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SUMMARY
Early host defense eliminates many viruses before infections are established while clearing others so they
remain subclinical or cause only mild disease. The field of immunology has been shaped by broad concepts,
including the pattern recognition theory that currently dominates innate immunology. Focusing on early host
responses to virus infections, we analyze the literature to build a working hypothesis for the principles that
govern the early line of cellular antiviral defense. Aiming to ultimately arrive at a criteria-based theory with
strong explanatory power, we propose that both controlling infection and limiting inflammation are key
drivers for the early cellular antiviral response. This response, which we suggest is exerted by a set of
‘‘microbe- and inflammation-restricting mechanisms,’’ directly restrict viral replication while also counteract-
ing inflammation. Exploring the mechanisms and physiological importance of the early layer of cellular anti-
viral defense may open further lines of research in immunology.
INTRODUCTION: EARLY CELLULAR DEFENSE AGAINST
VIRUS INFECTIONS

Living organisms are constantly exposed to viruses, as demon-

strated by the high abundance of viral genomic material in

seawater and sewage1 and even in the airways of people not ex-

hibiting disease symptoms.2,3 This suggests that our immune

system eliminates many viruses before they establish infection

or does not recognize them as threats, as they are controlled

without effects on physiological cellular functions. Indeed, the

rapid effectuation of host defenses against invading viruses at

the portals of entry or access points into organs is of central

importance for the ability of the host to successfully fight mi-

crobes and for the eventual outcome of infections.4 The impor-

tance of early host-pathogen encounters is further emphasized

by the wealth of viral mechanisms known to evade and manipu-

late host cells.5–7 Despite this, the early mechanisms of host de-

fenses that guard themucosal surfaces and target organs to pre-

vent establishment of infections remain poorly explained.

Unifying concepts and theories aid progress in science. They

are a prerequisite for the forming of scientific communities,

which can be the basis for discussions, meetings, collabora-

tions, and development of ideas. Therefore, constructing the
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right conceptual framework for understanding the very early

events in innate immune responses to infections may release a

scientific potential that could also lead to societal progress.

For instance, concept-driven new knowledge on the immediate

immune response to microbial challenge may advance the

development of vaccines, pan-antiviral therapies, and oncolytic

virus therapy, among others, and could also lead to identifying

novel primary immunodeficiencies and autoimmune disorders

with immediate benefit for patients.

In this perspective, we examine whether the current theories in

innate immunology can explain the early events in host defense

against virus infections. Finally, building on published data and

expanding from previous conceptual discussions by us and

others,4,8,9 we propose that the guarding of homeostasis

through the immediate restriction of viruses and limitation of

pathological inflammation plays a large role in the early line of

cellular defense against virus infections.

ARE PRRs MEDIATING THE FIRST LINE OF ANTIVIRAL
DEFENSE?

Immunology as we understand it today is based on two major

paradigms, namely the theories of clonal selection and pattern
ber 24, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Type I IFN activity in antiviral defense

Type I interferons (IFNs) are expressed by cells after sensing of viruses by PRRs. IFNs are secreted and can activate adjacent cells through the IFNAR1/2 complex

to induce IFN-stimulated genes (ISGs). Many ISGs directly restrict viral replication, while others stimulate inflammation and promote lymphocyte activation and

specific immunity.
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recognition.10–12 For the purpose of this perspective, the clonal

selection theory, which seeks to explains adaptive immune re-

sponses, is not highly relevant and will not be discussed further.

The pattern recognition theory states that cells are endowedwith

a limited number of germline-encoded pattern recognition re-

ceptors (PRRs), which bind conserved microbial and mis-

located self-molecules termed pathogen-/damage-associated

molecular patterns (PAMPs/DAMPs) and activate the cells ex-

pressing the PRR. Certain PRRs can also be activated upon

disruption of specific cellular processes by virulence factors,

so called ‘‘effector-triggered immunity.’’13 The pattern recogni-

tion theory was proposed by Charles A. Janeway in 198912

and was followed by the identification of cell-associated PRRs

in flies, mice, and humans.14–16 In this perspective, we define

PRRs as germline-encoded receptors that sense PAMPs and

DAMPs to instigate signaling cascades ultimately activating

auto- and paracrine antimicrobial activity and most often also

proinflammatory activities. This does not necessarily include all

primordial PRR systems found in prokaryotes. We chose this

definition sincewe aremainly aiming to explain early cellular anti-

viral defense in multicellular organisms. For the present discus-

sion, the most important aspect of PRRs is their downstream

activities.

Sensing of PAMPs and DAMPs by PRRs evokes signaling ac-

tivity eventually leading to host defense but also potentially in-

flammatory diseases if activated excessively or over a prolonged

period of time.17–24 In the case of virus infections, PRR-driven in-

duction of the antiviral cytokines type I interferons (IFN-Is) is
2 Cell Reports 43, December 24, 2024
pivotal and plays an important role in early antiviral re-

sponses25–29 (Figure 1). This has led to the general perception

in the field of innate immunity that PRRs constitute the first line

of defense against infections. However, as will be discussed

below, there are key observations that do not fully fit this

hypothesis.

