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Abstract

Equilibrium configurations of helical elastic rods during quasi-static unwinding are studied experimentally and theo-
retically. At a critical degree of unwinding, the helical conformation destabilizes into a mixed phase consisting of two
helices with opposite chiralities connected by a perversion. As unwinding progresses, the perversion migrates along
the rod, eventually disappearing, leading to a pure helical conformation with opposite chirality from the initial state.
Measurements of axial torque and force as functions of extension and winding reveal remarkable phenomena: (i) As
the perversion migrates, the torque remains nearly constant. (ii) The transition from a pure helix to a configuration
with perversion is accompanied by snapping events, seen as singularities in torque and force. (iii) At a critical force,
the perversion destabilizes and transitions to a self-touching conformation. The phase diagram and overall mechan-
ical behavior are reproduced using a biphasic model. A shooting technique, numerical path-following methods and
finite element simulations are employed to assess the instability of the perversion and the associated snapping toward
self-contact. The singularity at the creation of the perversion is reproduced by incorporating clamping effects within
path-following methods. An analogy with first-order phase transitions is discussed. The nearly constant torque in the
mixed phase is reminiscent of a Maxwell plateau, while the creation of a perversion with snapping corresponds to a
nucleation event. Finally, to apply our analysis to plant tendrils, we study a specific line in the phase diagram of the
mixed state corresponding to zero net turns. The associated transition is continuous and supercritical.

1. Introduction

Helices are ubiquitous in nature and because of their geometrical simplicity they have always attracted much
attention (Cook, 1979; Chouaieb et al., 2006; Forterre and Dumais, 2011). The equations for the behavior of helical
elastic rods have been established long ago (Kirchhoff, 1859; Love, 1990; Timoshenko and Gere, 1961), but there is a
resurgent interest in twisted elastic rods over recent decades with applications across various scientific domains such
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as single-molecule DNA nanomechanics (Strick et al., 1996; Allemand et al., 1998; Bryant et al., 2003; Sarkar et al.,
2001; Bustamante and Yan, 2022; Marko and Neukirch, 2013) or soft robotics and microengineering (Jones et al.,
2021; Mehling et al., 2006; Lutz-Bueno et al., 2020; Armanini et al., 2023; Jones et al., 2021), propelling flagella
of microorganisms (Goldstein et al., 2000; Nakane et al., 2020; McGuffee et al., 2023) and even electrospun micro-
fibrils (Canejo and Godinho, 2013; Silva et al., 2016). Theoretical efforts to decipher possibilities of destabilization
of a purely helical conformations have been reported (Zhou et al., 2007; Borum and Bretl, 2020). The renewed
efforts in the exploration of soft filamentous structures for executing mechanical actions prompts inquiries into their
mechanical behavior and the quest for novel functionalities. In this context, in the present paper we focus specifically
on the perversions in helical rods and in particular on deciphering possible critical conformation changes involving
perversion.

Perversion is a topological formation connecting two domains of opposite chiralities. The term is attributed
to Listing (1848) and was popularized by Maxwell (1873, page 25), see also Goriely and Tabor (2013). In the context
of elastic rods, perversions manifest as an intriguing phenomena, unveiling captivating physics at our fingertips. When
unwinding an elastic helix by decreasing the number of coils, a critical point is reached where a helix with opposite
chirality emerges (Dilly et al., 2023). The connection between the two helices is a perversion. As the unwinding
continues, the perversion migrates, causing the helix of opposite chirality to grow while the original one shrinks.
Eventually, the perversion reaches the opposite side and is absorbed by the clamp, resulting in a pure helix of opposite
chirality. Further rotation in the same direction leads to the overwinding of this helix. This seemingly straightforward
experiment highlights multiple non-trivial mechanical effects. The rich physics of perversions in elastic systems
already motivated considerable theoretical work. Dai et al. (2018) evidenced the non trivial behaviour of overwinding
then unwinding as a function of extension. Based on finite element simulations, Wang et al. (2020) showed the very
localized character of perversions, and the possibility to treat them as point defects. Other authors discussed the
possibility of equilibrium with multiple perversions (Domokos and Healey, 2005; Riccobelli et al., 2021).

The generation of perversion also arises in many biological systems, ranging from the small scale with propelling
flagella of microorganisms (Goldstein et al., 2000; Nakane et al., 2020) and fibers in spider webs (Canejo and God-
inho, 2013) to the macroscopic scale with tendrils of climbing plants (Darwin, 1865; Gerbode et al., 2012). Darwin,
intrigued by the coiling behavior of tendrils, remarked, “when a tendril has caught a support and is spirally contracted,
there are always as many turns in one direction as in the other; so that the twisting of the axis in one direction is
exactly compensated by the twisting in the opposite direction” (Darwin, 1865). An easy way to reproduce the ap-
pearance of perversion, resembling that of what happens in plants, is by taking an elastic helix, straightening it, and
rotating it so that the total number of turns in the rod becomes zero (n = 0). By decreasing the axial force applied
to the rod or, equivalently, approaching the two extremities, two helices of opposite chirality appear, connected again
by a perversion. This so-called writhing instability has been theoretically studied and was given as an explanation for
tendril writhing (Goriely and Tabor, 1998; McMillen and Goriely, 2002). Past studies on the mechanics of perver-
sions and the writhing instability mainly focused on either inhomogeneous pre-stressed rods (Liu et al., 2014, 2016)
or intrinsically curved yet untwisted filaments (McMillen and Goriely, 2002).

In the present paper we report experimental and theoretical study of helical rods subjected to rotation n and
extension z for intrinsically uniformly curved and twisted axially clamped rods. We focus particularly on identifying
and rationalizing different critical phenomena in the system with perversion. After assessing the stability diagram, see
fig. 5, we focus on the ways in which the perversion is induced or destabilized. Namely, the injection/annihilation of
the perversion (red line crossing in fig. 5) and the perversion collapse into a self-contact (blue line crossing in fig. 5)
are singular snapping events. One of core issues of the present paper is the theoretical description of these singular
events. Finally, in order to approach the case of plant tendrils where the rod is unwound (n = 0), we study in detail
the writhing transition which is yet another critical phenomenon, see fig. 13.

The manuscript is organized as follows. In section 2, we report experimental results of helices unwinding. We
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detail the experimental setup, describe the unwinding process of a helix, and assess a phase diagram for the stability
of different configurations as a function of number of turns and extension. Section 3 brings a quantitative theoretical
understanding of our experimental measurements. We use the Kirchhoff theory ofx elastic rods to discuss the proper-
ties of connected helices and predict the phase diagram of helical configurations by assuming a biphasic model which
neglects the perversion. We then use shooting methods to find the perversion solution and discuss the conditions
under which this solution exists or disappears as the helices jump to self-contact. Finally, we discuss finite-size effects
revealed by full numerical solutions. The injection and expulsion of perversion are thereby identified as sub-critical
bifurcations. Section 4 is dedicated to the analysis of a particular line of the phase diagram, when the number of turns
remains null (n = 0). This is the writhing transition which we investigate both experimentally and theoretically. In
section 5, we discuss our results and develop the analogy with phase transitions. In particular, the perversion injection
events are discussed in comparison with heterogeneous nucleation in first-order phase transitions. We also discuss the
Maxwell-like plateau in the transition and we anticipate the characteristics of a system with more than one perversion.
The section 6 contains concluding remarks.

2. Experiments

2.1. Materials and methods

Elastic helices were elaborated from the two-component elastomer paste AWASIL Novo 90 Silikon-Knetmasse
from Wagner Dental®. The mixed paste was extruded from a circular syringe nozzle and then manually wrapped
around a metallic cylinder on which the helical pattern had been drawn. The obtained material’s Young modulus was
estimated to be Y = 5 ± 2 MPa through the measurement of the oscillating frequency of a straight rod segment. The
Poisson ratio of the material was estimated to be ν = 0.5, as usual for such materials. This helix is made right-handed
(it turns clockwise) and we will denote its chirality by (+), while the opposite chirality is called (-).

The obtained helical rod is placed in the experimental setup presented in fig. 1(a). It is fixed in two mandrels such
that the tangent vector to the rod is vertical at the clamping points of the rod. The two mandrels are then aligned
vertically through the use of horizontal manual micro-translation stages. The upper mandrel is fixed on a motorized
rotation stage 8MR174(E)-11-28 from Standa®, having a resolution of 0.015°. The lower mandrel was axially fixed
to a reaction torque sensor TFF400-FSH03982 from Futek® having a resolution of 10−4 mN·m. The torque-meter is
placed on a Kern® KB 360-3N scale to allow for vertical axial force measurements. The scale had precision 0.001 g.
The whole lower apparatus was placed on a vertical translation Standa® 8MT175 motorized stage with a resolution
of 2.5 µm, to allow for vertical displacement of the lower end of the rod.

