the other one is used to construct the Lyapunov-Krasovskii (L-K) functional and
Lyapunov function to handle the nonlinear time-delay term and unknown parameters, respectively. Li and Zhang18 propose a
practical prescribed-time controller which combines sliding mode control and time-varying gains to show that the tracking error
is guaranteed to be within a prescribed accuracy after a prescribed time, while no exact tracking is obtained. Gu et al.19 propose
a novel finite-time variable-gain active disturbance rejection control method for master-slave teleoperated parallel manipulators
with disturbances which incorporates error-based variable gains to improve the control performances, such as finite-time variable-
gain tracking differentiator, finite-time variable-gain extended state observer, and finite-time variable-gain controller. However,
only ultimate boundedness is achieved. Ning et al.20 study the adaptive fixed-time control problem for classes of nonlinear
cascade systems with parametric uncertainty. A time-varying gain-based control algorithm to ensure that all system states return
to the origin in a fixed-time is introduced. A disadvantage of the approach is that the use of some transformations heavily
increases the computation burden. Luo et al.21 propose a control method which does not involve infinite time-varying gains,
leading to practical (ultimate boundedness) and global prescribed time tracking control solutions for strict-feedback systems, in
spite of both mismatched and non-vanishing uncertainties.

The present contribution introduces a fixed-time controller for robot manipulators where the main contributions are:

1. a new singularity free sliding surface with variable exponent coefficients is introduced;
2. this new sliding surface employs the hyperbolic tangent in an innovative fashion different from current methodologies to be

found in the literature, e.g. in the approaches by Yogi et al.28 or byYan et al.29 ;
3. a new lemma is provided to show that the use of variable exponent coefficients leads to the same result as using constant

exponents smaller than 1, with the advantage that the derivative at zero is well defined;
4. global stability is obtained by using only well-known structural properties of the robot model to create a time-varying gain

given by a polynomial of the powers of the norms of the tracking errors, which avoids a more demanding adaptive approach;
5. the few robot model information required for the global stability result does not need to be accurate.
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Simulation results confirm the developed theory. The paper is organized as follows. Section 2 provides some basic preliminaries
on robot model properties. Section 3 introduces the new control law and the corresponding stability analysis, while simulation
results are given in Section 4. The paper concludes in Section 5.

2 PRELIMINARES AND MOTIVATION

Consider a n-degrees of freedom rigid robot manipulator whose dynamics can be described by22:

H(q)q̈ + C(q, q̇)q̇ + Dq̇ + g(q) = τ + τ p , (1)

where q ∈ Rn is the vector of generalized joint coordinates, H(q) ∈ Rn×n is the symmetric positive definite inertia matrix,
C(q, q̇)q̇ ∈ Rn is the vector of Coriolis and centrifugal torques, D ∈ Rn×n is a symmetric positive semidefinite matrix of joint
viscous friction coefficients, g(q) ∈ Rn is the vector of gravitational torques, τ p ∈ Rn represents external perturbations, and
τ ∈ Rn is the vector of input torques acting at the joints. Assume for simplicity’s sake that the robot has revolute joints only and
that velocity measurements are available. Some useful model properties are listed below22:

Property 1. It holds λh∥x∥2 ≤ xTH(q)x ≤ λH∥x∥2 for all q ∈ Rn, x ∈ Rn, and 0 < λh ≤ λH < ∞, with λh = min
q∈Rn

λmin(H(q))

and λH = max
q∈Rn

λmax(H(q)). λmin(·) and λmax(·) denote the minimum and maximum eigenvalues of a symmetric matrix,

respectively. △

Property 2. By using the Christoffel symbols of the first kind to compute C(q, q̇), the matrix Ḣ(q)− 2C(q, q̇) is skew-symmetric.
△

Property 3. There exists a positive constant 0 < kc < ∞ such that ∥C(q, x)∥ ≤ kc∥x∥ holds ∀ x, q ∈ Rn. △

Property 4. The vector of the generalized gravitational torques g(q) satisfies ∥g(q)∥ ≤ kg, kg > 0. △

Remark 1. In Properties 1, 3 and 4, it is implicitly understood that the bounds λH, kc and kg, respectively, are the minimal values
for which the properties hold. However, it is evident that they hold for larger values as well. This fact is important because the
employment of these constants in the appendix is less restrictive than it appears to be at first sight, granted it is always desirable
to have accurate estimates available. △

3 MAIN RESULT

In this section, a control law for position tracking of robot manipulators in the presence of external perturbations will be
developed. Given a bounded desired trajectory qd ∈ Rn with at least bounded first and second derivatives, the control problem
consists in achieving that the tracking error

e = q − qd (2)

becomes zero in a predefined fixed-time. Define the reference velocity

q̇r = q̇d −Λe − Keτ e , (3)
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where Λ, Ke ∈ Rn×n are diagonal positive definite matrices. The vector τ e ∈ Rn is inspired by the controllers in23,24, where for
i = 1, . . . , n its i-th element is defined as

τei = sign(ei)
tanh(|ei|

1
2 )

tanh(1)
|ei|

1
2

(
1−2

tanh(e2
i )

tanh(1)

)
fei(ei) (4)

fei(ei) = |ei|λeitanh(e2
i ) , (5)

with λei the i-th positive elements of the vector λe ∈ Rn, satisfying

λei ≥
1
2θei + 1
tanh(1)

, θei > 1 . (6)

Based on (3) it is posible to define the following new sliding surface

s = q̇ − q̇r = ė + Λe + Keτ e . (7)

The proposed controller is given by

τ = −∥s∥2Kvs − (k(t)I + Ks)τ s , (8)

where k(t) ≥ 0 is a time varying gain designed to deal with model uncertainties, Ks, Kv ∈ Rn×n are diagonal positive definite
matrices, and for i = 1, . . . , n the i-th element τsi of τ s ∈ Rn is defined as

τsi = sign(si)
∣∣si
∣∣λsitanh(s2

i ) ≡ sign(si)fsi(si) , (9)

with λsi is the i-th positive element of the vector λs ∈ Rn, respectively, with

λsi >
θsi

tanh(1)
, θsi > 1 . (10)

From (7) it is possible to get the error dynamics for e as

ė = −Λe − Keτ e + s , (11)

while the following error dynamics for s can be computed by substituting (8) into (1)

H(q)ṡ = −C(q, q̇)s − Ds + τ p − τ a − ∥s∥2Kvs − (k(t)I + Ks)τ s , (12)

where

τ a = H(q)q̈r + C(q, q̇)q̇r + Dq̇r + g(q) . (13)

Lemma 1. Assume that the coefficients λei in (6) are chosen as

λei =
3
2

+
1

tanh(1)
≈ 2.8130 . (14)

Then, the vector τ a in (13) is bounded by a polynomial of the form

∥τ a∥ ≤ b0 + b1∥e∥ + b2∥e∥2 + b3∥ė∥ + b4∥ė∥∥e∥ + b5∥ė∥∥e∥2 + b6∥ė∥∥e∥3 + b7∥ė∥∥e∥4 = b(t) , (15)

for some positive known coefficients b0, b1, b2, b3, b4, b5, b6, and b7 which depend exclusively on the constant bounds given in
Properties 1 to 4, the bounds for qd, and its derivatives and some control parameters. △

The proof of Lemma 1 can be found in the appendix.
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Assumption 1. The external perturbation vector lumps also non-model dynamics and is bounded, i. e. ∥τ p∥ ≤ δ, for all t ≥ t0
and some δ > 0. △