Since the proposal of the pattern recognition theory, the

concept has ‘‘drifted’’ so that it is now commonly stated in sci-

entific literature that PRRs constitute the first line of defense

against infections.30–38 This has likely been driven by the fact

that PRRs are indeed germline encoded and can directly sense

microbial molecules to induce signaling and expression of anti-

viral cytokines, most notably IFN-Is and a panel of antimicrobial

effector activities. The idea of pattern recognition constituting

the first line of host defense was not proposed by Janeway in

his original essay or subsequent publications,12,39 but it was

developed over time by scientists who worked in the realm of

the theory.30–38 However, a series of data published within

the past few years do not support this view of early antiviral de-

fense. First, mouse experiments where the animals are infected

at mucosal surfaces have shown that detectable IFN expres-

sion and induction of gene expression are not observed within

the first day of infection,40–42 and IFN deficiency does not

translate to elevated virus replication until day 2 of infection.40

Such data show a delayed nature of the IFN response relative

to the first host-pathogen encounter. Second, strong PRR acti-

vation often involves a two-step processes,43,44 as well as

induced expression of PRRs or signaling proteins, and also
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requires PAMP levels to be above a given threshold to induce

signaling.24,45,46 In the context of the early stages of a virus

infection, this means that PRR activation requires the viral

load to increase to a certain level to induce substantial

signaling and also to be around long enough to activate signif-

icant PRR signaling after the pathway has been fully primed.

Third, over the past few years, defects in genes encoding

constitutive antiviral immune mechanisms acting upstream of

PRRs in host defense have been identified to confer suscepti-

bility to specific virus infections.47–52 This clearly indicates a

non-redundant role for constitutive immune mechanisms in

antiviral defense. Fourth, several reports have now shown

that defects in specific constitutive immune mechanisms lead

to elevated accumulation of viral nucleic acids and associated

IFN-I expression,53,54 indicating host defense activities acting

upstream of PRRs. Fifth, prospective studies have shown that

human pathogenic respiratory viruses are frequently detected

in the human airways without ongoing or subsequent develop-

ment of disease.2,3 This suggests that subclinical control of vi-

rus infections is highly frequent. Sixth, some cell types do not

use IFNs as the major system to fight viruses. Most notably,

stem cells have been reported to have particularly high basal

expression of a specific set of antiviral genes and hence have

a pre-set antiviral program in place.55,56 Since inflammatory re-

sponses compromise the plasticity of stem cells,57 this could

indicate that in this biological niche, a high constitutive energy

cost is beneficial to avoid the potential consequences of local

inflammation. Although none of the above examples alone

can make a compelling case, they collectively support the

conclusion that PRRs and IFNs, and hence the pattern recog-

nition theory, cannot be applied as a unifying and universally

valid concept to explain the earliest line of cellular defense

against virus infections.

EXISTING KNOWLEDGE ON IMMEDIATE ANTIVIRAL
MECHANISMS

Based on the above discussion, it can be argued that current

theories in immunology fail to explain the early cellular defense

against virus infections (Figure 2A). We propose that the central

phenomenon in immunology that remains to be conceptualized

is the following explanandum: how do cells and tissues exert

early antiviral host defense activities without compromising

physiological functions? In this work, we use ‘‘disturbance of ho-

meostasis’’ as a term to describe alterations of physiological

functions.

To start to approach the question posed above, we will first

look into some of the biological processes and systems that

have been shown to exert direct cellular antiviral activity (Fig-

ure 2B). The first category of processes is direct restriction,

whereby host molecules block specific steps in the replication

cycle of viruses. This category includes restriction factor pro-

teins, antimicrobial peptides, and also specific host- or micro-

biota-derived metabolites. For instance, SAMHD1 depletes cells

for the pool of deoxynucleoside triphosphates, hence limiting the

expression of a panel of viruses with a DNA stage in their replica-

tion, such as human immunodeficiency virus (HIV)-1 or herpes

simplex virus 1 (HSV-1)58–60 (Table 1). In addition, several defen-
sins bind virus surface proteins and cause aggregation, as seen