2.2. Helix unwinding experiments

A helix with radius R0 = 3.9 mm, pitch P0 ≡ z0/n0 = 4.7 mm, cross-section diameter d = 1.7 mm, number of
coils in its unloaded state n0 = 9.5, and total arc length L = 0.24 m is manufactured and clamped in the experimental
setup as described above (see fig. 1(b) for notations). It is clamped in its resting configuration so that its number of
coils and its extension approximately correspond to (n0, z0). The extension is then changed to the value z using the
translation stage. Next, using the rotation stage, the helix is progressively unwound as shown in fig. 2(a). At a critical
number of turns, the helix destabilizes in a discontinuous transition, nucleating a perversion at one end of the rod.
With further rotation, the perversion migrates along the rod, increasing the portion of the (−) helix Ultimately, the
perversion disappears at the opposite end from where it was nucleated, leaving a pure (−) helix.
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Figure 1: (a) Experimental setup. A helical rod made of elastomer is held between two vertically aligned mandrels. The upper mandrel is fixed to a
rotation stage, while the lower mandrel is mounted on a torque-meter, which rests on a scale for vertical force measurements. The scale is positioned
on a translation stage to control the rod extension. (b) Schematic representation of a helix in its intrinsic state under no external constraints and in
its actual, loaded state. A helix has intrinsic extension z0 and intrinsic number of coils n0 under no external constraints. Under axial force T and
torque M, the helix has a number of coils n and extension z. The pitch and radius of the helix are P0 and R0 in the unloaded state and P and R in
the loaded state.
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Figure 2: (a) Snapshots during the unwinding experiment of helical rod with initially (+) chirality at z/L = 0.86 ± 0.02. By counter rotation of
the upper mandrel, the number of coils in the helix decreases. At a critical number of turns, a perversion is nucleated and two helices of opposite
chiralities are connected in configuration (+/−). Finally, at another critical number of turns, perversion disappears at the opposite extremity leaving
the pure helix (−) helix. (b) Axial force and (c) axial torque during the unwinding of a rod with z0/L = 0.2 at extension z/L = 0.91 ± 0.02.
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Throughout the unwinding process, the axial torque M and force T are measured, see fig. 2(b). The different
events described above can be correlated with specific changes in the axial torque and force. As the helix of pure
(+) chirality is unwound, the axial torque and force decrease. Upon the formation of the perversion, a jump in axial
torque and force is observed. During the presence of the perversion, the monotonic behavior of the axial force is
reversed: it now increases as unwinding continues. In contrast, the axial torque remains nearly constant compared to
the pure helix case, exhibiting oscillations as the perversion migrates. Once the perversion has fully migrated along
the rod and has disappeared at the mandrel, yielding the pure (−) helix, the axial force increases with a steeper slope
and the axial torque resumes decreasing, with a slope comparable to that of the (+) helix regime. A jump in both
M and T is obvious on injection of perversion upon unwinding. On the other side of the coexistence region, upon
unwinding, only a weaker transition is observed. The above observations are indications that helix inversion is a
subcritical phenomenon.

The critical values of n at which the perversion is nucleated and disappears, and therefore the range of n at which
the coexistence between (−) and (+) helices is observed, depend on the extension z of the rod. This is the subject of
the next section.

2.3. Phase diagram assessment

The following experiment is aimed at constructing the stability diagram of the rod in the (n, z) plane. We start at an
extension z/L = 0.5 and with a number of turns n such that there is a coexistence between a (−) helix and a (+) helix,
connected by a perversion. The rod in this mixed state (+/−) is then stretched, as depicted in fig. 3(a). At a critical
extension z, in a similar manner to the previous section, the perversion disappears, yielding a pure helix of either (+)
or (−) chirality. The corresponding experimental axial torque and force profiles from this experiment are displayed in
fig. 3(b) for several values of the winding ratio n/n0 = 0.58±0.04; 0.75±0.04; 0.83±0.04. We see that the axial force
increases with the extension both before and after the disappearance of the perversion. In the axial torque profiles, we
note two distinct regimes, with a slope discontinuity (most visible on the light blue curve) occurring concomitantly
with the disappearance of the perversion.

This experiment was repeated for a range of winding ratios n/n0 between −1 and 1. The corresponding axial
torque and force profiles as functions of both the extension z and the number of turns n are displayed in fig. 4(a) and
(b). The slope discontinuity corresponding to the appearance/disappearance of the perversion is clearly visible. It
agrees fairly well with the domain limit (red line) of existence of the mixed state obtained within the biphasic model,
as will be presented in section 3.2.

We are now ready to construct the phase diagram. The values of z(n) at which the slope discontinuity occurs are
shown as black crosses in fig. 5. Below the black crosses, the mixed state (+/−) is stable, while above it the rod is a
pure helical state. We see that the larger the extension, the narrower the mixed-state region is.

3. Theory

In this section, we present a framework for the quantitative understanding of the experimental results presented in
Section 2. The standard theory for calculating equilibriums of elastic curved rods is the Kirchhoff theory (Kirchhoff,
1859; Love, 1990; Antman, 2004; Audoly and Pomeau, 2010). We first present the general formulation of the biphasic
model, neglecting the presence of the perversion and the presence of the clamping boundary conditions. Second, we
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Figure 3: (a) Extension experiments of the (+/−) configuration. By unwinding the helix, the rod is first prepared in (+/−) state, and then extended.
At a critical value of extension the perversion disappears, yielding either a purely positive or a purely negative helix depending on the imposed
number of turns. (b) Dots - Axial force T and torque M for extension experiments for several winding ratios: light blue, n/n0 = −0.58± 0.04 ; blue
−0.75 ± 0.04 ; dark blue, −0.83 ± 0.04 ; helix with z0/L = 0.2. Lines of the corresponding colors are calculated within the biphasic model with
Γ = 2/3.
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Figure 4: In blue are axial torque M (a) and force T (b) obtained by extension experiments of (+/−) configuration -see fig. 3(a)- for a range of
n/n0 in [−1 : 1], helix with z0/L = 0.2. Panels (c) and (d): calculated axial torque M and force T biphasic model. The red lines depict M (panels
(a) and (c)) and T (panels (b) and (d)) at the limit of existence of (+/−) state in the biphasic model. Fixed parameters are z0/L = 0.2 and Γ = 2/3.
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Figure 5: Stability diagram of helical rod in (n, z) plane. Black crosses: extension at which the measured axial torque presents a slope discontinuity
as shown in fig.2(b), corresponding to disappearance of perversion (data taken from (Dilly et al., 2023), helix with z0/L = 0.2 and Γ = 2/3). Red
curve: limit of existence of (+/−) phase obtained with the biphasic model. Blue line: critical tension at which the perversion solution vanishes
within the shooting method. Blue diamonds: transition from self-contact to non-self-touching perversion in the unwinding experiments. Black
circles: extension at which the (+/−) conformation with non-self-touching perversion destabilizes in AUTO simulations. In all calculations Γ = 2/3
and z0/L = 0.2.
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use a shooting method to compute the perversion solution while still neglecting the clamps. The shooting method
is also validated against 3D finite element simulations. Third, we solve nonlinear boundary value problem using the
AUTO package to consider both clamping and perversion effects.

3.1. Kirchhoff theory and connection of helices

The Kirchhoff theory of elastic rods considers unshearable and inextensible rods with bending and twisting defor-
mations related linearly to corresponding stresses (Audoly and Pomeau, 2010). The rod is described by its centerline
curve r(s), parametrized by the arc length s. The tangent vector d3(s) is defined by

r′(s) = d3(s) (1)

Two other vectors (d1(s),d2(s)) are attached to the cross-section of the rod and the frame (d1(s),d2(s),d3(s)) is taken
orthonormal and called director basis or material frame. This orthonormality implies the existence of a curvature
vector κ = (κ1(s), κ2(s), κ3(s)) that keeps track of the orientation change of the director basis along the center-line

di
′(s) = κ × di(s) (2)

At equilibrium, due to force and moment balance on the cross-section of the rod, the internal force T(s) and internal
moment M(s) satisfy the static Kirchhoff equations:

T′(s) = 0 (3a)
M′(s) + d3(s) × T(s) = 0. (3b)

Finally, the constitutive relations link the internal torque M with the deformation field κ through the relations

M(s) · di(s) = Bi [κi(s) − κi0(s)] (4)

where the κi0(s) describe the natural shape of the rod, i.e. the shape of the rod when it is free of forces and torques.
In this unstressed state, the rod would have uniform curvatures κi0 and its shape would be perfectly helical. The
coefficients Bi correspond to bending rigidities in the d1 and d2 directions and are equal in the case of a rod with
axisymmetric cross-section, B1 = B2 = B. Finally, B3 = C corresponds to the twist rigidity of the rod. We suppose,
without loss of generality, that the considered rod has intrinsic curvature κ0 in the d1 direction, zero intrinsic curvature
in the d2, and intrinsic torsion τ0 in the d3 direction. In the experimental case presented in section 2, where the
rod material is uniform and isotropic, and the section of the rod is circular, we have B1 = B2 = B = YI and
B3 = C = YI/(1 + ν), Y being the Young modulus, I = πd4/64 is the second moment of the circular cross section and
ν the Poisson ratio. The intrinsic curvature and torsion κ0 and τ0 can be linked to the intrinsic radius R0 and pitch P0
(see fig.1) through the formulas

