
HAL Id: hal-04838302
https://hal.science/hal-04838302v1

Submitted on 14 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Power efficiency of Hall-like devices: Comparison
between reciprocal and antireciprocal Onsager relations

Jean-Eric Wegrowe, Luqian Zhou, Sariah Al Saati

To cite this version:
Jean-Eric Wegrowe, Luqian Zhou, Sariah Al Saati. Power efficiency of Hall-like devices: Comparison
between reciprocal and antireciprocal Onsager relations. Physical Review B, 2024, 110 (2), pp.024412.
�10.1103/PhysRevB.110.024412�. �hal-04838302�

https://hal.science/hal-04838302v1
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW B 110, 024412 (2024)

Power efficiency of Hall-like devices: Comparison between reciprocal
and antireciprocal Onsager relations

Jean-Eric Wegrowe ,1,* Luqian Zhou ,1 and Sariah Al Saati 2

1LSI, École Polytechnique, CEA/DRF/IRAMIS, CNRS, Institut Polytechnique de Paris, 91120 Palaiseau, France
2Centre de Physique Théorique, 91120 Palaiseau, France

(Received 24 March 2024; revised 17 June 2024; accepted 26 June 2024; published 9 July 2024)

Two well-known Hall-like effects occur in ferromagnets: the anomalous Hall effect (AHE) and the planar
Hall effect (PHE). AHE is analogous to the classical Hall effect and is characterized by the antireciprocal
Onsager relation (antisymmetric conductivity matrix), whereas PHE is defined by the reciprocal Onsager relation
(symmetric conductivity matrix). The distinction is fundamental, as it stems from time-reversal symmetry
breaking at the microscopic scale. We examine theoretically the Hall current generated in both AHE and PHE,
along with the electric power that can be transferred from the edges of the Hall bar into a load circuit. Using
a variational method based on the second law of thermodynamics, we derive expressions for the distribution of
the electric currents, the distribution of electric carriers, and the power efficiencies. Our results show that the
distribution of the transverse Hall current is identical for both AHE and PHE (with all other parameters being
equals) but the longitudinal current and the power dissipated differ at the second order in the Hall angle.

DOI: 10.1103/PhysRevB.110.024412

I. INTRODUCTION

Exactly 200 years ago, in 1824, Sadi Carnot published his
seminal work that first formulated the second law of thermo-
dynamics [1]. Independently, 55 years later, in 1879, Edwin
Hall reported on the phenomenon that would come to bear
his name [2]. Another 52 years later, in 1931, Lars Onsager
published two papers [3,4] on the reciprocity relations de-
scribing cross effects in transport phenomena, a breakthrough
that earned him the Nobel Prize in 1968 [5]. In recent years,
building on these three foundational discoveries, a series of
fascinating studies have been devoted to the anomalous Hall
effect (AHE), and its relation with topological materials. This
research began with Karplus and Luttinger’s 1954 paper [6],
and continued for 50 years [7–10] culminating in Haldane’s
influential work in 2004 [11], which contributed to his Nobel
Prize in 2016. This field remains highly active today [12–15],
especially within the context of new topological materials
exhibiting unconventional AHE [16,17]. On the other hand,
also in 1954, Golberg and Davis proposed the name of planar
Hall effect (PHE) [18], while generalizing the description of
the ordinary Hall effect to an arbitrary direction of the mag-
netic field. The PHE then simply appears as a supplementary
contribution to the voltage measured in the Hall configuration,
generated by the same effective magnetic field that produces
AHE [19,20].

In his first paper, Onsager formulated the reciprocity re-
lation of the first kind, known as reciprocal, based on the
microscopic property of time-reversal symmetry [3]. Subse-
quently, his second paper addressed the reciprocity relation of
the second kind, referred to as antireciprocal, which emerged
from the partial breaking of this time-reversal symmetry [4].

*Contact author: jean-eric.wegrowe@polytechnique.edu

The first reciprocal relation leads to a symmetric matrix of the
transport coefficients, while the second antireciprocal relation
leads to an antisymmetric transport matrix. Because of his
simplicity, seniority [6,18], and ubiquity [21,22], PHE and
AHE effects can be considered as archetype, that allow us to
compare the dissipative properties of reciprocal vs nonrecip-
rocal Onsager relations.

