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Abstract

Quantum computing devices are being installed alongside
supercomputing clusters to serve as hardware accelerators.
This new type of architecture will require an integrated hy-
brid software stack. With this goal in mind, we have devel-
oped a fully integrated hybrid quantum-classical method
in the hope of improving Register Allocation in the classi-
cal LLVM compiler. We propose a hybrid variational opti-
mization algorithm for the PBQP formulation of Register
Allocation. We implemented this algorithm in C++ in-
side LLVM using the NVIDIA CUDA-Q framework. The
performance of the method is evaluated using NVIDIA
CUDA-Q noiseless emulators and shows promising results
while still needing further optimizations. Our work consti-
tutes a demonstration of an end-to-end tight integration
of a quantum subroutine inside an existing classical code-
base of interest with potentially interesting performance
in fault-tolerant hardware.

Keywords— compiler optimization, quantum computing
applications, register allocation, quantum alternating operator
ansatz

1 Motivation and goals

Quantum computing is establishing itself as a new paradigm
that opens up many new avenues for performing computational
tasks. The problems that could benefit from the capabilities of
quantum devices range from integer factorization [1] to solving
linear systems of equations [2] and combinatorial optimization

[3]. Quantum devices used for computation –sometimes called
Quantum Computers or Quantum Processing Units (QPU)–
leverage the properties of quantum physical systems to perform
computations [4].

As QPUs start to be installed in HPC supercomputing cen-
ters, the question arises of how to best integrate the exist-
ing classical systems with the new quantum computing re-
sources. This new architectural paradigm raises many ques-
tions concerning its software stack and toolchain. Quantum
computing devices work completely differently from classical
computers and thus need specific programming models, com-
pilers, runtimes, etc... Some efforts have been started to de-
velop integrated hybrid quantum-classical software stacks and
toolchains [5] but more effort will still be needed.

A central tool in many toolchains is the compiler responsible
for converting human-readable code into machine instructions
that can be run on a computer. To improve the output ex-
ecutable, a compiler contains many sub-tasks some of which
are related to solving computationally hard optimization prob-
lems [6]. As combinatorial optimization is a good candidate
problem for quantum computers, this motivates exploring the
idea of integrating quantum computations in compilers.

Register Allocation is a compiler sub-task dedicated to de-
ciding where to store program variables on the computer. This
problem is related to hard optimization problems such as graph
coloring [7] and could thus be a good candidate for quantum
algorithms. Building upon our previous work on a quantum
algorithm for the graph coloring formulation of Register Allo-
cation [8], we propose a hybrid quantum-classical method to
solve the more complex Partitioned Boolean Quadratic Prob-
lem (PBQP) formulation of Register Allocation. This method
will be fully integrated into the LLVM compiler [9] in C++
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using the NVIDIA CUDA-Q framework [10].
The main contributions of this work can be summed up as

follows:

• Hybrid quantum-classical Register Allocation algorithm
with a problem formulation chosen for its expressivity and
adaptability to quantum computing.

• Quantum optimization algorithm based on the Quantum
Alternating Operator Ansatz with some hard constraints
of the problem taken into account in the quantum circuit.

• Integrated implementation of the algorithm in the LLVM
compiler using the NVIDIA CUDA-Q framework.

• Experiments and evaluation of the hybrid algorithm using
the NVIDIA CUDA-Q emulators for fault-tolerant hard-
ware.

The rest of this paper is organized as follows: Section 2 goes
over the background and related previous works. Section 3
describes in detail the modified quantum-classical register al-
location algorithm and its integration into LLVM. Section 4
presents simulated experimental results for the performance of
our method with and without noise. Finally, Section 5 con-
cludes this paper.

2 Background & related work

2.1 PBQP Register Allocation

Compilation can be seen as converting a program in human-
readable code into an executable file written in machine-
readable instructions. Modern compilers such as GCC [11]
or LLVM [9] also include many optimization steps to improve
the quality, speed, memory footprint, etc... of compiled pro-
grams. Register Allocation is a crucial step in modern opti-
mizing compilers: during this step variables are assigned to a
storage location on the target device, either:

• A CPU register: very fast access but limited in quantity
(usually around 32 in a modern CPU).