Remark 2. Considering an external perturbation to be bounded is a standard assumption, e.g.9,11,23,25, but including in τ p

unknown dynamics is just for simplicity’s sake. Indeed, the left hand side of model (1) fully describes the robot dynamics
according to the Euler-Lagrange methodology22, with the exception of dissipative effects like friction. However, there is no
general model that covers all possible friction effects. In view of the fact that for a physical system any possible friction effect is
bounded, Assumption 1 is justified. △

Theorem 1. Consider the closed-loop error dynamics (11)-(12) generated by substituting the control law (8) into the robot
dynamics (1). The system is fixed-time stable if Assumption 1 is fulfilled and

k(t) ≥ b(t) · 1
µs

(16)

λmin(Ks) > δ · 1
µs

(17)

µs = s

(
max

i∈[1,n]
(λsi) tanh(s2

m)
)

m < 1 (18)

hold, with sm in (36) and δ and b(t) defined in Assumption 1 and Lemma 1, respectively. Furthermore

a) s, e and ė remain bounded for all t ≥ t0, and s becomes zero in a fixed-time no larger than

Ts ≤ Ts max = Ts1 + Ts2 =
λ2

H

ζλ2
h

+
2
ψ

√
λH

λh
, (19)

with

ζ =
2λmin(Kv)

λh
(20)

ψ = 2
1
λh

(λmin(Ks)µs − δ) . (21)

b) e and ė become zero in a fixed-time no larger than

Te ≤ Te max = Ts max + Te1 + Te2 = Ts max +
2

λmin(Ke)(θe − 1)
+

g∞
2λmin(Ke)µe

, (22)

where λh and λH are defined in Property 1, θe is given in (59), µe in (67), and g∞ is a finite value given in (A7).

Proof. First note that fei(ei) in (5) or fsi(si) in (9) are continuous at ei = 0 and si = 0, respectively, with fei(0) = fsi(0) = 1, so that
the right-hand sides of (4) and (9) are locally bounded (see (A34)). Furthermore, for the sake of generality, set

fT(x) =
tanh(x)

x
, (23)

for x ∈ R. Since |x| > tanh(|x|) for x ̸= 0, then fT(x) is strictly decreasing26. Furthermore, fT(0) = 1 as can be shown by using
L’Hôpital’s rule

lim
x→0

fT(x) = lim
x→0

1
cosh2(x)

1
= 1 . (24)
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The fact that fT(x) is decreasing with its maximum at x = 0 means that for any a > 0 and any x ∈ [0, 1] one must have

tanh(ax)
ax

≥ tanh(a)
a

⇒ tanh(ax) ≥ tanh(a)x . (25)

The steps of the proof are:

a) For the error dynamics given by (12), consider the following positive definite function

V(s) =
1
λh

sTH(q)s , (26)

which after Property 1 satisfies

∥s∥2 ≤ V(s) ≤ λH

λh
∥s∥2 . (27)

This shows that V(s) : Rn → R+ ∪ {0} is a continuous radially unbounded function for s ∈ Rn. The derivative of V along (12)
can be shown to satisfy

V̇ =
2
λh

sTH(q)ṡ +
1
λh

sTḢ(q)s (28)

=
1
λh

sT
(

Ḣ(q) − 2C(q, q̇)
)

s +
2
λh

sT(τ p − τ a) − 2
λh

sTDs − 2
λh

sT(k(t)I + Ks)τ s −
2
λh

∥s∥2sTKvs .

By using Property 2, (15), (20), Assumption 1 and the fact that D ≥ O, one has

V̇ ≤ − 2
λh

sT(k(t)I + Ks)τ s +
2
λh

∥s∥(δ + b(t)) − 2λmin(Kv)
λh

∥s∥4 (29)

≤ − 2
λh

sT(k(t)I + Ks)τ s +
2
λh

(δ + b(t))
n∑

i=1

|si| − ζ∥s∥4 ,

where ∥s∥ ≤ |s1| + · · · + |sn| has been used, while si is the i-th element of s for i = 1, . . . , n. According to (9), the first two terms
in (29) satisfy

− 2
λh

sT(k(t)I + Ks)τ s +
2
λh

(δ + b(t))
n∑

i=1

|si| = −
n∑

i=1

2k(t)
λh

sisign(si)
∣∣si
∣∣λsitanh(s2

i ) −
n∑

i=1

2ksi

λh
sisign(si)

∣∣si
∣∣λsitanh(s2

i )
(30)

+
2
λh

(δ + b(t))
n∑

i=1

|si| ,

where ksi is the i-th element of the diagonal of Ks for i = 1, . . . , n. This allows to analyze separately the terms

−2k(t)
λh

sisign(si)
∣∣si
∣∣λsitanh(s2

i )
+

2
λh

b(t)|si| , (31)

and

−2ksi

λh
sisign(si)

∣∣si
∣∣λsitanh(s2

i )
+

2
λh
δ|si| , (32)

for i = 1, . . . , n according to the following two cases:

i) For each of the terms in (32), if |si| > 1 then

−2ksi

λh

∣∣si
∣∣λsitanh(s2

i )+1
+

2
λh
δ|si| ≤ −2ksi

λh

∣∣si
∣∣λsitanh(s2

i )+1
+

2
λh
δ
∣∣si
∣∣λsitanh(s2

i )+1 ≤ −2(ksi − δ)
λh

∣∣si
∣∣θsi + 1 ≤ 0 , (33)
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where it has been taken advantage of the fact that |si| ≤
∣∣si
∣∣λsitanh(s2

i )+1
whenever |si| > 1, while from (10) it also holds

λsitanh(s2
i ) + 1 > λsitanh(1) + 1 > θsi + 1 > 2 . (34)

After (17) one has (ksi − δ) > 0 because ksi ≥ λmin(Ks) and µs < 1. The same analysis can be made for (31). By taking (16)
into account, one gets

−2k(t)
λh

sisign(si)
∣∣si
∣∣λsitanh(s2

i )
+

2
λh

b(t)|si| ≤ −2(k(t) − b(t))
λh

∣∣si
∣∣θsi + 1 ≤ 0 . (35)

ii) If |si| ≤ 1, then for fsi(si) in (9), it can be shown that fsi(0) = 1 (see (A34)), while obviously fsi(1) = 1. This means that fsi(si)
must have a minimum for |si| ∈ (0, 1). To find it, the derivative must be calculated and equaled to zero:

d
dsi

fsi(si) =
d

dsi
exp

(
λsitanh(s2

i )ln(|si|)
)

= λsifsi(si)
(

2siln(|si|)
cosh2(s2

i )
+

tanh(s2
i )

si

)∣∣∣∣
si=sm

= 0 , (36)

where d
dsi

|si| = d
dsi

(
s2

i

) 1
2 = 1

|si |
si = sign(si) has been used. Since fsi(si) > 0, the second term of the product must be zero, which

happens at |si| = sm with sm ≈ 0.5829. This means that for si ∈ [−1, 1] one has

µsi = sλsitanh(s2
m)

m ≤
∣∣si
∣∣λsitanh(s2

i ) ≤ 1 , (37)

and therefore (32) satisfies

−2ksi

λh

∣∣si
∣∣ ∣∣si
∣∣λsitanh(s2

i )
+

2
λh
δ|si| ≤ −2ksiµsi

λh
|si| +

2
λh
δ|si| = − 2

λh
(ksiµsi − δ) |si| ≤ 0 , (38)

where once again the last inequality holds in view of (17). By taking into account (16), the same analysis can be made
for (31) to get for |si| ≤ 1 that