More precisely, in the case of ordinary electric transport
in ferromagnetic conductors, the effective magnetic field is
responsible for two modifications of the symmetry of the out-
of-equilibrium system. First, it breaks the initial isotropy of
the conductivity with imposing axial symmetry (along the ef-
fective field), defining both the anisotropic magnetoresistance
and the PHE. Second, it breaks the time-invariance symmetry,
defining Hall effect (or AHE) with the introduction of the
antireciprocal Onsager cross coefficient. In both cases, the
off-diagonal coefficients induce a coupling between the two
directions x and y in the plane of the Hall device. Conse-
quently, PHE and AHE define two fundamentally different
ways to inject a lateral current from the edges of the Hall bar
into a lateral load circuit. It is worth noting that in ferromag-
nets or ferrimagnets (or some unconventional magnets), the
lateral Hall current produced by AHE or PHE is spin polar-
ized, enabling its use in switching an adjacent ferromagnetic
layer [23], an effect known as spin-orbit torque [24]. However,
in the present report, the spin degrees of freedom are not
considered, indicating that the load circuit is positioned at
significant distance from the edges of the Hall bar, typically
beyond the nanometric scale.

The question treated in this work is to understand why and
how the two Hall currents injected respectively with PHE and
AHE are of “different nature” from the point of view of the
dissipation. In order to answer to this question, we perform
a comparative study—with a synoptic presentation—of both
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FIG. 1. Left: illustration of a Hall bar connected to a load circuit with resistance R� maintaining translation invariance along the x direction.
The sign of the electric-charge accumulation is indicated by red (-) and blue (+) colors (see the calculated profile in Fig. 3). Right: Integration
loop ABCDA defined on one of the yz vertical planes. A magnetic vector �m is present but it is not represented in the picture.

kinds of transverse current produced at the stationary state
inside the magnetic material, and injected into the load circuit,
all other parameters being equal.

The analysis primarily relies on a variational method based
on the second law of thermodynamics, following a methodol-
ogy established in a series of prior publications [25–29] whose
objectives were to compute the power dissipated by the Hall
current in a perfect Hall bar in contact with a lead circuit. In
these previous publications, it was observed that due to the
small value of the Hall angle (below 1%), the properties of the
dissipated power were found to be surprisingly close to what
could have been expected from a standard lumped-element
circuit [30,31]. The validity of the results have however been
confirmed in preliminary experiments performed on the AHE
in GdCo ferrimagnets [32].

II. MODEL

The system we consider consists of a thin, homogeneous,
magnetized conducting layer with length L and width �, con-
nected to an electric generator as depicted in Fig. 1. The
material used can be a conducting ferromagnet, antiferromag-
net, altermagnet, or any kind of conducting materials that
can be described with a single effective magnetic field, or
effective axial vector �m (responsible for both AHE and PHE).
We assume that the conducting layer is planar, invariant by
translation along the x axis � � L (this excludes the region in
contact with the power generator). We omit any component of
the electric current along the z axis, and we consider that the
two lateral edges are symmetric.

We define the distribution of electric charge carriers by
n(y) = n0 + δn(y), where δn(y) is the charge accumulation
and n0 the homogeneous density in the electrically neutral
system. Due to the symmetry of the device and global charge
conservation we have

∫ +�

−�
δn dy = 0, and the total charge-

carrier density is constant ntot = 1
2�

∫
n dy. For the sake of

simplicity, we assume a global charge neutrality so that ntot =
n0. Additionally, the external generator injects a current along
the x direction, meaning that the global current flowing in the
x direction throughout the device is also constant along x, by
definition of the galvanostatic condition. This is expressed as∫ �

−�
Jx(y)dy = 2�J0

x .

Furthermore, in Sec. V, we will consider the case where
a Hall current is injected into the load circuit contacted at the
lateral edges. We must then introduce the Joule dissipation due
to the load resistance. Unlike for the x direction, there is no
external generator in the y direction, so that the loop integral
of current in the {yz} plane vanishes :

∮
ABCDA Jdl = 0, where

the integration path ABCD is sketched in Fig. 1(b). This can
be equivalently written

∫
AB Jdl + ∫

BCDA Jdl = ∫ �

−�
Jy(y)dy +∫

BCDA Jdl = 0. The definite integral
∫

BCDA Jdl is a constant
that we do not know at the moment, and we will represent
the constant as

∫
BCDA Jdl = −2lJ0

y , where J0
y is determined in

Sec. V. In summary, we can write the global constraint on the
y direction as

∫ �

−�
Jy(y)dy = 2lJ0

y .