• Central memory (RAM): slower but abundant. A variable
stored in memory is said to be ”spilled”.

This problem is constrained, two variables that exist simulta-
neously cannot be stored in the same register, this is called
interference. Trying to minimize the time spent trying to ac-
cess data while taking these constraints into account has led
Register Allocation to be formulated as various optimization
problems such as coloring a graph representing the interfer-
ences with colors corresponding to CPU registers [7].

Another formulation of Register Allocation is as a Parti-
tioned Boolean Quadratic Problem (PBQP) [12]; this formu-
lation is used in one of the available register allocators in the
LLVM compiler. In this formulation, the allocations are rep-
resented by binary vectors using a one-hot encoding where the
variable has a 1 at the index representing its chosen storage
location. Given this encoding of the solution and V the set of
all variables, the form of the PBQP optimization problem is:

min
x

(∑
v<w

xv · Cv,w · xT
w +

∑
v

cv · xT
v

)
(1a)

s.t. ∀v ∈ V, xv · 1T = 1 (1b)

Where x is the set of solution vectors xv for all variables v
and the vectors cv contain the cost of allocating variable v to

each storage location (spill and registers). The matrices Cv,w

encode, for each pair of variables v, w, the costs of allocating
the pair of variables to each specific pair of storage locations.

A PBQP instance can be represented as a graph GPBQP

where each node corresponds to a variable xv. Edges in the
graph represent non-zero cost matrices Cv,w between nodes v
and w. An example of such a graph is provided in Figure 1 for
the code in Listing 1.

Listing 1: Example pseudo-code.

1 a = 1

2 b = 2

3 print(a + b)

4 c = b

5 return b + c

a b c

Figure 1: Example of a PBQP Graph. The cost vectors
cv are node weights while the cost matrices Cv,w are edge
weights.

Below are listed some basic costs and constraints, these are
similar to what can be found in the LLVM implementation of
PBQP Register Allocation.

Spill and register costs The cost of allocating variable v
to a specific location. This cost can be infinite if, for example,
the variable v is incompatible with a location due to hardware
constraints.

Interference costs Infinite cost added to diagonal ele-
ments of Cv,w if variables v and w are alive simultaneously
to ensure that those are not assigned to the same register.

Coalescing costs An arbitrary negative cost penalty −b
can be added to matrix Cv,w or vector cv when we want to
encourage storing v and w to the same location or v to a specific
location. This is useful when variables are copies of one another
or copies of existing registers.

An example of what all those costs combined could look like
for the program in Listing 1 is given in Figure 2 for a very
simple CPU architecture. In this architecture, ”spill” is at
index 0 of the cost vectors (similar to how it is in LLVM) and
we have 2 hardware registers available.

a b c

Figure 2: PBQP Graph for Listing 1 with cost vectors
and matrices. ”Spill” is at index 0 and we have 2 CPU
registers available here.
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A classical approximate method for solving the PBQP is
given in [12] and further expanded in [13]. The problem is
solved by removing nodes one by one from the ”PBQP graph”
GPBQP and adding them to a stack until the graph is empty.
The reduction starts with the ”easier” nodes of degree ≤ 2 as
removing them does not affect the optimality of the solution;
”harder” nodes are removed afterward. The nodes are finally
popped from the stack and assigned to the available storage
location with the lowest cost. LLVM uses this type of solver in
its PBQP Register Allocator.

2.2 Existing quantum algorithms for op-
timization

Multiple quantum algorithms that aim at solving optimization
problems like the one in Equation 1 have been developed over
the years. Various approaches have been proposed, such as
Quantum Annealing [14] or Grover Search-based methods [?,
15]. Recently, methods centered around Variational Quantum
Algorithms (VQA) have gained significant traction for their
relative simplicity and potential advantages [16]. This class of
algorithms revolves around using a classical optimization loop
to modify a parameterized quantum circuit to produce states
encoding interesting solutions.