κ0 = R0

R2
0 +

P2
0

4π2

−1

τ0 =
P0

2π

R2
0 +

P2
0

4π2

−1 (5)

These formulas also hold if we express the actual state κ, τ as a function of the actual radius R and pitch P. If we
project system (3) in the director basis, we obtain

T ′1 = T2κ3 − T3κ2

T ′2 = T3κ1 − T1κ3

T ′3 = T1κ2 − T2κ1

κ′1 = T2/B + (1 − Γ)κ3κ2 + Γτ0κ2

κ′2 = − [T1/B + (1 − Γ)κ3κ1 − κ0κ3 + Γτ0κ1]

κ′3 = −
κ0κ2
Γ

(6)
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where we have introduced Γ = C/B = 1/(1+ ν). Eq. (6) can be interpreted as a six-dimensional dynamical system for
T(s) and κ, where the arc-length s is the analog of time. It can be shown from Eq. (3) that the quantities

I1 = κ
2
1 + κ

2
2 + Γκ

2
3 + 2T3/B1 (7a)

I2 = T2 (7b)
I3 = B(κ1 − κ0)T1 + Bκ2T2 + Γκ3T3 (7c)

are conserved along the rod (McMillen and Goriely, 2002). It can also be shown that helices of curvature vector
κh = (κ, 0, τ) and force vector T = (γτκ, 0, γτ2), with γ = κ0/κ−1+Γ(1−τ0/τ), are solutions of system (6). Throughout
this paper, and similarly to (McMillen and Goriely, 2002), we use the convention that helices with negative torsion
have negative chirality. The force and torque vectors are aligned with the helix axis, and if we call z the helix axis we
have T = Tez, and M · ez = M, with

T = Bγχτ
√
κ2 + τ2 (8a)

M = Bχ(κ2 + τ2)−1/2 [κ(κ − κ0) + Γτ(τ − τ0)] . (8b)

where we note χ = ±1 the chirality of the helix in the actual conformation.

We now consider two Kirchhoff helices, respectively of curvature and torsion (κ+, τ+) and (κ−, τ−), that are both
solutions of eq. (6) and we connect them to form a compound system. We express the three quantities introduced in
eq. (7) as functions of the curvature and torsion of each helix. As these quantities are conserved along the compound
system, this yields three relations between the curvatures (κ+, κ−) and torsion (τ+, τ−)

I1 = κ
2
+ + (Γ + 2γ+)τ2

+ = κ
2
− + (Γ + 2γ−)τ2

− , (9a)
T
B
= γ+τ+

√
κ2+ + τ

2
+ = −γ−τ−

√
κ2− + τ

2
− , (9b)

M
B
= (κ2+ + τ

2
+)−1/2 [κ+(κ+ − κ0) + Γτ+(τ+ − τ0)] = −(κ2− + τ

2
−)−1/2 [κ−(κ− − κ0) + Γτ−(τ− − τ0)] (9c)

with γ± = κ0/κ± − 1 + Γ(1 − τ0/τ±). The second and the third equations can be seen as force and torque conservation
between the two helices. There are four variables (κ+, τ+, κ−, τ−) and three equations in (9). Accordingly, the set of
connected helices must lie on one or several 1D curves in the (κ, τ) space. In the special case τ0 = 0, where the
rod has a circular shape in its intrinsic state, equations (9) reduces to κ+ = κ−, τ+ = τ− and (κ − κ0)κ + Γτ2 = 0,
which corresponds to an ellipse in the (κ, τ) space, as found by McMillen and Goriely (2002). In the case of τ0 > 0,
equations (9) were numerically solved for z0 = 0.3 and the results are shown in fig. 6(b). The red curve depicts the set
of connectable helices in κ, τ space, normalized by the intrinsic curvature κ0 of the rod. For every point - helix - on
this curve, there exists a unique other point - helix - to which it can be connected. We materialize these connections
with the black lines. We remark that, in most cases, a helix on the red curve is connected to a helix of opposite
torsion, therefore meaning that a helix of positive chirality is in most cases connected to a helix of negative chirality.
Exceptions lie near the intrinsic state (blue point) and near the straight rod (where both curvature and torsion are
zero). In these cases, the connected helices have the same chirality, positive near the intrinsic state and negative near
the straight rod.

Now that we know the set of possible connected helices, we have to check which couple of helices are allowed
in the presence of prescribed number of turns and extension. This is done using a biphasic representation of the
connected helices.

3.2. Neglecting perversion and boundaries: biphasic model

The existence of a pseudo-plateau in the M(n) profile within the mixed state (+/-), as sown in fig. 2(b), motivates
the development of a biphasic model. We aim to reproduce the domain boundary of the mixed state (+/−) and the
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Figure 6: (a) Schematic view of the mixed state (+/−) in biphasic model: (+) segment is in green and (−) segment is in blue. (b) Red curve:
profile of all connectable helices configurations for z0/L = 0.3. Dashed lines: correspondences between two connected helices in (+/−) state. Each
point on the red curve is connected to another unique point. (c) Calculated elastic energy of three states (+), (+/−) and (−) in black, green and
red respectively, for two choices of z0 and z. Notice that the red line is not straight. Dashed lines correspond to unstable states due to their higher
energy compared to the mixed state (+/−). Fixed parameter in (b) and (c): Γ = 2/3.

12



corresponding mechanical signatures in terms of both axial torque M and force T . A movie illustrating the biphasic
model can be seen in Supplemental Material (Dilly et al., 2024, video 1).

To search for a mixed-state solutions connecting two helices of opposite chiralities satisfying extension z and
number of turns n, we suppose that the solution is a juxtaposition of two helical segments (+) and (−) (see fig.6(a)) of
respective curvature and torsion (κ+, τ+) and (κ−, τ−). We suppose that the (+) helix is present in proportion α in terms
of arclength, and that the (−) helix is present in proportion (1 − α). In doing so, we neglect the effects of perversion
and boundaries. Namely, the perversion and boundary layer near the clamps are not helical solutions and correspond
to particular trajectories in (κ, τ) space, while helices are the uniform solution to eq. (6). In the case of an infinitely
long rod, n0 → ∞, the effects of the perversion and the boundary layer in the total extension z and number of turns
n of the rod become negligible and we express z and n as functions of numbers of turns and extensions of the two
connected helices (see fig. 6(a)).

n = n+ + n− (10a)
z = z+ + z−. (10b)

Expressing the number of turns and the extension in both helices in terms of curvature and torsion yields

z = αL
χ+τ+√
κ2+ + τ

2
+

+ (1 − α)L
χ−τ−√
κ2− + τ

2
−

(11a)

n = αχ+
L
2π

√
κ2+ + τ

2
+ + (1 − α)χ−

L
2π

√
κ2− + τ

2
−, (11b)

where χ± stands for the chirality of the connected helices. As mentioned above, in most cases χ− = −1, and χ+ = 1.
System (11), together with eq. (9), yields a system of five equations. At given n and z, this system has five unknown,
namely (κ+, τ+, κ−, τ−, α), it can be solved numerically, yielding a given couple of helices on the red curve of fig. 6(b),
together with their proportion in terms of arclength α. This proportion must remain between 0 and 1, and if it is the
case, there is a couple of connected helices satisfying the conditions on extension and number of turns at a given α.
This domain of existence is represented in fig. 5 as the gray shaded area. The limit of this domain of existence of the
connected helices is represented by the red line in fig. 5, corresponding either to the curve where α = 1− or 0+. For
extension and number of turns in the white area, no solution with α comprised between 0 and 1 could be found.

The elastic energy of the different conformation at given z and n can be computed with the following biphasic
expansion of the elastic energy

E(κ±, τ±, α) = αLε+ + (1 − α)Lε− (12)

Notice that a decomposition of the elastic energy into two unlike handedness terms has been invoked by Goldstein
et al. (2000) in the context of bistable helices. In the Kirchhoff model, linear densities of energy ε± write

ε± =
1
2

B (κ± − κ0)2 +
1
2

C (τ± − τ0)2 (13)

The elastic energies of all three state-namely the pure (+)-green- or (−)-blue- states and the mixed state (+/−) -red-
when it exists are depicted in fig. 6(c) as a function of the number of turns. We see that when the mixed state exists,
its total energy is found to be lower than the energies of both pure states at the corresponding n and z. The mixed state
then provides a convexification of the energy of the system as shown in fig. 7. Therefore, when α = 0+ and 1−, the
system is expected to adopt the state of lowest energy, that is the mixed state. Indeed, we see in fig. 5, that the red
curve predicted by the biphasic model fairly well coincides with the experimental domain of existence of the mixed
state.

