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Abstract

Experimental methods are necessary to quantify structural damping. Among these methods, modal testing
of bladed disks are of particular interest because it provides an efficient experimental characterization of
these structures which are critical parts of aeronautic turbojet engines. This work presents techniques to
determine the optimal order of subspace state-space identification methods for modal parameter estimation of
a realistic fan stage. Indeed, the order of the identification model is unknown during modal analysis requiring
techniques to determine which model order should be used for parameter estimation. To investigate these
techniques, several methods to estimate the optimal model order are reviewed. A specific focus is proposed on
the determination of model order through statistical tests as these techniques have the benefits of providing
indicators along with a threshold built over hypothesis testing and a probability of rejection. In order to
further analyze model order determination techniques, some of these techniques are evaluated by means of
a numerical model of a realistic fan stage, hence making possible to assess the performances of estimation
methods close to experimental conditions. In particular, estimation in a context of high modal density as
well as model order determination through “M-test” are addressed using this model. After assessing the
implemented estimation method over the numerical model, this method is applied over experimental data
obtained by performing modal tests over a full-scale composite rotating fan in vacuum condition.

Keywords: modal analysis, subspace identification, bladed disks, aeronautic turbojet engines.

Introduction

Experimental characterizations of structures are crucial to validate simulations as well as understanding
and quantifying dissipation phenomena. On the other hand, fans bring the major part of thrust of aeronautic
civilian turbojet engines, thus making the investigation of these structures an important part of the design
of new turbojet engines. As modal analysis provides an efficient characterization of the dynamics of systems,
modal analysis of aeronautic civilian fans is of particular interest to aeronautic turbojet designers. However,
effects of energy dissipation, gyroscopic phenomena or mistuning can raise significant issues for the modal
characterization of such systems. In order to perform efficient experimental analysis of these structures, there
is a need for modal parameter estimation methods which overcome these challenges. One of the key challenges
consists in providing an appropriate model to explain the observed dynamics. More precisely, for a given class
of models, the choice of the optimal order of model is an important step to successfully estimate the modal
parameters of the structure. Consequently, several techniques have been proposed to determine the optimal
order of identification model concerning maximum of likelihood based estimation methods [1]. On the other
hand, state-space subspace identification methods have the advantage of processing efficiently vector-valued
time series, thus presenting advantages for the estimation of modal parameters of system exhibiting high
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modal density [2]. They also provide efficient data processing as well as numerical stable techniques for
system identification [3]. This article proposes to focus on model order determination for modal parameter
estimation methods applied to composite fan stage using state-space subspace identification methods.

The first section presents the implemented subspace state-space identification method used in this arti-
cle. The second section describes different techniques to determine the number of states for the presented
subspace state-space identification method. The third section deals with the assessment of estimation per-
formances of the investigated techniques over a numerical model. Finally, the fourth section presents an
application of these techniques over modal tests of an actual full-scale composite rotating fan in laboratory
vacuum conditions.

1. Subspace identification methods

Subspace identification methods propose to estimate a system using a set of signals by identifying sub-
spaces generated by these signals. Considering a discrete time signal 𝑠𝑡 ∈R𝑛×1, the subspace generated from
this signal can be defined as the set of linear combinations of 𝑠𝑡−𝑘 where 𝑘 is a discrete time shift along with
a condition to obtain a complete metric subspace.

H =

{
𝜁𝑡 =

+∞∑︁
𝑘=−∞

𝐺𝑘𝑠𝑡−𝑘

���� 𝐺𝑘 ∈R𝑛×𝑛,
+∞∑︁

𝑘=−∞
∥𝐺𝑘 ∥2F < +∞

}
(1)

The vector-valued series 𝜁𝑡 form the vector elements of H . They are built from linear combinations of
𝑠𝑡−𝑘 with matrix coefficients 𝐺𝑘 ∈R𝑛×𝑛. The condition

∑
𝑘 ∥𝐺𝑘 ∥2F < +∞ ensures that H is a complete metric

subspace with respect to a norm based on the variance of the signal 𝑠𝑡 which is assumed weakly stationary.
At time 𝑡, the restriction of H to past samples is associated to the past dynamics and denoted S𝑝,𝑡 while
the restriction to future samples is associated to the possible future dynamics and denoted S 𝑓 ,𝑡 .

S𝑝,𝑡 =

{
𝜁𝑡 =

+∞∑︁
𝑘=0

𝐺𝑘𝑠𝑡−𝑘

���� 𝐺𝑘 ∈R𝑛×𝑛,
+∞∑︁
𝑘=0

∥𝐺𝑘 ∥2F < +∞
}

(2a)

S 𝑓 ,𝑡 =

{
𝜁𝑡 =

+∞∑︁
𝑘=1

𝐺𝑘𝑠𝑡+𝑘

���� 𝐺𝑘 ∈R𝑛×𝑛,
+∞∑︁
𝑘=1

∥𝐺𝑘 ∥2F < +∞
}

(2b)

More details over subspaces generated by signals can be consulted in a previous article [4]. Subspace
identification methods model system dynamics through a state-space representation. In the following, the
investigated systems are assumed linear, time invariant and with finite order. The order of the system,
denoted 𝑛𝑥 , is assumed to be a known parameter in this section. The system dynamics can be modeled by
the following set of equations where 𝑥𝑡 ∈R𝑛𝑥×1 is the state vector and (𝑤𝑡 , 𝑣𝑡 ) are zero mean perturbation
processes.

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡

𝑦𝑡 = 𝐶𝑥𝑡 + 𝐷𝑢𝑡 + 𝑆𝑤𝑡 + 𝑣𝑡 (3)

with E
[
𝑤𝑡𝑤

𝑇
𝑠

]
=𝑄𝛿𝑡𝑠 , E

[
𝑣𝑡𝑣

𝑇
𝑠

]
= 𝑅𝛿𝑡𝑠 and E

[
𝑤𝑡𝑣

𝑇
𝑠

]
= 0

In the above, 𝑦𝑡 ∈R𝑛𝑦×1 and 𝑢𝑡 ∈R𝑛𝑢×1 denote respectively the observation vector and the excitation vector
at time sample 𝑡. The notations 𝐴, 𝐵, 𝐶 and 𝐷 denote the transition, control, observation and feedforward
matrices. The stochastic process 𝑤𝑡 models the perturbations over the state transition equation while 𝑣𝑡
depicts perturbations specific to the observation equation. These processes are assumed independent of 𝑥𝑡
and 𝑢𝑡 , uncorrelated in time and normally distributed with covariance matrices 𝑄 and 𝑅. The term 𝑆𝑤𝑡

accounts for additional perturbations of the observation equation depending on the state perturbations [5].
In order to identify the state matrices of eq. (3), the state-space representation is considered over a finite
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time recursion ℎ, which defines the horizon of the subspace identification method. This leads to stacked
equations as follows.