One of the foundational algorithms for variational quantum
optimization amongst the variants of VQA is the Quantum Ap-
proximate Optimization Algorithm (QAOA) [3]. Its parame-
terized circuits consist of alternating layers of gates represent-
ing e−iβHC and e−iγHM where HC is the ”cost Hamiltonian”
encoding the problem’s costs function and HM =

∑
q Xq is

the ”mixer Hamiltonian” driving the evolution of the quantum
system. γ and β are parameters to be optimized by the classi-
cal loop. This algorithm is simple and foundational, but it has
shortcomings that have motivated the development of a large
number of variants [17].

These variants include for example the Multi-Angle QAOA
[18] where instead of 1 parameter per ”layer” in the QAOA
circuit, multiple parameters are used, for example: 1 per rota-
tion gate. Another example is the ADAPT-QAOA [19] where
the mixer Hamiltonian is selected at each step from a pool of
operators by the classical optimizer. An interesting class of
QAOA variants is the so-called Quantum Alternating Opera-
tor Ansatz (QAOAnsatz) [20]. This aims at generalizing the
principles of QAOA to enable it to more efficiently solve prob-
lems such as ones with hard constraints. This is achieved by
choosing a mixer Hamiltonian HM that ensures that the evolu-
tion of the quantum state is limited to a feasible subspace that
respects the problem constraints. We chose it here to solve
PBQP Register Allocation due to its ability to natively handle
hard problem constraints.

2.3 Related work

The Quantum Alternating Operator Ansatz [20] has previ-
ously been applied to various other computational problems
using a variety of mixer Hamiltonian and initial state depend-
ing on the problem at hand. A first example is an application
to Maximum k-Vertex Cover which experiments with classical
and Dicke initial states and multiple types of XY gate-based
mixers. Other examples include an algorithm for the Mini-
mum Exact Cover problem [21] and also Satisfiability problems
such as Max 2-SAT or Max 3-SAT. The latter uses a mixer

Hamiltonian based on the principles of the Grover search al-
gorithm [?, 22]. QAOAnsatz can be applied to many types of
combinatorial optimization problems thanks to its great gener-
icity. In all those examples, usage of the extended QAOAnsatz
algorithm over the basic QAOA provides some advantages in
terms of convergence speed or solution quality.

Using quantum computing in a classical optimizing compiler
is a relatively recent idea. We previously developed a simple ex-
perimental quantum-based method for Register Allocation [8].
This method revolved around solving Register Allocation as
an interference graph coloring problem [7] in the GCC com-
piler [11]. This was achieved by successively extracting Max-
imum Independent Sets1 from the interference graph for each
CPU register using QAOA.

3 Integrated quantum-classical
register allocation

The integrated hybrid method is presented in a top-down man-
ner from the high-level algorithm to the QAOAnsatz-based
quantum algorithm.

3.1 Full integration into the LLVM com-
piler

As a reminder, the basic principle of the PBQP solver imple-
mented in LLVM [12] is to ”reduce” the PBQP graph GPBQP

by removing nodes one-by-one, starting with the ones that do
not affect the optimality of the solution. This is implemented
in LLVM [9] in the back-end C++ class RegAllocPBQP which
defines the Register Allocation pass if PBQP is chosen as the
allocation method by the user.

Current and future quantum hardware will have constraints
that need to be taken into account by algorithms, such as the
total number of available qubits or the noise levels. This can be
synthesized as a limit on the size of problems that can be sent as
inputs to the quantum algorithm. We take this into account by
modifying the classical PBQP solver: GPBQP is reduced using
the classical algorithm on the CPU until it is small enough to
fit into an available QPU. This allows performing more of the
allocation on the classical or the quantum side depending on
factors such as noise and problem instance characteristics.

Integration of quantum computing into existing C/C++
programs such as LLVM is not a simple problem as Python
frameworks dominate the field of quantum computing. Some
progress has been achieved recently through the development
of quantum computing frameworks with a C++ API such as
CUDA-Q [10] or Intel Quantum SDK [23] which enable direct
integration into existing C++ applications without external
Python routines. We chose to implement the quantum part of
the modified solver using the CUDA-Q [10] framework for its
simplicity and accessibility.