−2k(t)
λh

sisign(si)
∣∣si
∣∣λsitanh(s2

i )
+

2
λh

b(t)|si| ≤ − 2
λh

(k(t)µsi − b(t)) |si| ≤ 0 . (39)

No matter whether Case i) or Case ii) holds, one has from the previous analysis and (29) that

V̇ ≤ 0 , (40)

as long as (16)-(17) are satisfied. This shows that s ∈ L∞ and therefore there exists a positive constant s∞ > 0, such that
∥s∥ ≤ s∞ for all t ≥ t0. To prove that e, ė ∈ L∞ as well, choose Ve(e) = eTe, whose derivative along (11) satisfies

V̇e = −2eTΛe − 2eTKeτ e + 2eTs ≤ −2λmin(Λ)∥e∥2 + 2∥e∥s∞ (41)

≤ −λmin(Λ)∥e∥2 − ∥e∥
(
λmin(Λ)∥e∥ − 2s∞

)
≤ −λmin(Λ)∥e∥2 ≤ 0 for ∥e∥ ≥ 2s∞

λmin(Λ)
= µ .

According to Theorem 4.18 in27, the solutions of (11) remain bounded for all time (they are ultimately bounded in fact).
Therefore, since e ∈ L∞, then ė ∈ L∞ from (11).

To show that s becomes zero in a finite time, note first that from (27) one has

V2 ≤ λ2
H

λ2
h
∥s∥4 ⇒ −∥s∥4 ≤ − λ2

h

λ2
H

V2 , (42)

so that V̇ in (29) satisfies

V̇ ≤ − 2
λh

(
sT(k(t)I + Ks)τ s − (δ + b(t))

n∑
i=1

|si|

)
− ζ

λ2
h

λ2
H

V2 ≤ 0 . (43)
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Equation (43) holds for all t ≥ t0, and therefore

V̇ ≤ −ζ λ
2
h

λ2
H

V2 ≤ 0 (44)

must be satisfied as well. Assume that V(t0) > 1. Then, according to Lemma 2 in the appendix, V(t) ≤ 1 holds from a fixed-time

t ≥ t0 +
1

ζ
λ2

h

λ2
H

(2 − 1)
= t0 +

λ2
H

ζλ2
h

= t0 + Ts1 . (45)

Of course, if V(t0) ≤ 1 then Ts1 = 0. Since (43) holds for all t ≥ t0, then it can be used again with the additional information that
for t ≥ t0 + Ts1 it is known that V(t) ≤ 1. In fact, if (43) holds, then

V̇ ≤ − 2
λh

(
sT(k(t)I + Ks)τ s − (δ + b(t))

n∑
i=1

|si|

)
≤ 0 (46)

holds as well. Note that according to (27), V(t) ≤ 1 implies that from t ≥ t0 + Ts1 one must have

s2
i ≤ ∥s∥2 ≤ V(s) ≤ 1 ⇒ |si| ≤ 1 (47)

for i = 1, . . . , n, where si is the i-th element of s. In view of this fact, all the elements si fall in the Case ii) described above and
the terms of V̇(t) in (46) can be analyzed by taking into account (38)-(39) to get

− 2
λh

(
sT(k(t)I + Ks)τ s − (δ + b(t))

n∑
i=1

|si|

)
≤ − 2

λh

n∑
i=1

((ksi + k(t))µsi − (δ + b(t))) |si| ≤ − 2
λh

(λmin(Ks)µs − δ)
n∑

i=1

|si| ≤ 0 , (48)

where (16)-(18) have been used. By taking into account (21), from (46) and (48) one has

V̇ ≤ −ψ
n∑

i=1

|si| ≤ 0 . (49)

Since
n∑

i=1
|si| = |s1| + · · · + |sn| ≥ ∥s∥, then one has

V̇ ≤ −ψ∥s∥ ≤ 0 . (50)

Now, from (27) one has

V
1
2 ≤

√
λH

λh
∥s∥ ⇒ −∥s∥ ≤ −

√
λh

λH
V

1
2 , (51)

which means that (50) satisfies

V̇ ≤ −ψ
√
λh

λH
V

1
2 ≤ 0 . (52)

According to Lemma 3 in the appendix, once V(t0 + Ts1) ≤ 1 then V(t) ≡ 0 in a time Ts2 no larger than

Ts2 =
1

ψ

√
λh

λH

(
1 − 1

2

) =
2
ψ

√
λH

λh
. (53)

Ts max in (19) is gotten by considering (45) and (53).

b) In the previous step it was shown that e, ė, s ∈ L∞ and that s becomes zero in fixed-time. To show that both e and ė become
zero in fixed-time, consider from (11) that once s ≡ 0, the problem is equivalent to analyzing the fixed-time stability of n



A nonsingular fixed-time sliding mode controller for Robot Manipulators in the presence of external perturbations and partially known model 9

independent systems of the form

ėi = −λiei − keiτei , (54)

where λi and kei are the i-th elements of the diagonals of Λ and Kei, respectively, for i = 1, . . . , n. For each of these subsystems
define the positive definite functions

Vei = e2
i , (55)

whose derivatives along (54) satisfy

V̇ei ≤ −2kei
tanh(|ei|

1
2 )

tanh(1)
|ei||ei|

1
2

(
1−2

tanh(e2
i )

tanh(1)

)
fei(ei) (56)

by using (4). Now, two cases will be considered.

i) If |ei| ≥ 1, then by using (5) eq. (56) satisfies

V̇ei ≤ −2kei|ei||ei|
1
2

(
1−2

tanh(e2
i )

tanh(1)

)
|ei|λeitanh(e2

i ) ≤ −2kei|ei|
(
λei− 1

tanh(1)

)
tanh(e2

i )+ 3
2 ≤ −2kei|ei|

θei
2

tanh(e2
i )

tanh(1) + 3
2 ≤ −2kei|ei|

θei+3
2 ≤ −2keiV

θei+3
4

ei , (57)

where tanh(|ei |
1
2 )

tanh(1) ≥ 1, tanh(e2
i )

tanh(1) ≥ 1, and (6) have been used. By the definition of θei one has θei+3
4 > 1. Hence, according to

Lemma 2, Vei ≤ 1 in a time no larger than

Te1i ≤
2

kei(θei − 1)
. (58)

Define

Te1 =
2

λmin(Ke)(θe − 1)
with θe = min

i∈[1,n]
θei (59)

to show that ∥e∥ ≤ 1 from t ≥ t0 + Ts + Te1.

ii) From t ≥ t0 + Ts + Te1 it is guaranteed that |ei| ≤ 1 for i = 1, . . . , n, so that after (25) one has

tanh(|ei|
1
2 )

tanh(1)
≥ |ei|

1
2 , (60)

which shows that (56) satisfies

V̇ei ≤ −2kei|ei|
1
2 |ei||ei|

1
2

(
1−2

tanh(e2
i )

tanh(1)

)
|ei|λeitanh(e2

i ) = −2kei|ei|

(
2− tanh(e2

i )
tanh(1)

)
|ei|λeitanh(e2

i ) . (61)