At a given z and n, solving the system of equations (9) and (11) allows us to express the axial force and torque in
the coexisting regime, when it prevails. When it is not the case, the axial force and torque can also be expressed in
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Figure 7: Calculations in biphasic model. Elastic energy of pure helices with positive (blue) and negative (yellow) chiralities, drawn as a function
of the system extension z/L and winding ratio n/n0. A typical two-well profile emerges, and for a region of z and n values, the energy of the system
can be made convex by considering a mixed phase (red surface) joining the two wells in a tangent manner along the red curve. Point A is such that
n/n0 ≃ 0.91, z/L ≃ 0.6, EκR0

B ≃ 0.06. Point B is such that n/n0 ≃ −0.97, z/L ≃ 0.36, EκR0
B ≃ 0.09. Fixed parameters are z0/L = 0.2 and Γ = 2/3.

the pure states (+) or (−) by solving the same system of equations for α = 1 and α = 0, respectively. The obtained
curves for axial torque and force at a given n as a function of z are plotted in fig. 3 alongside the experimental data.
Consistently, the model predicts two regimes: at low values of z, the axial torque and force correspond to the coexisting
regime, with a slope discontinuity observed at the disappearance of the perversion. The second regime corresponds to
the pure state—above the red line in fig.5. The predicted curves for axial force and torque based on the biphasic model
are also plotted for values of z/L between 0.5 and 1 and for values of n/n0 between −1 and 1 in fig.4(c) and (d). The
red line represents the axial torque and force at the domain limit where the (+/−) state exists. In fig. 4(c), it is clearly
visible that during the migration of the perversion, in the coexistence regime, the variations in axial torque are smaller
than those in the pure state. It can also be shown that for low z0/L and high extension z/L ≲ 1, the overall variation
in axial torque during perversion migration is negligible compared to the magnitude of the axial torque itself. During
coexistence, the axial torque M and the axial force T vary with n, though the variation of M is small (Dilly et al.,
2023, fig. 2). Useful approximate relations of the torque plateau value and its variation can be found in the present
biphasic approach. Generalizing eq (A.3) to z/L < 1, the average value of the plateau is seen to approximately follow

Mplateau ≡ M(n = 0) ≈ −Γ
B
R0

(z/L) (z0/L)
√

1 − (z0/L)2 (14)

The plateau itself is slightly concave and increasing with n and its variation within the mixed phase can be approxi-
mated as

∆M ≡ M(α = 1−) − M(α = 0+) ≈ 2.5Γ
B
R0

(1 − z/L) (z0/L)2 (15)

These formula are compared to numerical values in fig. 8. We see that Mplateau increases with z/L and z0/L and that
as z→ L, the torque plateau gets flat.

It is in fact possible to have rigorously constant values of M and T during the transition. As the system enters the
coexistence region, α = 1 and the values of the curvatures and torsions for both phases are determined, for example
for point A in fig. 8 we have κ+ = 0.71/R0, κ− = 0.89/R0, τ+ = 0.53/R0, τ− = −0.34/R0, T = 0.37 B/R2

0, and
M = −0.06 B/R0. Inserting these values in system (11), we see that z and n now both linearly depend on α, and if we
follow this line (z(α), n(α)) as α varies from 0 to 1 (for example from point A to point B in fig. 8) all the variables of
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Figure 8: Biphasic model calculations. (Left) Blue and red: Axial torque at zero number of turns (n = 0) as a function of z for z0/L = 0.6 (blue)
and 0.2 (red). We also plot in brown (z0/L = 0.6) and green (z0/L = 0.2) the difference in axial torque values between the injection and expulsion
of the perversion, associated to the deviation of the axial torque from its plateau value, as defined in eq. (15). Dots correspond to results of the
biphasic model while dashed lines correspond to the analytical results obtained in eq. (14) for the axial torque and eq. (15) for the deviation of the
axial torque. (Right) Limits for the coexistence region in the case where z0/L = 0.2. Red curve: domain limit with pure (+) helices, blue and green
lines: limit with pure (−) helices. Brown straight lines: (dashed and solid) trajectories where the axial force and torque are rigorously constant. On
the solid brown line, point A is such that n/n0 ≃ 0.91, z/L ≃ 0.6 and point B is such that n/n0 ≃ −0.97, z/L ≃ 0.36. Transition trajectories within
green portion connect two helices of the mixed state with same (−) chiralities. Fixed parameter: Γ = 2/3.

the system (curvatures, torsions, axial torque and force) stay rigorously constant. We draw lines of constant torque
and force for different transitions in figure 8. These lines are trajectories in the (n, z) space where the axial torque and
force imposed to the mixed state (+/-) are constant, the only varying quantity being the proportion of phases (+) or
(-), analog to the pressure-temperature diagram in liquid-gas transition.

3.3. Neglecting boundaries: shooting along the heteroclinic connection and perversion solution

In the biphasic model, we suppose that the connection between the two helices exist but we neglect its participation
to the energy of the system. We also suppose that α is free to vary in order to satisfy the conservation of the Kirchhoff
integrals (7) and the boundary conditions. But it is not clear, on the one hand, whether the connection does in fact
exist and, on the other hand, that the connection indeed allows for the free variation of the parameter α. Following
the shooting approach of Champneys and Thompson (1996) to identify solutions to the Kirchhoff equations that
connect specific boundary conditions, which was later applied by McMillen and Goriely (2002) to explore connections
between symmetric helices of opposite chiralities, we extend the analysis to determine the heteroclinic connection
between two asymmetric helical solutions in the presence of intrinsic torsion. Our results show that this connection
(the perversion solution) does not always exist within the set of connectable helices.

3.3.1. Numerical shooting method

In fig. 6(b), the (red) curve corresponds to helical states that can be connected by a perversion. To find the shape
of the perversion, we numerically solve the Kirchhoff equations, subject to boundary conditions, using the shooting
technique described by McMillen and Goriely (2002). Defining X = (T1,T2,T3, κ1, κ2, κ3)T, we write eq. 6 under the
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Figure 9: (a) Perversion solutions -black line - in the
(
κ =
√
κ21 + κ

2
2 , κ3

)
space connecting two helices on the curve of connectable helices - red

line-, for Γ = 2/3 and z0/L = 0.3. Solutions are obtained with the shooting technique described in section 3.3. From left to right, the solutions
corresponds to axial forces T/

(
Bκ20
)
= 1.17, 0.90 and 0.51. (b) Same solutions in spatial coordinates. (c) Comparison of the perversion solution in

the (κ, κ3) space obtained with ABAQUS 3D finite element simulation, the shooting method, and AUTO simulations (see section 3.4), for z0/L = 0.2
at z/L = 0.82 and n/n0 = 0. ABAQUS simulations were carried out with a Poisson ratio ν = 0.49, n0 = 5 and R0 = 3.9 mm.

form
X′ = F(X) (16)

where F is a 6-dimensional non-linear function of X. Helical states correspond to fixed points of (16), that is, uniform
solutions to the Kirchhoff equations, F(X±) = 0. As described above, the helical solutions in the coexisting state take
the form X± = (γ±τ±κ±, 0, γ±τ2

±, κ±, 0, τ±), where κ+, τ+ (resp. κ−, τ−) are the curvature and torsion of a helix with
positive (resp. negative) chirality. Finding the perversion solution implies finding the trajectory, called a heteroclinic
connection, of the equivalent dynamical system (16) between two fixed points X+ and X−. To find this connection,
we have to numerically compute the trajectory that starts on the unstable manifold of the first point, say X+, and ends
on the stable manifold of the other point, say X−. The six eigenvalues of the Jacobian of F, for instance at the fixed
point X+, are numerically computed and are of the form (0, 0, σ+ + iω+, σ+ − iω+, σ− − iω−, σ− + iω−), where
σ+ > 0 and σ− < 0. We see that two of these eigenvalues are zero and four are complex. The subspace defined by the
eigenvectors corresponding to eigenvalues with positive real part yields the direction in which the helix is unstable,
and corresponds to an unstable manifold of dimension 2. The shooting technique therefore consists of shooting in
this two-dimensional subspace and tuning the direction so that the trajectory converges towards the (stable manifold
of the) other connected fixed point, thereby yielding the heteroclinic orbit. In practice, we shoot around both the fixed
points X− and X+, and tune the direction on the unstable manifolds so that the two trajectories connect. We therefore
place one initial point on the unstable manifold of the fixed point X+, with eigenvector v(u)

+ and we set our initial
condition as

X(0) = X+ + ϵ
[
Re
(
v(u)
+

)
cos(θ) + Im

(
v(u)
+

)
sin(θ)

]
, (17)

with ϵ small (10−4) so that the initial condition lies close to the fixed point. The trajectory is then numerically
computed with an ODE integrator for different directions θ+. We perform the same integration around point X− for
different directions θ− and find that, for a unique couple of direction (θ+, θ−) the two trajectories connect and form

a heteroclinic orbit. Several example of these heteroclinic trajectories are displayed in fig. 9(a) in the
(√
κ21 + κ

2
2, κ3

)
projection, each corresponding to different couple of helices with different axial torques and forces. They connect
helices of positive chiralities to helices of negative chiralities. The solution is reconstructed in spatial coordinates in
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Figure 10: (a) Perversion jumping to self-contact for decreasing extension. For a given n, as z is decreased, the perversion becomes unstable at a
critical z. (b) Black line: perversion solutions obtained with the shooting method for Γ = 2/3, z0/L = 0.2 and a range of forces - from left to right
- T/
(
Bκ20
)
= 1.11, 0.84, 0.48 and 0.41. Full red line: helices connectable by perversion. Dashed red line: no perversion solution could be found

by shooting method. White stars: κ and τ of the (+) helix of the coexisting state found by the ABAQUS simulations. No stable (+/−) solution
could be found by ABAQUS for curvatures higher than κ = 0.74κ0 (the last star). (c) Numerical phase diagram of existence of perversion solutions
without self contact for Γ = 2/3. Below the critical force Tp the non self touching perversion does not exist and corresponds to the conformation
on the dash-dotted part of the curve of connectable helices shown in panel (b) at the given z0.

fig. 9(b). For low values of the axial force, on the far right of the curve of connected helices in fig. 9(a), the heteroclinic
trajectory (i.e. the perversion solution) could not be found. It is the subject of the next section.