3.2 Hybrid quantum-classical PBQP
solver

We note that a PBQP instance cannot directly be used as input
for a quantum algorithm as its variables are binary vectors

1A Maximum Independent Set (MIS) of a graph G = (V,E) is a
subset S of V such that (S × S) ∩ E = ∅.
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where we need one binary variable per qubit. The conversion
is obtained by ”flattening” the PBQP instance graph GPBQP

into a graph Gflat where each node will represent one of those
binary variables. To represent the one-hot encoding constraint
formulated in Equation 1b, each node (a, b, c) from GPBQP will
correspond to a clique2 in Gflat with infinite cost constraints
on the edges, shown as solid lines in Figure 3.

The size of the problem sent to the quantum algorithm is re-
duced by excluding any binary variable that corresponds to a
storage location with infinite cost. These correspond to hard-
ware and problem constraints like register size and type in-
compatibilities. The cliques are then connected based on the
cost matrices for all edges in GPBQP. The inter-variable costs
are shown using dashed lines in Figure 3, we can see that the
nodes corresponding to spills (cost 8) have no inter-variable
constraints as spilled variables do not interfere.

8

2 12

8

2

8

1

Figure 3: Flattened graph Gflat where each node repre-
sents a single binary variable of the graph from Figure 2
which corresponds to the code in Listing 1.

The construction of this flattened graph that will serve as
input for the quantum algorithm allows us to compute the
number of qubits that will be required given a 1-to-1 mapping
from binary variable to qubit:

Nqubits =
∑
v∈V

# {storage location a | cv(a) < ∞} (2)

For each variable v in the PBQP Register Allocation, we need 1
qubit per register/spill with finite cost, for example, the PBQP
instance shown in Figure 3 would require 8 qubits. This leads
to a total number of required qubits roughly proportional to
number of variables × number of registers. With the problem
instance having been converted to a quantum-compatible for-
mat, the whole hybrid quantum-classical method is detailed in
Algorithm 1.

Algorithm 1 Hybrid Quantum PBQP Solver

Require: PBQP graph GPBQP.
1: Connected Components Decomposition.
2: Alloc ← {}
3: for all connected subgraphs G′

PBQP do
4: while Nqubits(G

′
PBQP) > Threshold do

5: Alloc ← Alloc ∪ Reduce(G′
PBQP)

6: end while
7: Gflat ← Flatten(G′

PBQP)
8: Alloc ← Alloc ∪ QAOAnsatz (Gflat)
9: end for

10: return Alloc

The PBQP graph is first decomposed into its connected com-
ponents to reduce the size of the problems given as input to

2A clique of a graph G is a fully connected subgraph of G.

the quantum algorithm. This is possible as 2 disconnected
subgraphs of GPBQP have no constraints between them and
they can thus be considered as separate PBQP instances. The
connected components decomposition of GPBQP is obtained by
performing a Depth-First Search in the graph.

3.3 QAOAnsatz for PBQP register allo-
cation

We chose to use a quantum algorithm based on the Quantum
Alternating Operator Ansatz (QAOAnsatz) [20] methodology
to solve our PBQP instances for its ability to encode hard con-
straints from the problem directly into the quantum circuits
by restricting the quantum states to a feasible subspace. A
QAOAnsatz formulation of a problem is given by a cost Hamil-
tonian HC , a mixer Hamiltonian HM and an initial state |Ψ0⟩.
For PBQP Register Allocation we define those as follows:

Cost Hamiltonian

HC =
∑
v∈V

∑
a

cv(a)Z
(v)
a

+
∑
v<w

∑
a1,a2

Cv,w(a1, a2)Z
(v)
a1

Z(w)
a2

(3)

Where cv and Cv,w are the cost vectors and cost matrices from

the PBQP instance. Z
(v)
a is the Pauli Z matrix acting on the

qubit corresponding to storage location a for variable v. This
cost Hamiltonian incorporates the terms from the cost function
defined in Equation 1a.