𝑦𝑡 |ℎ = Oℎ𝑥𝑡 +𝛹ℎ𝑢𝑡 |ℎ + 𭟋ℎ𝑤𝑡 |ℎ + 𝑣𝑡 |ℎ (4)

with, Oℎ =


𝐶

𝐶𝐴
...

𝐶𝐴ℎ−1


𝑦𝑡 |ℎ =


𝑦𝑡
𝑦𝑡+1
...

𝑦𝑡+ℎ−1


𝛹ℎ =


𝐷 0 ... 0
𝐶𝐵 𝐷 ... 0
...

...
. . .

...

𝐶𝐴ℎ−2𝐵 𝐶𝐴ℎ−3𝐵 ... 𝐷

 𭟋ℎ =


𝑆 0 ... 0
𝐶 𝑆 ... 0
...

...
. . .

...

𝐶𝐴ℎ−2 𝐶𝐴ℎ−3 ... 𝑆


The above equation introduces the extended observability matrix Oℎ which is linked to the observability
concept in control theory [6]. The notations 𝑢𝑡 |ℎ, 𝑣𝑡 |ℎ, 𝑤𝑡 |ℎ results of the same operations to obtain 𝑦𝑡 |ℎ from
𝑦𝑡 . Moreover, subspace identification methods build structured matrices from the signals of the state-space
representation (eq. 3). The structured matrix built from the signal 𝑦𝑡 is denoted 𝑌𝑡 |ℎ,𝑁 and defined in the
equation below.

𝑌𝑡 |ℎ,𝑁 =


𝑦𝑡 𝑦𝑡+1 . . . 𝑦𝑡+𝑁−1
𝑦𝑡+1 𝑦𝑡+2 . . . 𝑦𝑡+𝑁
...

...
. . .

...

𝑦𝑡+ℎ−1 𝑦𝑡+ℎ . . . 𝑦𝑡+ℎ+𝑁−2


∈ Rdim(𝑦)ℎ×𝑁 (5)

The order of time shift between columns, denoted 𝑁, is the number of time samples used by the subspace
identification methods to estimate the ensemble average through the ergodicity hypothesis. Generally, this
order verifies 𝑁≫ dim(𝑦)ℎ leading to consider wide rectangular matrices. One can notice that the linear
combinations of rows of 𝑌𝑡 |ℎ,𝑁 span the subspace generated from 𝑁 samples of the signal 𝑦𝑡 over a finite
horizon ℎ. The same operations to define 𝑌𝑡 |ℎ,𝑁 from 𝑦𝑡 are used to define 𝑈𝑡 |ℎ,𝑁 , 𝑉𝑡 |ℎ,𝑁 and 𝑊𝑡 |ℎ,𝑁 from
𝑢𝑡 , 𝑣𝑡 and 𝑤𝑡 respectively. As the investigated systems are assumed to have a finite order, these structured
matrices are particularly suited to study subspaces generated by the signals of the state-space representation.
Considering eq. (4) over 𝑁 time samples leads to the following equation between the structured matrices of
the state-space representation.

𝑌𝑡 |ℎ,𝑁 = Oℎ𝑋𝑡 |1,𝑁 +𝛹ℎ𝑈𝑡 |ℎ,𝑁 + 𭟋ℎ𝑊𝑡 |ℎ,𝑁 +𝑉𝑡 |ℎ,𝑁 (6)

with, 𝑋𝑡 |1,𝑁 =
[
𝑥𝑡 𝑥𝑡+1 . . . 𝑥𝑡+𝑁−1

]
In order to study the subspaces of eq. (2a-b), the above equation is split into past and future dynamics both
over a horizon ℎ. The structured matrices of eq. (6) are considered to belong to past dynamics and are
denoted more briefly by 𝑌𝑝 , 𝑈𝑝 , 𝑉𝑝 , 𝑊𝑝 and 𝑋𝑝. Matrices of future dynamics are obtained by considering
matrices of eq. (6) at time sample 𝑡+ℎ leading to structured matrices 𝑋 𝑓 = 𝑋𝑡+ℎ |1,𝑁 , 𝑌 𝑓 =𝑌𝑡+ℎ |ℎ,𝑁 and similarly
for 𝑈 𝑓 , 𝑉 𝑓 and 𝑊 𝑓 . The state-space representation gives the following equations between these structured
matrices.

𝑋 𝑓 = 𝐴ℎ𝑋𝑝 + C′ℎ𝑈𝑝 + F ′ℎ𝑊𝑝 (7a)

𝑌 𝑓 = Oℎ𝑋 𝑓 +𝛹ℎ𝑈 𝑓 + 𭟋ℎ𝑊 𝑓 +𝑉 𝑓︸       ︷︷       ︸
⌢
𝑉 𝑓

(7b)

with C′ℎ = [𝐴ℎ−1𝐵 ... 𝐴𝐵 𝐵] and F ′ℎ = [𝐴ℎ−1 ... 𝐴 I]

The equations (7a-b) give the transition from the 𝑁 sampled past dynamics of states 𝑋𝑝 to the future dy-
namics of states 𝑋 𝑓 as well as an expression of the structured matrix 𝑌 𝑓 using the state-space representation.

The symbol
⌢
𝑉 𝑓 denotes the purely stochastic part in the decomposition of 𝑌 𝑓 of eq. (7b). As signals 𝑤𝑡 and
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𝑣𝑡 are assumed independent of 𝑥𝑡 and 𝑢𝑡 , one obtains in the limit 𝑁 tends to +∞: 1
𝑁 𝑋 𝑓

⌢
𝑉

𝑇

𝑓 = 0 and 1
𝑁𝑈 𝑓

⌢
𝑉

𝑇

𝑓 = 0
[7].

This article is concerned with model order determination issues of Numerical algorithms for SubSpace
State-Space IDentification (N4SID) [7, 8] in order to estimate modal parameters of dynamical systems.
These algorithms use a LQ decomposition of a specific matrix, denoted 𝐻, which is defined with 𝑌 𝑓 , 𝑈 𝑓 and

𝑍𝑝 = [𝑈𝑝

𝑌𝑝
] .

