
HAL Id: hal-04839262
https://hal.science/hal-04839262v1

Submitted on 15 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Order Determination for Modal Parameter
Estimation: Application to a Composite Fan Stage
Corentin Jorajuria, Claude Gibert, Cécile Esteves, Fabrice Thouverez

To cite this version:
Corentin Jorajuria, Claude Gibert, Cécile Esteves, Fabrice Thouverez. Model Order Determina-
tion for Modal Parameter Estimation: Application to a Composite Fan Stage. ASME Turbo Expo
2024: Turbomachinery Technical Conference and Exposition, GT 2024, Jun 2024, London, France.
�10.1115/GT2024-126685�. �hal-04839262�

https://hal.science/hal-04839262v1
https://hal.archives-ouvertes.fr


Model order determination for modal parameter
estimation: application to a composite fan stage

Corentin Jorajuria1*, Claude Gibert1, Cécile Esteves2 and Fabrice Thouverez1

1 Ecole Centrale de Lyon, CNRS, ENTPE, Laboratoire de Tribologie et Dynamique des Systèmes, UMR5513, 69130 Ecully, France
2 Safran Aircraft Engines, 77550 Moissy-Cramayel, France

Abstract

Experimental methods are necessary to quantify structural damping. Among these methods, modal testing of bladed disks are of particular
interest because it provides an efficient experimental characterization of these structures which are critical parts of aeronautic turbojet
engines. This work presents techniques to determine the optimal order of subspace state-space identification methods for modal parameter
estimation of a realistic fan stage. Indeed, the order of the identification model is unknown during modal analysis requiring techniques
to determine which model order should be used for parameter estimation. To investigate these techniques, several methods to estimate
the optimal model order are reviewed. A specific focus is proposed on the determination of model order through statistical tests as these
techniques have the benefits of providing indicators along with a threshold built over hypothesis testing and a probability of rejection. In
order to further analyze model order determination techniques, some of these techniques are evaluated by means of a numerical model of a
realistic fan stage, hence making possible to assess the performances of estimation methods close to experimental conditions. In particular,
estimation in a context of high modal density as well as model order determination through "M-test" are addressed using this model.
After assessing the implemented estimation method over the numerical model, this method is applied over experimental data obtained by
performing modal tests over a full-scale composite rotating fan in vacuum condition.
Keywords: modal analysis, subspace identification, bladed disks, aeronautic turbojet engines.

Introduction

Experimental characterizations of structures are crucial to
validate simulations as well as understanding and quan-
tifying dissipation phenomena. On the other hand, fans
bring the major part of thrust of aeronautic civilian turbojet
engines, thus making the investigation of these structures
an important part of the design of new turbojet engines. As
modal analysis provides an efficient characterization of the
dynamics of systems, modal analysis of aeronautic civilian
fans is of particular interest to aeronautic turbojet designers.
However, effects of energy dissipation, gyroscopic phenom-
ena or mistuning can raise significant issues for the modal
characterization of such systems. In order to perform effi-
cient experimental analysis of these structures, there is a
need for modal parameter estimation methods which over-
come these challenges. One of the key challenges consists
in providing an appropriate model to explain the observed
dynamics. More precisely, for a given class of models, the
choice of the optimal order of model is an important step to
successfully estimate the modal parameters of the structure.
Consequently, several techniques have been proposed to
determine the optimal order of identification model con-
cerning maximum of likelihood based estimation methods
[1]. On the other hand, state-space subspace identifica-
tion methods have the advantage of processing efficiently
vector-valued time series, thus presenting advantages for
the estimation of modal parameters of system exhibiting
high modal density [2]. They also provide efficient data
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processing as well as numerical stable techniques for sys-
tem identification [3]. This article proposes to focus on
model order determination for modal parameter estimation
methods applied to composite fan stage using state-space
subspace identification methods.

The first section presents the implemented subspace state-
space identification method used in this article. The second
section describes different techniques to determine the num-
ber of states for the presented subspace state-space identifi-
cation method. The third section deals with the assessment
of estimation performances of the investigated techniques
over a numerical model. Finally, the fourth section presents
an application of these techniques over modal tests of an ac-
tual full-scale composite rotating fan in laboratory vacuum
conditions.

1 Subspace identification methods

Subspace identification methods propose to estimate a sys-
tem using a set of signals by identifying subspaces gener-
ated by these signals. Considering a discrete time signal
𝑠𝑡 ∈R𝑛×1, the subspace generated from this signal can be
defined as the set of linear combinations of 𝑠𝑡−𝑘 where 𝑘

is a discrete time shift along with a condition to obtain a
complete metric subspace.

H =

{
𝜁𝑡 =

+∞∑︁
𝑘=−∞

𝐺𝑘𝑠𝑡−𝑘

���� 𝐺𝑘 ∈R𝑛×𝑛,
+∞∑︁

𝑘=−∞
∥𝐺𝑘 ∥2F < +∞

}
(1)

The vector-valued series 𝜁𝑡 form the vector elements of H .
They are built from finite linear combinations of 𝑠𝑡−𝑘 with

mailto:corentin.jorajuria@ec-lyon.fr


Model order determination for modal parameter estimation

matrix coefficients 𝐺𝑘 ∈R𝑛×𝑛. The condition
∑

𝑘 ∥𝐺𝑘 ∥2F < +∞
ensures that H is a complete metric subspace with respect
to a norm based on the variance of the signal 𝑠𝑡 which
is assumed weakly stationary. At time 𝑡, the restriction
of H to past samples is associated to the past dynamics
and denoted S𝑝,𝑡 while the restriction to future samples
is associated to the possible future dynamics and denoted
S 𝑓 ,𝑡 .

S𝑝,𝑡 =

{
𝜁𝑡 =

+∞∑︁
𝑘=0

𝐺𝑘𝑠𝑡−𝑘

���� 𝐺𝑘 ∈R𝑛×𝑛,
+∞∑︁
𝑘=0

∥𝐺𝑘 ∥2F < +∞
}

(2a)

S 𝑓 ,𝑡 =

{
𝜁𝑡 =

+∞∑︁
𝑘=1

𝐺𝑘𝑠𝑡+𝑘

���� 𝐺𝑘 ∈R𝑛×𝑛,
+∞∑︁
𝑘=1

∥𝐺𝑘 ∥2F < +∞
}

(2b)

More details over subspaces generated by signals can be
consulted in a previous article [4]. Subspace identification
methods model system dynamics through a state-space
representation. In the following, the investigated systems
are assumed linear, time invariant and with finite order. The
order of the system, denoted 𝑛𝑥 , is assumed to be a known
parameter in this section. The system dynamics can be
modeled by the following set of equations where 𝑥𝑡 ∈R𝑛𝑥×1

is the state vector and (𝑤𝑡 , 𝑣𝑡 ) are zero mean perturbation
processes.