Mixer Hamiltonian The mixer Hamiltonian we have cho-
sen is built to enforce the one-hot encoding for each PBQP
variable, i.e. enforce Equation 1b, it can thus be seen as a sum
of Hamiltonian H

(v)
M for each variable v.

0

14

23

0

14

23

0

14

23

Figure 4: Visual representation of the ring XY mixer for
the clique corresponding to a variable v. The bold edges
correspond to applications of a XY gate.

H
(v)
M needs to maintain the one-hot encoding at all times

which corresponds to keeping the Hamming weight for the
qubits ”clique” of this variable constant at 1. This can be
achieved using what’s called a ”XY ring” mixer Hamiltonian
[20]. The basic idea of this type of mixer Hamiltonian is to
apply 2-qubit XY interactions between each pair of qubits in
the set in which we want the hamming weight to be constant
in a ring pattern. The XY interaction is given by the Hamil-
tonian Xq1Xq2 + Yq1Yq2 for qubits q1 and q2. To maximize
the number of parallel 2-qubit operations, the XY interactions
are first applied to pairs of qubits starting with an even index,
then the ones with an odd index, and finally an interaction
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is applied between the first and last qubits if there is an odd
number of qubits. A visual representation of the action of this
Hamiltonian is shown in Figure 4.

The XY gate that will be used in the final QAOAnsatz cir-

cuit will be of the form e
−iβ

(
X

(v)
ai

X
(v)
aj

+Y
(v)
ai

Y
(v)
aj

)
, this can be

implemented in CUDA-Q using the exp_pauli function which
is used to define exponential of Pauli gates. The code for the
XY gate is shown in Listing 2 where __qpu__ indicates that the
XY function defines a quantum circuit and cudaq::qubit is the
type for qubits.

Listing 2: XY-Gate definition using CUDA-Q.

1 __qpu__ static void XY(double Beta , cudaq::

qubit &Q0, cudaq::qubit &Q1) {

2 cudaq:: exp_pauli(-Beta , "XX", Q0, Q1);

3 cudaq:: exp_pauli(-Beta , "YY", Q0, Q1);

4 }

Initial State We need to choose an initial state that is com-
patible with our mixer Hamiltonian, ie. one that respects the
problem constraints. Here we set each group of qubits corre-
sponding to a PBQP variable to the state ”|100 . . .⟩” which
corresponds to spilling the variable to memory in LLVM. This
state can easily be constructed starting from a zero state by
applying X gates to all qubits that need to be set to 1.

The code for the full QAOAnsatz circuit in CUDA-Q is given
in Listing 3. The quantum circuit here is declared using a
__qpu__ decorator on the struct’s () operator. The ZZ gate is
constructed using cascades of CNOT around a RZ gate. In
the framework, cudaq::spin_op designates a Hamiltonian and
cudaq::qvector<2> a list of qubits (2-level qudits).

Listing 3: QAOAnsatz circuit using CUDA-Q.

1 struct QAOAnsatzCircuit {

2 unsigned NbQubits , NbLayers;

3 cudaq:: spin_op HCost , HMixer;

4 // Quantum Circuit definition

5 __qpu__ void operator ()(std::vector <double >

Beta , std::vector <double > Gamma) {

6 // Initialize Qubits Register

7 cudaq:: qvector <2> Q(NbQubits);

8 InitialState(Q);

9 // Main circuit

10 for (int p = 0; p < NbLayers; p++) {

11 // Cost Hamiltonian

12 for (auto &Term: HCost)

13 ZZ(Gamma[p], Term , Q);

14 // Mixer Hamiltonian

15 for (auto &Term: HMixer)

16 XY(Beta[p], Term , Q);

17 }

18 }

19 }

4 Experimental results

4.1 Benchmarking methodology

We evaluate the performance of our integrated QAOAnsatz-
based allocator by using it to compile a couple of classical
mini-applications: LULESH [?] and miniFE [24] which are
representative of typical High-Performance Computing (HPC)

workflows. Our goal is to measure the impact of our algorithm
on the quality of the compiled codes.