As done before for si, from (37) it holds

µei = sλeitanh(s2
m)

m ≤
∣∣ei
∣∣λeitanh(e2

i ) ≤ 1 , (62)

for ei ∈ [−1, 1]. Therefore, (61) satisfies

V̇ei ≤ −2keiµei|ei|

(
2− tanh(e2

i )
tanh(1)

)
= −2keiµeiV

(
1− 1

2
tanh(e2

i )
tanh(1)

)
ei . (63)

Note that similarly to (60) one must have

tanh(e2
i )

tanh(1)
≥ e2

i = Vei (64)
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because e2
i ≤ 1. This means that V̇ei satisfies

V̇ei ≤ −2keiµeiV
(1− 1

2 Vei)
ei . (65)

Therefore, Lemma 4 can be applied to show that ei ≡ 0 in a time no larger than

Te2i ≤
g∞

2keiµei
, (66)

with g∞ in (A7). Define

Te2 =
g∞

2λmin(Ke)µe
with µe = min

i∈[1,n]
µei (67)

to show that ∥e∥ ≡ 0 in a time no larger than t0 + Ts + Te, with Te given in (22) as the sum of Te1 in (59) and Te2 in (67).

Finally, once e ≡ 0 and s ≡ 0, then from its definition in (4) τ e ≡ 0, so that from (11) one also gets ė ≡ 0, which concludes
the proof.

Remark 3. The proof of Lemma 1 in the appendix shows that the proposed scheme is singularity free. △

Remark 4. The use of the hyperbolic tangent, which is one of the key characteristics of the present approach, is not new in the
literature. For example, similar functions to fei and fsi in (5) and (9), respectively, are defined by Yogi et al.28. However, they are
not employed in the sliding surface, on the contrary to present the work. Also, Yan et al.29 apply the hyperbolic tangent to avoid
the use of the sign function. Nevertheless, the mathematical analysis yields only to ultimate boundedness, also in clear contrast
with the current proposal. △

Remark 5. Many of the fixed-time controllers for robot manipulators actually achieve only exponential asymptotic stability, just
as the comparative algorithms used in the simulation section6,30. The fixed-time refers to the time needed for the error to get into
an arbitrarily small region around the origin. On the contrary, the present approach achieves fixed-time stability of the tracking
errors. The control law needs few information of the robot dynamic model in the form of the polynomial b(t) in (15) to achieve
global stability. This few information does not even need to be accurate since it can easily be compensated by increasing the
values of the coefficients of b(t). In fact, this trial and error approach avoids the computation of the robot model and is less time
consuming. Furthermore, even though a time varying gain is being employed, it does not rely on any adaptive approach, largely
simplifying the stability analysis and specially the implementation. The simulation sections shows a better performance with
respect to some similar algorithms.

△

4 SIMULATION RESULTS

To test the control law proposed in the previous section, the three Degrees of Freedom robot model described in31 is employed
(see the reference for details). The simulations are carried out using Simulink by MATLAB running in a MacBook Pro with an
Apple M1 Chip. An automatic solver selection has been chosen with a maximal step time of 10−4[s]. The desired trajectories
have been chosen to be the sum of six different sinusoidal signals for each joint with non related frequencies, as it can be
appreciated in Figure 1. See32 for the explicit equations of these trajectories. The algorithms to be implemented are:

1. The globally stable control law given by (8)
2. The algorithm introduced by Zhang et al.6

3. The algorithm given by Yang and Su30
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The schemes in6,30 have been chosen because they share almost all the same characteristics as the current proposal, with the
exception that the errors tend to zero asymptotically once an ultimate arbitrarily small bound has been reached in a predefined
fixed-time. Furthermore, both algorithms include explicitly robot model information, which is assumed to be uncertain. To provide
an advantage over the proposed scheme, the models are assumed to be exactly known for the simulations. For the proposed
scheme, the gains for the controller given by equations (3)-(4) and (8)-(9) have been chosen as Λ = 100I, Ke = 150I, λe = 3I,
λs = 2I, Ks = diag{200 100 35}, Kv = drag{150 30 10}, and k(t) = 1+∥e∥+∥e∥2 +∥ė∥+∥ė∥∥e∥+∥ė∥∥e∥2 +∥ė∥∥e∥3 +∥ė∥∥e∥4.
As to the algorithms in6,30, the interested reader is referred to these works for details. Both algorithms share the following
information γ1 = 0.0873, γ2 = 4.6129, H0 = 2

γ1 + γ2
I, C0(q, q̇) = C(q, q̇), D0 = D, and g0(q) = g(q). The rest of the gains for

the controller by Zhang et al.6 are δ = 0.3, α = 0.7, r = 1.7, β = 1.9, C1 = 3I, C2 = 3I, K1 = Ks, K2 = Ks, ν1 = 2.5, ν2 = 0.5,
a0 = 12, and a1 = 2.2. As to the scheme by Yang and Su30 it was set ρ01 = ρ02 = ρ03 = 0.25, ρ∞1 = ρ∞2 = ρ∞3 = 0.002,
T1 = T2 = T3 = 1.2, l1 = l2 = l3 = 1.5, K0 = Ks, K1 = 0.001I, K2 = 0.1I, σ = 1.5, dM = 75, r = 1.2, δ = 0.01, p = 0.5, and k = 2.

For the simulation the robot’s initial positions are given by

q(0) =
[

0, 0, 90 π
180

]T
[rad] ⇒ e(0) =

[
−10 π

180 , 10 π
180 , 10 π

180

]T
[rad] , (68)

while some perturbations have been added in the form of τ p as given in eq. (1) (see Figure 4). Figure 1 appears to show a similar
performance of all algorithms for trajectory tracking, but in Figure 2 it can be clearly appreciated that the current scheme achieves
a faster and more accurate tracking with little chattering. Also, Figure 3 shows a superior performance in velocity tracking. To
find out which of the schemes achieves a more precise tracking after the transient response, both in position and velocity, the
Root Mean Square Errors (RMSE) are computed as RMSE(e) =

√
1
m

∑m
k=1 e(k)2, where m is the sample size and e is the error

of interest. Since from Figure 1 it is apparent that the three approaches reach the steady state before t = 2s, the RMSE’s are
computed for t ∈ [2, 10]s. Table 1 confirms that the proposed scheme obtains a better position tracking, although the comparative
algorithm by Zhang et al.6 also has a very good performance. The proposal by Yang and Su30 shows an acceptable performance
but with larger errors in comparison. The result can also be appreciated in Table 2 for the velocity errors, where once again it is
confirmed that the controller (8) performs better than the approaches in6,30, despite it is the only scheme which does not use
the robot model. Figure 5 clearly reveals that the input torques generated by the current proposal are smoother and smaller in
amplitude than those generated by the comparative algorithms. The figure shows the behavior of the input torque at the beginning
of the simulation, when huge peaks usually appear for large gains, and then for a representative time lapse of the steady state.

T A B L E 1 Position tracking RMSE.

e[rad] Control (8) Control by Zhang et al. 6 Control by Yang and Su 30

e1 8.9358 · 10−8 1.7127 · 10−6 0.0198
e2 4.6283 · 10−8 4.7257 · 10−6 0.0025
e3 9.2335 · 10−8 4.2938 · 10−6 0.0013

T A B L E 2 Velocity tracking RMSE.