III. JOULE DISSIPATION INCLUDING SCREENING

The charge accumulation is governed by Poisson’s equa-
tion ∇2V = − q

ε
δn, where V is the electrostatic potential, q is

the electric charge, and ε is the electric permittivity. The local
electrochemical potential μ(x, y)—that takes into account not
only the electrostatic potential V but also the energy (or the
entropy) responsible for the diffusion—is given by the expres-
sion [33,34] (local equilibrium is assumed everywhere)

μ = kT

q
ln

(
n

n0

)
+ V, (1)

where k is the Boltzmann constant and the temperature T is
the temperature of the heat bath in the case of a nondegenerate
semiconductor, or the Fermi temperature TF in the case of a
fully degenerate conductor [35]. Poisson’s equation now reads

∇2μ − λ2
D

q

ε
n0∇2 ln

(
n

n0

)
+ q

ε
δn = 0, (2)

where λD =
√

kT ε
q2n0

is the Debye-Fermi length (T is the tem-

perature and k the Boltzmann constant). On the other hand, the
transport equation under a magnetic field is given by Ohm’s
law:

�J = −σ̂ �∇μ = −qnη̂ �∇μ, (3)

where the transport coefficients are the conductivity tensor σ̂

or the mobility tensor η̂.
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Based on the uniaxial symmetry imposed by the effective magnetic field (where the resistivity along the effective magnetic
field differs from that within the plane) and the antireciprocal symmetry due to the same effective magnetic field, Ohm’s law for
resistivity takes the form[18,36–38]

�E = ρ �J + 	ρ( �m · �J ) �m + ρH �m × �J, (4)

where we have introduced the resistivity of the isotropic material ρ, the anisotropic magnetoresistance 	ρ/ρ, and the Hall
resistivity ρH . The resistivity matrix is deduced from Eq.(4):

ρ̂ =

⎛
⎜⎝

ρ + 	ρm2
x 	ρmxmy − ρH mz 	ρmxmz + ρH my

	ρmymx + ρH mz ρ + 	ρm2
y 	ρmymz − ρH mx

	ρmzmx − ρH my 	ρmzmy + ρH mx ρ + 	ρm2
z

⎞
⎟⎠, (5)

where the unit vector �m gives the direction of the magnetization with respect to the orthogonal basis attached to the Hall bar. The
unit vector �m can be expressed as a function of the radial angle θ and the orthoradial angle ϕ, such that mx = sin(θ ) cos(ϕ), my =
sin(θ ) sin(ϕ), mz = cos θ . In order to compare the planar Hall effect with the anomalous Hall effect, we choose the material of
the Hall bar such that ρ � 	ρ � ρH for the planar Hall effect (this is typically the case for NiFe alloys [39]) and ρ � ρH � 	ρ

for the anomalous Hall effect (this is typically the case for GdCo alloys [32,39]). In the following, the index pl stands for PHE
(left column below) and the index an stands for AHE (right column below). In addition, we only consider an electric current
flowing inside the xy plane, thus the matrix Eq. (5) can be reduced to 2 × 2 matrices:

ρ̂pl =
(

ρ 	ρ mxmy

	ρ mymx ρ

)
and ρ̂an =

(
ρ −ρH mz

ρH mz ρ

)
. (6)

We then define the ratio of the off-diagonal coefficient over the diagonal coefficient:

�pl = 	ρ

ρ
sin2(θ ) sin(2ϕ) and �an = −ρH

ρ
cos(θ ). (7)

The angular dependence of the parameters defined in Eqs. (6) and (7) influences the Hall voltage by charge accumulation at
the edges, and is an unambiguous signature for the distinction between AHE and PHE [32,39]. However, in our context (theory
and experiment), we will choose the magnetization direction such that θ = π/2 and ϕ = −π/4 for the PHE and θ = 0 for AHE.
We will also consider two materials such that 	ρ/ρ ≈ ρH/ρ in order to have � = �an = −�pl . Furthermore, since 	ρ/ρ and
ρH/ρ are of the order of 1% maximum, we have sin(�) ≈ � and we will call � the “Hall angle.”

The conductivity matrix can be computed as the inverse of the resistivity matrix σ̂ = ρ̂−1 which allows us to compute the
mobility tensor σ̂ = qnη̂:

η̂pl =
(

η ηpl

ηpl η

)
= η

(
1 −�

−� 1

)
and η̂an =

(
η ηan

−ηan η

)
= η

(
1 �

−� 1

)
. (8)

We can then express the Joule dissipation density in terms of the current vector components Jx, Jy:

pJ = �J · �∇μ. (9)

Using Ohm’s law expressed in Eq. (3), the gradients of the chemical potentials �∇μ read

�∇μpl = − 1

qn
η̂−1

pl
�J

= − 1

qnη(1 − �2)

(
1 �

� 1

)(
Jx

Jy

)
,

�∇μpl = − n0

nσpl

(
Jx + �Jy

�Jx + Jy

)
,

and

�∇μan = − 1

qn
η̂−1

an
�J

= − 1

qnη(1 + �2)

(
1 −�

� 1

)(
Jx

Jy

)
,

�∇μan = − n0

nσan

(
Jx − �Jy

�Jx + Jy

)
,

(10)

where, for convenience, we have introduced the two constant conductivities (i.e., the bulk conductivities for y � λD)