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡

𝑦𝑡 = 𝐶𝑥𝑡 + 𝐷𝑢𝑡 + 𝑆𝑤𝑡 + 𝑣𝑡 (3)

with E
[
𝑤𝑡𝑤

𝑇
𝑠

]
=𝑄𝛿𝑡𝑠 , E

[
𝑣𝑡𝑣

𝑇
𝑠

]
= 𝑅𝛿𝑡𝑠 and E

[
𝑤𝑡𝑣

𝑇
𝑠

]
= 0

In the above, 𝑦𝑡 ∈R𝑛𝑦×1 and 𝑢𝑡 ∈R𝑛𝑢×1 denote respectively
the observation vector and the excitation vector at time
sample 𝑡. The notations 𝐴, 𝐵,𝐶 and 𝐷 denote the transi-
tion, control, observation and feedforward matrices. The
stochastic process 𝑤𝑡 models the perturbations over the state
transition equation while 𝑣𝑡 depicts perturbations specific
to the observation equation. These processes are assumed
independent of 𝑥𝑡 and 𝑢𝑡 , uncorrelated in time and nor-
mally distributed with covariance matrices 𝑄 and 𝑅. The
term 𝑆𝑤𝑡 accounts for additional perturbations of the obser-
vation equation depending on the state perturbations [5]. In
order to identify the state matrices of eq. (3), the state-space
representation is considered over a finite time recursion ℎ,
which defines the horizon of the subspace identification
method. This leads to stacked equations as follows.

𝑦𝑡 |ℎ = Oℎ𝑥𝑡 +𝛹ℎ𝑢𝑡 |ℎ + 𭟋ℎ𝑤𝑡 |ℎ + 𝑣𝑡 |ℎ (4)

with, Oℎ =


𝐶

𝐶𝐴
...

𝐶𝐴ℎ−1


𝑦𝑡 |ℎ =


𝑦𝑡

𝑦𝑡+1
...

𝑦𝑡+ℎ−1


𝛹ℎ =


𝐷 0 ... 0
𝐶𝐵 𝐷 ... 0

...
...

. . .
...

𝐶𝐴ℎ−2𝐵 𝐶𝐴ℎ−3𝐵 ... 𝐷

 𭟋ℎ =


𝑆 0 ... 0
𝐶 𝑆 ... 0
...

...
. . .

...

𝐶𝐴ℎ−2 𝐶𝐴ℎ−3 ... 𝑆


The above equation introduces the extended observability
matrix Oℎ which is linked to the observability concept in

control theory [6]. The notations 𝑢𝑡 |ℎ, 𝑣𝑡 |ℎ, 𝑤𝑡 |ℎ results of
the same operations to obtain 𝑦𝑡 |ℎ from 𝑦𝑡 . Moreover, sub-
space identification methods build structured matrices from
the signals of the state-space representation (eq. 3). The
structured matrix built from the signal 𝑦𝑡 is denoted 𝑌𝑡 |ℎ,𝑁
and defined in the equation below.

𝑌𝑡 |ℎ,𝑁 =


𝑦𝑡 𝑦𝑡+1 . . . 𝑦𝑡+𝑁−1
𝑦𝑡+1 𝑦𝑡+2 . . . 𝑦𝑡+𝑁

...
...

. . .
...

𝑦𝑡+ℎ−1 𝑦𝑡+ℎ . . . 𝑦𝑡+ℎ+𝑁−2


∈ Rdim(𝑦)ℎ×𝑁

(5)
The order of time shift between columns, denoted 𝑁 , is
the number of time samples used by the subspace identifi-
cation methods to estimate the ensemble average through
the ergodicity hypothesis. Generally, this order verifies
𝑁≫ dim(𝑦)ℎ leading to consider wide rectangular matrices.
One can notice that the linear combinations of rows of 𝑌𝑡 |ℎ,𝑁
span the subspace generated from 𝑁 samples of the signal
𝑦𝑡 over a finite horizon ℎ. The same operations to define
𝑌𝑡 |ℎ,𝑁 from 𝑦𝑡 are used to define 𝑈𝑡 |ℎ,𝑁 , 𝑉𝑡 |ℎ,𝑁 and 𝑊𝑡 |ℎ,𝑁
from 𝑢𝑡 , 𝑣𝑡 and 𝑤𝑡 respectively. As the investigated systems
are assumed to have a finite order, these structured matri-
ces are particularly suited to study subspaces generated
by the signals of the state-space representation. Consid-
ering eq. (4) over 𝑁 time samples leads to the following
equation between the structured matrices of the state-space
representation.

𝑌𝑡 |ℎ,𝑁 = Oℎ𝑋𝑡 |1,𝑁 +𝛹ℎ𝑈𝑡 |ℎ,𝑁 + 𭟋ℎ𝑊𝑡 |ℎ,𝑁 +𝑉𝑡 |ℎ,𝑁 (6)

with, 𝑋𝑡 |1,𝑁 =
[
𝑥𝑡 𝑥𝑡+1 . . . 𝑥𝑡+𝑁−1

]
In order to study the subspaces of eq. (2a-b), the above
equation is split into past and future dynamics both over a
horizon ℎ. The structured matrices of eq. (6) are considered
to belong to past dynamics and are denoted more briefly
by 𝑌𝑝 , 𝑈𝑝 , 𝑉𝑝 , 𝑊𝑝 and 𝑋𝑝 . Matrices of future dynamics are
obtained by considering matrices of eq. (6) at time sample
𝑡+ℎ leading to structured matrices 𝑋 𝑓 = 𝑋𝑡+ℎ |1,𝑁 , 𝑌 𝑓 =𝑌𝑡+ℎ |ℎ,𝑁
and similarly for 𝑈 𝑓 , 𝑉 𝑓 and 𝑊 𝑓 . The state-space representa-
tion gives the following equations between these structured
matrices.