3.3.2. Heteroclinic collapse and jump to self contact

The biphasic model described in 3.2 assumes a connection between two helices of opposite chirality, but this is
not always the case. In experiments, as the extension z (or axial force T ) is decreased, the perversion can lose stability.
Such an experiment is displayed in fig. 10(a): starting at a given n in the coexistence zone, where the system is in a
mixed (+/−) state, while decreasing z, the perversion destabilizes at a critical z value where the rod jumps (or snaps)
towards self-contact. From the theoretical point of view, as we span the (red) curve of possible connected helices of
fig. 9(a) from left to right, the axial force T and extension z of the system decreases, while κ+ increases. At a critical
point along the red curve, perversion solutions can no longer be found. Fig. 10(b) shows several perversion solutions
connecting helices on the solid red curve in the (κ, κ3) space, with κ2 = κ21+κ

2
2. As the solid red curve becomes dashed,

the critical point is crossed: no perversion solutions exist for high values of κ+ or, equivalently, low values of the axial
force or extension. For this critical helix couple, (κc+, τ

c
+, κ

c
−, τ

c
−), the critical values of the axial torque Mp and the axial

force Tp are given by eq. (9). Using eq. (11), we see that in the (z, n) space this critical transition where the perversion
solution disappears is a straight line, plotted in blue in fig. 5. Above this line, perversion solutions are found while
below it, perversion solutions cannot be found. We note that in the unwinding experiments presented in fig. 2, at low
z values (for example z/L < 0.6), the mixed state had self-contact. Nevertheless, as n was decreased under a critical
value, self-contact was removed. This critical n value depends on z/L and is plotted with blue diamonds in fig. 5.
These blue diamonds approximately agree with the destabilization (blue) line corresponding to the disappearance of
the perversion solution.

The experiment depicted in fig. 10(a) was also simulated using the finite element method (FEM). We choose the
static implicit scheme of ABAQUS® with 3D elements and a hexagonal mesh. We use a rod with a helical rest shape
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having 5 coils, z0/L = 0.2, and Poisson ratio ν = 0.49. As the nucleation of the perversion is generally associated
with a jump, see for example fig. 11, we can not simply decrease n in the static scheme of ABAQUS but rather have
to rely on a carefully-chosen sequence of rotations of the clamps to induce the perversion continuously. Examples of
such a manipulation can be seen in Supplemental Material (Dilly et al., 2024, videos 4 and 5). Once the perversion
is generated and the clamps are approximately realigned, we decrease n to (n = −0.09 n0) so that the perversion does
not lie near the clamps. By axial translation of one of the clamps, the translation experiment presented in fig. 3 is
numerically reproduced. One of the obtained solutions is plotted in fig. 9(c), for n/n0 = −0.09 and z/L = 0.82 with
z0/L = 0.2, linking approximately the same helices as for n/n0 = 0 and z/L = 0.82. We see a good agreement with
the results from the shooting method for the perversion solution. The extension z/L is subsequently decreased and
we plot by stars the values of κ+ in the (+) helix obtained in ABAQUS for different extensions in fig. 10(b) - for the
sake of clarity the whole perversion solution is not plotted. At a critical z (or κ+) value, ABAQUS failed to converge
toward a regular solution, indicating a jump to a configuration with self-contact. This critical event corresponds to the
last star in the diagram, which agrees well with the critical value found via the shooting technique.

The critical force T1 at which the perversion destabilizes was subsequently computed using the shooting technique
for different values of intrinsic extension z0/L, and the resulting curve is plotted in fig. 10(c). We see that the critical
force T1 of perversion destabilization increases as the unloaded helix extension z0 increases. We also observed that the
process of perversion collapse towards self-contact is not reversible and exhibits hysteresis. Starting in the white area
in fig. 10(c) and decreasing the applied tension, the perversion collapses into self-contact when the blue line is crossed
and as the system enters the gray area. If the applied tension is then increased again, the perversion remains stuck in
the self-contact configuration, even when the system returns to the white area. This indicates that destabilizing the
self-contact configuration requires a higher force than the one that initially induces the collapse into self-contact, see
Supplemental Material (Dilly et al., 2024, video 6).

We also note that below the blue line in fig. 5, where conformations have a perversion with self-contact and thus
involves friction within the rod. In these cases it becomes unclear and it seems difficult to assume that the proportion
of helices, α, is free to vary. Consequently, the lower part of the diagram in fig. 5 lies outside the scope of the biphasic
model.

To summarize, theoretical approaches that account for the perversion agree on the fact that the gray shaded area
between the red and blue lines in fig. 5 represents the domain of existence for the mixed state (+/−), with a perversion
with no self-contact. Supplementary effects, such as finite size effects at the boundaries, can also be accounted for
through numerical simulations and this is the subject of the next section.

3.4. Taking into account boundaries and perversion: Numerical simulations with AUTO

In this section, we show how we numerically compute the equilibrium of the rod as it is clamped at both ends.
The precise boundary conditions

r(s = 0) = (0, 0, 0) , d1(0) = (1, 0, 0) , d2(0) = (0, 1, 0) , d3(0) = (0, 0, 1) (18a)
r(s = L) = (0, 0, z) , d1(L) = (cos β, sin β, 0) , d2(L) = (− sin β, cos β, 0) , d3(L) = (0, 0, 1) (18b)

are here taken into account and the differential system (1), (2), (3) together with (18) define a well-posed boundary-
value problem. We manipulate non-dimensionalized forces T̂ = TL2

B , moments M̂ = ML
B , curvatures κ̂ = κL, positions

r̂ = r
L . Consequently the set of free parameter comprises Γ = C/B, n0, z0, and the applied translational ∆ and rotational

β displacements.
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In addition, three global quantities are important to characterize an equilibrium solution: the total twist Tw, the
writhe Wr, and the link Lk = n. The total twist has a simple definition

Tw =
1

2π

∫ L

0
κ3 ds (19)

The writhe and the link are usually only defined for closed curves, but they can be generalized to the present case of a
clamped-clamped rod (Berger and Prior, 2006). The writhe is a property of the center line r(s) only and measures how
this center line is curled. In principle, it is defined in the following way. We look at the rod from a direction in space,
project its shape onto an imaginary screen perpendicular to the viewing direction and count the number of (signed)
self-intersections one sees on the projected shape. The procedure is repeated for all viewing directions uniformly
distributed over the unit sphere, and the writhe is the mean number of the self-intersections Fuller (1971); Aldinger
et al. (1995). In practice, we use the fast algorithm introduced by Berger and Prior (2006) to compute the polar writhe,
see also (Prior and Neukirch, 2016). The link is the total number Lk = n of rotation turns which have been applied
to the system. A value Lk = 0 corresponds to a geometric configuration that is straight and untwisted. By geometric
configuration, we mean a configuration which is kinematically admissible (i.e. satisfies the boundary conditions) but
not necessarily statically admissible (it does not have to be an equilibrium configuration). The long way to compute
the link of an equilibrium configuration is then to first pull it straight and then rotate its ends to completely remove the
twist, the total rotation turns needed to do so being the link of the equilibrium configuration. We stress that, during
this kinematic straightening and unwinding process, no self-crossing of the center line of the rod should happen. An
important relation between the three quantities is

Lk = Tw +Wr (20)

as shown by Călugăreanu (1959) and Fuller (1978). In our present clamped-clamped scenario, we have β/(2π) =
Lk mod 1, or said differently we always know the decimal part of the link, but we have to keep track of its integer part,
either by continuation or by computing the (polar) writhe and use eq. (20). Practically, we compute a precise value of
the link by using an approximate value Lkapprox. coming from the previous point on the continuation branch or from a
quick (i.e. with a reduced number of discretization points) computation of the polar writhe. Once Lkapprox. and β are
known, the precise value of the link is given by

Lk =
β

2π
+ Round

(
Lkapprox. −

β

2π

)
(21)

where Round(x) is the integer nearest to the real number x.

The present approach only computes equilibrium solutions and does not treat self-contact. We use the Fortran/C
library AUTO07p to solve the boundary value problem, see (Doedel et al., 1991). This library uses orthogonal col-
location to discretize the strong form (1), (2), (3) of the equilibrium equations with Lagrange polynomials of degree
NCOL=3 to 7 and NTST segments. A Newton-Chord method is then called to solve the obtained nonlinear algebraic
problem where the Jacobian is computed through numerical differentiation. Once a solution is known for a given
value of the parameters, a pseudo-arclength continuation approach is used to vary one of them. It took a MAC M1
ARM with 8 CPU cores (AUTO uses OPENMP) roughly half a minute to compute the 3650 points along each branch
(NCOL=5, NTST=70). The full solution (shape, force, moment, curvatures) is stored only for a dozen of points along
each branch, leading to a few MB of disk space for the full diagram.