for influenza A virus (IAV),129 whereas host metabolites can alter

the cellular microenvironment or form post-translational modifi-

cations of viral proteins to impair replication.106,130 The mode

of ‘‘virus sensing’’ is not confined to a pathogen-specific molec-

ular pattern, although this can be the case, as illustrated by

TRIM5a, which senses molecular determinants on the retroviral

capsid.131 Some restriction factors deplete or alter central bio-

molecules required for virus replication in infected cells,

including SAMHD1 and APOBEC3.58,59,132 Yet another category

of restriction factors binds to host virus-dependency factors,

thus competing for interactions with proteins involved in virus

replication or targeting them for proteosomal degradation. These

categories are exemplified by TMEFF1 and TRIM7, respectively,

both elevating the threshold for productive virus replication.62,105

Interestingly, several of the virus restriction factors additionally

exert antagonistic activity on PRR activation, either through a

reduction of the level of PAMPs54 or through blockage of PRR

signaling by a specific molecular mechanism.63 For instance,

TRIM7 targets the adaptor protein STING from the DNA-acti-

vated cGAS-STING pathway for degradation,63 while MARCH2

facilitates the degradation of NEMO, which is used in multiple

PRR signaling pathways, including the RNA-sensing RIG-like re-

ceptor-MAVS pathway.74

The second category of direct antiviral mechanisms is auto-

phagy, a process through which cells sequester cytoplasmic

content in double-membrane vesicles and target them for degra-

dation by the lysosomal pathway.133 In the case of virus infec-

tions, this may be the digestion of incoming viruses or virus repli-

cation ‘‘factories.’’ As to how the cellular autophagy machinery

senses virus infections, several possibilities exist. First, auto-

phagy is a constitutive process in cells, and hence the basal

and unspecific autophagic activity may contribute to antiviral ac-

tivities in the cytoplasm. Second, cells are endowed with selec-

tive autophagy receptors, such as p62/SQSTM1, which detect

ubiquitinated virions and recruit the viral cargo to the autophago-

some.111,134 TRIM family proteins have been suggested to be

central for the sensing of a broad range of viruses, including

IAV, HSV-1, and encephalomyocarditis virus and linking to the

autophagy machinery.135,136 Third, cellular systems to sense

different forms of cellular stress, such as endoplasmic reticulum

(ER) stress andmetabolic alterations, have been shown to trigger

autophagy,137–139 although this can serve both pro- and antiviral

roles. As was also observed for a panel of restriction factors,

autophagy exerts negative regulation of many PRR signaling

pathways.112–114 This occurs through a diverse set of mecha-

nisms. In the case of the cGAS-STING pathway, autophagy tar-

gets the adaptor protein STING for degradation, thus limiting

signaling activities.112 Finally, the close relation between auto-

phagy and viruses is further emphasized by several autophagy

proteins directly restricting virus replication independently of

autophagy.140

A third category of antiviral mechanisms involves cell death.

The death of cells deprives viruses of their ability to replicate,

and cell deathmechanisms can, therefore, exert antiviral activity.

Data from an evolutionary broad range of species spanning from

invertebrates to vertebrates and including a diverse set of vi-

ruses, such as vaccinia virus, Drosophila C virus, and Sindbis
Cell Reports 43, December 24, 2024 3



Figure 2. Cellular processes to interfere

with viral replication

(A) Illustration of principle levels of host defense

against virus infections. We focus on mechanisms

and theory in early cellular antiviral defense.

(B) Host cells can interfere with virus infection by

depleting essential biomolecules (e.g., nucleo-

tides), modulating the accessibility of host virus-

dependency factors, eliminating specific viral

molecules, or responding to virus-induced cellular

stress. Restriction factors, autophagy, and

apoptosis represent three key categories of host

cell interference with virus replication.
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virus, support the conclusion that the cell death of infected cells

often exerts an antiviral defense and contributes to the early

containment of infections.119–124 The understanding of the trig-

gers of antiviral apoptosis remains unresolved and is compli-

cated by the fact that both PRR-dependent and -independent

mechanisms induce apoptosis during virus infections. The

PRR-independent modes of induction of cell death during virus

infections are within the overall category of cellular stress and

include the depletion of anti-apoptotic proteins in infected
4 Cell Reports 43, December 24, 2024
cells,141–143 accumulation of reactive ox-

ygen species,144 ER stress pathways in

the unfolded protein response,145,146

and p53-dependent apoptosis.123,147

Apoptosis has long been appreciated to

be a non-inflammatory form of cell death

due to the rapid uptake and digestion of

the apoptotic cells by macrophages,

with M2 macrophages having the highest

phagocytic activity.148 In addition, more

recent data also show that the apoptotic

caspases-3 and -7 specifically block

signaling from the cGAS-STING pathway

following mitochondrial DNA leakage and

also through mediation of activation-

induced cell death.125–127 In addition to

the categories of early antiviral defense

discussed above, other mechanisms

have also been identified, including RNA

interference, intracellular nucleases, and

soluble lectins.149–152 Although these

latter mechanisms are not studied in the

same detail in relation to virus infections

and will not be discussed in detail here,

the available data suggest both inhibition

of virus replication and PRR signaling,

mechanisms that are illustrated by the

ability of the lectin surfactant protein D

to bind and directly neutralize IAV as

well as the elevated inflammation in the

lungs of IAV-infected mice lacking the

lectin.152

For all the antiviral systems discussed

above, it is important to mention that

several viral immune-evasion mecha-
nisms have been identified.5,6,153 In addition, human genetics