𝐻 =


𝑈 𝑓

𝑍𝑝

𝑌 𝑓

 =

𝐿11 0 0
𝐿21 𝐿22 0
𝐿31 𝐿32 𝐿33



𝑄1

𝑄2

𝑄3

 (8)

The above decomposition gives an efficient data compression as well as a useful expression of the structured
matrix 𝑌 𝑓 . Indeed, N4SID algorithms use this decomposition with the following identification hypotheses
denoted (H1-3) in order to identify the state-space subspaces of the system.

rank
(
𝑋𝑝

)
= 𝑛𝑥 (H1)

rank
(
𝑈𝑝

)
= rank

(
𝑈 𝑓

)
= ℎ𝑛𝑢 where ℎ𝑛𝑢 ≥ 𝑛𝑥 (H2)

span′
(
𝑋𝑝

) ∩ span′(𝑈𝑝
)
= span′

(
𝑋 𝑓

) ∩ span′(𝑈 𝑓
)
= {0} (H3)

In the above, span′(•) denotes the subspace generated from linear combinations of rows of the matrix in
argument. These hypotheses can be used to obtain an expression of 𝑌 𝑓 as a decomposition of 𝑍𝑝, 𝑈 𝑓 and
𝑄3.

𝑌 𝑓 = 𝐿32𝐿
⊣
22𝑍𝑝 +

(
𝐿31 − 𝐿32𝐿

⊣
22𝐿21

)
𝐿−111𝑈 𝑓 + 𝐿33𝑄3 (9)

More details over the above result as well as the identification hypotheses (H1-3) can be consulted in a
previous article [4]. Furthermore, the term 𝐿33𝑄3 in eq. (9) verifies 1

𝑁𝑈 𝑓 (𝐿33𝑄3)𝑇 = 0 and 1
𝑁 𝑍𝑝 (𝐿33𝑄3)𝑇 = 0

thanks to the orthogonality properties between 𝑄1, 𝑄2 and 𝑄3 of the LQ decomposition. These relations
make possible to identify the purely stochastic part of 𝑌 𝑓 between eq. (7b) and (9).

⌢
𝑉 𝑓 = 𝐿33𝑄3

Moreover, it is possible to establish the identification term by term between eq. (7b) and (9) [2, p. 276]

leading to an estimation of 𝜁
def
= Oℎ𝑋 𝑓 , the state contribution in the decomposition of 𝑌 𝑓 in eq. (7b).

𝜁
def
= Oℎ𝑋 𝑓 = 𝐿32𝐿

⊣
22𝑍𝑝 (10)

Equation (10) is described as the optimal prediction of the state contribution 𝜁 . Indeed, the right-hand side
of this equation gives an estimation of 𝜁 using the LQ decomposition and the full past structured matrices
𝑈𝑝 and 𝑌𝑝. In order to estimate Oℎ and 𝑋 𝑓 , N4SID algorithms propose to split this estimation into a product
of two matrices using the singular value decomposition (SVD). The optimal prediction of eq. (10) can be
moderated in order to be compliant with a complexity reduction principle [8]. This moderation can be
realized through weighting matrices 𝑊1, 𝑊2 and the truncation of the SVD to the order 𝑛𝑥 which is assumed
to be known.

𝑊1𝜁𝑊2 = 𝑈Σ𝑉𝑇 ≈ 𝑈𝑥Σ𝑥𝑉
𝑇
𝑥 (11)

Equation (11) describes the complexity reduction step and leads to truncated SVD matrices Σ𝑥 ∈R𝑛𝑥×𝑛𝑥 ,
𝑈𝑥 ∈Rℎ𝑛𝑦×𝑛𝑥 and 𝑉𝑥 ∈R𝑁×𝑛𝑥 . The weighting matrices 𝑊1,𝑊2 can be used to obtain algorithms equivalent to
other subspace identification methods; especially the Multi Output Error State sPace (MOESP) method [9]
and the Canonical Variate Analysis (CVA) method [10]. In the following, the weighting matrices are chosen
as𝑊1 =𝑊2 = I which is equivalent to the original N4SID subspace identification method [7]. The observability
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matrix Oℎ and the future state dynamics 𝑋 𝑓 are estimated with a balance realization of the right-hand side
of eq. (11).

Oℎ𝑋 𝑓 ≈
(
𝑈𝑥Σ

1/2
𝑥

) (
Σ

1/2
𝑥 𝑉𝑇

𝑥

)
(12)

Ôℎ = 𝑈𝑥Σ
1/2
𝑥 (12a)

𝑋 𝑓 = Σ
1/2
𝑥 𝑉𝑇

𝑥 (12b)

The estimation of the state-space matrices 𝐴, 𝐵, 𝐶, 𝐷 can be obtained from the estimation of the observ-
ability matrix eq. (12a) or the state dynamics eq. (12b). Concerning the implemented estimation method

used in this article, the estimation of the state-space matrices are obtained from 𝑋 𝑓 . More precisely, the
state-space matrices are estimated by solving eq. (13).[

𝑋1

𝑌0

]
−
[
𝐴 𝐵

𝐶 𝐷

] [
𝑋0

𝑈0

]
= 𝜖 (13)

argmin
𝐴,𝐵,𝐶,𝐷

∥𝜖 ∥2𝐹

with 𝑋0 = 𝑋𝑡+ℎ |1,𝑁−1 𝑈0 = 𝑈𝑡+ℎ |1,𝑁−1

𝑋1 = 𝑋𝑡+ℎ+1 |1,𝑁−1 𝑌0 = 𝑌𝑡+ℎ |1,𝑁−1

The matrices 𝐴, 𝐵, 𝐶, 𝐷 solutions of eq. (13) are as follows.[
𝐴 𝐵

𝐶 𝐷

]
=

[
𝑋1

𝑌0

] [
𝑋𝑇
0 𝑈𝑇

0

] ( [𝑋0

𝑈0

] [
𝑋𝑇
0 𝑈𝑇

0

] )−1
The estimated matrices 𝑄, 𝑅 and 𝑆 are also obtained from 𝑋0, 𝑋1, 𝑈0 and 𝑌0 [10].

The following section presents techniques to determine the order of the state-space representation which
has been assumed to be a known parameter in this section.