ė[rad/s] Control (8) Control by Zhang et al. 6 Control by Yang and Su 30

ė1 3.3078 · 10−5 4.571 · 10−5 0.003
ė2 4.9426 · 10−5 1.702 · 10−4 2.444 · 10−4

ė3 8.4852 · 10−5 6.605 · 10−4 6.573 · 10−4

Remark 6. The sliding surface in (7) is different from that proposed by Moulay at al.24. As pointed out by Su33, the sliding
surface given by Moulay at al.24 yields to discontinuities of the elements si of s as |ei| → 0. This is not the case for s in (7)
because it is continuous at e = 0. This property can be clearly appreciated in Figures 2 and 6, where the behavior of s is shown. △

Remark 7. Just considering conditions (16)-(17) yields to a rather poor gain tuning and, therefore, it is not evident how to tune
the different control gains of the current proposal. Some simple empirical rules to achieve a good performance are the following:
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1. Choose λsi to satisfy (10) and λei as given in (14).
2. Set Ke = O, where O ∈ Rn×n is the null matrix, and choose Λ in (7) according to previous experience as cutoff frequencies

for first order linear stable filters.
3. Set k(t) = 0 and Ks = O and slowly increase Kv to compensate gravity terms. Then, slowly increase Ks to yield s around zero.
4. Choose k(t) to have the same structure as b(t) in (15) but satisfying (16) to yield s to zero. If no robot model information is

available at all, choose all the coefficient of the polynomial to be 1, multiply it by a constant gain and increase it slowly
until a desired performance is reached.

5. Slowly increase Ke to yield e and ė to zero. It is worth noting that large values of Ke improve precision, but they also create
bigger input peaks. △

Remark 8. As pointed out by Mishra et al.34, the fixed-time convergence is independent of the initial conditions. This can
be verified by using the relationship (22) to get Te max = 207.9035[s]. After Figure 2 this value is correct, but it appears to
be over-estimated. The reason for this apparent over-estimation is that this value contemplates the rather unrealistic case that
∥e(0)∥ = ∞. Since it is impossible to run a simulation with such a large initial error condition, it has been chosen an error ten
times larger per joint by setting

q(0) =
[
−90 π

180 , 90 π
180 , −20 π

180

]T
[rad] ⇒ e(0) =

[
−100 π

180 , 100 π
180 , −100 π

180

]T
[rad] , (69)

The outcomes are presented in Figure 7, where it can be appreciated that despite the initial errors are larger, they tend to zero as
fast as before, i.e. with T ≤ 2[s], thus ratifying the insensitivity of the results regarding the initial conditions. Note that according
to Table I in34, this settling time is better than all of the schemes studied in the reference. However, it is worthy to point out that
to achieve this insensitivity the input torques must become much bigger. Rather than showing this fact in a figure, it is more
interesting to show the time varying gain k(t), i.e. the gain that compensates the unknown dynamics. Recall that it has been
chosen to have the same structure of the polynomial b(t) in (15), with all the coefficients set to 1. This means that k(t) tends to
a constant value as e, ė → 0. Figure 8 shows this behavior, where it can be seen that the compensation term becomes larger
depending on the initial condition, that it makes look k(t) ≡ 1 from the beginning when choosing (68). The conclusion is that
for large initial conditions the fixed-time should be chosen larger to avoid huge input torques. △

F I G U R E 1 Joints positions tracking. Proposed algorithm (8) (——–), comparative algorithm by Zhang et al.6 (· · · · · · ),
comparative algorithm by Yang and Su30 (· − · − ·), and desired trajectories (· · · · ··).
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F I G U R E 2 Tracking errors. Proposed algorithm (8) (——–), comparative algorithm by Zhang et al.6 (· · · · · · ), and
comparative algorithm by Yang and Su30 (· − · − ·). Left column: Behavior for t ∈ [0, 10][s]. Right column: Behavior for
t ∈ [9.5, 9.6][s] and a scale [−10−3, 10−3][rad].
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F I G U R E 3 Velocity errors. Proposed algorithm (8) (——–), comparative algorithm by Zhang et al.6 (· · · · · · ), and compara-
tive algorithm by Yang and Su30 (· − · − ·). Left column: Behavior for t ∈ [0, 10][s]. Right column: Behavior for t ∈ [9.5, 9.6][s]
and a scale [−10−3, 10−3][rad/s].
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F I G U R E 4 Perturbation vector τ p.
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F I G U R E 5 Input torques τ . Proposed algorithm (8) (——–), comparative algorithm by Zhang et al.6 (· · · · · · ), and
comparative algorithm by Yang and Su30 (· − · − ·). Left column: Behavior for t ∈ [0, 0.1][s]. Right column: Behavior for
t ∈ [9.5, 9.6][s].
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F I G U R E 6 Sliding surface s in (7). Left column: Behavior for t ∈ [0, 10][s]. Right column: Behavior for t ∈ [9.5, 9.6][s]
and a scale [−10−3, 10−3][rad/s].
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F I G U R E 7 Tracking errors. Initial condition (68) (——–) and initial condition (69) ( · − · − ·) Left column: Behavior for
t ∈ [0, 10][s]. Right column: Behavior for t ∈ [9.5, 9.6][s] and a scale [−10−3, 10−3][rad].
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F I G U R E 8 Time-varying gain k(t). Initial condition (68) (——–) and initial condition (69) ( · − · − ·)
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5 CONCLUSIONS

The employment of sliding mode control (SMC) techniques allows to achieve exact position tracking despite a poor knowledge
of the dynamic model of a system, while its robustness properties facilites the rejection of external perturbations. All these
characteristics made the employment of SMC very attractive for robot manipulators, which are systems with high nonlinear
dynamics and difficult to model accurately. Controllers based on this strategy can yield to zero the tracking errors in finite (but
not necessarily tunable) time. In the last years fixed-time stability has become an area of great interest, where a problem to
be solved besides model uncertainties and perturbations is the possible appearance of singularities. The current contribution
introduced a singularity free fixed-time SMC scheme for position and velocity tracking of robot manipulators in the presence of
external perturbations and with only the knowledge of some bounds related to the robot model. By means of a time varying
gain in the form of a polynomial of the different powers of the norms of the tracking errors, fixed-time stability was guaranteed
where the settling time can be set arbitrarily small independently of the initial conditions, while the result holds globally. To
test the performance of the new control law, simulations have been carried out where the outcomes were compared with two
recent algorithms with similar properties. The results showed a better performance of the present proposal. As future research an
adaptive version of the controller will be developed to avoid any knowledge of the robot model a priori.
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APPENDIX

A COMPLEMENTARY THEORY

A.1 Useful lemmas

Lemma 2. 35 Consider a positive definite continuous radially unbounded function V(x) : Rn → R+ ∪ {0}, for x ∈ Rn and with
V(x) = 0 only for x ≡ 0. If

V̇(x) ≤ −κ1Vq(x) (A1)

for some constants κ1 > 0 and q > 1, then V(x) ≤ 1 in a finite time no larger than t0 + T1, with T1 = 1
κ1(q − 1) . △

Lemma 3. Consider a positive definite continuous radially unbounded function V(x) : Rn → R+ ∪ {0}, for x ∈ Rn and with
V(x) = 0 only for x ≡ 0. Assume that V(x(t0)) ≤ 1. If

V̇(x) ≤ −κ2Vp(x) (A2)

for some positive constants κ2, p with p < 1, then V(x) ≡ 0 in a finite time no larger than t0 + T2, with T2 = 1
κ2(1 − p) .