studies have demonstrated non-redundant roles for restriction

factors and autophagy in the protection against severe infec-

tions.47–51 Collectively, these two categories of data provide

strong evidence in favor of the importance of early cellular host

defense mechanisms. The above-described antiviral activities

work through very diverse sets of mechanisms. However, they

share the common features that they are immediately ready to

act, generally do not involve signal amplification, and exert their



Table 1. Examples of MIMs and their dual control of viruses and PRR signaling

Category of effector

mechanism Viruses restricted PRR pathways controlleda Reference

Restriction

SAMHD1b HIV-1, HSV-1, EBV,

VACV, HBV

cGAS-STING,

RLR-MAVS

Maelfait et al.,54 Goldstone et al.,58

Laguette et al.,59 Hollenbaugh et al.,60

Maharana et al.61

TRIM7c CVB3, NoV cGAS-STING,

RLR-MAVS

Fan et al.,62 Yang et al.,63,65 Luptak et al.64

SLFN5b HIV-1, HSV-1 IFN signaling (STAT1) Ding et al,.66 Kim et al.,67 Arslan et al.68

Tetherina HIV-1, VSV, HSV-1,

SARS-CoV-2

RLR-MAVS Neil et al.,69 Weidner et al.,70 Blondeau et al.,71

Martin-Sancho et al.,72 Jin et al.73

MARCH2c HIV-1 RLR-MAVS Chathuranga et al.,74 Zhang et al.75

MARCH8b IAV, VSV, HIV-1 cGAS-STING Tada et al.,76 Villalon-Letelier et al.,77 Yang et al.78

APOBEC3sa HIV-1, HCoV-NL63,

HBV, AAV

cGAS-STING Stavrou et al.,53 Sheehyet al.,79 Milewskaet al.,80

Janahi and McGarvey,81 Narvaiza et al.82

SIRT3b HCMV, AdV, IAV NLRP3 inflammasome Koyuncu et al.,83 Liu et al.84

TRIM28/KAP1b HIV-1, ERVs RLR-MAVS Allouch et al.,85 Jacobs et al.,86 Tie et al.87

MORC3b ERVs, HSV-1 IFNB1 gene transcription Groh et al.,88 Sloan et al.,89 Gaidt et al.90

ZAPa SINV, HCMV,

JEV, HIV-1

RLR-MAVS Kozaki et al.,91 Lin et al.,92 Chiu et al.,93 Zhu et al.94

LL-37c RSV, IAV AIM2 inflammasome;

cGAS-STING

Currie et al.,95 Tripathi et al.,96

Dombrowski et al.,97 Chiliveru et al.98

Surfactant protein Dc IAV, HIV-1,

SARS-CoV-2

TLR4 Meschi et al.,99 Hartshorn et al.,100

Hsieh et al.,101 Yamazoe et al.102

UPF1, SMG5,

SMG7 (NMD)c
SFV TNFA and IL6

mRNA stability

Balistreri et al.,103 Mino et al.104

TMEFF1 HSV-1, HSV-2 – Chan et al.,52 Dai et al.105

Succinate IAV RLR-MAVS Guillon et al.,106 Xiao et al.107

Lactate HSV-1, HSV-2, HIV-1 RLR-MAVS Isaacs and Xu,108 Tyssen et al.,109 Zhang et al.110

Autophagy

IAV, SARS-CoV-2,

SINV, PoV, HSV-2, VZV

cGAS-STING,

RLR-MAVS,

NLRP3 inflammasome

Hait et al.,50 Brinck Andersen et al.,51

Orvedahl et al.,111 Prabakaran et al.,112

Tal et al.,113 Nakahira et al.,114

Martin-Sancho et al.,115 Wang et al.,116

Gassen et al.,117 Heinz et al.118

Cell death

Apoptosis VACV, DCV, SINV, IAV cGAS-STING, RLR-MAVS Chattopadhyay et al.,119 Kerr et al.,120

Nainu et al.,121,122 Liu et al.,123,124 Rongvaux et al.,125

White et al.,126 Reinert et al.,127 Huang et al.128

AAV, adeno-associated virus; AdV, adenovirus; AIM2, absent in melanoma; cGAS, cyclic GMP-AMP synthetase; CVB3, coxsackievirus B3; DCV,

Drosophila C virus; EBV, Epstein-Barr virus; ERV, endogenous retrovirus; HBV, hepatitis B virus; HCMV, human cytomegalovirus; HCoV, human co-

ronavirus; HIV-1, human immunodeficiency virus 1; HSV, herpes simplex virus; IAV, influenza A virus; JEV, Japanese encephalitis virus; MAVS, mito-

chondrial antiviral-signaling protein; NLRP3, NLR family pyrin domain containing 3; NMD, nonsense-mediated decay; NoV, norovirus; PoV, poliovirus;

RSV, respiratory syncytial virus; RLR, RIG-like receptor; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SFV, Semliki Forest virus;

SINV, Sindbis virus; STING, stimulator of interferon genes; TLR, Toll-like receptor; VACV, vaccinia virus; VSV, vesicular stomatitis virus.
aDirectly by inhibition of specific steps in the signaling pathways or indirectly through reduction of the level of PAMPs.
bSignificant basal gene expression and further induction by type I/III IFNs (>3-fold, Interferome.org).
cExpression not regulated by type I/III IFNs (<3-fold, Interferome.org).
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antiviral activity without stimulating major inflammatory activ-

ities. In fact, several of these processes inhibit PRR activation

and inflammation. Thus, the immediate antiviral response is

fast, of modest potency, and non-disruptive. This response al-

lows the elimination of modest-to-moderate immediate danger

while protecting physiological activities.
IS LIMITING INFLAMMATION AN IMPORTANT PART OF
THE EARLY RESPONSE TO INFECTIONS?