2. Model order determination

The identification of the state-space representation with the estimation method presented in section 1
requires to determine the optimal order of truncation for the complexity reduction step. Indeed, the order of
truncation, denoted 𝑛𝑥 , should be equal to the order of the ”true” state-space representation of the system
dynamics which is denoted 𝑛𝑥 . The determination of this order can be obtained from the observation of the
mean square error between the measurements and the synthesized response. In the dedicated literature, this
technique is sometimes referred as Final Prediction Error (FPE) [11]. The optimal order is then obtained
as the order after which the mean square error is constant or does not decrease significantly. A similar

order determination technique consists in observing the evolution of the singular values of 𝜁
def
= Oℎ𝑋 𝑓 [2,

p. 166]. However, noise in the data set can jeopardize the detection of 𝑛𝑥 with this technique. Indeed,
an increase of the order of the identification method exceeding 𝑛𝑥 will fit the noise dynamics leading to
a decrease of the mean square error after 𝑛𝑥 which can be similar to the decrease before 𝑛𝑥 , and thus
preventing the detection of 𝑛𝑥 . When a subspace identification method uses too many states to identify
the system, the identification is qualified as overfitting. In such cases, the modes fitting the noise dynamics
are called numerical modes to mark the difference between modes fitting the system dynamics which are
qualified as physical modes. Another kind of model order determination technique proposes to obtain the
physical modes through stabilization charts. These techniques make the hypothesis that the physical modes
are independent of the order of identification whereas the numerical modes are dependent of this order.
Then, the physical modes are identified as the modes which are constant while increasing the order of the
identification method. For such techniques, the optimal order is determined using a complexity reduction
principle as the minimum order after which all physical modes are stabilized [12]. Both determination of
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Fig. 1: Example of 𝑚0 threshold computation for M-test.

model order through error minimization techniques and stabilization charts require a choice of threshold to
determine if the error or the poles are stabilized. These choices are often made according to heuristic rules
meaning that an adequate threshold is taken without showing that it is the optimal threshold.

Furthermore, other model order determination techniques propose to find the optimal order of the system
by using an information criterion. These techniques have the advantage to determine the optimal order by
minimizing a cost function based on a chosen information criterion. Several information criteria have been
proposed. A selection of these model order determination techniques can be consulted in references [cf. 1].
These criteria include the AIC criterion which can be interpreted as a compromise between mean square
error and the size of the model [13], the corrected AIC (AICc) which proposes a correction to prevent
statistical bias when analyzing small sized samples [14] and the Minimum Description Length (MDL) based
on information theory [15]. Moreover, the Bayesian Information Criterion (BIC) proposes to determine the
optimal order based on the Bayesian estimation framework [16].

Another group of techniques uses statistical tests to determine the optimal model order. These techniques
have the advantages to propose a threshold based on a probability of rejection of an investigated hypothesis.
The ”F-test”, named by G.W. Snedecor after R.Fisher, makes possible to compare the variance of two
random variables to detect changes [17]. This test can be used over identification results of increasing order
to detect when the variance of the error does not change significantly making possible to determine 𝑛𝑥 as
the minimum order after which the variance of the error is considered to remain unchanged. M.Aoki and
al. [18] have proposed another statistical test based on theoretical results over the distribution of correlation
coefficients and often mentioned as ”C-test” in the dedicated literature. This article focuses more precisely
over a similar test, denoted ”M-test” [19]. The C-test and M-test have the advantages of investigating
the statistical significance of each estimated states independently. Compare to the C-test, the M-test has
the advantage of focusing over an indicator asymptotically distributed according to the 𝜒2 law without
correction factor. It proposes to investigate each column of the observability matrix by testing a statistical
hypothesis defined as follows.

𝐻
( 𝑗 )
0 : ”column 𝑗 of Oℎ is associated to a numerical mode”

The M-test uses an indicator 𝑀 𝑗 built as a specific scalar product of the column 𝑗 of the observability

matrix with itself. The column 𝑗 of the observability matrix is denoted O ( 𝑗 )ℎ .

𝑀 𝑗 = O ( 𝑗 )ℎ

𝑇
cov

[
O ( 𝑗 )ℎ

]−1
O ( 𝑗 )ℎ

More precisely, the column 𝑗 of the observability matrix can be expressed with the column vector 𝑒 𝑗 having
all coefficients to zero expect in position 𝑗 where it takes value 1 (cf. eq. 14). Moreover, if the hypothesis

𝐻
( 𝑗 )
0 is verified, then 𝑗 > 𝑛𝑥 . Indeed, using the property of strict nesting [20] coming from the orthogonality

properties of the SVD, it is possible to split the state vector 𝑥𝑡 at time sample 𝑡 into 𝑥[𝑥] 𝑡 ∈R𝑛𝑥×1 distributed
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according to the dynamics of physical states and 𝑥[𝑤] 𝑡 ∈R(𝑛𝑥−𝑛𝑥 )×1 distributed according to the dynamics of
numerical states.

O ( 𝑗 )ℎ =


𝐶𝑒 𝑗

𝐶𝐴𝑒 𝑗

...
𝐶𝐴ℎ−1𝑒 𝑗


𝑥𝑡 =

[
𝑥[𝑥] 𝑡
𝑥[𝑤] 𝑡

]
(14)

Using all the identification hypotheses and assuming 𝐻
( 𝑗 )
0 is satisfied, the coefficients of O ( 𝑗 )ℎ are zero-mean,

normally distributed and independent each one to another. Indeed, with these hypotheses O ( 𝑗 )ℎ as expressed

in eq. (14) is the free response with specific initial conditions for the dynamics of 𝑥[𝑤] 𝑡 which is distributed

as 𝑤𝑡 . Then, 𝑀 𝑗 is distributed according to the 𝜒2 (ℎ𝑛𝑦 ) law (assuming 𝐻
( 𝑗 )
0 is true). As we know the

cumulative distribution of 𝜒2 law, it is possible to get, given a probability of rejection 𝑝0, the threshold 𝑚0

that the indicator 𝑀 𝑗 should not overcome if the hypothesis 𝐻
( 𝑗 )
0 is true. The computation of this threshold

makes use of a survival function (cf. eq. 20). Figure 1 shows an example of 𝑚0 threshold computation
choosing 𝑝0 = 0.05 and ℎ𝑛𝑦 = 18. One of the difficulty to apply the M-test consists in getting an estimation

of cov
[O ( 𝑗 )ℎ

]−1
. This article investigates the possibility to use a similar estimation of cov

[O ( 𝑗 )ℎ

]−1
for N4SID

compare to the subspace identification method used by Dorfman and al. [19] which performs estimation
without measurements of the excitations.

cov
[
vec (Oℎ)

]−1
=

(
cov

[
⌢
𝑉 𝑓

]−1)
⊗
(
𝑋 𝑓 𝑋

𝑇
𝑓

)
More details to obtain this estimator are proposed in appendix Appendix A. Using the above results, the
indicator of M-test for state 𝑗 is estimated as follows.