σpl = qn0η(1 − �2) and σan = qn0η(1 + �2). (11)

Since ρ is the intrinsic value of the resistivity of the material [32,39] (that does not depend on �) and assuming identical
material for both AHE and PHE, we have σpl = 1

ρ(1−�2 ) and σah = 1
ρ(1+�2 ) and

ppl
J = − n0

nσpl

(
J2

x + J2
y + 2�JxJy

)
and pan

J = − n0

nσan

(
J2

x + J2
y

)
. (12)
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The expression of the Joule power dissipated by the system reads

PJ = Slat

∫ �

−�

pJ (y)dy, (13)

which gives, respectively,

Ppl
J = Slat

σpl

∫ �

−�

n0

n

(
J2

x + J2
y + 2�JxJy

)
dy and Pan

J = Slat

σan

∫ �

−�

n0

n

(
J2

x + J2
y

)
dy, (14)

where Slat is the lateral surface of the Hall bar (product of the length L by the thickness), and 2� is the width. As expected the
two expressions of the Joule heating for PHE and AHE turn out to be significantly different.

IV. CURRENTS AND CHARGE DENSITIES WITHOUT LOAD CIRCUIT

We first consider the case of the Hall bar without load circuit. The stationary state is defined by the least dissipation principle
which states that the current is distributed so as to minimize Joule heating PJ while satisfying the given constraints [40–42].
Without load circuit, in the notations of Sec. III, the integration path ABCD is reduced to AB and the global constraint along the
y direction is zero:

∫ �

−�
Jy(y)dy = 0.

The global constraints read∫ �

−�

n(y)dy = 2�n0 and
∫ �

−�

Jx(y)dy = 2�J0
x and

∫ �

−�

Jy(y)dy = 0. (15)

We define for convenience the reduced power P̃J = qη(1±�2 )
Slat

PJ . Let us introduce the two Lagrange multiplayers λx and λn,
corresponding to the two constraints Eqs. (15). The functional to be minimized is then given by

P̃pl
J =

∫ �

−�

(
J2

x + J2
y + 2�JxJy

n
− λx Jx − λy Jy − λn n

)
dy and P̃an

J =
∫ �

−�

(
J2

x + J2
y

n
− λy Jy − λx Jx − λn n

)
dy. (16)

The minimum corresponds to

δP̃J

δJx
= 0 and

δP̃J

δJy
= 0 and

δP̃J

δ(n)
= 0, (17)

which give, respectively, ⎧⎪⎨
⎪⎩

2Jx + 2�Jy = nλx

2Jy + 2�Jx = nλy

J2
x + J2

y + 2�JxJy = −λnn2

and

⎧⎪⎨
⎪⎩

2Jx = nλx

2Jy = nλy

J2
x + J2

y = −λnn2

. (18)

By integrating the two first equations across the bar from −l to l , and applying the constraints, we can explicitly solve λx and
λy. Substituting these results back into the equations above, we obtain Jx and Jy as follow:⎧⎨

⎩Jpl
x (y) = J0

x

n(y)

n0
Jpl

y (y) = 0
and

⎧⎨
⎩Jan

x (y) = J0
x

n(y)

n0
Jan

y (y) = 0
. (19)

As can be observed, the current density is not homogeneous throughout the sample [since n(y) �= n0], and it exhibits the same
form for both AHE and PHE.

Then inserting the solution Eq. (19) into the transport equations Eq. (10), we deduce⎧⎨
⎩

∂xμ
pl(y) = − J0

x
σpl

∂yμ
pl(y) = −�J0

x
σpl

and

⎧⎨
⎩

∂xμ
an(y) = − J0

x
σan

∂yμ
an(y) = −�J0

x
σan

. (20)

As a consequence, the electrochemical potential of the
stationary state is harmonic in both cases: ∇2μ = 0. Since
the profile of the lateral current Jy(y) is defined by the charge
density n(y), Poisson’s equation Eq. (2) for ∇2μ = 0 gives the
equation

λ2
D∂2

y ln

(
1 + δn

n0

)
= δn

n0
. (21)

Assuming δn � n0, we have, at the first order

λ2
D∂2

y

(
δn

n0

)
= δn

n0
, (22)

which gives us

δn(y)

n0
= A ch(y/λD) + B sh(y/λD). (23)
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Once again, the boundary conditions for the density n are
not defined locally but globally by Eq. (15). We can specify
the boundary conditions for ∂y

δn(y)
n0

noting that for the station-
ary solutions of Eq. (19) for both systems gives us

Ey = −∂yV (24)

= −∂yμ + kT

q
∂y

(
δn

n0

)
, (25)