𝑋 𝑓 = 𝐴ℎ𝑋𝑝 + C′ℎ𝑈𝑝 + F ′ℎ𝑊𝑝 (7a)

𝑌 𝑓 = Oℎ𝑋 𝑓 +𝛹ℎ𝑈 𝑓 + 𭟋ℎ𝑊 𝑓 +𝑉 𝑓︸      ︷︷      ︸
⌢
𝑉 𝑓

(7b)

with C′ℎ = [𝐴ℎ−1𝐵 ... 𝐴𝐵 𝐵] and F ′ℎ = [𝐴ℎ−1 ... 𝐴 I]
The equations (7a-b) give the transition from the 𝑁 sampled
past dynamics of states 𝑋𝑝 to the future dynamics of states
𝑋 𝑓 as well as an expression of the structured matrix 𝑌 𝑓 using
the state-space representation. The symbol

⌢
𝑉 𝑓 denotes the

purely stochastic part in the decomposition of 𝑌 𝑓 of eq. (7b).
As signals 𝑤𝑡 and 𝑣𝑡 are assumed independent of 𝑥𝑡 and
𝑢𝑡 , one obtains in the limit 𝑁 tends to +∞: 1

𝑁 𝑋 𝑓
⌢
𝑉

𝑇

𝑓 = 0 and
1
𝑁𝑈 𝑓

⌢
𝑉

𝑇

𝑓 = 0 [7].
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This article is concerned with model order determination
issues of Numerical algorithms for SubSpace State-Space
IDentification (N4SID) [7, 8] in order to estimate modal
parameters of dynamical systems. These algorithms use a
LQ decomposition of a specific matrix, denoted 𝐻, which is
defined with 𝑌 𝑓 , 𝑈 𝑓 and 𝑍𝑝 = [𝑈𝑝

𝑌𝑝
] .

𝐻 =


𝑈 𝑓

𝑍𝑝

𝑌 𝑓

 =

𝐿11 0 0
𝐿21 𝐿22 0
𝐿31 𝐿32 𝐿33



𝑄1
𝑄2
𝑄3

 (8)

The above decomposition gives an efficient data compres-
sion as well as a useful expression of the structured matrix
𝑌 𝑓 . Indeed, N4SID algorithms use this decomposition with
the identification hypotheses (H1-3) to identify the state-
space subspaces of the system.

rank
(
𝑋𝑝

)
= 𝑛𝑥 (H1)

rank
(
𝑈𝑝

)
= rank

(
𝑈 𝑓

)
= ℎ𝑛𝑢 where ℎ𝑛𝑢 ≥ 𝑛𝑥 (H2)

span′
(
𝑋𝑝

) ∩ span′
(
𝑈𝑝

)
= span′

(
𝑋 𝑓

) ∩ span′
(
𝑈 𝑓

)
= {0} (H3)

In the above, span′(•) denotes the subspace generated from
linear combinations of rows of the matrix in argument.
These hypotheses can be used to obtain an expression of 𝑌 𝑓

as a decomposition of 𝑍𝑝 , 𝑈 𝑓 and 𝑄3.

𝑌 𝑓 = 𝐿32𝐿
⊣
22𝑍𝑝 +

(
𝐿31 − 𝐿32𝐿

⊣
22𝐿21

)
𝐿−1

11 𝑈 𝑓 + 𝐿33𝑄3 (9)

More details over the above result as well as the identifi-
cation hypotheses (H1-3) can be consulted in a previous
article [4]. Furthermore, the term 𝐿33𝑄3 in eq. (9) veri-
fies 1

𝑁𝑈 𝑓 (𝐿33𝑄3)𝑇 = 0 and 1
𝑁 𝑍𝑝 (𝐿33𝑄3)𝑇 = 0 thanks to the

orthogonality properties between 𝑄1, 𝑄2 and 𝑄3 of the LQ
decomposition. These relations make possible to identify
the purely stochastic part of 𝑌 𝑓 between eq. (7b) and (9).

⌢
𝑉 𝑓 = 𝐿33𝑄3

Moreover, it is possible to establish the identification term
by term between eq. (7b) and (9) [2, p. 276] leading to an
estimation of 𝜁 def

= Oℎ𝑋 𝑓 , the state contribution in the decom-
position of 𝑌 𝑓 in eq. (7b).

𝜁
def
= Oℎ𝑋 𝑓 = 𝐿32𝐿

⊣
22𝑍𝑝 (10)

Equation (10) is described as the optimal prediction of the
state contribution 𝜁 . Indeed, the right-hand side of this
equation gives an estimation of 𝜁 using the LQ decompo-
sition and past structured matrices 𝑈𝑝 and 𝑌𝑝. In order
to estimate Oℎ and 𝑋 𝑓 , N4SID algorithms propose to split
this estimation into a product of two matrices using the
singular value decomposition (SVD). The optimal predic-
tion of eq. (10) can be moderated in order to be compliant
with a complexity reduction principle [8]. This moderation
can be realized through weighting matrices 𝑊1, 𝑊2 and the
truncation of the SVD to the order 𝑛𝑥 which is assumed to
be known.

𝑊1𝜁𝑊2 = 𝑈Σ𝑉𝑇 ≈ 𝑈𝑥Σ𝑥𝑉
𝑇
𝑥 (11)

Equation (11) describes the complexity reduction step and
leads to truncated SVD matrices Σ𝑥 ∈R𝑛𝑥×𝑛𝑥 , 𝑈𝑥 ∈Rℎ𝑛𝑦×𝑛𝑥

and 𝑉𝑥 ∈R𝑁×𝑛𝑥 . The weighting matrices 𝑊1,𝑊2 can be
used to obtain algorithms equivalent to other subspace
identification methods; especially the Multi Output Error
State sPace (MOESP) method [9] and the Canonical Variate
Analysis (CVA) method [10]. In the following, the weighting
matrices are chosen as 𝑊1 =𝑊2 = I which is equivalent to
the original N4SID subspace identification method [7]. The
observability matrix Oℎ and the future state dynamics 𝑋 𝑓

are estimated with a balance realization of the right-hand
side of eq. (11).

Oℎ𝑋 𝑓 ≈
(
𝑈𝑥Σ

1/2
𝑥

) (
Σ

1/2
𝑥 𝑉𝑇

𝑥

)
(12)

Ôℎ = 𝑈𝑥Σ
1/2
𝑥 (12a)

𝑋 𝑓 = Σ
1/2
𝑥 𝑉𝑇

𝑥 (12b)

The estimation of the state-space matrices 𝐴, 𝐵, 𝐶, 𝐷 can
be obtained from the estimation of the observability matrix
eq. (12a) or the state dynamics eq. (12b). Concerning the
implemented estimation method used in this article, the
estimation of the state-space matrices are obtained from 𝑋 𝑓 .
More precisely, the state-space matrices are estimated by
solving eq. (13). [

𝑋1
𝑌0

]
−
[
𝐴 𝐵

𝐶 𝐷

] [
𝑋0
𝑈0

]
= 𝜖 (13)

argmin
𝐴,𝐵,𝐶,𝐷

∥𝜖 ∥2𝐹

with 𝑋0 = 𝑋𝑡+ℎ |1,𝑁−1 𝑈0 = 𝑈𝑡+ℎ |1,𝑁−1

𝑋1 = 𝑋𝑡+ℎ+1 |1,𝑁−1 𝑌0 = 𝑌𝑡+ℎ |1,𝑁−1

The matrices 𝐴, 𝐵, 𝐶, 𝐷 solutions of eq. (13) are as follows.[
𝐴 𝐵

𝐶 𝐷

]
=

[
𝑋1
𝑌0

] [
𝑋𝑇

0 𝑈𝑇
0

] ( [𝑋0
𝑈0

] [
𝑋𝑇

0 𝑈𝑇
0

] )−1

The estimated matrices 𝑄, 𝑅 and 𝑆 are also obtained from
𝑋0, 𝑋1, 𝑈0 and 𝑌0 [10].