The experiments are performed by simulating the quantum
circuits using the emulators provided in CUDA-Q [10]. The
simulations are performed on NVIDIA A100 GPUs and the
target architecture for our modified compiler is x86_64 on AMD
EPYC CPUs.

Modern CPU architectures usually have dozens of hardware
registers available, meaning that the algorithm would need
hundreds of qubits to fully compile typical programs according
to Equation 2. To focus our study on the capabilities of our new
quantum method we limit the number of available registers for
allocation to a fixed value Nregs. We apply this restriction on
the number of available registers for all the subgraphs allocated
using the QPU.

4.2 Performance of the QAOAnsatz-
based algorithm

We first compare the performance of our QAOAnsatz-based
Register Allocation method to a basic QAOA where the hard
constraints are converted into cost penalties added to the cost
Hamiltonian. The basic QAOA will use the simple HM =∑

q Xq mixer Hamiltonian and a fully superposed |+⟩⊗n initial
state.
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Figure 5: Comparison between the performance of a basic
QAOA solver and our QAOAnsatz-based solver for the
PBQP Register Allocation problem. The compiled code
is LULESH, with Nqubits = 16 and Nregs = 3, the number
of spills is averaged over 3 compilations.

We compile the LULESH mini-app with Nqubits = 16 and
Nregs = 3 for an increasing number of circuit layers p for each
algorithm. We use the COBYLA optimizer [25] for the varia-
tional algorithms. The results of these experiments are shown
in Figure 5. The QAOAnsatz-based method struggles here for
very shallow (p ≤ 2) circuits compared to the basic QAOA
implementation but as more layers are added, it overtakes the
basic one. The QAOAnsatz behaves as expected: increasing
the number of circuit layers improves the performance. We do
not observe this behavior for the basic QAOA implementation,
possibly due to the soft problem constraints leading to a large
number of measured ”illegal” states that saturate the results,
thus hiding the ”good” solutions regardless of circuit depth.

We evaluated the relative number of inserted spills compared
to the classical allocation for the LULESH [?] and miniFE [24]
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Figure 6: Performance of the QAOAnsatz PBQP Register Allocation method for various Nqubits, p and compiled
classical codes. The performance is measured in the number of spills inserted in the code relative to the number of
spills found with the fully classical allocator, as given by LLVM. The number of spills is averaged over 3 compilations

codes. All allocation, quantum and classical, were obtained
using the same Nregs constraint and for varying numbers of
available qubits. The results of those experiments are dis-
played in Figure 6. In all cases, the number of inserted spills
trends down when the number of circuit layers p increases. For
Nqubits ∈ {12, 20} on the LULESH code, the decrease is slower.
The allocation problem characteristics at those sizes are possi-
bly leading to a faster convergence.

Finally, a question that arises naturally is whether or not
the number of inserted spills is a good metric for the final per-
formance of the compiled program in our case. We verify this
by measuring the execution time of the compiled programs us-
ing both quantum and classical allocators with the same Nregs

constraints. The results of this analysis are displayed in Figure
7 for the execution of the compiled LULESH codes.
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Figure 7: Execution time of the compiled LULESH code
for varying numbers of QAOA layers, averaged on 5
sequential runs with problem size 40. Compiled with
Nqubit = 16 and Nregs = 3.

We can conclude the following from these results:

• The evolution of the compiled code’s execution time
roughly follows the one we observed for inserted spills
in Figure 5, validating the number of inserted spills as
a metric for the quality of the compiled code.

• While in most cases the classical solver outperforms our
new method, there are instances such as with p = 3 where

it sometimes has a slight advantage. Further analysis of
the influence of all hyperparameters and problem charac-
teristics is a path toward further gains over the classical
methods.