It is well described that immune responses must be controlled

after microbes have been eliminated in order to avoid unneces-

sary tissue damage and to facilitate tissue repair. This process
Cell Reports 43, December 24, 2024 5
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Figure 3. Regulation of inflammation as an important action to avoid

immunopathology

Activation of inflammation by PRRs and antigen receptors is important to

obtain effective immune responses when the fitness threat from the infection

pathogen is high. However, inflammation can also cause pathology and must

be tightly controlled. In the efferent phase of an immune response, this is

mediated by multiple mechanisms including regulatory T cells (Tregs), inter-

leukin 10, and a wealth of molecular negative feedback loops. It is not known

how inflammation is regulated in the afferent phase, but we propose that this

includes microbe- and inflammation-restricting mechanisms (MIMs).
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encompasses a wealth of mechanisms, including regulatory

T cells, interleukin 10, and molecular negative feedback loops154

(Figure 3). The absence of these mechanisms can lead to immu-

nopathology.155 In contrast, it is much less well studied whether

there are mechanisms in place imposing restriction, in the very

early steps of the host interactionwithmicrobes, on the induction

of inflammatory activities, including the activation of PRRs.

Inflammation is a very broad term and spans from subclinical

beneficial activation of antimicrobial responses to lethal acute

responses. What is important for the discussion in the present

perspective is that the strong activation of acute inflammatory

responses as well as prolonged low-/mid-grade activation of in-

flammatory responses cause pathology.

Based on several of the six points listed earlier, most notably

the requirement for super-threshold levels of PAMPs for the acti-

vation of some PRRs,24,45,46 there are reasons to believe that

there is a fitness gain by activating PRRs in a delayed manner.

This idea is further supported by the identification of specific

mechanisms through which host cells limit the activation of

PRRs, as exemplified by the DNA-activated cGAS-STING

pathway.156,157 For instance, STING is retained in the ER in an

inactive state through its interaction with cholesterol, and

cholesterol levels in the organelle are transiently reduced upon

cGAS activation to allow STING ER-to-Golgi trafficking and acti-

vation.157 Interestingly, deficiency in the gene NPC1 leads to low

levels of cholesterol on the ER, and NPC1-deficient mice show

constitutive activation of STING and develop neuroinflammation

and disease.158 These observations suggest that it is indeed
6 Cell Reports 43, December 24, 2024
important to limit early inflammatory responses and maybe

even to delay onset until the levels of microorganisms reach a

threshold.

From an evolutionary standpoint, it can be asked whether

limiting early innate immune responses provides fitness advan-

tages only in higher and long-lived organisms and hence has

emerged late in evolution. In this regard, it is interesting to note

that the Drosophila melanogaster Myc protein and the catalytic

peptidoglycan recognition protein exert negative regulation of

the innate Imd pathway, and the absence of either leads to

elevated early induction of Imd-driven gene expression and the

loss of fitness in flies.159,160 Collectively, these data suggest

that the loss of fitness due to immunopathology caused by

early, excessive activation of PRR signaling is evolutionarily

conserved. This, in turn, argues that multicellular organisms

harboring PRRs and inflammation-sensitive physiological sys-

tems need to balance the PRR-driven responses to the level of

threat posed by the invading microorganism.161 In support of

this, Drosophila populations under strong parasite pressure

have evolved to display high constitutively active humoral im-

mune defenses.162

GUARDING OF HOMEOSTASIS AS A BEARING
PRINCIPLE IN EARLY RESPONSE TO INFECTIONS

From the discussion above, we propose that the governing

principle in the very first cellular reactions to virus infections

is to interfere with replication through mechanisms that do

not disturb homeostasis (Figure 4A). We propose that this is ex-

erted by the classes of mechanisms described above, which

we collectively call microbe- and inflammation-restricting

mechanisms (MIMs). MIMs exert antiviral activity through spe-

cific effector functions and also negatively regulate inflamma-

tory activities. The idea of protection of homeostasis as a cen-

tral principle in immune responses in general has been

suggested in a previous work proposing that inflammation is

a response to deviations from homeostasis.163–165 A panel of

MIMs are listed in Table 1, including their dual control of both

virus replication and PRR signaling as discussed in the section

above.