The following section presents techniques to determine
the order of the state-space representation which has been
assumed to be a known parameter in this section.

2 Model order determination

The identification of the state-space representation with the
estimation method presented in section 1 requires to de-
termine the optimal order of truncation for the complexity
reduction step. Indeed, the order of truncation, denoted
𝑛𝑥 , should be equal to the order of the "true" state-space
representation of the system dynamics which is denoted
𝑛𝑥 . The determination of this order can be obtained from
the observation of the mean square error between the mea-
surements and the synthesized response. In the dedicated
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literature, this technique is sometimes referred as Final Pre-
diction Error (FPE) [11]. The optimal order is then obtained
as the order after which the mean square error is constant
or does not decrease significantly. A similar order deter-
mination technique consists in observing the evolution of
the singular values of 𝜁 def

= Oℎ𝑋 𝑓 [2, p. 166]. However, noise
in the data set can jeopardize the detection of 𝑛𝑥 with this
technique. Indeed, an increase of the order of the identi-
fication method exceeding 𝑛𝑥 will fit the noise dynamics
leading to a decrease of the mean square error after 𝑛𝑥

which can be similar to the decrease before 𝑛𝑥 , and thus
preventing the detection of 𝑛𝑥 . When a subspace identifi-
cation method uses too many states to identify the system,
the identification is qualified as overfitting. In such cases,
the modes fitting the noise dynamics are called numerical
modes to mark the difference between modes fitting the
system dynamics which are qualified as physical modes.
Another kind of model order determination technique pro-
poses to obtain the physical modes through stabilization
charts. These techniques make the hypothesis that the phys-
ical modes are independent of the order of identification
whereas the numerical modes are dependent of this order.
Then, the physical modes are identified as the modes which
are constant while increasing the order of the identifica-
tion method. For such techniques, the optimal order is
determined using a complexity reduction principle as the
minimum order after which all physical modes are stabi-
lized [12]. Both determination of model order through error
minimization techniques and stabilization charts require a
choice of threshold to determine if the error or the poles
are stabilized. These choices are often made according to
heuristic rules meaning that an adequate threshold is taken
without showing that it is the optimal threshold.

Furthermore, other model order determination tech-
niques propose to find the optimal order of the system
by using an information criterion. These techniques have
the advantage to determine the optimal order by minimiz-
ing a cost function based on a chosen information criterion.
Several information criteria have been proposed. A selec-
tion of these model order determination techniques can be
consulted in references [cf. 1]. These criteria include the
AIC criterion which can be interpreted as a compromise
between mean square error and the size of the model [13],
the corrected AIC (AICc) which proposes a correction to
prevent statistical bias when analyzing small sized samples
[14] and the Minimum Description Length (MDL) based
on information theory [15]. Moreover, the Bayesian Infor-
mation Criterion (BIC) proposes to determine the optimal
order based on the Bayesian estimation framework [16].

Another group of techniques uses statistical tests to de-
termine the optimal model order. These techniques have
the advantages to propose a threshold based on a probabil-
ity of rejection of an investigated hypothesis. The "F-test",
named by G. W. Snedecor after R. Fisher, makes possible
to compare the variance of two random variables to detect

10−1 100 101 102 103 104

10
−3

10
−2

10
−1

10
0

𝑚0

𝑝
0

Value for M-test, 𝑚

p-
va

lu
e

sf (𝑚)

M-test values of
numerical states

M-test values of
physical states

Fig. 1: Example of 𝑚0 threshold computation for M-test.

changes [17]. This test can be used over identification re-
sults of increasing order to detect when the variance of the
error does not change significantly making possible to de-
termine 𝑛𝑥 as the minimum order after which the variance
of the error is considered to remain unchanged. M. Aoki

and al. [18] have proposed another statistical test based
on theoretical results over the distribution of correlation
coefficients and often mentioned as "C-test" in the dedicated
literature. This article focuses more precisely over a similar
test, denoted "M-test" [19]. The C-test and M-test have
the advantages of investigating the statistical significance
of each estimated states independently. Compare to the
C-test, the M-test has the advantage of focusing over an
indicator asymptotically distributed according to the 𝜒2 law
without correction factor. It proposes to investigate each
column of the observability matrix by testing a statistical
hypothesis defined as follows.

𝐻
( 𝑗 )
0 : "column 𝑗 of Oℎ is associated to a numerical mode"

The M-test uses an indicator 𝑀 𝑗 built as a specific scalar
product of the column 𝑗 of the observability matrix with
itself. The column 𝑗 of the observability matrix is denoted
O ( 𝑗 )ℎ .

𝑀 𝑗 = O ( 𝑗 )ℎ

𝑇
cov

[
O ( 𝑗 )ℎ

]−1
O ( 𝑗 )ℎ

More precisely, the column 𝑗 of the observability matrix
can be expressed with the column vector 𝑒 𝑗 having all
coefficients to zero expect in position 𝑗 where it takes value
1 (cf. eq. 14). Moreover, if the hypothesis 𝐻

( 𝑗 )
0 is verified,

then 𝑗 > 𝑛𝑥 . Indeed, using the property of strict nesting
[20] coming from the orthogonality properties of the SVD,
it is possible to split the state vector 𝑥𝑡 at time sample 𝑡

into 𝑥[𝑥] 𝑡 ∈R𝑛𝑥×1 distributed according to the dynamics of
physical states and 𝑥[𝑤] 𝑡 ∈R(𝑛𝑥−𝑛𝑥 )×1 distributed according
to the dynamics of numerical states.