The resulting bifurcation diagram for fixed z0/L = 0.2, n0 = 9.5, z/L = 0.82, Γ = 2/3 (i.e. ν = 1/2) and
varied number of turns n = Lk is shown in fig. 11(b). We added a small amount of self-weight in z-direction as an
imperfection parameter to ease the numerical computations. The diagram comprises two branches, the first has been
computed by starting with a positive value of the number of turns: n ≈ 1.5 n0, while the second has been computed
by starting with a negative value, n ≈ −1.5 n0. Each branch contains stable and unstable equilibrium solutions and in
an actual experiment jumps (snaps) would happen. The torque plateau value is found in accordance with the biphasic
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approach with undulations due the length phase between the location of the perversion and the clamps. Please also
note that the stable part of the first and second branches have the same (torque, winding ratio) profile but that they
correspond to different solutions as the perversion is not located at the same position in each of the branches, the
asymmetry coming from the imperfection due to the self-weight.

Notice that both branches have a sub-critical bifurcation corresponding to the injection of the perversion, either
from above (unwinding) or from below (winding). Over a range of n near injection/expulsion three branches are
present: two stable and one unstable. According to the arguments of first-order transitions, upon unwinding, the
system keeps its stable configuration as long as the stable branch exists and jumps to the second stable branch when
the first one disappears. These jump sizes seen in the numerics are in accordance with the experimental findings: as n
is decreased, a large jump at perversion injection and a small jump when the perversion is expelled, see fig. 11.

We also use the AUTO simulation to compute the transition at which the perversion solution breaks down giving
way to self-contact. Points in (n, z) space at which the perversion solution destabilizes are plotted as black circles
in fig. 5. For points away from the red curve, we observe a very good agreement between these values and the
values obtained with the shooting method approach (blue line), see section 3.3.2. For points close to the red curve,
the AUTO simulation differs from the shooting approach because the latter assumes an infinite system and therefore
neglects finite size effects, i.e. the effects of the clamps.

3.5. Comparison of the different theories

To illustrate the differences between the methods used in this section, we plot in fig. 12 a comparison between the
perversion solutions obtained using the biphasic model, the shooting approximation, and AUTO. Left panel shows
the profiles of the three components of the curvature κ1(s), κ2(s), κ3(s) and the force F1(s), F2(s), and F3(s). All
are solutions of eqs. (1), (2), (3), (4), but using different assumptions. The resulting energy density is also given
and one sees that the shooting method regularizes the artificial energy jump of the biphasic model at the perversion.
In addition, the full AUTO computation takes into account the clamps, therefore adapting the profiles to the precise
boundary conditions. The right panel shows the corresponding profiles together with the experimental one. Notice
that the shooting method reproduces, in a very satisfactory way, the perversion profile.

4. The case n = 0: The writhing transition

On the particular line n = 0 in the phase diagram in fig. 5, when z/L = 1 − ε, as ε → 0, the system undergoes the
writhing transition. As derived by McMillen and Goriely (2002) for a helical rod with no intrinsic torsion (z0 = 0),
starting from z = 1 and decreasing the imposed axial force T , the straight rod becomes unstable for at the critical
value

Tc = Bκ20/Γ , Mc = 0 (22)

Upon a pitchfork bifurcation (Strogatz, 1994) two symmetric helices of opposite chiralities appear, connected by a
perversion. It is interesting to note that the critical force at which writhing occurs at n = 0 remains the same in the
presence of intrinsic torsion, or equivalently intrinsic extension z0 (Dilly et al., 2023). The aim of this section is to
report our experiments on the writhing transition on the particular line n = 0 for a rod of negligible intrinsic torsion
compared to its intrinsic curvature, that is, in the multi-circle limit. The loading force and curvature at the writhing
transition were measured and compared to theoretical predictions of McMillen and Goriely (2002) and Dilly et al.
(2023).
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Figure 12: The upper left panel presents the three curvature components obtained with AUTO simulation - gray -, with the shooting method -
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three different numerical techniques and the corresponding experimental one. Fixed parameters are z0/L = 0.2, z/L = 0.82, n0 = 7, Γ = 2/3.

4.1. Experiments

Fig. 13(a) displays snapshots of an experiment of the writhing transition, see also Supplemental Material (Dilly
et al., 2024, video 2). A helical rod of radius R0 = 4.2 mm was made as described in section 2.1, with pitch and
thickness equal to P0 = d = 1.8 mm. At rest the coils were nearly in contact, that is the natural helix was as close
as possible to the multi-circle configuration. These values of intrinsic radius and pitch lead to intrinsic curvature and
torsion: κ0 = 2.4×102 m−1 and τ0 = 1.6×101 m−1, and therefore, τ0 ≪ κ0. The rod was clamped at both extremities in
mandrels, see fig. 1(a), in such a way that the tangent vector of the center-line of the rod was vertically aligned at both
ends of the rod. A red line was drawn on the exterior of the rod when it was at rest and once clamped and straightened,
one extremity was rotated so that the red line became straight, setting n = 0. The initial extension was set to z > 1
taking advantage of the extensibility of the rod, and the axial force T was monitored upon decreasing the distance
z between the two mandrels. For a given z (or equivalently T ) value, two helices of opposite chiralities appear,
connected by a perversion. A typical force-extension profile is shown in fig. 14. The biphasic model presented in
section 3.2 predicted that, at n = 0, for any z/L < 1, coexisting helices appear. However, in our model values z/L > 1
are inaccessible due to the assumed inextensibility of the rod. In the experiment, the rod has extensibility and values
of z/L > 1 are in fact accessible. Nonetheless, in the force-extension profile presented in fig. 14, two distinct regimes
are observed, marked by a noticeable change in slope between them. For large extensions, the axial force decreases
steeply as the rod’s extension decreases. At the onset of the writhing instability, and during the formation of the pair
of helices with opposite chiralities, the slope of the axial force decreases. In fig. 14, the slope change is clearly visible
and this transition in axial force behavior defines a critical writhing force above which the rod remains straight and the
axial stiffness is primarily governed by the rod’s extensibility. Below this critical force, however, the axial stiffness
of the rod is determined by the extension of a pair of helical Kirchhoff rods, where the effects of extensibility are
relatively small.

Curvature and torsion in the helix of positive chirality were measured through a stereoscopy method presented in
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Figure 13: (a) Snapshot of the writhing experiment. A helical coil with τ0 ≪ κ0 (equivalently z0 ≪ 1 as the rod has negligible intrinsic extension) is
unwound so that the number of coils of the mixed state is 0. At its maximal extension, the rod is straight. As extension is reduced, two helical coils
appear, linked by a perversion. (b) Curvature as a function of the axial force during the writhing experiment. Dashed line: linear fit on the bending
rigidity B of the expected axial force for a Kirchhoff rod with zero intrinsic torsion and twist-to-bend ratio Γ = 2/3. (c) Circles: Experimental
torsion as a function of normalized axial force obtained in (b). Dashed line corresponds to the expected torsion of a Kirchhoff rod with zero intrinsic
torsion. (d) Critical force of the writhing instability of different elastomeric rods having different intrinsic curvatures, as a function of the square
of the intrinsic curvature. Dashed line: expected curve for the writhing critical tension, without fitting parameter taking B = 2.4 × 10−6 Pa·m4 and
Γ = 2/3. (e) Log-log plot of torsion as a function of axial force. Dashed line: line of slope 1/2. Fixed parameters: Γ = 2/3, z0/L = 0.
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Figure 14: Axial force T as a function of axial displacement during the writhing experiment for a rod with an intrinsic radius R0 = 6.1, number of
coils at rest n0 = 8.75, pitch P0 = 1.8 mm, and cross-section diameter h = P0 = 1.8 mm.

Appendix B and are plotted on fig. 13(b) and (c), as a function of the axial force. Consistently with observations,
these curvature and axial force measurements reveal that for large force values the rod is straight and at a critical axial
force, the curvature in the helices (or equivalently the radii of the helices) increases. In this experiment, the critical
force for writhing was estimated by performing a linear fit on the curvature values as a function of the applied force.
The critical force was defined as the zero of the linear fit, corresponding to the force value at which the curvature
vanishes. Measurements of torsion reveal that, at the critical force of writhing, torsion increases steeply. Then, as the
force is further decreased, the torsion in the helix decreases. The steep variation of torsion as a function of the axial
force is highlighted in the log-log plot in fig. 13(e). Around the critical force of writhing, the torsion is evidenced to
scale as the square root of the distance to the writhing instability in terms of axial force.