Ey = −�J0
x

σh
+ kT

q
∂y

(
δn

n0

)
, (26)

where σh is given by σpl or σan.
We specify these conditions at the edges of the sample for

Ey(±�) = Ey(±∞), which correspond to the electric field at
the exterior of the bar, assuming that the bar is surrounded by
vacuum. If we define 2	±E∞ = Ey(∞) ± Ey(−∞), then the
approximated solution of δn is given for both cases by

qλD

ε
δn(y)=	−E∞

ch(y/λD)

sh(l/λD)
+

(
	+E∞ + �J0

x

σh

)
sh(y/λD)

ch(l/λD)
,

(27)

where σh is here again given by σpl or σan.
As can be seen, the the profiles of the screening are similar

for both AHE and PHE in the perfect Hall-like device. A
difference can be seen (at the second order in �) in terms of
the conductivities σpl and σan given in Eq. (11).

V. CURRENT INJECTION IN THE LOAD CIRCUIT

The solution found in the preceding section is valid as
long as the dissipation due to charge leakage at the edges
is negligible compared to the dissipation inside the device.

However, if it is no longer the case, the stationary regime
should be reconsidered by introducing the dissipation due to
the resistance of a lateral load circuit that connects the edges
of the Hall bar. To account for this additional dissipation, we
introduce the load resistivity R� (� · m2) of the lateral circuit.
The power dissipated in the lateral circuit is

Plat = Slat 	μ2

R�

,

where 	μ = μ(+�) − μ(−�) is the difference in the chem-
ical potential between both edges. Note that due to our
assumption of the invariance along x, we do not address the
scenario where a resistance is connected to the two edges
of the Hall bar with two contacts located at a given position
somewhere in the bar. Indeed, such a contact would break the
translation invariance symmetry along x, and would distort
the current lines in a manner determined by the contact’s
geometry and resistivity details. This contact-specific effect is
not relevant in the context of this study. Instead, the relevant
contact we consider is sketched in Fig. 1 (left). It is an ideal
version of the “perfect Hall bar,” which can nevertheless be
approximated experimentally [32,39]. Incidentally, it is un-
derstood that the primary advantage of the Corbino disk over
Hall-bar devices lies in its easier design of two quasiperfect
concentric equipotentials with circular symmetry as opposed
to two nearly perfect longitudinal equipotentials with transla-
tion symmetry.

A. Stationary currents

The difference of chemical potential can be expressed as a
function of the current:

	μpl =
∫ +�

−�

dy ∂yμ

= −
∫ +�

−�

dy
Jy + �Jx

qnη(1 − �2)

and

	μan =
∫ +�

−�

dy ∂yμ

= −
∫ +�

−�

dy
Jy + �Jx

qnη(1 + �2)
,

(28)

so that

Ppl
lat = Slat

R�(qη)2(1 − �2)2

(∫ +�

−�

dy
Jy + �Jx

n

)2

and Pan
lat = Slat

R�(qη)2(1 + �2)2

(∫ +�

−�

dy
Jy + �Jx

n

)2

. (29)

As in the preceding section, we define the reduced power P̃ = qη(1±�2 )
Slat

P. The total power dissipated is then

P̃pl = P̃J + P̃lat

=
∫ +�

−�

dy
J2

x + J2
y + 2�JxJy

n

+ αpl 2l

n0

(
n0

2�

∫ +�

−�

dy
Jy + �Jx

n

)2

and

P̃an = P̃J + P̃lat

=
∫ +�

−�

dy
J2

x + J2
y

n

+ αan 2l

n0

(
n0

2�

∫ +�

−�

dy
Jy + �Jx

n

)2

,

(30)

where we have introduced the dimensionless control parameter αh = 2�
R�σh

.

Note that this control parameter α is defined by the ratio α = R
R�

of the resistance of the material R ≡ V
J0

x
= 2�

σh
over the load

resistance R� [32]. The case α → 0 corresponds to perfect Hall bar while the case α → ∞ corresponds to the perfect Corbino
disk [25,39]. The exponent of index h denotes, respectively, h = pl for the planar Hall system and h = an for the anomalous
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Hall system. We define for convenience the constant Ah:

Ah ≡ n0

2�

∫ �

�

�Jx + Jy

n
dy. (31)

At this stage, we can adopt the constraint on Jy(y) as discussed in the section above:∫ �

−�

Jy(y)dy = 2�J0,h
y , (32)

where J0,h
y is some constant for each system which will be determined later.

The minimization of the corresponding functional P̃ now reads

αpl Apl � + Jx + �Jy = λxn

2
,

αpl Apl + Jy + �Jx = λyn

2
,

and
αan Aan � + Jx = λxn

2
,

αan Aan + Jy = λyn

2
.