O ( 𝑗 )ℎ =


𝐶𝑒 𝑗

𝐶𝐴𝑒 𝑗

...
𝐶𝐴ℎ−1𝑒 𝑗


𝑥𝑡 =

[
𝑥[𝑥] 𝑡
𝑥[𝑤] 𝑡

]
(14)

Using all the identification hypotheses and assuming 𝐻
( 𝑗 )
0

is satisfied, the coefficients of O ( 𝑗 )ℎ are zero-mean, normally
distributed and independent each one to another. Indeed,
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with these hypotheses O ( 𝑗 )ℎ as expressed in eq. (14) is the
free response with specific initial conditions for the dy-
namics of 𝑥[𝑤] 𝑡 which is distributed as 𝑤𝑡 . Then, 𝑀 𝑗 is
distributed according to the 𝜒2 (ℎ𝑛𝑦 ) law (assuming 𝐻

( 𝑗 )
0 is

true). As we know the cumulative distribution of 𝜒2 law,
it is possible to get, given a probability of rejection 𝑝0, the
threshold 𝑚0 that the indicator 𝑀 𝑗 should not overcome if
the hypothesis 𝐻

( 𝑗 )
0 is true. The computation of this thresh-

old makes use of a survival function (cf. eq. 20). Figure 1
shows an example of 𝑚0 threshold computation choosing
𝑝0 = 0.05 and ℎ𝑛𝑦 = 18. One of the difficulty to apply the
M-test consists in getting an estimation of cov

[O ( 𝑗 )ℎ

]−1.
This article investigates the possibility to use a similar esti-
mation of cov

[O ( 𝑗 )ℎ

]−1 for N4SID compare to the subspace
identification method used by Dorfman and al. [19] which
performs estimation without measurements of the excita-
tions.

cov
[
vec (Oℎ)

]−1
=

(
cov

[
⌢
𝑉 𝑓

]−1
)
⊗
(
𝑋 𝑓 𝑋

𝑇
𝑓

)
More details to obtain this estimator are proposed in ap-
pendix A. Using the above results, the indicator of M-test
for state 𝑗 is estimated as follows.

𝑀 𝑗 = 𝑒𝑇𝑗

(
𝑋 𝑓 𝑋

𝑇
𝑓

)
𝑒 𝑗 O ( 𝑗 )ℎ

𝑇
(
cov

[
⌢
𝑉 𝑓

]−1
)
O ( 𝑗 )ℎ (15)

cov
[
⌢
𝑉 𝑓

]
= 𭟋ℎdiagℎ (𝑄)𭟋𝑇ℎ + diagℎ (𝑅)

Equation (15) assumes that 𝑣𝑡 and 𝑤𝑡 are white noise and
independent one to another. Finally, if the indicator 𝑀 𝑗

takes significant value, i.e. superior to 𝑚0, the hypothesis
𝐻
( 𝑗 )
0 is rejected leading to select state 𝑗 as a physical state.

3 Evaluation with a numerical model

This section proposes to assess the estimation performances
of the N4SID algorithm presented in section 1 combined
with a determination of the optimal model order through
M-test. A first subsection describes the numerical model
used to assess estimation performances while the second
subsection shows estimation results obtained over the nu-
merical model.

3.1 Experimental Modal Model

The proposed numerical model uses experimental results
of a modal analysis of a full-scale rotating fan in vacuum
condition. Measurements of the system are obtained from
strain gauges over blades excited by a forward travelling
wave with steps in frequency. More details concerning these
modal tests are given in section 4.1. The modal parameters
defining the modal model have been estimated using a
method based on Least Square Rational Functions (LSRF)
and described in a previous article [21]. Figure 2 shows
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Fig. 2: Definition of the experimental modal model

the poles of the experimental modal model by representing
the natural frequencies and damping ratios of the 𝑛𝑚 = 6
modes of the model. Notations 𝑈.𝐹 and 𝑈.𝐷𝑅 stand for the
normalized unit of frequency and damping ratio used in
this article to preserve industrial confidentiality. Figure 2
also illustrates the spatial analysis of the associated mode
shapes which take into account mistuning phenomena as
observed in the experimental results. Each mode is assigned
a mode tag reflecting the dominant spatial harmonic of its
estimated mode shape. The modal model is expressed with
the modal coordinates 𝑞 ∈C2𝑛𝑚×1.

¤𝑞 (𝑡 ) = Λ𝑞 (𝑡 ) + Θ̂𝑇 �̂� + 𝑤 (𝑡 )
𝑦 (𝑡 ) = Φ𝑞 (𝑡 ) + 𝑣 (𝑡 ) (16)

In eq. (16), the matrix of eigenvalues Λ ∈C2𝑛𝑚×2𝑛𝑚 , the ma-
trix of mode shapes Φ ∈C𝑛𝑦×2𝑛𝑚 , the augmented signal
of forces applied to the system �̂� (𝑡 ) ∈C2𝑛𝑔×1 and the aug-
mented matrix of left mode shapes Θ̂ ∈C2𝑛𝑔×2𝑛𝑚 have been
introduced. They verify the following relationships.

Λ =


𝜆1 0 ... 0 0
0 𝜆∗1 ... 0 0
...

...
. . .

...
...

0 0 ... 𝜆𝑛𝑚 0
0 0 ... 0 𝜆∗𝑛𝑚

 Φ =
[
𝜑1 𝜑∗1 ... 𝜑𝑛𝑚 𝜑∗𝑛𝑚

]
Φ̂ =

[
ΦΛ
Φ

]
Θ̂ =
(17𝑎)

[ −ΘΛ
Θ

]
�̂� =

[ 𝑔
0
]

Θ̂𝑇 �̂� = −ΛΘ𝑇𝑔 =
(17𝑏)

−ΛΦ𝐻𝑔

(17)

Equation (17) uses superscript .𝐻 to denote the transpose
conjugate of a matrix and 𝑔 (𝑡 ) the signal of forces applied to
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(a) Temporal response for three consecutive sectors.
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Fig. 3: Numerical model response using a travelling wave excitation
having one spatial harmonic at 𝑑 = 2.

the system. Also, the equal signs denoted by (17a-b) assume
a symmetric stiffness matrix as well as the hypothesis Θ=Φ∗

which is verified by the mode shapes of a cyclic conservative
system. Equation (16) is integrated into the real domain as
follows.

¤𝑠 (𝑡 ) = ΛR𝑠 (𝑡 ) + 𝐵R𝑔 (𝑡 ) + 𝑤R (𝑡 )

𝑦 (𝑡 ) = ΦR𝑠 (𝑡 ) + 𝑣 (𝑡 ) (18)

with, ΛR = 𝑃𝐻Λ𝑃 𝐵R = −ΛRΦR𝐻
𝑃 = diag(𝑃 (1) , ... , 𝑃 (1) )

ΦR = Φ𝑃 𝑠 = 𝑃𝐻𝑞 𝑃 (1) = 1
2

[
1− 𝑗 1+ 𝑗
1+ 𝑗 1− 𝑗

]
In the above, the perturbation process 𝑤R verifies a simi-
lar relationship as the state vector of the real modal form:
𝑤R = 𝑃𝐻𝑤. The numerical model simulates the response
𝑦 (𝑡 ) from an excitation 𝑔 (𝑡 ). Both of these signals have been
taken with size 𝑛𝑠×1 where 𝑛𝑠 denotes the number of sec-
tors. The integration is performed with a Runge-Kutta 45
(RK45) scheme [22] making possible to control the accuracy
of the integration error at order 4 and the time step at order
5. The relative and absolute tolerance have been verified by
comparison with an analytical computation taking mode
shapes with a unique spatial harmonic and no perturbation
processes (𝑣 =𝑤 = 0). Figure 3a illustrates the numerical re-
sponses obtained with this model for a force signal 𝑔 (𝑡 ) as
a sine with steps in frequency and taking a forward travel-
ling wave pattern with two nodal diameters. Figure 3b is
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Fig. 4: Model order determination by M-test over signals from the
experimental modal model.