5 Conclusion and Future Work

In this work, we presented an end-to-end integration of a quan-
tum method to solve the Register Allocation problem in the
classical LLVM compiler [9]. This was achieved by integrat-
ing a quantum subroutine into the existing classical solver for
the PBQP formulation of the problem [13]. The hybrid algo-
rithm allows deciding the size of the problem that is sent as
input to the quantum part of the algorithm, which is based on
the Quantum Alternating Operator Ansatz (QAOAnsatz) [20]
framework, a generalization of the well-known QAOA [3]. We
used a mixer Hamiltonian for the algorithm that fits the con-
straints of the PBQP formulation. We implemented our hybrid
method using the NVIDIA CUDA-Q [10] framework in C++
directly in the LLVM compiler allowing a tight integration in
the existing code which did not rely on calling external Python
routines.

We evaluated the performance of our hybrid method by com-
piling multiple classical codes and measuring the quality of
the obtained compiled applications. This quality was mea-
sured through metrics such as the number of inserted spills
and the execution time of the compiled application. Our
QAOAnsatz-based method displayed expected behavior such
as the quality of the resulting application increasing as we
added ”QAOAnsatz layers” to our quantum circuits. The qual-
ity of the compiled applications outperformed the one obtained
by using LLVM’s classical PBQP allocator in some specific
cases and obtained similar results most of the time.

We believe this work constitutes a new step forward on the
path to creating an integrated software stack and toolchain for
hybrid quantum-classical systems. This builds on our previous
preliminary work on GCC’s register allocator [8] and presents
a fully integrated quantum method in an existing large C++
application that is a very important part of many toolchains.
Further work following this goal of an integrated HPC/QC soft-
ware stack will include improvements to the presented method;
extension to larger, state-of-the-art Register Allocators such as
LLVM’s Greedy allocator; and exploration of analog quantum
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methods for this problem.

Acknowledgments

This work is part of HQI initiative (www.hqi.fr) and is sup-
ported by France 2030 under the French National Research
Agency award number “ANR-22-PNCQ-0002”.

References

[1] P. Shor, “Algorithms for Quantum Computation: Discrete
Logarithms and Factoring,” in Proceedings 35th Annual
Symposium on Foundations of Computer Science, Nov.
1994, pp. 124–134.

[2] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum Al-
gorithm for Solving Linear Systems of Equations,” Physi-
cal Review Letters, vol. 103, no. 15, p. 150502, Oct. 2009.

[3] E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum
Approximate Optimization Algorithm,” Nov. 2014.

[4] M. A. Nielsen and I. L. Chuang, “Quantum Computation
and Quantum Information: 10th Anniversary Edition,”
Dec. 2010.

[5] P. Seitz, A. Elsharkawy, X.-T. M. To, and M. Schulz,
“Toward a Unified Hybrid HPCQC Toolchain,” in 2023
IEEE International Conference on Quantum Computing
and Engineering (QCE), vol. 02, Sep. 2023, pp. 96–102.

[6] M. O. Beg, “Combinatorial Problems in Compiler Opti-
mization,” Doctoral Thesis, University of Waterloo, Apr.
2013.

[7] G. J. Chaitin, “Register Allocation & Spilling via Graph
Coloring,” ACM SIGPLAN Notices, vol. 17, no. 6, pp.
98–101, Jun. 1982.

[8] B. Chichereau, S. Vialle, and P. Carribault, “Experiment-
ing with Hybrid Quantum Optimization in HPC Software
Stack for CPU Register Allocation,” in 2023 IEEE Inter-
national Conference on Quantum Computing and Engi-
neering (QCE), vol. 02, Sep. 2023, pp. 134–140.

[9] C. Lattner and V. Adve, “LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation,”
in International Symposium on Code Generation and Op-
timization, 2004. CGO 2004., Mar. 2004, pp. 75–86.

[10] J.-S. Kim, A. McCaskey, B. Heim, M. Modani, S. Stan-
wyck, and T. Costa, “CUDA Quantum: The Platform for
Integrated Quantum-Classical Computing,” in 2023 60th
ACM/IEEE Design Automation Conference (DAC), Jul.
2023, pp. 1–4.

[11] “GCC, the GNU Compiler Collection - GNU Project.”