The antiviral processes described in the previous section target

viral replication in the infected cells without disturbing at the or-

ganism level. For instance, when restriction factors selectively

target a given step in the virus replication cycle or when the pro-

teasome degrades a viral protein, it does not globally disturb

cellular balances and in fact eliminates a factor that could. Other

processes do, in addition to the blockage of virus replication, spe-

cifically support the reestablishment of the steady-state condi-

tions. For instance, autophagy eliminates dysfunctional mito-

chondria and protein aggregates.133 Thus, these systems

reestablish physiological equilibrium. This contrasts with PRR

signaling, which induces inflammation and profoundly affects

numerous processes that, in many cases, disturb physiological

cellular activities. For instance, inflammation alters neuronal func-

tion and brain development.166,167 Inflammation also impairs tis-

sue repair and wound healing,168,169 alters the electrolyte bal-

ance,170,171 and reduces body growth,172,173 particularly when

systemic and chronic.



Figure 4. MIMs

(A) Microbe- and inflammation-restricting mechanisms (MIMs) exert homeo-

stasis-protecting activity by blocking virus replication in a non-inflammatory

manner and antagonizing PRR activation and activity.

(B) Illustration of the breadth of different proposed concepts in early host

defensewith respect to time and spatial distribution relative to the infected cell.

Cell-autonomous immunity includes host defense mechanisms requiring only

the individual infected cell, at the level of sensing and execution. Intrinsic im-

munity involves host defense mechanisms present at steady state and able to

counteract infection without the requirement for infection-induced gene

expression. We previously termed these constitutive immune mechanisms.

MIMs include both of the above and hence include both constitutive and

induced as well as both cell-autonomous and paracrine antimicrobial mech-

anisms.

(C) MIMs constitute the earliest cellular defense and form a barrier for infection

and excessive inflammation. Second, the PRR-driven response gets induced
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We propose that aMIM should fulfill all of the following criteria.

(1) Exert antiviral activity independently of PRRs and antigen-

specific receptors.

(2) Respond to the presence of specific viral or cell-status-

related molecules.

(3) Eliminate virus through specific cellular effector functions

that target defined structures or activities.

(4) Eliminate virus in a non-inflammatory manner and, in

some cases, directly limit PRR activation.

This means that MIMs are able to exert their antiviral action

independently of the two main categories of immune receptors,

as well as independently of IFNs. This can include both consti-

tutive and induced antiviral effector mechanisms. At the same

time, the MIMs have molecular specificity at the levels of

both sensing and eliminating infection. This makes them clearly

distinct from antiviral barriers imposed by physical and chemi-

cal mechanisms. Finally, the antiviral action of MIMs is direct

and not associated with a cellular program evoking inflamma-

tion. Some MIMs will even have the capacity to directly limit

PRR signaling and inflammatory activities. Consequently,

proper action of MIMs counteracts excessive and prolonged

activation of inflammation. As an example of how virus-restrict-

ing mechanisms can be evaluated against the MIM criteria, an

IFN-induced restriction factor, like IFITM3, would fulfill criteria

2, 3, and 4174,175 but not criterion 1 and hence could not be

classified as a MIM. Likewise, physical barriers like tight junc-

tions would fulfill criteria 1 and 4 but not 2 and 3 and therefore

also could not qualify as a MIM.176,177 By contrast, the restric-

tion factors SAMHD1 and TRIM7, as well as the process of

autophagy, fulfill all four criteria and thus can be classified as

MIMs.50,51,54,58–61,111–118 The same is the case for the metabo-

lite succinate, which exerts direct antiviral activity against IAV

infection independently of PRRs through a molecularly defined

mechanism106 and directly blocks RIG-I-like receptor (RLR)-

MAVS signaling.107

We would like to add a specific note to criterion 4. Intuitively,

many immunologists would assume that by simply limiting infec-

tion, PRR signaling would be suppressed. While this is certainly

often correct and likely to explain the regulation of PRR activa-

tion and inflammation, there are several examples of this not be-

ing the case.178–180 Moreover, a number of restriction factors

and death modalities with antiviral activity amplify immune activ-

ities through different mechanisms.142,181,182 Therefore, the link

between a virus-restricting mechanism and inflammation is

more complex than one may anticipate. On this basis, we find

it worth including as a criterion for MIMs.

The power of a theoretical framework for a research field will

ultimately be determined by its explanatory and predictive po-

wer. Based on the criteria above, we claim that if what we are

proposing is correct, then the following predictions will also be

correct.
and amplified, thus evoking more potent defense activities but also inflam-

mation and co-stimulation of lymphocytes. Third, antigen-receptor-driven

immune responses are activated with highly specific immune responses,

memory, and inflammation.
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(1) Action of MIMs will enable elimination of infections

without causing tissue damage.

(2) Insufficient action of MIMs will impair early host defense

and lead to elevated PRR-driven inflammation.

(3) MIMs eliminate endogenous DAMPs, thus preventing

immunopathology during steady state and limiting inflam-

mation during sterile tissue damage.

(4) Organs and cell types highly sensitive to immunopa-

thology will have high activity of MIMs and rely much on

these mechanisms to eliminate danger.