(33)

Once again, applying the global constraints given by Eqs. (15) along with the third replaced by Eq. (32), we can immediately
solve from these two equations

λx = 2

n0

(
αplApl� + J0

x + �J0,pl
y

)
,

λy = 2

n0

(
αplApl + �J0

x + J0,pl
y

)
,

and

λx = 2

n0

(
αanAan� + J0

x

)
,

λy = 2

n0

(
αanAan + J0,an

y

)
.

(34)

Substituting these solutions back to the equations, we get

Jx = n

n0
J0

x ,

Jy = n

n0
J0,pl

y + αplApl

(
n

n0
− 1

)
,

and

Jx = n

n0
J0

x + αanAan�

(
n

n0
− 1

)
,

Jy = n

n0
J0,an

y + αanAan

(
n

n0
− 1

)
.

(35)

For simplicity, we focus on a system which obeys the local conservation of electric charges ∇ · J = 0, which leads to ∂Jx
∂x +

∂Jy

∂y = 0. Since the system is invariant along the x direction, we have ∂Jx
∂x = 0. Then this will lead to the result that ∂Jy

∂y = 0. Thus,

this requires that coefficient in factor of n(y) vanishes, which leads to J0
y = −αA. We get, eventually,

Jx = n

n0
J0

x ,

Jy = J0,pl
y ,

and
Jx = n

n0
J0

x − J0,an
y �

(
n

n0
− 1

)
,

Jy = J0,an
y .

(36)

Substituting these solutions back to the definition of Apl/an given by Eq. (31), we obtain the following equation

J0,pl
y

(
1 + α

∫
n0

n

dy

2�

)
= −α�J0

x and J0,an
y

(
1 + α�2 + α(1 − �2)

∫
n0

n

dy

2�

)
= −α�J0

x . (37)

Assuming that δn � n0, we have at the first order n0
2�

∫ +�

−�

dy
n(y) � 1, thus we can solve

Jx = n

n0
J0

x ,

Jy = − α

1 + α
�J0

x ,

and
Jx = n

n0
J0

x + �2 α

1 + α

(
n

n0
− 1

)
J0

x ,

Jy = − α

1 + α
�J0

x .

(38)

The results Eqs. (38) show that, at the first order in the charge accumulation, the distributions of the transverse Hall current
Jy are identical for both the AHE and the PHE, and a difference can be seen at the second order in the Hall angle � for the
longitudinal current Jx. We conclude that the fundamental symmetry differences have been leveled out by the application of the
minimum power dissipation principle derived from the second law of thermodynamics assuming comparable Hall angle � for
AHE and PHE [i.e., with the relevant position of the magnetization, as described below Eq.(7)].

Note that the well-known expressions are recovered for the extreme cases, that are the perfect Hall bar and the Corbino disk.
For an ideal Hall bar, the load resistance is infinite, and this implies α = 0. We thus see that Eq. (38) converges to Eq. (19) as
α → 0.
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FIG. 2. Power efficiency Plat/P0 for both AHE (red lines) and PHE (blue dashed line). Left: Efficiency as a function of the ratio α = R/R�

for values of � ranging from 0 to 0.5 with increments of 0.05. Right: Efficiency as a function of the Hall angle �.

Conversely, in a Corbino disk, we have α → +∞ and the solutions converge to the well-known result

JCor
x = n

n0
J0

x and JCor
y = −�J0

x (39)

for both PHE and AHE.
We see that the second law of thermodynamics levels out the fundamental differences that define the two processes—PHE

vs. AHE—at the microscopic scales.

B. Power injected in the load circuit

The total power P̃ = P̃J + P̃lat, given in Eq. (30), is the sum of the Joule heating P̃J dissipated inside the Hall device, and the
power P̃lat dissipated into the lateral passive circuit. Inserting the stationary state Eqs. (38) and using the first global condition in
Eqs. (15) (assuming that δn � n0, we have

∫ +�

−�

dy
n(y) � 2�/n0), the power dissipated in the lateral circuit reads

Ppl
lat(α) � 2�Slat

(
J0

x

)2

σpl

α

(1 + α)2
�2 and Pan

lat (α) � 2�Slat
(
J0

x

)2

σan

α

(1 + α)2
�2

(
1 + 2�2α

(
n

n0
− 1

))
. (40)

We define P0, the power dissipated in the material in the absence of the Hall-like effect

P0 ≡ PJ (� = 0) = 2�Slat
(
J0

x

)2

qηn0
(41)

The power P0 can be retrieved experimentally by adjusting the magnetization according to Eq. (7). This leads to a very simple
expression of the power efficiency due to the injection of the Hall current:

Ppl
lat

P0
� α

(1 + α)2

�2

1 − �2
and

Pan
lat

P0
� α

(1 + α)2

�2

1 + �2

(
1 + 2�2α

(
n

n0
− 1

))

� α

(1 + α)2

�2

1 + �2
.