[12] B. Scholz and E. Eckstein, “Register Allocation for Ir-
regular Architectures,” in Proceedings of the Joint Con-
ference on Languages, Compilers and Tools for Embedded
Systems: Software and Compilers for Embedded Systems,
ser. LCTES/SCOPES ’02. New York, NY, USA: Associ-
ation for Computing Machinery, Jun. 2002, pp. 139–148.

[13] L. Hames and B. Scholz, “Nearly Optimal Register Allo-
cation with PBQP,” in Modular Programming Languages,
ser. Lecture Notes in Computer Science, D. E. Lightfoot
and C. Szyperski, Eds. Berlin, Heidelberg: Springer,
2006, pp. 346–361.

[14] T. Kadowaki and H. Nishimori, “Quantum Annealing in
the Transverse Ising Model,” Physical Review E, vol. 58,
no. 5, pp. 5355–5363, Nov. 1998.

[15] D. Bulger, W. P. Baritompa, and G. R. Wood, “Imple-
menting Pure Adaptive Search with Grover’s Quantum
Algorithm,” Journal of Optimization Theory and Appli-
cations, vol. 116, no. 3, pp. 517–529, Mar. 2003.

[16] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin,
S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan,
L. Cincio, and P. J. Coles, “Variational Quantum Algo-
rithms,” Nature Reviews Physics, vol. 3, no. 9, pp. 625–
644, Sep. 2021.

[17] K. Blekos, D. Brand, A. Ceschini, C.-H. Chou, R.-H. Li,
K. Pandya, and A. Summer, “A Review on Quantum
Approximate Optimization Algorithm and Its Variants,”
Physics Reports, vol. 1068, pp. 1–66, Jun. 2024.

[18] R. Herrman, P. C. Lotshaw, J. Ostrowski, T. S. Humble,
and G. Siopsis, “Multi-Angle Quantum Approximate Op-
timization Algorithm,” Scientific Reports, vol. 12, no. 1,
p. 6781, Apr. 2022.

[19] L. Zhu, H. L. Tang, G. S. Barron, F. A. Calderon-Vargas,
N. J. Mayhall, E. Barnes, and S. E. Economou, “Adaptive
Quantum Approximate Optimization Algorithm for Solv-
ing Combinatorial Problems on a Quantum Computer,”
Physical Review Research, vol. 4, no. 3, p. 033029, Jul.
2022.

[20] S. Hadfield, Z. Wang, B. O’Gorman, E. G. Rieffel, D. Ven-
turelli, and R. Biswas, “From the Quantum Approximate
Optimization Algorithm to a Quantum Alternating Oper-
ator Ansatz,” Algorithms, vol. 12, no. 2, p. 34, Feb. 2019.

[21] S.-S. Wang, H.-L. Liu, Y.-Q. Song, F. Gao, S.-J. Qin,
and Q.-Y. Wen, “Quantum Alternating Operator Ansatz
for Solving the Minimum Exact Cover Problem,” Physica
A: Statistical Mechanics and its Applications, vol. 626, p.
129089, Sep. 2023.

[22] A. Bärtschi and S. Eidenbenz, “Grover Mixers for QAOA:
Shifting Complexity from Mixer Design to State Prepara-
tion,” in 2020 IEEE International Conference on Quan-
tum Computing and Engineering (QCE), Oct. 2020, pp.
72–82.

[23] X.-C. Wu, S. P. Premaratne, and K. Rasch, “A Com-
prehensive Introduction to the Intel Quantum SDK,” in
Proceedings of the 2023 Introduction on Hybrid Quantum-
Classical Programming Using C++ Quantum Extension,
ser. HybridQC ’23. New York, NY, USA: Association for
Computing Machinery, Aug. 2023, pp. 1–2.

[24] M. Heroux, “miniFE Finite Element Mini-Application,”
Jun. 2022.

[25] M. J. D. Powell, “A Direct Search Optimization Method
That Models the Objective and Constraint Functions by
Linear Interpolation,” in Advances in Optimization and
Numerical Analysis, ser. Mathematics and Its Applica-
tions, S. Gomez and J.-P. Hennart, Eds. Dordrecht:
Springer Netherlands, 1994, pp. 51–67.

7