the spatial transform of the estimated frequency response
functions obtained by computing the discrete Fourier trans-
form of the response over 𝑛bloc periods at the end of each
frequency step divided by the Fourier transform over the
same samples for the excitation signal over the reference
sector. This figure shows that the harmonic component
𝑑 = 2 is higher than the other harmonic components of the
response. However, the other harmonic components take
significant values as the mode tag ‘2D’ has a shape with
significant values for harmonics different from 𝑑 = 2 and the
other modes are also excited as they have significant values
at spatial harmonic 𝑑 = 2. This test case has been studied
with a level of noise (eq. 19)

√
NSR≈ 2·10−3 which can be

considered relatively low compared to expected noise per-
turbation observed by comparing the level of background
noise with the level of measured response.

NSR =
P𝜀

P𝑧
(19)

with, P𝑚 =
𝑁−1∑︁
𝑡=0

𝑚2
𝑡 for 𝑚 = 𝜀, 𝑧

In the above, 𝜀 denotes the noise perturbation, and 𝑧 the
signal. The NSR is taken similar for the perturbation over the
observation equation (𝜀, 𝑧) = (𝑣, 𝑦) and the state transition
equation (𝜀, 𝑧) = (𝑤R,ΛR𝑠).

3.2 Estimation Performances Assessment

The estimation method presented in section 1 and the model
order determination through M-test has been applied over
the signals generated by the numerical model. Figure 4
shows model order determination results obtained with
a horizon chosen at ℎ = 1. The top figure illustrates the
decrease of the 72 singular values of the data matrix 𝐻
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Fig. 5: Estimation of modal parameters of the numerical model with
N4SID using model order determination through M-test.

(𝑛𝑦= 𝑛𝑢=18). This figure shows several changes of the evo-
lution of the singular values with respect to 𝒾sgvals, their
index in the SVD decomposition. One can observe that the
determination of the optimal model order from this analysis
is not straight forward. To go further into the optimal model
order determination, a first M-test is performed over all the
possible ℎ𝑛𝑦=18 states, meaning that no truncation is per-
formed at the complexity reduction step (eq. 11). This first
statistical test indicates that only 𝑛𝑥,m-test 0 = 14 states were
physical states. The bottom figures (fig. 4) show the model
order determination results for an estimation selecting 14
states in the complexity reduction step. More specifically,
the bottom left figure shows singular values evolution of
𝜁 , the contribution of states in the decomposition of 𝑌 𝑓 . It
exhibits a specific change of singular values evolution after
the selected states 𝒾sgvals = 0..13 giving indication to confirm
that the truncated states should not be selected. The bottom
right figure gives a more objective confirmation over the de-
termination of the optimal order by representing the M-test
values 𝑀 𝑗 , for 𝑗 indexing all the 14 selected states. This
figure also represents the survival function of the 𝜒2 (ℎ𝑛𝑦 )
law for ℎ𝑛𝑦 = 18. The survival function is denoted sf (𝑥), and
defined as sf (𝑥) =1−cdf (𝑥) where "cdf" is the cumulative
distribution function of the 𝜒2 (ℎ𝑛𝑦 ) law. The survival func-
tion gives the probability of having the indicator 𝑀 superior
to a value 𝑚.

sf (𝑚) = Pr(𝑀>𝑚) (20)

In the above, Pr(•) denotes the probability of the event
in argument. In this article, the rejection probability of
the M-test is fixed at 𝑝0 = 0.05. The intersection of the
horizontal line at 𝑝0 with the 𝜒2 survival function gives
the threshold over M-test values, denoted 𝑚0 and verifying
Pr(𝑀 >𝑚0) = 𝑝0. If the hypothesis 𝐻

( 𝑗 )
0 is true for a state

𝑗 , the M-test value 𝑀 𝑗 should be low. More precisely,
the probability of having 𝑀 𝑗 higher than 𝑚0 is 𝑝0 = 0.05.
Figure 4 shows that, for all the selected states, the indicator
𝑀 𝑗 takes values higher than 𝑚0. These values are too high
to confirm hypothesis 𝐻

( 𝑗 )
0 for 𝑗 indexing the selected states

which leads to reject this hypothesis for each of these states.
Hence, all the selected states are considered as physical
states, and the determination of the optimal order through
M-test leads to 𝑛𝑥,m-test = 14. As the theoretical optimal

order is 𝑛𝑥 = 12, the order determination through M-test is
considered close to the expected model order determination.
This model order determination has required two M-tests.
It can be described through an iterative procedure defined
by the below list of instructions.

Estimate Oℎ and 𝑋 𝑓 from eq. (12) selecting all states (𝑛𝑥 = ℎ𝑛𝑦)
output: Ôℎ, 𝑋 𝑓

Initialize loop index: 𝑖 = 0
repeat

Perform M-test over the 𝑛𝑥 selected states
output: 𝑛𝑥,m-test 𝑖

⊲ 𝑛𝑥,m-test 𝑖 number of physical states verifies 𝑛𝑥,m-test 𝑖 ≤ 𝑛𝑥

if 𝑛𝑥,m-test 𝑖 < 𝑛𝑥 then
converged = False
𝑛𝑥 ← 𝑛𝑥,m-test 𝑖

Update Ôℎ,𝑋𝑓 selecting 𝑛𝑥 states in truncated SVD eq. (11-12)
Increment loop index: 𝑖 ← 𝑖 + 1

else
converged = True ⊲ all selected states are physical

until converged

Alg. 1: Iterative M-test for order determination.

After the determination of the optimal model order, the
estimated modal parameters have been compared to the
reference modal parameters defining the numerical model.
Figure 5 shows the estimation results for natural frequen-
cies and damping ratios. Reference and estimated modes
are sorted by increasing values of natural frequencies with
a mode index denoted 𝒾mode. Estimation results of natural
frequencies are close to reference natural frequencies from
𝒾mode = 1 to 6. Mode 𝒾mode = 7 takes a natural frequency
value much higher than excited frequency band leading
to consider this mode has a numerical mode despite the
fact that the M-test detects it as a physical mode. The
natural frequency of modes 𝒾mode=1..6 is estimated with a
low relative error |Δ 𝑓/ 𝑓 | ≤ 0.1 %. The damping ratio estima-
tion of modes corresponding to 𝒾mode=1, 2, 4 are close to
reference values with a relative error |Δ𝜉/𝜉 | ≤ 5 % whereas
modes corresponding to 𝒾mode=3, 5, 6 are less close to ref-
erence values exhibiting a relative error between 14 and
29 %. Estimated natural frequencies and damping ratios are
considered close to the reference values despite few modes
which can exhibit estimation errors over damping ratios.