The writhing experiment was also performed for helices with different radii, all having the same pitch P0 = 1.8
mm. The corresponding critical forces Tc were determined from the force-extension profiles, fig. 14, as described
above. The measured values of the writhing critical force Tc as a function of the intrinsic curvature κ0 are plotted in
fig. 13(d), indicating a quadratic dependence of Tc with κ0, as shown by McMillen and Goriely (2002) and retrieved
in our model.

4.2. Theory

As the intrinsic torsion in the experiments presented above is small compared to the intrinsic curvature, we study
the system presented in section 3.2 in the limit τ0 → 0, or equivalently, in the limit z0/L → 0. In this limit, the rod
natural shape is circular and the system of eq. (9) reduces to a unique equation:

(κ − κ0) κ + Γ τ2 = 0 (23)

where the curvature and torsion of the positive helix are (κ+, τ+) = (κ, τ), and of the negative helix are (κ−, τ−) =
(κ,−τ). The connected helices are symmetric and their curvature and torsion lie on the ellipse given by eq. (23). In
other words, in the limit z0 → 0, the red curve of fig. 6(b) continuously falls on the ellipse given by eq. (23). In the
experiments presented above, the radii and pitches of the helices of different chirality are closer to one another than in
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the previous sections (for instance in fig. 2). It is a consequence of the negligible intrinsic torsion τ0 ≪ κ0 and of the
small asymmetry of the helix compared to the circle.

Furthermore, expression of the axial force and torque by use of eq. (8), together with the fact that helices lie on the
ellipse (23) yield that the set of connected helices in the case of zero intrinsic torsion correspond to coexisting helices
with exactly zero axial torque. Using 8(a), we substitute τ in eq. (23) to obtain an equation linking the axial force in
the rod and the curvature of the helices

Γ2T 2/B2 = [κ0 − κ(1 − Γ)]3 (κ0 − κ) (24)

The corresponding curves are plotted as dashed lines in fig.13(b) and(c) for Γ = 2/3 and show good agreement with
experimental data. Following McMillen and Goriely (2002) and Dilly et al. (2023), we take the straight rod limit
κ → 0 in eq. (24) and find that the axial force is finite and reads Tc = Bκ20/Γ, which corresponds to the writhing
critical load. For axial forces close to this writhing critical force, we linearize eq. (24) and eq. (23) at leading order in
Tc − T and obtain

κ =
2Γ(Tc − T )
Bκ0(4 − 3Γ)

(25a)

τ = ±

√
2(Tc − T )
B(4 − 3Γ)

(25b)

confirming both (i) the linear behavior of the increase of curvature at the onset of writhing instability observed in
fig. 13(b), and (ii) the pitchfork bifurcation of the torsion as a function of the axial force evidenced in experiments of
fig. 13(c), notably the slope one half in the log-log plot in fig. 13(e).

Finally, the expected curve for the writhing critical force, eq. (22), is plotted as a dashed line in fig. 13(d), with
B = Eπd4/64 = 2.6×10−6 Pa·m4 determined using the measured value of the Young Modulus Y = 5 MPa and d = 1.8
mm. This curve shows a good agreement with the experimental data.

The model of inextensible Kirchhoff rods and coexisting helices at equilibrium therefore allows us to quantitatively
predict the behavior of an unwound helix at the writhing instability. The predicted writhing critical force agrees with
experimental data, as well as the curvature and torsion behaviors and values upon this instability.

5. Discussion

There is an obvious analogy between the simple system presented here and liquid-gas phase transitions. Inter-
estingly, the helical rods present a similar phase diagram as prestressed strips as recently reported by Gomez et al.
(2023). The phase coexistence and accompanied plateau in M(n) motivated us to construct the biphasic model (see
section 3.2), which reproduces the phase diagram and overall M(n) and T (n) tendencies. The coexistence of the two
phases occurs at almost constant torque, akin to the Maxwell plateau in phase transition. In a recent publication
(Dilly et al., 2023) we showed that the equilibrium equations for the coexisting state can also be obtained through
the minimization of the energy of the biphasic system, yielding equality of axial torque M and force T in the two
helices. The minimization over the proportion α of phases (+) or (−) surprisingly led to the conservation of the I1
integral defined in (9). In the phase transition analogy, the latter corresponds to equating the chemical potential of the
two phases. Moreover, as stressed in section 3.2, trajectories in the (n, z) space can be found where the axial torque
and force imposed to the mixed state (+/−) are rigorously constant, the only varying quantity being the proportion of
phases (+) or (−), analog to the pressure-temperature diagram in liquid-gas transition.
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To push further the analogy with the phase transitions, coexisting helices in mixed phase can be regarded as phases
at equilibrium connected by an interface, the perversion, participating in the total energy of the system. The injection
of the perversion from one end and the energy barrier of this injection leads to a jump in the torque and force curves
M(n) and T (n) (see fig. 2) related to the metastability of the (+/−) state, analogous to a nucleation phenomenon.
The perversion would be analogous to the phase boundary between gas and liquid, invoking the surface tension and
corresponding nucleation barrier for bubble nucleation. The biphasic model ignores the effects of perversion and
boundaries (clamps), and for this reason misses the nucleation, that is the snapping from helix to perversion. In
order to include these nucleation effects, we solve the problem using numerical simulations with the library AUTO.
The resulting profile M(n) closely reproduces the experimental data. In order to decipher the singular first-order-like
transitions between single helix and mixed state we focus on all possible stationary branches as shown in fig. 11(b).
In between coexisting stable branches there are unstable ones, indicating the sub-critical nature of the transitions. The
jumps occur when two stable branches coexist, as is the case near the limits of the mixed phase. In an unwinding
experiment, one starts on the (+) branch and follows it as long as it exists. When it disappears (near n/n0 ≈ 0.5 in the
depicted case), the system abruptly jumps onto the mixed (+/−) phase. As we proceed with unwinding, the system
follows the same logic, remaining on the actual stable branch as long as the branch exists. For obvious reasons, visible
in the figure, the mixed (+/−) phase disappears toward the (−) branch with a much weaker jump. This asymmetry
between injection and expulsion events is clearly visible in experiments.

A question one could ask is whether it is possible to find a way to quasi-statically inject the perversion continu-
ously, without snapping. The answer is yes, there exists at least one way to do it, and it is to simulate by the clamp the
arrival of a perversion from behind, as if there was no clamp. There are other ways of doing it, as we observed when
preparing a perversion conformation for ABAQUS simulations (see sec. 3.3.2 and Supplemental Material (Dilly et al.,
2024, videos 4 and 5)). The important point here is that the amplitude and the strength of the singularity at perversion
creation are operator dependent and that this singularity can be even completely eliminated. This bring to mind the
phenomena of inducing nucleation of bubbles by controlled surfaces, impurities, or local mechanical shocks that help
germination.

Another singular event: the jump of the perversion to a self contact is discussed in sec. 3.3.2 (blue line in
fig. 5). The transition is easily comprehended qualitatively by simple observation of the experiment shown in fig. 10.
The most intriguing about this transition is how it can be detected by theoretical means. We used shooting method
and ABAQUS to find equilibrium configurations of the system as described by continuous and differentiable set of
variables: for instance three curvatures and three forces. But the self-contact solution lies out of the reach of this
strategy because at self-contact there is a singularity in configuration variables. Moreover, the internal constraint at
the contact depends on the friction and geometry of the rod cross-section. Nevertheless, we are able to find the jump
simply by finding the critical value Tp of the force T at which the stable solution ceases to exist. We use the same
reasoning as in the case of perversion injection (see sec. 3.4 and fig. 11): we identify the endpoint of a stable branch as
a limit point where snapping occurs. The difference here is that we do not know where the system jumps and if there is
a unique stable branch to jump on. Probably it is not unique because of nonholonomic (dynamics-dependent) property
of the contact constraint. It is likely that there exists a continuum of self-contact configurations parameterized by the
static friction in the contact. Shooting and ABAQUS methods give the same critical condition for destabilization
of perversion. Strictly mathematically speaking the above does not determine what happens on the other side of the
transition, i.e. when T < Tp, but in this very point we trust the experiment: all these configurations have a self-contact.

The culminating point of the phase diagram in fig. 5, corresponds to the point z/L = 1, and n = 0. At this point,
the system is achiral. The rod is straight, with no twist, therefore, corresponding to a point at which chirality is not
defined. The system is neither in the (+) or (−) phase. This is the case of plant tendrils attached to a support: at
the beginning of its development the straight tendril attaches to support and then starts to coil, creating two opposite
helices with a perversion. In this regard our detailed study of n = 0 case has a bioinspired dimension. A detailed
study of living plant tendril growth and mechanics in terms of both Kirchhoff model of rods and a plant growth model
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is discussed by Dilly (2024). Our experiments confirm that the transition from straight to writhed conformation is
supercritical, as the curvature scales as like Emilien: Tc − T . Another accessible example of the writhing instability
can be observed in everyday life by combing curly hair. The action of combing removes the winding n in the hair,
while extending it. The hair is then in the straight and twistless configuration, i.e. z = L and n = 0. Once the hair comb
is removed, the extension z of the hair shortens, and the writhing instability kicks in, but dynamically, conversely to our
quasi-static experiments. Inertia effects maintain the n = 0 constraint enabling the creation of the perversion. Finally,
friction induced by self-contact freezes the perverted configurations. This effect has been discussed and reproduced
numerically by Crespel et al. (2024). In addition to perversion nucleation/annihilation and jump to self contact, the
writhing transition concludes the zoology of critical phenomena of helical rods upon quasi-static unwinding with
perversion.