𝑀 𝑗 = 𝑒𝑇𝑗

(
𝑋 𝑓 𝑋

𝑇
𝑓

)
𝑒 𝑗 O ( 𝑗 )ℎ

𝑇
(
cov

[
⌢
𝑉 𝑓

]−1)
O ( 𝑗 )ℎ (15)

cov
[
⌢
𝑉 𝑓

]
= 𭟋ℎdiagℎ (𝑄)𭟋𝑇ℎ + diagℎ (𝑅)

Equation (15) assumes that 𝑣𝑡 and 𝑤𝑡 are white noise and independent one to another. Finally, if the

indicator 𝑀 𝑗 takes significant value, i.e. superior to 𝑚0, the hypothesis 𝐻
( 𝑗 )
0 is rejected leading to select

state 𝑗 as a physical state.

3. Evaluation with a numerical model

This section proposes to assess the estimation performances of the N4SID algorithm presented in section
1 combined with a determination of the optimal model order through M-test. A first subsection describes
the numerical model used to assess estimation performances while the second subsection shows estimation
results obtained over the numerical model.

3.1. Experimental Modal Model

The proposed numerical model uses experimental results of a modal analysis of a full-scale rotating fan
in vacuum condition. Measurements of the system are obtained from strain gauges over blades excited by
a forward travelling wave with steps in frequency. More details concerning these modal tests are given in
section 4.1. The modal parameters defining the modal model have been estimated using a method based
on Least Square Rational Functions (LSRF) and described in a previous article [21]. Figure 2 shows the
poles of the experimental modal model by representing the natural frequencies and damping ratios of the
𝑛𝑚 = 6 modes of the model. Notations 𝑈.𝐹 and 𝑈.𝐷𝑅 stand for the normalized unit of frequency and damping
ratio used in this article to preserve industrial confidentiality. Figure 2 also illustrates the spatial analysis of
the associated mode shapes which take into account mistuning phenomena as observed in the experimental
results. Each mode is assigned a mode tag reflecting the dominant spatial harmonic of its estimated mode
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shape. The modal model is expressed with the modal coordinates 𝑞 ∈C2𝑛𝑚×1.
¤𝑞 (𝑡 ) = Λ𝑞 (𝑡 ) + Θ̂𝑇 𝑔̂ + 𝑤 (𝑡 )
𝑦 (𝑡 ) = Φ𝑞 (𝑡 ) + 𝑣 (𝑡 ) (16)

In eq. (16), the matrix of eigenvalues Λ ∈C2𝑛𝑚×2𝑛𝑚 , the matrix of mode shapes Φ ∈C𝑛𝑦×2𝑛𝑚 , the augmented

signal of forces applied to the system 𝑔 (𝑡 ) ∈C2𝑛𝑔×1 and the augmented matrix of left mode shapes Θ̂ ∈C2𝑛𝑔×2𝑛𝑚
have been introduced. They verify the following relationships.

Λ =


𝜆1 0 ... 0 0
0 𝜆∗1 ... 0 0
...

...
. . .

...
...

0 0 ... 𝜆𝑛𝑚 0
0 0 ... 0 𝜆∗𝑛𝑚

 Φ =
[
𝜑1 𝜑∗1 ... 𝜑𝑛𝑚 𝜑∗𝑛𝑚

]
Φ̂ =

[
ΦΛ
Φ

]
Θ̂ =
(17𝑎)

[ −ΘΛ
Θ

]
𝑔̂ =

[ 𝑔
0

]
Θ̂𝑇 𝑔̂ = −ΛΘ𝑇𝑔 =

(17𝑏)
−ΛΦ𝐻𝑔

(17)

Equation (17) uses superscript .𝐻 to denote the transpose conjugate of a matrix and 𝑔 (𝑡 ) the signal of forces
applied to the system. Also, the equal signs denoted by (17a-b) assume a symmetric stiffness matrix as well
as the hypothesis Θ=Φ∗ which is verified by the mode shapes of a cyclic conservative system. Equation (16)
is integrated into the real domain as follows.

¤𝑠 (𝑡 ) = ΛR𝑠 (𝑡 ) + 𝐵R𝑔 (𝑡 ) + 𝑤R (𝑡 )
𝑦 (𝑡 ) = ΦR𝑠 (𝑡 ) + 𝑣 (𝑡 ) (18)

with, ΛR= 𝑃𝐻Λ𝑃 𝐵R= −ΛRΦR𝐻 𝑃 = diag(𝑃 (1) , ... , 𝑃 (1) )
ΦR= Φ𝑃 𝑠 = 𝑃𝐻𝑞 𝑃 (1) = 1

2

[
1− 𝑗 1+ 𝑗
1+ 𝑗 1− 𝑗

]
In the above, the perturbation process 𝑤R verifies a similar relationship as the state vector of the real modal
form: 𝑤R = 𝑃𝐻𝑤. The numerical model simulates the response 𝑦 (𝑡 ) from an excitation 𝑔 (𝑡 ). Both of these
signals have been taken with size 𝑛𝑠×1 where 𝑛𝑠 denotes the number of sectors. The integration is performed
with a Runge-Kutta 45 (RK45) scheme [22] making possible to control the accuracy of the integration error
at order 4 and the time step at order 5. The relative and absolute tolerance have been verified by comparison
with an analytical computation taking mode shapes with a unique spatial harmonic and no perturbation
processes (𝑣 =𝑤 = 0). Figure 3a illustrates the numerical responses obtained with this model for a force
signal 𝑔 (𝑡 ) as a sine with steps in frequency and taking a forward travelling wave pattern with two nodal
diameters. Figure 3b is the spatial transform of the estimated frequency response functions obtained by
computing the discrete Fourier transform of the response over 𝑛bloc periods at the end of each frequency step
divided by the Fourier transform over the same samples for the excitation signal over the reference sector.
This figure shows that the harmonic component 𝑑 = 2 is higher than the other harmonic components of the
response. However, the other harmonic components take significant values as the mode tag ‘2D’ has a shape
with significant values for harmonics different from 𝑑 = 2 and the other modes are also excited as they have
significant values at spatial harmonic 𝑑 = 2. This test case has been studied with a level of noise (eq. 19)√
NSR≈ 2·10−3 which can be considered relatively low compared to expected noise perturbation observed by

comparing the level of background noise with the level of measured response.