(42)

These results show that the power efficiencies for both
effects are the same as a function of α, but their dependence
on � differs. This behavior can be observed in Fig. 2, left
panel, where this power is shown as a function of the variable
α for several values of �, and in Fig. 2, right panel, where this
power is shown as a function of the variable � for several val-
ues of α, for both AHE shown in red continuous lines and PHE
shown in blue dashed lines. Specifically, both curves exhibit a
unique maximum at the resistance-matching condition α = 1
(i.e., R = R�) where the resistances of the two subcircuits are

equal. In other terms, the maximum transfer theorem holds
true in both Hall-like systems. However, this result does not
imply the validity of Kirchhoff’s circuit law, as the stationary
states in both cases are distinct whereas the lumped-element
circuits for AHE and PHE appear identical (see Fig. 1).

Additionally, in typical materials, both anomalous Hall
angles and planar Hall angles are relatively small, typically
below 1%. As a result, the variation of the dissipated power
between AHE and PHE with respect to the Hall angle is small
but it can be observed experimentally. It is worth noting that
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the discrepancy in dissipated power between the Hall bar and
the Corbino disk also occurs at the second order in �. We
observe however that if, instead of Eq. (41), we define the ref-
erence power as Ppl,an

0 (α = 0) = 2�Slatt (J0
x )2/σpl,an (i.e., the

power of the perfect Hall bar for AHE and PHE separately),
then we find no difference between the two power efficiencies
in both cases.

C. Charge accumulation

In this last section we would like to compute the expression
of the charge accumulation δn(y) at the edges of a Hall bar
contacted to the load circuit, whereas in Sec. III it was only
done for a perfect Hall bar without load circuit.

We start with the solutions given by Eqs. (38), we rewrite
�∇μ given by Eq. (10) as

⎧⎪⎨
⎪⎩

∂xμ
pl = − n0

nσpl
(Jx + �Jy)

∂yμ
pl = − n0

nσpl
(�Jx + Jy)

,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂xμ
pl = − J0

x

σpl

(
1 − n0

n
α

1+α
�2

)
∂yμ

pl = −J0
x �

σpl

(
1 − n0

n
α

1+α

) ,

and

⎧⎪⎨
⎪⎩

∂xμ
an = − n0

nσan
(Jx − �Jy)

∂yμ
pl = − n0

nσan
(�Jx + Jy)

,

⎧⎪⎪⎨
⎪⎪⎩

∂xμ
an = − J0

x

σan

(
1 + �2 α

1+α

)
∂yμ

pl = −J0
x �

σan

(
1 + �2 α

1+α
− n0

n
α

1+α
(1 + �2)

) .

(43)

We get

∇2μpl = −J0
x �

σpl

α

1 + α

∂y(n/n0)

(n/n0)2

= − J0
x

qn0η

�

1 − �2

α

1 + α

∂y(n/n0)

(n/n0)2

= −qλD

ε
npl

∂y(n/n0)

(n/n0)2

and

∇2μan = −J0
x �(1 + �2)

σan

α

1 + α

∂y(n/n0)

(n/n0)2

= − J0
x

qn0η
�

α

1 + α

∂y(n/n0)

(n/n0)2

= −qλD

ε
nan

∂y(n/n0)

(n/n0)2
.

(44)

The density of carriers reads

npl = ε

qλD

J0
x

qn0η

�

1 − �2

α

1 + α

= ν
�

1 − �2

α

1 + α

and
nan = ε

qλD

J0
x

qn0η
�

α

1 + α

= ν �
α

1 + α
,

(45)

where we have set ν = ε J0
x /(q2λDn0η). In this case, we find that the chemical potential is not harmonic (as was the case in Sec.

III). The resulting formulation of Poisson’s equation Eq. (2) is thus the same for both systems and is given by

−λ2
Dn0∇2 ln

(
1 + δn

n0

)
− λDnh

∂y(δn/n0)

(n/n0)2
+ δn = 0, (46)

where we recall that the index h in nh is given by h = pl for the planar Hall case and by h = an for the anomalous Hall case. We
can linearize the equations in the regime δn/n0 � 1 to get

−λ2
D∂2

y

(
δn

n0

)
− nh

n0
λD∂y

(
δn

n0

)
+ δn

n0
= 0, (47)

which can be solved exactly to give in both cases

qλD

ε
δn(y) = e

r1y
λD

E+∞e− r2�

λD − E−∞e
r2�

λD + 2 sh
( r2�

λD

) J0
x �

σpl (1+α)