Proof. According to the Comparison Lemma27, the solution of (A2) satisfies

V(x) ≤
(
−κ2(1 − p)(t − t0) + V1−p(t0)

) 1
1−p (A3)

≤ (−κ2(1 − p)(t − t0) + 1)
1

1−p .

Therefore, at t = t0 + T2 one has V(x) ≤ 0, but since V(x) ≥ 0 for all t ≥ t0, then necessarily the equality V(x) ≡ 0 holds for all
t ≥ t0 + T2, which concludes the proof.

Lemma 4. Consider a positive definite continuous radially unbounded function V(x) : Rn → R+ ∪ {0}, for x ∈ Rn and with
V(x) = 0 only for x ≡ 0. Assume that V(x(t0)) ≤ 1. If

V̇(x) ≤ −κ3Vp(x)(x) (A4)

for some positive constant κ3 and where p(x) satisfies

p(x) = 1 − 1
2

f (x) ∈ [0.5, 1] (A5)

with f (x) ∈ [0, 1] satisfying

f (x) ≥ V(x) , (A6)

then V(x) ≡ 0 in a finite time no larger than t0 + T3, with T3 = g∞
κ3

, where g∞ is given by

g∞ = lim
n→∞

n∑
i=1

g(i) , (A7)

with

g(i) =
(

2
1

2i+1 − 1
) 2i+1

2
i

2i+1
. (A8)
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Proof. Assume without loss of generality that V(x(t0)) ≡ 1 and consider that since p(x) ∈ [0.5, 1], then V̇(x) satisfies

V̇(x) ≤ −κ3V(x) (A9)

as well. This shows that V(x) → 0 and that it is strictly decreasing. In the same manner one has

V̇(x) ≤ −κ3V(1− 1
2 f (x)) ≤ −κ3V(1− 1

2 V(x)) (A10)

in view of (A6) and the fact that f (x) ∈ [0, 1] by assumption. Set now t1 as the time at which V(t1) = 1
2 , so that for the time

interval t ∈ [t0, t1] one has

V̇(x) ≤ −κ3V(1− 1
2 V(x)) ≤ −κ3V(1− 1

4 ) . (A11)

Then, using (A3) with 1 − p = 1
4 , the solution of (A11) satisfies

V(t1) ≤
(
−κ3

1
4

(t1 − t0) + V
1
4 (t0)

)4

, (A12)

which in turn implies that

t1 ≤ t0 +
4
κ3

(
V

1
4 (t0) − V

1
4 (t1)

)
. (A13)

Set now t2 as the time at which V(t2) = 1
4 , so that for the time interval t ∈ [t1, t2] one has

V̇(x) ≤ −κ3V(1− 1
2 V(x)) ≤ −κ3V(1− 1

8 ) . (A14)

Then, using (A3) with 1 − p = 1
8 , the solution of (A14) satisfies

V(t2) ≤
(
−κ3

1
8

(t2 − t1) + V
1
8 (t1)

)8

, (A15)

which in turn implies that

t2 ≤ t1 +
8
κ3

(
V

1
8 (t1) − V

1
8 (t2)

)
. (A16)

Set now t3 as the time at which V(t3) = 1
8 , so that for the time interval t ∈ [t2, t3] one has

V̇(x) ≤ −κ3V(1− 1
2 V(x)) ≤ −κ3V(1− 1

16 ) . (A17)

Then, using (A3) with 1 − p = 1
16 , the solution of (A17) satisfies

V(t3) ≤
(
−κ3

1
16

(t3 − t2) + V
1

16 (t2)
)16

, (A18)

which in turn implies that

t3 ≤ t2 +
16
κ3

(
V

1
16 (t2) − V

1
16 (t3)

)
. (A19)

Clearly, from (A13), (A16) and (A19) the following sequence emerges

ti ≤ ti−1 +
2i+1

κ3

(
V

1
2i+1 (ti−1) − V

1
2i+1 (ti)

)
. (A20)
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By keeping in mind that it was chosen V(ti) = 1
2i , then one has

ti ≤ ti−1 +
2i+1

κ3

((
1

2i−1

) 1
2i+1

−
(

1
2i

) 1
2i+1
)

= ti−1 +
1
κ3

g(i) , (A21)

with g(i) given in (A8). Therefore, it is clear that the following sequence arises

t1 ≤ t0 +
1
κ3

g(1) (A22)

t2 ≤ t1 +
1
κ3

g(2) ≤ t0 +
1
κ3

(g(1) + g(2))

t3 ≤ t2 +
1
κ3

g(3) ≤ t0 +
1
κ3

(g(1) + g(2) + g(3))

...

which implies that

tn ≤ t0 +
1
κ3

n∑
i=1

g(i) . (A23)

Now, recall that V(ti) = 1
2i , meaning that lim

i→∞
V(ti) = 0. Therefore, V(t) becomes zero in a time no larger than

Tmax ≤ t∞ ≤ t0 + T3 , (A24)

with

T3 =
1
κ3

g∞ , (A25)

where g∞ is given in (A7).

Remark 9. To the best of the authors’ knowledge, there is no closed form solution for g∞ in (A7). However, note that the term
2

1
2i+1 in (A8) is tending to 1 with a power 1

2i+1 which means that
(

2
1

2i+1 − 1
)

tends to zero faster than 2i+1

2
i

2i+1
≤ 2i+1 tends to +∞,

so that the limit must exist. g∞ can be estimated with a computer. For n = 60 one gets g60 = 35.2180, while for n = 1000 one has
g1000 = 35.2180 as well, meaning that this is the value of g∞. △

A.2 Proof of Lemma 1
To show how an estimate of b(t) in (15) can be obtained, consider first that the derivative of (3) can be computed as

q̈r = q̈d −Λė − Keτ̇ e . (A26)

The derivate τ̇ e will be computed for each element τei in (4). First of all, recall that

|ei|
λeitanh(e2

i )+ 1
2

(
1−2

tanh(e2
i )

tanh(1)

)
= exp

((
λeitanh(e2

i ) +
1
2

(
1 − 2

tanh(e2
i )

tanh(1)

))
ln(|ei|)

)
. (A27)
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Therefore, one has

τ̇ei = sign(ei)
tanh(|ei|

1
2 )

tanh(1)
|ei|

λeitanh(e2
i )+ 1

2

(
1−2

tanh(e2
i )

tanh(1)

)
d
dt

{(
λeitanh(e2

i ) +
1
2

(
1 − 2

tanh(e2
i )

tanh(1)

))
ln(|ei|)

}
(A28)

+ |ei|
λeitanh(e2

i )+ 1
2

(
1−2

tanh(e2
i )

tanh(1)

)
1
2 sign(ei)|ei|−

1
2 sign(ei)ėi

tanh(1)cosh2(|ei|
1
2 )

=
{

2λeieiėi

cosh2(e2
i )

ln(|ei|) −
2eiėi

tanh(1)cosh2(e2
i )

ln(|ei|) +
(
λeitanh(e2

i ) +
1
2

(
1 − 2

tanh(e2
i )

tanh(1)

))
ėi

ei

}
τei +

|ei|
λeitanh(e2

i )+ 1
2

(
1−2

tanh(e2
i )

tanh(1)

)

2|ei|
1
2 tanh(1)cosh2(|ei|

1
2 )

ėi .