Finally, the system also makes it possible to create two perversions within the rod or multiple perversion confor-
mations, as illustrated and studied by Domokos and Healey (2005). From the point of view of the biphasic model, any
number of perversions is allowed, since only pure phases enter into calculation. We know that this is not sufficient
because (i) perversions have their energy and (ii) perversion can interact. For above reasons the system itself prefers
to nucleate only one perversion at its endpoint: we have an example of heterogeneous nucleation, i.e. the ”bubble”
prefers to nucleate at the boundary. However, configurations with any number of perversions are stable once they are
generated. These issues are discussed by Dilly (2024).

6. Conclusion

Critical phenomena invoking perversion in helical elastic rods were studied as function of extension z and number
of turns n. All transitions are presented in the phase diagram of fig. 5. 1) The red curve is the transition between
pure, (+) or (-), helical states and the mixed (+/-) state, in which two opposite helices are connected by a perversion.
The transition is subcritical as the intensive variables M and T have finite jumps at the transition. The jumps corre-
spond to snapping at injection/annihilation of perversion. As the winding varies within the mixed state, M remains
almost constant. Jumps at transition and the Maxwell-like plateau are well-known signatures of the first-order phase
transitions, for instance the liquid-gas transition. The nucleation of perversion is therefore analogous to the creation
of critical bubbles giving rise to phase-separated states. 2) The blue line in fig. 10(a) marks the instability of the per-
version toward self-contact. Is is another subcritical jump, delimiting the regime where the perversion can smoothly
travel (above the line) and the regime where configurations are determined by self-contact and their corresponding
to nonholonomic constraints. Theoretically, the transition can be seen as a breakdown of heteroclinic path between
two opposite helices. 3) The writhing transition, shown in fig. 10(a), is supercritical. Near critical force Tc, it is
characterized by a typical square-root scaling of the twist curvature τ as function of Tc − T . The understanding of the
writhing transition at zero winding is the basis of quantitative understanding of force generation by plant tendrils, as
discussed by Dilly (2024).

Snapping transitions, associated with subcritical behavior in elastic rods are relevant for the interpretation of
singular events in any axially forced helix. Application to soft and nano-robotics can be envisaged, wherever rapid
actuated mechanical action is needed. In the context of plant tendril development and possible bionic and hybrid
systems, our findings could allow one to control the way in which slowly developing plants can produce rapid snaps.
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Supplemental material including videos, codes and data are available on-line (Dilly et al., 2024).
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Appendix A. The limit of the domain of coexistence

We focus on the n/n0 ≥ 0 part of the curve setting the limit of the coexistence region in the (n, z) plane. The curve
was drawn red in figure 5 for the case z0/L = 0.2 and we study here how it changes when z0/L is changed.

Appendix A.1. The z/L→ 1 limit

We first focus on the part of the curve near z/L = 1. Dilly et al. (2023) stated that, as z/L → 1, the shape of this
curve is parabolic, with the symmetry n→ −n

n
n0
=

z→L

√
1 − Z2 h(Γ,Z0) (A.1)

where Z = z/L and Z0 = z0/L. Please note that when z0 = 0 formula (A.1) matches the z/L → 1 limit of formula
(A.9). The force and torque are then given by

T R2
0

B
=

z→L
(1 − Z2

0 )3/2 h(Γ,Z0) (A.2)

M R0

B
=

z→L
−ΓZ0

√
1 − Z2

0 (A.3)

Please note that when z0 = 0, we have h(Γ,Z0 = 0) = 1/Γ and formulas (A.2) and (A.3) coincide with the force
and torque at the writhing transition, see eq. (22). On this curve, each point on the right side is connected to a point
(nb/n0,Zb) of the left side (see for example the dotted brown lines in fig. 8) with

nb

n0
=

z→L
−

(1 − Zb)ΓZ0 +

√
1 − Z2

b

√
1 − Z2

0

1 − (1 − Γ) Z2
b

(A.4)

where Zb is the real root of the 5th degree polynomial

P(Zb) = P0 + (4Γ − 3)P1Zb + 2(Γ − 1)(2Γ − 1)P0Z2
b + 2(1 − Γ)P1Z3

b − 3(1 − Γ)2P0Z4
b + (1 − Γ)2P1Z5

b (A.5)

with P0 = −1 + Γ2 + (1 + Γ2)(2Z2
0 − 1) (A.6)

P1 = 1 + Γ2 − (1 − Γ2)(2Z2
0 − 1) (A.7)
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Figure A.15: The limit of the coexistence region for n/n0 ≥ 0 for different values of z0/L. Colored curves are computed numerically as explained
in section 3. (Left) We compare the analytical formula (A.9) to these numerical results and see it only works for small values of z0/L. (Right) We
show that the analytical formula (A.10) gives a good approximation of the limit of the coexistence region even for larger values of z0/L. In both

cases the thick dotted brown curve is parametrically defined by
{ √

1−Y2

1−(1−Γ)Y2 ,Y
}

with Y ∈ (0; 1). Fixed parameter: Γ = 2/3.

The parameter h(Γ,Z0) is given by

h(Γ,Z0) = Γ

[
Zb

√
1 − Z2

0 + Z0(1 − (1 − Γ)Zb)
√

1 − Z2
b

] [√
1 − Z2

b

√
1 − Z2

0 + ΓZ0(1 − Zb)
]

√
1 − Z2

b

√
1 − Z2

0

(
1 − (1 − Γ)Z2

b

)2 (A.8)

For z0/L = 0.2 and Γ = 2/3, as z/L → 1, we have T ≃ 1.39, M ≃ −0.13, nb/n0 = −0.13, h ≃ 1.48, and Zb = 0.996.
Please note that this approximation works correctly even as z/L moves away from 1, as long as z remains significantly
larger than z0.

Appendix A.2. An approximate formula for the limit of coexistence for all z0/L values

We now consider the entire (positive part) of the the limit of the coexistence region in the (n, z) plane. In the case
z0 = 0, McMillen and Goriely (2002) showed that this limit of the domain of coexistence is given by

n
n0

∣∣∣∣∣
z0=0
=

√
1 − (z/L)2

1 − (1 − Γ) (z/L)2 (A.9)

In the case z0 > 0 we have no such closed-form solution to offer to the reader, but the approximate formula

n
n0
≈

√
1 − (z/L)2

1 − (1 − Γ) (z/L)2

Γ h(Γ, z0/L)√
1 − (z0/L)2

(A.10)

seems to work nicely over a wide range of z0 values, see fig. A.15.

Appendix B. Stereoscopy and rod 3D reconstruction

Two Nikon® 3300 cameras were placed around the experimental setup approximately at a 90 degree angle in the
horizontal plane. Pose estimation of the cameras and camera calibration were performed using printed checker boards
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together with built-in functions of the python library OpenCV. The followed method can be found in OpenCV (2024).
The intrinsic matrix of the cameras was obtained on a series of approximately a hundred photos of a checkerboard
with the function cv.calibrateCamera. From a set of photos of a checker board visible by both cameras, the rotation
matrix, the translation vector and the fundamental matrix of the apparatus were then computed with a built-in function
of OpenCV: cv.stereoCalibrate.

The writhing experiment was conducted within the field of view of two cameras. In each photo, the edges of the
rod were identified, and the centerline of the rod was calculated by determining the midpoint between the two edges
along the normal direction to a given edge. Using this method, the centerline of the rod was extracted from both
photos, yielding the 2D coordinates of the centerline in the plane of each camera. The correspondence problem was
solved using epilines computed via the built-in OpenCV function cv.computeCorrespondEpilines. Since the centerline
is one-dimensional and the cameras are fixed such that the epilines intersect the 2D curve in the other camera’s image
at a unique point, this approach ensured reliable matching. With the calibration parameters, the fundamental matrix of
the apparatus, and the 2D views of the centerline, the centerline’s 3D coordinates were reconstructed in the laboratory
frame using the OpenCV function cv.triangulatePoints. The 3D reconstructed rod along the writhing experiment is
shown in Supplemental Material (Dilly et al., 2024, video 3). The tangent vector along the rod was then computed
using a finite difference method at every point along the centerline. To reduce numerical noise, smoothing was applied
over an arc-length window that was small relative to the typical scale of variation in the tangent vector components.
The straight rod at the start of the writhing experiment was used to establish the reference frame, ensuring that the
tangent vector in this configuration was defined as t = (0, 0, 1). After the onset of the writhing instability, in the helical
segments of the rod, a helical pattern of the type

t = (sin(θ) cos(λs), sin(θ) sin(λs), cos θ) (B.1)

was fitted on θ and λ to the tangent vector components. This estimation of θ and λ gives the curvature and torsion in
the helical patterns with the relations κ = λ sin(θ) and τ = λ cos(θ).
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