NSR =
P𝜀

P𝑧
(19)

with, P𝑚 =
𝑁−1∑︁
𝑡=0

𝑚2
𝑡 for 𝑚 = 𝜀, 𝑧

In the above, 𝜀 denotes the noise perturbation, and 𝑧 the signal. The NSR is taken similar for the perturbation
over the observation equation (𝜀, 𝑧) = (𝑣, 𝑦) and the state transition equation (𝜀, 𝑧) = (𝑤R,ΛR𝑠).
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Fig. 4: Model order determination by M-test over signals from the experimental modal model.

3.2. Estimation Performances Assessment

The estimation method presented in section 1 and the model order determination through M-test has
been applied over the signals generated by the numerical model. Figure 4 shows model order determination
results obtained with a horizon chosen at ℎ = 1. The top figure illustrates the decrease of the 72 singular values
of the data matrix 𝐻 (𝑛𝑦= 𝑛𝑢=18). This figure shows several changes of the evolution of the singular values
with respect to 𝒾sgvals, their index in the SVD decomposition. One can observe that the determination
of the optimal model order from this analysis is not straight forward. To go further into the optimal
model order determination, a first M-test is performed over all the possible ℎ𝑛𝑦=18 states, meaning that no
truncation is performed at the complexity reduction step (eq. 11). This first statistical test indicates that only
𝑛𝑥,m-test 0 = 14 states were physical states. The bottom figures (fig. 4) show the model order determination
results for an estimation selecting 14 states in the complexity reduction step. More specifically, the bottom
left figure shows singular values evolution of 𝜁 , the contribution of states in the decomposition of 𝑌 𝑓 . It
exhibits a specific change of singular values evolution after the selected states 𝒾sgvals = 0..13 giving indication
to confirm that the truncated states should not be selected. The bottom right figure gives a more objective
confirmation over the determination of the optimal order by representing the M-test values 𝑀 𝑗 , for 𝑗 indexing
all the 14 selected states. This figure also represents the survival function of the 𝜒2 (ℎ𝑛𝑦 ) law for ℎ𝑛𝑦 = 18. The
survival function is denoted sf (𝑥), and defined as sf (𝑥) =1−cdf (𝑥) where ”cdf” is the cumulative distribution
function of the 𝜒2 (ℎ𝑛𝑦 ) law. The survival function gives the probability of having the indicator 𝑀 superior
to a value 𝑚.

sf (𝑚) = Pr(𝑀>𝑚) (20)

In the above, Pr(•) denotes the probability of the event in argument. In this article, the rejection probability
of the M-test is fixed at 𝑝0 = 0.05. The intersection of the horizontal line at 𝑝0 with the 𝜒2 survival function

gives the threshold over M-test values, denoted 𝑚0 and verifying Pr(𝑀 >𝑚0) = 𝑝0. If the hypothesis 𝐻
( 𝑗 )
0

is true for a state 𝑗 , the M-test value 𝑀 𝑗 should be low. More precisely, the probability of having 𝑀 𝑗

higher than 𝑚0 is 𝑝0 = 0.05. Figure 4 shows that, for all the selected states, the indicator 𝑀 𝑗 takes values

higher than 𝑚0. These values are too high to confirm hypothesis 𝐻
( 𝑗 )
0 for 𝑗 indexing the selected states

which leads to reject this hypothesis for each of these states. Hence, all the selected states are considered
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Fig. 5: Estimation of modal parameters of the numerical model with N4SID using model order determination
through M-test.

as physical states, and the determination of the optimal order through M-test leads to 𝑛𝑥,m-test = 14. As
the theoretical optimal order is 𝑛𝑥 = 12, the order determination through M-test is considered close to the
expected model order determination. This model order determination has required two M-tests. It can be
described through an iterative procedure defined by the below list of instructions.

Estimate Oℎ and 𝑋 𝑓 from eq. (12) selecting all states (𝑛𝑥 = ℎ𝑛𝑦)

output: Ôℎ, 𝑋 𝑓

Initialize loop index: 𝑖 = 0
repeat

Perform M-test over the 𝑛𝑥 selected states
output: 𝑛𝑥,m-test 𝑖

⊲ 𝑛𝑥,m-test 𝑖 number of physical states verifies 𝑛𝑥,m-test 𝑖 ≤ 𝑛𝑥
if 𝑛𝑥,m-test 𝑖 < 𝑛𝑥 then

converged = False

𝑛𝑥 ← 𝑛𝑥,m-test 𝑖

Update Ôℎ, 𝑋 𝑓 selecting 𝑛𝑥 states in truncated SVD eq. (11-12)
Increment loop index: 𝑖 ← 𝑖 + 1

else
converged = True ⊲ all selected states are physical

until converged
Alg. 1: Iterative M-test for order determination.

After the determination of the optimal model order, the estimated modal parameters have been compared
to the reference modal parameters defining the numerical model. Figure 5 shows the estimation results for
natural frequencies and damping ratios. Reference and estimated modes are sorted by increasing values of
natural frequencies with a mode index denoted 𝒾mode. Estimation results of natural frequencies are close
to reference natural frequencies from 𝒾mode = 1 to 6. Mode 𝒾mode = 7 takes a natural frequency value much
higher than excited frequency band leading to consider this mode has a numerical mode despite the fact that
the M-test detects it as a physical mode. The natural frequency of modes 𝒾mode=1..6 is estimated with a low
relative error |Δ 𝑓/ 𝑓 | ≤ 0.1%. The damping ratio estimation of modes corresponding to 𝒾mode=1, 2, 4 are close
to reference values with a relative error |Δ𝜉/𝜉 | ≤ 5% whereas modes corresponding to 𝒾mode=3, 5, 6 are less
close to reference values exhibiting a relative error between 14 and 29%. Estimated natural frequencies and
damping ratios are considered close to the reference values despite few modes which can exhibit estimation
errors over damping ratios.
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Fig. 6: Cross-sectional view of test rig PHARE#1.