Note that it has been used d
dt |ei| = d

dt

(
e2

i

) 1
2 = 1

|ei|
eiėi = sign(ei)ėi, d

dt ln(|ei|) = 1
|ei |

sign(ei)ėi = 1
ei

ėi, and lim
ei→0

eiln(|ei|) = 032.

There are two terms in (A28) which might imply a singularity (keep in mind that cosh(0) = 1). First of all, after (4) one has to
analyze

τei

ei
=

tanh(|ei|
1
2 )

tanh(1)
|ei|

1
2

(
1−2

tanh(e2
i )

tanh(1)

)
|ei|

fei(ei) . (A29)

To find out whether there is a singularity or not, one must compute lim
ei→0

τei
ei

, where τei
ei

≥ 0 for all ei ̸= 0. In fact, one can calculate

lim
ei→0

fei(ei) as in the following. By considering that fei(ei) = |ei|λeitanh(e2
i ) = exp

(
λeitanh(e2

i ) ln(|ei|)
)
, one must equivalently solve

(by using L’Hôpital’s rule)

lim
ei→0

tanh(e2
i ) ln(|ei|) = lim

ei→0

ln
((

e2
i

) 1
2
)

coth(e2
i )

= lim
ei→0

1
|ei |

1
2

(
e2

i

)− 1
2 2ei

− 2ei
sinh2(e2

i )

= − lim
ei→0

1
ei

8ei(
ee2

i −e−e2
i
)2

= − lim
ei→0

(
ee2

i −e−e2
i

ei

)2

8
, (A30)

where sinh(x) = ex−e−x

2 has been used, with e the Euler’s number. Since one has

ee2
i − e−e2

i = 1 + e2
i +

1
2!

(e2
i )2 +

1
3!

(e2
i )3 · · · −

(
1 − e2

i +
1
2!

(e2
i )2 − 1

3!
(e2

i )3 · · ·
)

= 2e2
i +

2
3!

(e2
i )3 + · · · (A31)

then it is

ee2
i − e−e2

i

ei
= 2ei +

2
3!

(e2− 1
3

i )3 + · · · (A32)

Substituting this relationship in (A30) yields

lim
ei→0

tanh(e2
i ) ln(|ei|) = 0 . (A33)

This in turn implies that

lim
ei→0

fei(ei) = lim
ei→0

exp
(
λeitanh(e2

i ) ln(|ei|)
)

= 1 . (A34)

Note that this also shows that fei(ei) is continuous at ei = 0 with fei(0) = 1. On the other hand, since the limit of a product equals
the product of the limits and lim

ei→0
fei(ei) = 1, then to compute lim

ei→0

τei
ei

from (A29) one needs now to solve

lim
ei→0

tanh(|ei|
1
2 )

tanh(1)
|ei|

1
2

(
1−2

tanh(e2
i )

tanh(1)

)
|ei|

. (A35)
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To simplify this, assume without loss of generality that |ei| ≤ 1 and note that from (60) a lower bound of the limit in (A35) can
be computed as

lim
ei→0

|ei|1−
tanh(e2

i )
tanh(1)

|ei|
= lim

ei→0
|ei|−

tanh(e2
i )

tanh(1) = 1 . (A36)

To show this, just keep in mind that as done before for fei, one can take advantage of the fact that |ei|−
tanh(e2

i )
tanh(1) = exp

(
− tanh(e2

i )
tanh(1) ln(ei)

)
and use (A33) again. This allows to show that the limit

lim
ei→0

τei

ei
= 1 . (A37)

Therefore, there is no singularity. The second term in (A28) to be analyzed is the last one, i.e.

|ei|
λeitanh(e2

i )+ 1
2

(
1−2

tanh(e2
i )

tanh(1)

)

2|ei|
1
2 tanh(1)cosh2(|ei|

1
2 )

=
|ei|λeitanh(e2

i ) · |ei|−
tanh(e2

i )
tanh(1)

2tanh(1)cosh2(|ei|
1
2 )

. (A38)

By taking into account (A34) and (A36), one gets

lim
ei→0

|ei|λeitanh(e2
i ) · |ei|−

tanh(e2
i )

tanh(1)

2tanh(1)cosh2(|ei|
1
2 )

=
1

2tanh(1)
. (A39)

The previous analysis shows that the proposed scheme does not have singularities at ei = 0 for i = 1, . . . , n.
Once it has been shown that there is no singularity, the next step consists in finding a bound for τ̇ei as a function of known

variables. From (A28) one has

|τ̇ei| ≤ |ėi|

∣∣∣∣∣∣
(

2ei(λeitanh(1) − 1)
tanh(1)cosh2(e2

i )
ln(|ei|) +

(
(λeitanh(1) − 1)tanh(e2

i )
tanh(1)

+
1
2

)
1
ei

)
τei +

|ei|
(λei tanh(1)−1)tanh(e2

i )
tanh(1) + 1

2

2|ei|
1
2 tanh(1)cosh2(|ei|

1
2 )

∣∣∣∣∣∣ (A40)

≤ |ėi|

∣∣∣∣∣∣
(

2eiλeiln(|ei|)|τei| +
(
λei +

1
2

) ∣∣∣∣τei

ei

∣∣∣∣) +
|ei|

(λei tanh(1)−1)tanh(e2
i )

tanh(1)

2tanh(1)

∣∣∣∣∣∣ ,

where in view of (6) it has been taken advantage of the facts that λeitanh(1) > λeitanh(1)−1 > 0, 1

cosh2(|ei |
1
2 )

≤ 1, 1
cosh2(e2

i ) ≤ 1, and

tanh(e2
i ) ≤ 1. A bound for τei in (4) can be found in the following way. Consider two cases. If |ei| ≤ 1 then one can rewrite it as

τei = sign(ei)
tanh(|ei|

1
2 )

tanh(1)
|ei|

1
2 |ei|

(
λei− 1

tanh(1)

)
tanh(e2

i ) . (A41)

Since λei − 1
tanh(1) > 0 according to (6), then |ei|

(
λei− 1

tanh(1)

)
tanh(e2

i ) ≤ 1 because it shares the same properties as fei, i.e.
fei(0) = fei(1) = 1 as maximum for ei ∈ [−1, 1]. But since tanh(x) is a strictly increasing function, then the maximum of |τei| must
be 1 for |ei| = 1 as well, i.e. |τei| ≤ 1 for ei ∈ [−1, 1].