(5) Body surfaces frequently exposed to invading pathogens

have high activity of MIMs.

(6) MIMs with dual antimicrobial and anti-inflammatory activ-

ity evolved with the emergence of PRRs and cellular im-

munity.

(7) The action of MIMs decreases the delivery efficiency of

several treatments. including gene therapy, oncolytic vi-

ruses, and some types of vaccines.

Future studies should examine the claims listed above. For

instance, individuals with defects in MIMs or individuals infected

with viruses evading these mechanisms would, according to

our proposal, exhibit an elevated early viral load as well as

accelerated and augmented inflammatory responses driven by

PRRs. This has indeed been observed in a series of

studies,52–54,62,105,183 although much remains to be done to

determine the generality of this phenomenon.
HOMEOSTASIS GUARDING IN RELATION TO
PREVIOUSLY PROPOSED THEORIES

Many of the immune mechanisms that we propose to form the

early cellular barrier to virus infections are constitutively active,

and we have previously reviewed this class of effector molecules

in host defense.4 Here, we have nevertheless classified the im-

mune activities into homeostasis-guarding versus disruptive,

not constitutive versus activated. Although the difference be-

tween these two ways of classification may appear marginal,

we do believe it allows for the inclusion of a panel of recently

discovered inducible early antiviral mechanisms, which we

now know control both viral replication and early inflammation

(Figure 4B). Included in the homeostasis-guarding category,

but not the constitutive category, we find, for instance, virus-

induced responses through stress pathways, such as nuclear

factor erythroid 2-relate factor (Nrf2), bone morphogenetic pro-

tein (BMP), and hypoxia-induced factor (HIF) pathways.184–188

Similarly, the antiviral activity executed by induction of pro-

grammed cell death would not be included in the category of

constitutive immune mechanisms,142 and we still do not know

whether the antiviral activity of autophagy is mediated by the

basal activity or the elevated autophagic response in infected

cells.50,111 Prior to this work, several models for the first line of

defense have been proposed.189 This includes the concepts of

intrinsic immunity and cell-autonomous host defense.8,9

Although they are both strong and with significant explanatory

power, they have limitations. For instance, intrinsic immunity is

very similar to the constitutive immune mechanisms described

above4 and thus fails to include the stress-sensing antiviral
8 Cell Reports 43, December 24, 2024
mechanisms, although there is now good evidence that they

contribute to early control of infections in a non-inflammatory

manner.121,184,185,188 Regarding cell-autonomous host defense,

this theory centers exclusively on the individual cell and does not

include paracrine antimicrobial activities such as antimicrobial

peptides or the cell-cell transfer of metabolites. Guarding of ho-

meostasis as a unifying principle for the early cellular defense

against virus infections, exerted through the action of MIMs, in-

cludes all of the above models (Figure 4C) as well as the regula-

tion of inflammation. Thus, we are of the opinion that it will pro-

vide a superior basis for further development toward a theory

for early cellular antiviral defense.

It could be argued that MIMs are already included in the im-

mune layer often described in immunology textbooks as ‘‘chem-

ical and enzymatic barriers’’ or ‘‘complement and antimicrobial

peptides/proteins.’’ However, while this conceptual framework

for antimicrobial defense has significant explanatory power

mainly for bacterial infections, it only poorly explains virus infec-

tions. In particular, it does not include the initial cellular defense

reactions against virus infections. It should be emphasized

though that we cannot exclude that MIMs and the antimicrobial

actions of extracellular proteins over time can be conceptualized

under a common framework. This will require more experimental

data and an intense effort in scientific theory building.

As is always the case when attempts are made to rigidly cate-

gorize biological systems, classifications are not as black and

white as proposed. In fact, interactions between theories are

seen broadly in immunology, as illustrated, for example, by

interactions between the immune responses driven by clonal se-

lection and pattern-recognition-activated responses due to co-

stimulation driven by PRRs. As such, theories in immunology

are not incommensurable because even though they focus on

distinct phenomena (e.g., lymphocytic receptors versus PRRs),

the degree of integration of the different immunological compart-

ments is so strong that most of the theoretical work consists of

identifying phenomena of interest (here, early cellular antiviral de-

fense), proposing general explanatory mechanisms (here, MIMs),

and finally integrating both temporally and mechanistically

different local theories into a comprehensive picture of the im-

mune response. Below, we give a couple of examples of this in

relation to the framework we are proposing. First, there are clear

interactions and overlaps between MIMs and PRR-driven im-

mune responses. Second, there are overlaps in effector functions

used to exert antiviral activity. An example of this is restriction fac-

tors expressed at significant basal levels but further inducedupon

PRR activation or cytokine stimulation.190–193 Third, tonic

signaling by the IFN-I receptor is believed to contribute to the

basal level of resistance against infections and to setting the

threshold for susceptibility to infections with a panel of viruses,

including West Nile virus, IAV, HSV-1, SARS-CoV-2, and

others.194–198 This immunological tone may in fact be driven by

constitutive low-grade PRR signaling driven by microbiota,

endogenous retroviruses, or endogenous immunostimulatory

RNA species.195,197,199 Fourth, the function of a given biological

process is context dependent and hence may change during

the course of an infection. This is also the case for MIMs. For

instance, while autophagy is both antiviral and exerts negative

regulation of PRRsignaling, it also promotes antigen presentation
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bydendritic cells.133 Likewise,whileHIF1a signaling inducesearly