4 Application to a composite
rotating fan

The method presented in previous sections is applied over
experimental data from a modal test of a composite rotating
fan in vacuum condition. The first subsection describes the
experimental procedures used to obtain the experimental
data. The second subsection presents the modal parameter
estimation results.
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Fig. 6: Cross-sectional view of test rig PHARE#1.

4.1 Experimental facility and protocol

Experimental data are collected using a test rig dedicated
to the measurements of full-scale machine dynamics in
rotation and vacuum conditions. A cross-sectional view of
the experimental facility, called PHARE#1, is presented in
fig. 6. The fan specimen, mounted on the shaft of the test
vehicle, is placed inside the vacuum chamber. This chamber
has shielded walls with a useful diameter of 3.0 m and 3.6 m
along the axis. It is strongly fixed to a seismic concrete bloc
mounted on suspension springs and dampers in order to
isolate the test rig against environmental vibrations and
to prevent any transmissions of critical vibration levels
to the building in case of heavy accidental loads. The
shaft is driven by a 700 kW electric motor which can go
up to the operating speed of the fan specimen and allows
sufficiently fast ramp up and down in vacuum condition
for experimental and security requirements. The driving
shaft passes through the wall of the chamber with a special
dynamic sealing which uses a circumferential carbon ring
seal. A rotary vane vacuum pump coupled with a Roots
pump maintain the pressure of the vacuum chamber at
0.1 mbar.

Each blade of the investigated fan specimen is instru-
mented with a set of interconnected piezoelectric patches
composed of Lead Zirconate Titanate (PZT-5H) as illus-
trated in fig. 7. This figure also provides a picture of the
fan specimen installed for tests. Blades are numbered ac-
cording to the rotation direction from 𝑝 = 0 to 𝑛𝑠−1 with
𝑛𝑠 denoting the number of sectors. The excitation system
generates forward travelling wave by controlling the phase
difference between the piezoelectric patches of each of the
blades [23]. Moreover, the excitation signal is chosen with
steps in frequency leading to the following expression for
the excitation signal of blade indexed by 𝑝.

𝑢𝑝 (𝑡 ) = 𝑎 sin
(
2𝜋 𝑓 (𝑡 )𝑡 − 2𝜋

𝑛𝑠
𝑑𝑝

)
In the above, 𝑎 denotes the amplitude of the excitation sig-

piezoelectric
patches

strain gauge

Fig. 7: Blade and fan instrumentation.

nal, 𝑑 denotes the spatial harmonic and 𝑓 (𝑡 ) is a stepped
function from 𝑓ini to 𝑓end by steps of 𝛿 𝑓 and performing
𝑛exci oscillations for each frequency step. More details over
the experimental rules used to choose these parameters are
provided in a previous article [21]. Excitation signals are
amplified, passed into the rotating frame using an assem-
bly of 18 circuits slip ring and passed through the vacuum
chamber wall using a set of wires and connector stages
placed inside the hollow shaft. Each of the blades is also
instrumented with a strain gauge close to the leading edge
(fig. 7). Wires route the strain measurements through the
hollow shaft to the embedded telemetry unit which sends
measurement signals to the fixed telemetry unit through
radio waves. Strain measurements are simultaneously sam-
pled at 𝑓𝑠 = 2·103 Hz. The experimental protocol aims at
measuring frequency responses of the fan at constant con-
ditions. The overall behavior of the test rig is monitored
by numerous dynamic, displacement and thermal sensors.
Moreover, the modal tests have been performed at stabilized
rotation speed.

4.2 Estimation Results

The experimental protocol described in the previous sub-
section 4.1 is particularly adapted to measure frequency
responses of a rotating fan in vacuum condition. This arti-
cle investigates the possibility to use subspace identification
methods to estimate the modal parameters of the fan spec-
imen with these measurements. To this end, the modal
parameter estimation procedure using N4SID and a model
order determination through M-test has been applied to
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Fig. 8: Model order determination by M-test over a modal test of a
full-scale composite rotating fan.
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Fig. 9: Estimation results with N4SID and model order determination
through M-test.

modal tests and compared to estimation results obtained
over the same modal tests with a method based on Least
Square Rational Function (LSRF) [21]. This section describes
more precisely the modal parameter estimation results ob-
tained over a modal test targeting the first bending mode at
50%Ω𝑛, where Ω𝑛 denotes the nominal rotation speed of the
fan. The excitation has been chosen with a spatial pattern as
a forward travelling wave with two nodal diameters. Exper-
imental signals are composed of the strain measurements
close to leading edge for each of the 𝑛𝑠 = 18 sectors as well
as the excitation signal sent to the piezoelectric patches of
the reference sector. The horizon of the subspace identifica-
tion method has been chosen as ℎ = 10. In order to reduce
the computational cost of the subspace estimation method,
the experimental signals have been resampled at 𝑓 ′𝑠 = 2.7𝑈.𝐹