On the other hand, if |ei| > 1, then from (A41) one has

|τei| ≤
1

tanh(1)
|ei|

1
2 |ei|

(
λei− 1

tanh(1)

)
, (A42)

because tanh(x) < 1 for x ≥ 0. Recall that λei − 1
tanh(1) > 0 and it is a known value. The goal of this analysis is to show that a

positive constant exists so that |τei| ≤ |ei|a for some a > 0 when |ei| > 1. Therefore, by recalling that λei − 1
tanh(1) = 3

2 in view
of (14) and by considering the fact |τei| ≤ 1 for |ei| ≤ 1 and (A42), one has

|τei| ≤ 1 +
1

tanh(1)
|ei|2 . (A43)
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Now, a bound for τei
ei

in (A29) needs to be calculated. First consider |ei| ≤ 1 and recall that it was shown that τei
ei

= 1 at ei = 0 and
|ei| = 1. Also, recall from (37) that fei ≤ 1. Therefore, the problem reduces to finding the maximum value of

tanh(|ei|
1
2 )

tanh(1)
|ei|

1
2

(
1−2

tanh(e2
i )

tanh(1)

)
|ei|

≤ |ei|
1
2

(
1−2

tanh(e2
i )

tanh(1)

)

tanh(1)|ei|
1
2

, (A44)

where the fact that fT(x) = tanh(x)
x in (23) has a maximum for x = 0 given by 1 has been used. Therefore, one needs to find the

maximum of |ei|−
tanh(e2

i )
tanh(1) = exp

{
− tanh(e2

i )
tanh(1) ln(|ei|)

}
by computing the derivative:

d
dei

|ei|−
tanh(e2

i )
tanh(1) = − 1

tanh(1)
|ei|−

tanh(e2
i )

tanh(1)

(
2eiln(|ei|)
cosh2(e2

i )
+

tanh(e2
i )

ei

)
. (A45)

This derivative becomes zero at |ei| = sm ≈ 0.5829 (see (36)), so that one can conclude from (A44) that for ei ∈ [−1, 1] it holds∣∣∣∣τei

ei

∣∣∣∣ ≤ 1
tanh(1)

|ei|−
tanh(e2

i )
tanh(1)

∣∣∣∣
|ei |=0.5829

= 1.6558 . (A46)

On the other hand, if |ei| > 1 then from (A29) one can conclude that∣∣∣∣τei

ei

∣∣∣∣ ≤ 1
tanh(1)

1

|ei|
1
2

(
1+2

tanh(e2
i )

tanh(1)

) fei(ei) ≤
fei(ei)

tanh(1)
. (A47)

From its definition in (5) it is clear that fei(ei) = |ei|λeitanh(e2
i ) ≤ |ei|λei , where λei is a known value always. Since λei ≈ 2.8130 < 3

as given in (14), it can be used for the sake of simplicity fei(ei) ≤ |ei|2.8130 ≤ |ei|3. Therefore, it can be concluded that∣∣∣∣τei

ei

∣∣∣∣ ≤ 1.6558 +
1

tanh(1)
|ei|3 . (A48)

To analyze |ei ln(|ei|)| = |ei| · | ln(|ei|)| in (A40), recall that lim
|ei |→0

|ei ln(|ei|)| = 0, while it is obvious that lim
|ei |→∞

|ei ln(|ei|)| = ∞.

However, lim
|ei |→0

| ln(|ei|)| = ∞ and therefore it is necessary to find the minimum for ei ln(|ei|) by computing the derivative

d
dei

ei ln(|ei|) = ln(|ei|) + ei
1
ei

= ln(|ei|) + 1 = 0 , (A49)

so that the minimum takes place at ei = 1
e , where e is Euler’s number and for which 1

e ln
(∣∣ 1

e

∣∣ |) ≈ −0.368. Since ln(|1|) = 0, one
concludes that |ei ln(|ei|)| ≤ 0.368 = 1

e for |ei| ∈ [0, 1]. To analyze the case for |ei| ∈ (1,∞), one only needs to find a bound for
ln(|ei|). This bound should have the form ln(|ei|) ≤ |ei|a for some positive constant a. To find it, note that equivalently one should
have

a ln(|ei|) ≥ ln(ln(|ei|)) ⇒ a ≥ ln(ln(|ei|))
ln(|ei|)

, (A50)

so that one has to find the maximum of ln(ln(|ei|))
ln(|ei|)

subject to |ei| > 1. This is the same as computing the maximum for ln(x)
x

subject to x > 0. By computing the derivative one has

d
dx

ln(x)
x

=
x

1
x
− ln(x)

x2 =
1 − ln(x)

x2 = 0 , (A51)

which holds for x = e, meaning that for ln(ln(|ei|))
ln(|ei|)

its maximum takes place at ln(|ei|) = e. After (A50) one has a ≥ 1
e , which

means that ∣∣ei ln(|ei|)
∣∣ ≤ 1

e
+ |ei|2 , (A52)
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where a = 1 has been considered for simplicity.

Finally, the factor |ei|λeitanh(e2
i )|ei|−

tanh(e2
i )

tanh(1) in (A40) can be analyzed. From (A46), the previous analysis about |ei|λeitanh(e2
i ) allows

to conclude that 1
2tanh(1) |ei|λeitanh(e2

i )|ei|−
tanh(e2

i )
tanh(1) ≤ 0.8279 for ei ∈ [−1, 1]. On the other hand, under the assumption made about λei

to get (A48), one gets

|ei|
(λei tanh(1)−1)tanh(e2

i )
tanh(1)

2tanh(1)
≤ 0.8279 +

|ei|3

2tanh(1)
. (A53)

Therefore, in the end one has from (A40), (A43), (A48), (A52) and (A53)

|τ̇ei| ≤ |ėi|
∣∣∣∣{2λei

(
1
e

+ |ei|2
)(

1 +
1

tanh(1)
|ei|2
)

+
(
λei +

1
2

)(
1.6558 +

1
tanh(1)

|ei|3
)}

+ 0.8279 +
|ei|3

2tanh(1)

∣∣∣∣ . (A54)

Then by taking into account that |ei| ≤ ∥e∥ and |ėi| ≤ ∥ė∥, clearly one must have

∥τ̇ e∥ ≤
n∑

i=1

|τ̇ei| ≤ a′1∥ė∥ + a′2∥ė∥∥e∥2 + a′3∥ė∥∥e∥3 + a′4∥ė∥∥e∥4 (A55)

∥τ e∥ ≤
n∑

i=1

|τei| ≤ n +
n

tanh(1)
∥e∥2 , (A56)

where the definition of the constants a′1, a′2, a′3, a′4 is obvious and (A43) has been used again. Therefore, the term H(q)q̈r in (13)
can be bounded according to (A26), (A55) and Property 1 as

∥H(q)q̈r∥ ≤ λH
{

ad + λλ̄∥ė∥ + λē∥τ̇ e∥
}
≤ a′′0 + a′′

1 ∥ė∥ + a′′
2 ∥ė∥∥e∥2 + a′′

3 ∥ė∥∥e∥3 + a′′
4 ∥ė∥∥e∥4 , (A57)

where λλ̄ = λmax(Λ), λē = λmax(Ke), the definition of the constants a′′0 , a′′1 , a′′2 , a′′3 and a′′4 is obvious and ∥q̈d∥ ≤ ad for all t ≥ t0
by assumption. For the term C(q, q̇)q̇r in (13), Property 3, (2), (3), and (A56)

∥C(q, q̇)q̇r∥ ≤ kc(∥ė∥ + vd)
(
vd + λλ̄∥e∥ + λē∥τ e∥

)
≤ a′′′0 + a′′′1 ∥e∥ + a′′′2 ∥ė∥ + a′′′3 ∥ė∥∥e∥ + a′′′4 ∥ė∥∥e∥2 , (A58)

where the definition of the constants a′′′
0 , a′′′

1 , a′′′
2 , a′′′

3 and a′′′
4 is obvious and ∥q̇d∥ ≤ vd for all t ≥ t0 by assumption. Also, one

has for Dq̇r in (13)

∥Dq̇r∥ ≤ λD̄

(
vd + λλ̄∥e∥ + λē

(
n +

n
tanh(1)

∥e∥2
))

, (A59)

where λD̄ = λmax(D). By noting that directly from Property 4 one has ∥g(q)∥ ≤ kg, one can conclude from (A57)-(A59) that (15)
holds with a proper definition of the constants b0, . . . , b8.
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