antiviral activity,188,200 it can also promote the differentiation of

macrophages into proinflammatory M1 macrophages and shape

the nature of the CD4+ T cell response.201,202 Finally, themetabo-

lite succinate exerts direct restriction IAV replication but also pro-

motes the aforementioned M1 macrophage differentiation.106

These examples of ‘‘gray zones’’ for the idea we are proposing

need to be explored in more detail, but it is tempting to speculate

that someMIMs exert homeostasis-protecting activity in the early

phases of an infection but can secondarily support disruptive im-

mune mechanisms if activated over extended time periods.

REQUIREMENTS FOR CHANGE IN EXPERIMENTAL
SYSTEMS WHEN CHANGING RESEARCH FOCUS

When exploring a new scientific question with a different focus

than the one it originates from, several things have to be changed

in the design of studies. This includes not least the experimental

model systems, as results obtained in experimental science are

highly dependent on the choice of relevant experimental sys-

tems. In the case of early cellular antiviral defense, there will, for

instance, be a need to refine the animal infection models used.

They will have to be modified to primarily use natural infection

routes and, importantly, tobebasedonmorephysiologically rele-

vant infection doses. In this regard, transmission models may

become an important tool. Most models used today are based

on high infection doses and biased toward uncovering phenom-

ena in the realm of the pattern recognition and antigen receptor

theories, which is not well adapted for a genuine understanding

of early defenses. Second, human stem cell-derived organoid

systems and ex vivo analysis of primary human cells will also be

important to get in-depth knowledge on early virus-host interac-

tions. At the level of discovery, the unbiased screening systems

used will have to be designed to identify immediate host defense

mechanisms. Interestingly, looking at the literature from the past

5–7 years, human genetics has proven to be the most powerful

tool to uncover non-redundant immune mechanisms that seem

to fall within the homeostasis-guarding hypothesis,47–50,52 fol-

lowed by screens or systems biology approaches to identify viral

immune evasions.185,188 We now start to see genome-wide and

focused screens with viral replication as a readout also uncover-

ingessential novelmechanisms fulfilling theMIMcriteria.62,105,115

Finally, the exploration of MIMs should not be limited to highly

pathogenic viruses. In fact, low- or non-pathogenic viruses may

provide a strong discovery tool to identify cellular barriers that

normally prevent these viruses from replication to high levels

and cause disease. The recent identification of TMEFF1 as a

neuron-specific restriction factor preventing the development

of encephalitis by the common virus HSV-1 provides a good

example of this.52,105 Exploring the explanatory power of MIMs

to understand early antiviral defense will require even stronger

integration between immunology, virology, and cell biology,

andall thiswill benefit from including anevolutionary perspective.

CONCLUDING REMARKS

The early defense against invading pathogens is of great impor-

tance for the eventual outcome of infections, yet it remains
poorly explained. In this article, we argue that the pattern recog-

nition theory cannot explain the early cellular defense against vi-

rus infections. Rather, we propose that the earliest line of cellular

defense against viruses is mediated by a diverse set of mecha-

nisms, which we call MIMs and which directly interfere with virus

replication without causing inflammation and in fact, in many

cases, inhibit PRR signaling. We propose that this initial immune

repertoire has been selected through the evolution of multi-

cellular organisms for its capacity to eliminate the infectious

challenge without causing immunopathology. Many MIMs are

constitutively expressed, whereas others are induced in

response to cellular stress.

In the concluding remarks of ‘‘Approaching the asymptote?

Evolution and revolution in immunology,’’ Charles A. Janeway

described how the humoral immunology theory became so

dominant that the role for cells in immunology was ignored for

a long time.12 This was changed by the work of Landsteiner

and the clonal selection theory by Burnet.11,203 Later, the clonal

selection theory dominated immunology so much that scientists

in the field did not give much attention to immunological mech-

anisms based on other principles. This again was profoundly

changed by the pattern recognition theory proposing pathogen

sensing by signaling germline-encoded receptors.12 It may be

time to add that the innate immunity field, which developed

from the pattern recognition theory, focused so much on the

non-clonal aspect and direct pathogen recognition that we

have collectively tended to overlook the fact that PRR activation

leads to inflammatory responses that have the potential to

compromise fitness and also that PRRs are often expressed at

low levels in the resting state and require amplification loops to

get fully activated. We believe the early host cellular defense ac-

tions to infections are an important part of the inner workings of

the immune system, driven by principles that can be conceptu-

alized. This seems to be an important, unexplored frontier in

immunology.
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