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Abstract
Thiswork is about using directional logic programming to give
foundations to mode-correct bidirectional type systems [2,

§ 6.2]. Reddy[5] uses a term language for classical linear
logic, adapted from Abramsky’s Linear Chemical Abstract
Machine (LCHAM) [1], to give a typed calculus for directional
logic programs.We give a categorical semantics to Reddy’s

calculus, using polycategories. We give normalisation results

for this calculus, which shows how to evaluate logic queries

to normal forms, that gives output substitutions indicating

whether queries fail or succeed.
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Directional Logic Programming
Type systems are logic programs, which can be run forwards

or backwards giving bidirectional type-checking – type

checking and type synthesis [2]. However, there is a subtle

issue about mode-correctness. Logic programs may not

terminate, for example, consider the simple list reversal:

reverse( [], []) .

reverse(p :: x, y) D reverse(x, z), append(z, [p], y).
If the implementation uses left-to-right literal selection, then

reverse(x, [1, 2, 3]) won’t terminate. If the implementation

uses right-to-left literal selection, then reverse( [1, 2, 3], x)
won’t terminate.

We can ensure termination by adding mode annotations

to arguments. In the example above, we may specify:

mode reverse(+,−). mode append(+, +,−).
where + means the argument should always be in input

position, and − means the argument should be in output

position. Then reverse(x, [1, 2, 3]) won’t be an acceptable

goal, as it has a variable in the input position. Now, as long

as the implementation uses left-to-right literal selection, all

acceptable goals will terminate [5, Pg. 4].

Rather than treating entire arguments as inputs or outputs,

wewould like amore fine-grained notion ofmode, that allows

embedding inputs in outputs, and vice versa. Classical linear

logic can be used to combine modes with types, where linear

negation switches input and output modes. For example,

reverse gets the type:
reverse : Proc(List(𝐴) ⊗ List(𝐴)⊥)

This is the idea behind directional logic programming –

type-checking ensures that every well-typed program is

mode-correct. Reddy[5]’s language for directional logic

programming is presented as a sequent calculus for classical

linear logic, with terms, patterns, variables, and commands,
and an untyped operational semantics for commands, that

enjoys subject reduction.

Polycategorical Semantics
To give an adequate denotational semantics to Reddy’s

language, we would like to produce a typed equational

theory. First, we advocate for the use of polycategories

for its categorical semantics, since this sequent calculus

presentation is the internal language of polycategories.

We consider the free (symmetric) polycategory P on a

polygraph of base types and constant polymaps. Following

Reddy’s presentation, this is written as a sequent calculus

with two-sided sequents Γ ⊢ {𝜃 } ∆ as judgements, where

commands 𝜃 correspond to derivations of polymaps, and

equations (on typed derivations, or commands) correspond

to (symmetric) polycategory axioms. The free polycategory

has a presentation using polycategorical trees [3, Prop. 2.9]

(the polycategorical version of directed paths giving free

categories), and we observe that this gives normal forms for
typed derivations (or commands) on base types.

Then, we consider the free linearly distributive category

on P, given by LinDist(P), which freely adds ⊗s and`s of

formulas, and their left and right rules in the sequent calculus.
This is Reddy’s calculus, without duals or additives.

Finally, every linearly distributive category has an

underlying polycategory, given by Poly(LinDist(P)). By
using the freeness of P, we get a functor of polycategories

𝜂P : P → Poly(LinDist(P)), which is just the unit of the

adjunction LinDist ⊣ Poly : LinDistCat → PolyCat, at P.

By the Hyland-Shulman envelope construction [4, 6], this

functor is a polycategorical Yoneda-type embedding, making

it fully-faithful. Syntactically, this corresponds to a logical

relations proof of principal cut-elimination. Given a polymap

in Poly(LinDist(P)), we produce a canonical polymap in P,

which is a principal-cut-free derivation, giving a normal form

for derivations (or commands) in Reddy’s language. This

corresponds to cut-elimination for LCHAM in [1]. In terms

of logic programming, the normal form is the list of output

substitutions obtained by running a Prolog query.

Further work is necessary to add (non-empty) additives,

using products and coproducts, and duals (−)⊥, using star-
polycategories.
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