4. Application to a composite rotating fan

The method presented in previous sections is applied over experimental data from a modal test of a
composite rotating fan in vacuum condition. The first subsection describes the experimental procedures
used to obtain the experimental data. The second subsection presents the modal parameter estimation
results.

4.1. Experimental facility and protocol

Experimental data are collected using a test rig dedicated to the measurements of full-scale machine
dynamics in rotation and vacuum conditions. A cross-sectional view of the experimental facility, called
PHARE#1, is presented in fig. 6. The fan specimen, mounted on the shaft of the test vehicle, is placed
inside the vacuum chamber. This chamber has shielded walls with a useful diameter of 3.0m and 3.6m
along the axis. It is strongly fixed to a seismic concrete bloc mounted on suspension springs and dampers
in order to isolate the test rig against environmental vibrations and to prevent any transmissions of critical
vibration levels to the building in case of heavy accidental loads. The shaft is driven by a 700 kW electric
motor which can go up to the operating speed of the fan specimen and allows sufficiently fast ramp up and
down in vacuum condition for experimental and security requirements. The driving shaft passes through the
wall of the chamber with a special dynamic sealing which uses a circumferential carbon ring seal. A rotary
vane vacuum pump coupled with a Roots pump maintain the pressure of the vacuum chamber at 0.1mbar.

Each blade of the investigated fan specimen is instrumented with a set of interconnected piezoelectric
patches composed of Lead Zirconate Titanate (PZT-5H) as illustrated in fig. 7. This figure also provides a
picture of the fan specimen installed for tests. Blades are numbered according to the rotation direction from
𝑝 = 0 to 𝑛𝑠−1 with 𝑛𝑠 denoting the number of sectors. The excitation system generates forward travelling wave
by controlling the phase difference between the piezoelectric patches of each of the blades [23]. Moreover,
the excitation signal is chosen with steps in frequency leading to the following expression for the excitation
signal of blade indexed by 𝑝.

𝑢𝑝 (𝑡 ) = 𝑎 sin
(
2𝜋 𝑓 (𝑡 )𝑡 − 2𝜋

𝑛𝑠
𝑑𝑝

)
In the above, 𝑎 denotes the amplitude of the excitation signal, 𝑑 denotes the spatial harmonic and 𝑓 (𝑡 ) is
a stepped function from 𝑓ini to 𝑓end by steps of 𝛿 𝑓 and leading to 𝑛exci oscillations for each frequency step.
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Fig. 7: Blade and fan instrumentation.

More details over the experimental rules used to choose these parameters are provided in a previous article
[21]. Excitation signals are amplified, passed into the rotating frame using an assembly of 18 circuits slip
ring and passed through the vacuum chamber wall using a set of wires and connector stages placed inside
the hollow shaft. Each of the blades is also instrumented with a strain gauge close to the leading edge
(fig. 7). Wires route the strain measurements through the hollow shaft to the embedded telemetry unit
which sends measurement signals to the fixed telemetry unit through radio waves. Strain measurements are
simultaneously sampled at 𝑓𝑠 = 2·103 Hz. The experimental protocol aims at measuring frequency responses
of the fan at constant conditions. The overall behavior of the test rig is monitored by numerous dynamic,
displacement and thermal sensors. Moreover, the modal tests have been performed at stabilized rotation
speed.

4.2. Estimation Results

The experimental protocol described in the previous subsection 4.1 is particularly adapted to measure
frequency responses of a rotating fan in vacuum condition. This article investigates the possibility to
use subspace identification methods to estimate the modal parameters of the fan specimen with these
measurements. To this end, the modal parameter estimation procedure using N4SID and a model order
determination through M-test has been applied to modal tests and compared to estimation results obtained
over the same modal tests with a method based on Least Square Rational Function (LSRF) [21]. This section
describes more precisely the modal parameter estimation results obtained over a modal test targeting the
first bending mode at 50%Ω𝑛, where Ω𝑛 denotes the nominal rotation speed of the fan. The excitation has
been chosen with a spatial pattern as a forward travelling wave with two nodal diameters. Experimental
signals are composed of the strain measurements close to leading edge for each of the 𝑛𝑠 = 18 sectors as
well as the excitation signal sent to the piezoelectric patches of the reference sector. The horizon of the
subspace identification method has been chosen as ℎ = 10. In order to reduce the computational cost of the
subspace estimation method, the experimental signals have been resampled at 𝑓 ′𝑠 = 2.7𝑈.𝐹 after applying
an ideal numerical filter. Figure 8a illustrates the singular values of the data matrix 𝐻 (eq. 8) possessing
ℎ(2𝑛𝑦+2𝑛𝑢) = 380 singular values (𝑛𝑦=18 and 𝑛𝑢=1). Figures 8(b-c) show more specifically the model order
determination procedure through iterative M-test (algorithm 1). Figure 8b shows model order determination
results of a first M-test applied on estimation results using N4ISD without any truncation at the complexity
reduction step (eq. 11), so selecting 𝑛𝑥 = ℎ𝑛𝑦 = 180 states. The right figure of fig. 8b shows M-test values
obtained for these selected states as well as the threshold 𝑚0 computed from the survival function of 𝜒2 (ℎ𝑛𝑦 )
and rejection probability 𝑝0 = 0.05 leading to determine 𝑛𝑥,m-test 0 = 42 states as physical states. Figure 8c
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Fig. 8: Model order determination by M-test over a modal test of a full-scale composite rotating fan.