after applying an ideal numerical filter. Figure 8a illustrates
the singular values of the data matrix 𝐻 (eq. 8) possessing
ℎ(2𝑛𝑦+2𝑛𝑢) = 380 singular values (𝑛𝑦=18 and 𝑛𝑢=1). Fig-
ures 8b-c show more specifically the model order deter-
mination procedure through iterative M-test (algorithm 1).
Figure 8b shows model order determination results of a first
M-test applied on estimation results using N4ISD without
any truncation at the complexity reduction step (eq. 11),
so selecting 𝑛𝑥 = ℎ𝑛𝑦 = 180 states. The right figure of fig. 8b
shows M-test values obtained for these selected states as
well as the threshold 𝑚0 computed from the survival func-
tion of 𝜒2 (ℎ𝑛𝑦 ) and rejection probability 𝑝0 = 0.05 leading
to determine 𝑛𝑥,m-test 0 = 42 states as physical states. Fig-
ure 8c brings additional model order determination results
over fig. 8b analysis by representing the M-test values for
N4SID estimations with a truncation to 𝑛𝑥 = 𝑛𝑥,m-test 0 = 42
states. This figure shows that 𝑛𝑥,m-test 1 = 42, as for each of
the 42 states the associated M-test value is higher than
the threshold 𝑚0. Hence, all the selected states used to
obtain these estimation results are associated with physi-
cal states which concludes the model order determination
procedure. Modal parameter estimation results with N4SID
and the above described model order determination proce-
dure have been compared with estimations obtained using
another method which is based on LSRF applied over the
measured frequency response functions of the same modal
test. Moreover, among all the estimated modes, 7 modes
have their natural frequency in the interval [ 𝑓ini, 𝑓end]. Fig-
ure 9 represents the natural frequency and damping ratio
of these modes with respect to their index of estimation
denoted 𝒾n4sid. Estimation of the natural frequency and the
damping ratio of the mode responding the most among
the estimated modes with LSRF are also reported on this
figure. These values are respectively denoted 𝑓1 and 𝜉1.
Among the modes estimated with N4SID, mode indexed
𝒾n4sid=11 takes a natural frequency close to 𝑓1 and a damp-
ing ratio also close to 𝜉1. Indeed, the relative difference
between these values is |Δ 𝑓/ 𝑓 | = 0.2 % and |Δ𝜉/𝜉 | = 5 %. The
same estimation procedure applied over a second bending
mode has also led to N4SID estimated modes containing
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a mode which has close natural frequency and damping
ratio values compare to the LSRF estimated mode which
responds the most; however with a larger relative difference
for damping ratio: |Δ 𝑓/ 𝑓 | = 0.1 % and |Δ𝜉/𝜉 | = 33 %. These
results indicate that subspace identification method N4SID
combined with a model determination through M-test can
also provide estimation of natural frequency and damping
ratio to characterize the dynamics of a full-scale rotating fan
in vacuum condition excited with a forward travelling wave.
Compare to other estimation methods, the investigated sub-
space identification method has the advantage of proposing
an objective model order determination procedure based on
statistical tests over the columns of the observability matrix.

Conclusion

In this article, an estimation procedure based on N4SID al-
gorithms and model order determination through iterative
M-test is proposed. In a first step, N4SID algorithms are ex-
plained and several model order determination techniques
are reviewed. The determination of the truncation order
through iterative M-test has the advantage of proposing
an optimal order using a threshold based over a rejection
probability. This estimation procedure is assessed using a
numerical model defined from experimental modal anal-
ysis of a full-scale composite fan in rotation and vacuum
conditions. Natural frequencies estimated over the numeri-
cal model are close to the reference values with a relative
error inferior to 0.1 %. Application over experimental data
shows that estimated modes contain a mode having natu-
ral frequency and damping ratio which can be considered
close to the most responding mode estimated with another
estimation method.

This study provides promising results for modal parame-
ter estimation of rotating bladed disks with subspace iden-
tification methods. Indeed, these methods have several
advantages to face the estimation challenges imposed by
the modal analysis of these systems. In particular, the effi-
cient processing of vector-valued time series makes these
methods interesting candidates to study system dynamics
exhibiting high modal density. In addition, the experi-
mental analysis of weakly nonlinear phenomena for which
linearization assumption holds or time varying effects, can
benefit from the efficient model order determination tech-
niques proposed by these methods. Finally, it would be
interesting to pursue the assessment of these estimation
methods for experimental characterizations of stages of
rotating machine exhibiting time varying effects. Indeed,
the direct use of temporal measurement data can be an
important asset to study these phenomena.

Nomenclature

SVD Singular Value Decomposition
N4SID Numerical algorithms for SubSpace State-Space

IDentification
LSRF Least Square Rational Function
𝑈.𝐹,𝑈.𝑇 unit of frequency and time (𝑈.𝑇 = 1/𝑈.𝐹)
𝑈.𝐷𝑅 unit of damping ratio
𝑥∗ complex conjugate of 𝑥
𝐴𝑇 , 𝐴𝐻 transpose matrix and Hermitian conjugate of 𝐴

I identity matrix
∥𝐴∥F Frobenius norm of matrix 𝐴

sgvals(𝐴) singular values of matrix 𝐴

𝐴⊣ pseudoinverse of matrix 𝐴

E[𝑎] statistical average of 𝑎
cov [𝑎] covariance matrix of 𝑎
Pr (A) probability of event A
cdf𝑋 (𝑥) cumulative distribution function
sf𝑋 (𝑥) survival function sf𝑋 (𝑥) = 1−cdf𝑋 (𝑥) = Pr (𝑋>𝑥)
⊗ tensor product
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A Estimation of 𝑀 𝑗

This appendix proposes more details over the estimation of
the inverse of the covariance of the column 𝑗 of the observ-
ability matrix, which is denoted cov[O ( 𝑗 )ℎ ]−1. Indeed, this
quantity is required to compute the M-test statistics and
this article investigates the possibility to apply this statisti-
cal test to subspace identification methods with measure-
ments of the excitation signals. To estimate this covariance,
one can use the following set of equations which can be
obtained using eq. (12) and (7b).

Ôℎ = 𝑌 𝑓 𝑋
⊣
𝑓 (21)

Ôℎ − Oℎ = Ψℎ𝑈 𝑓 𝑋
⊣
𝑓 +

⌢
𝑉 𝑓 𝑋

⊣
𝑓 (22)

The covariance of the observability matrix can be expressed
in tensor notations as follows.

cov [Oℎ]𝛼 𝑗
𝛽𝑖 = E

[(
Ôℎ − Oℎ

)𝛼
𝑖

(
Ôℎ − Oℎ

) 𝑗

𝛽

]
As 𝑈 𝑓 is considered deterministic, the associated term in
eq. (22) does not contribute to the variance of the observ-
ability matrix. Denoting X the tensor associated with matrix
𝑋⊣𝑓 and V the tensor associated with matrix

⌢
𝑉 𝑓 , it is possible

to obtain the following estimation of the covariance of the
observability matrix.

cov [Oℎ]𝛼 𝑗
𝛽𝑖 = E

[
V𝛼𝑛 X

𝑛
𝑖 V

𝑚
𝛽 X 𝑗

𝑚

]
= cov [V]𝛼𝛽 X𝑛𝑖 X

𝑗
𝑛

The above estimator makes use of the hypotheses 𝑥𝑡 is
independent of (𝑣𝑡 ,𝑤𝑡 ), the perturbations (𝑣𝑡 ,𝑤𝑡 ) are white
noise processes and the ergodicity assumption to compute
E[X𝑛𝑖X 𝑗

𝑚 ]. With the operator of vectorization, denoted
"vec", which consists in stacking column of a matrix to
transform it into a vector, the estimation of covariance of
the observability matrix and its inverse are expressed as
follows [20].

cov
[
vec (Oℎ)

]
=

(
cov

[
⌢
𝑉 𝑓

] )
⊗
((
𝑋⊣𝑓

)𝑇
𝑋⊣𝑓

)
cov

[
vec (Oℎ)

]−1
=

(
cov

[
⌢
𝑉 𝑓

]−1
)
⊗
(
𝑋 𝑓 𝑋

𝑇
𝑓

)
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