2r1 sh
(
(r1 − r2) �

λD

) + e
r2y
λD

E+∞e− r1�

λD − E−∞e
r1�

λD + 2 sh
( r1�

λD

) J0
x �

σpl (1+α)

2r2 sh
(
(r2 − r1) �

λD

) , (48)

with

rpl
1 = 1

2

⎛
⎝− ν

n0

�

1 − �2

α

1 + α
−

√(
ν

n0

�

1 − �2

α

1 + α

)2

+ 4

⎞
⎠,

rpl
2 = 1

2

⎛
⎝− ν

n0

�

1 − �2

α

1 + α
+

√(
ν

n0

�

1 − �2

α

1 + α

)2

+ 4

⎞
⎠,

and

ran
1 = 1

2

⎛
⎝− ν

n0
�

α

1 + α
−

√(
ν

n0
�

α

1 + α

)2

+ 4

⎞
⎠,

ran
2 = 1

2

⎛
⎝− ν

n0
�

α

1 + α
+

√(
ν

n0
�

α

1 + α

)2

+ 4

⎞
⎠.

(49)
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FIG. 3. The profiles of the charge accumulations δn(y)/ν for both AHE (blue) and PHA (red) for different values of the Hall angle � at
the maximum α = 1 (i.e., R = R�) and for ν = 0.1n0. Left: over the whole sample. Right: close to the right boundary. In both panels, the angle
� ranges from 0 to 0.5 by increments of 0.05.

Without other external source of electric fields, we have

δn

n0
(y) = ν

n0

�

1 ± �2

1

1 + α

1

sh
(
(r2 − r1) �

λD

)
(

sh

(
r1�

λD

)
e

r2y
λD

r2
− sh

(
r2�

λD

)
e

r1y
λD

r1

)
, (50)

which, in the limit α → 0, adequately gives us back the
distribution of Eq. (27). The profiles of the charge accumu-
lations n(y) are functions of the parameters λD/�, ν, α, and
�. Despite the complexity of the expressions Eqs. (49) and
Eqs. (50), the only difference between PHE and AHE is due
to the difference as a function of � (see Fig. 3). We can see
that changing the value of the Hall angle � will only change
the amplitude of the distribution.

VI. CONCLUSION

We have investigated the properties of the injection of Hall
currents into a lateral load circuit (Fig. 1) for both the planar
Hall effect (PHE) and the anomalous Hall effect (AHE) with
all other parameters being equal. The analysis is based on
the principle of minimum power dissipation under the global
constraints imposed to the system, and taking into account
the screening effect. We derived analytical expressions of the
distribution of charge carriers and currents for arbitrary values
of the load resistance and Hall angle, focusing on the first
order in the charge accumulation δn/n0. Notably, our analysis
recovers well-known limiting cases, such as the perfect Hall
bar (infinite-load resistance) and the Corbino disk (zero-load
resistance).

Despite the fundamental difference between the two ef-
fects at the microscopic scales, primarily characterized by
time-reversal symmetry breaking, the accumulation of charge
carriers, the distribution of currents, and the power efficiency
of the injected Hall currents are surprisingly similar for

both AHE and PHE [after having fixed the direction of the
magnetization �m, according to Eqs. (7)]. The difference is
then due to the Hall-angle dependence of the conductivities
[Eq. (11)], i.e., observable at the second order in � (the
maximum values of � are of the order of 1% in ordinary
materials). In the case of the power efficiency, both curves
have a maximum that corresponds to the resistance matching
between the load circuit and the Hall bar. In other terms,
the maximum transfer theorem is satisfied for both AHE and
PHE. This property is not trivial because the system (shown
in Fig. 1) cannot be simplified into a basic lumped-element
circuit. These results showcase the relevance of the second
law of thermodynamics for dissipative transport phenomena,
which is found to level out the microscopic specificities and
to invalidate the prediction of dissipationless transport for
macroscopic Hall-like systems.

We mention the fact that the results obtained remain valid
regardless of the mechanisms underlying both AHE and PHE,
whether attributed to spin-orbit scattering, or to the topolog-
ical properties of the band structure (Berry connection), as
long as they give rise to a unique effective magnetic field.
However, the approach followed in this analysis has its pri-
mary limitations in the quasiclassical approach and the local
equilibrium hypothesis, so that the quantum anomalous Hall
effect or the unconventional anomalous Hall effect may be
beyond the limits of this model’s validity. Nonetheless, the
distinct characteristics of nanoscopic or quantum phenomena
can now be easily identified and computed, thus allowing for
a comparison between these unconventional systems and the
conventional ones described in this study.
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