15



0.
90

0.
92

0.
94

0.
96

N
at

ur
al

fr
eq

ue
nc

y
[𝑈

.𝐹
]

N4SID LSRF 𝑓1

𝒾n4sid=11 LSRF 𝜉1

5 6 7 8 9 10 11

0
5

10
15

20

Index of estimated mode, 𝒾n4sid

D
am

pi
ng

ra
ti

o
[𝑈

.𝐷
𝑅

]

Fig. 9: Estimation results with N4SID and model order determination through M-test.

brings additional model order determination results over fig. 8b analysis by representing the M-test values
for N4SID estimations with a truncation to 𝑛𝑥 = 𝑛𝑥,m-test 0 = 42 states. This figure shows that 𝑛𝑥,m-test 1 = 42,
as for each of the 42 states the associated M-test value is higher than the threshold 𝑚0. Hence, all the
selected states used to obtain these estimation results are associated with physical states which concludes
the model order determination procedure. Modal parameter estimation results with N4SID and the above
described model order determination procedure have been compared with estimations obtained using another
method which is based on LSRF applied over the measured frequency response functions of the same modal
test. Moreover, among all the estimated modes, 7 modes have their natural frequency in the interval
[ 𝑓ini, 𝑓end]. Figure 9 represents the natural frequency and damping ratio of these modes with respect to
their index of estimation denoted 𝒾n4sid. Estimation of the natural frequency and the damping ratio of
the mode responding the most among the estimated modes with LSRF are also reported on this figure.
These values are respectively denoted 𝑓1 and 𝜉1. Among the modes estimated with N4SID, mode indexed
𝒾n4sid=11 takes a natural frequency close to 𝑓1 and a damping ratio also close to 𝜉1. Indeed, the relative
difference between these values is |Δ 𝑓/ 𝑓 | = 0.2% and |Δ𝜉/𝜉 | = 5%. The same estimation procedure applied
over a second bending mode has also led to N4SID estimated modes containing a mode which has close
natural frequency and damping ratio values compare to the LSRF estimated mode which responds the most;
however with a larger relative difference for damping ratio: |Δ 𝑓/ 𝑓 | = 0.1% and |Δ𝜉/𝜉 | = 33%. These results
indicate that subspace identification method N4SID combined with a model determination through M-test

can also provide estimation of natural frequency and damping ratio to characterize the dynamics of a full-
scale rotating fan in vacuum condition excited with a forward travelling wave. Compare to other estimation
methods, the investigated subspace identification method has the advantage of proposing an objective model
order determination procedure based on statistical tests over the columns of the observability matrix.
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Conclusion

In this article, an estimation procedure based on N4SID algorithms and model order determination
through iterative M-test is proposed. In a first step, N4SID algorithms are explained and several model
order determination techniques are reviewed. The determination of the truncation order through iterative
M-test has the advantage of proposing an optimal order using a threshold based over a rejection probability.
This estimation procedure is assessed using a numerical model defined from experimental modal analysis
of a full-scale composite fan in rotation and vacuum conditions. Natural frequencies estimated over the
numerical model are close to the reference values with a relative error inferior to 0.1%. Application over
experimental data shows that estimated modes contain a mode having natural frequency and damping ratio
which can be considered close to the most responding mode estimated with another estimation method.

This study provides promising results for modal parameter estimation of rotating bladed disks with
subspace identification methods. Indeed, these methods have several advantages to face the estimation
challenges imposed by the modal analysis of these systems. In particular, the efficient processing of vector-
valued time series makes these methods interesting candidates to study system dynamics exhibiting high
modal density. In addition, the experimental analysis of weakly nonlinear phenomena for which linearization
assumption holds or time varying effects, can benefit from the efficient model order determination techniques
proposed by these methods. Finally, it would be interesting to pursue the assessment of these estimation
methods for experimental characterizations of stages of rotating machine exhibiting time varying effects.
Indeed, the direct use of temporal measurement data can be an important asset to study these phenomena.

Nomenclature

SVD Singular Value Decomposition

N4SID Numerical algorithms for SubSpace State-Space IDentification

LSRF Least Square Rational Function

𝑈.𝐹,𝑈.𝑇 unit of frequency and time (𝑈.𝑇 = 1/𝑈.𝐹)

𝑈.𝐷𝑅 unit of damping ratio

𝑥∗ complex conjugate of 𝑥

𝐴𝑇 , 𝐴𝐻 transpose matrix and Hermitian conjugate of 𝐴

I identity matrix

∥𝐴∥F Frobenius norm of matrix 𝐴

sgvals(𝐴) singular values of matrix 𝐴

𝐴⊣ pseudoinverse of matrix 𝐴

E[𝑎] statistical average of 𝑎

cov [𝑎] covariance matrix of 𝑎

Pr (A) probability of event A
cdf𝑋 (𝑥) cumulative distribution function

sf𝑋 (𝑥) survival function sf𝑋 (𝑥) = 1−cdf𝑋 (𝑥) = Pr (𝑋>𝑥)
⊗ tensor product
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identification methods with measurements of the excitation signals. To estimate this covariance, one can
use the following set of equations which can be obtained using eq. (12) and (7b).

Ôℎ = 𝑌 𝑓 𝑋
⊣
𝑓 (A.1)

Ôℎ − Oℎ = Ψℎ𝑈 𝑓 𝑋
⊣
𝑓 +

⌢
𝑉 𝑓 𝑋

⊣
𝑓 (A.2)

The covariance of the observability matrix can be expressed in tensor notations as follows.

cov [Oℎ]𝛼 𝑗
𝛽𝑖 = E

[(
Ôℎ − Oℎ

)𝛼
𝑖

(
Ôℎ − Oℎ

) 𝑗

𝛽

]
As 𝑈 𝑓 is considered deterministic, the associated term in eq. (A.2) does not contribute to the variance of
the observability matrix. Denoting X the tensor associated with matrix 𝑋⊣𝑓 and V the tensor associated with

matrix
⌢
𝑉 𝑓 , it is possible to obtain the following estimation of the covariance of the observability matrix.

cov [Oℎ]𝛼 𝑗
𝛽𝑖 = E

[
V𝛼𝑛 X

𝑛
𝑖 V

𝑚
𝛽 X

𝑗
𝑚

]
= cov [V]𝛼𝛽 X𝑛𝑖 X

𝑗
𝑛

The above estimator makes use of the hypotheses 𝑥𝑡 is independent of (𝑣𝑡 , 𝑤𝑡 ), the perturbations (𝑣𝑡 , 𝑤𝑡 )
are white noise processes and the ergodicity assumption to compute E[X𝑛𝑖X 𝑗

𝑚 ]. With the operator of
vectorization, denoted ”vec”, which consists in stacking column of a matrix to transform it into a vector,
the estimation of covariance of the observability matrix and its inverse are expressed as follows [20].

cov
[
vec (Oℎ)

]
=

(
cov

[
⌢
𝑉 𝑓

] )
⊗
((
𝑋⊣𝑓

)𝑇
𝑋⊣𝑓

)
cov

[
vec (Oℎ)

]−1
=

(
cov

[
⌢
𝑉 𝑓

]−1)
⊗
(
𝑋 𝑓 𝑋

𝑇
𝑓

)
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