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Abstract

We introduce a novel learning-based method for encod-
ing and manipulating 3D surface meshes. Our method is
specifically designed to create an interpretable embedding
space for deformable shape collections. Unlike previous
3D mesh autoencoders that require meshes to be in a 1-
to-1 correspondence, our approach is trained on diverse
meshes in an unsupervised manner. Central to our method
is a spectral pooling technique that establishes a universal
latent space, breaking free from traditional constraints of
mesh connectivity and shape categories. The entire process
consists of two stages. In the first stage, we employ the func-
tional map paradigm to extract point-to-point (p2p) maps
between a collection of shapes in an unsupervised man-
ner. These p2p maps are then utilized to construct a com-
mon latent space, which ensures straightforward interpre-
tation and independence from mesh connectivity and shape
category. Through extensive experiments, we demonstrate
that our method achieves excellent reconstructions and pro-
duces more realistic and smoother interpolations than base-
line approaches. Our code can be found online: https:
//github.com/Fraunhofer-SCAI/DISCO-AE/

1. Introduction

Encoding, analyzing, and manipulating 3D surface meshes
is a pivotal challenge in 3D computer vision. With the in-
creasing prominence of diverse mesh datasets encompass-
ing humans, animals, and CAD elements, the importance of
this issue extends to various applications. These include
mesh encoding to lower dimensionality [37], computer-
aided engineering [27], and mesh generation [69].

Autoencoders have emerged as a potential solution to
this challenge. Standard mesh autoencoders, e.g., [11, 52,

(⋆) denotes equal contribution

66, 69], begin by calculating vertex-wise features. They
then down-sample the mesh using an encoder to compress
the shape representation before reconstructing the original
mesh with a decoder. Alternate strategies, like [26, 27], im-
plement autoencoding by initially remeshing input meshes
to a semi-regular structure. Their autoencoder then han-
dles local patches instead of entire meshes and the added
remeshing step often compromises reconstruction quality.

A significant limitation of autoencoders handling meshes
is their requirement for meshes in the shape collections to
have a 1-to-1 correspondence, meaning all meshes must uti-
lize the same triangulation—a costly and often impracti-
cal demand. Moreover, accurately determining correspon-
dences across geometric objects is crucial for numerous
computer vision and graphic challenges [9, 15, 48, 68]. Var-
ious methods have been developed to address this, with the
functional map approach [43] showing particular promise.
Both supervised [5, 16, 38, 39, 57] and unsupervised [17,
28, 56] methods have achieved state-of-the-art results in this
area. Yet, these shape-matching techniques have not been
adapted to mesh autoencoding challenges, necessitating the
aforementioned 1-to-1 correspondence.

On the other hand, creating a unified and interpretable
embedding space for meshes poses another challenge.
Techniques that down-sample the input mesh, lead to an
embedding space dependent on mesh connectivity. Others
employ mean or max pooling for vertex features to gener-
ate a global shape feature, but this may not always create
smooth embedding manifolds.

In our study, we address the issues mentioned above
with a novel mesh autoencoder, trained in an entirely un-
supervised manner, that forms a universal latent space un-
affected by the shape type or mesh connectivity, enhancing
interpretability. For this, we introduce a spectral pooling
method to establish this shared space, relying on point-to-
point maps between shapes. Advocating for unsupervised
methods, we utilize the functional maps pipeline [43] to
extract these maps, allowing us to define an embedding
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space that transcends mesh connectivity and shape cate-
gories. The generated shape features reside on a smooth
manifold, facilitating interpretable sampling for mesh gen-
eration.

Overall, our primary contributions are:
• The introduction of a spectral pooling method that dis-

regards mesh connectivity, yielding a shared embedding
space for diverse mesh types and categories.

• A pioneering unsupervised training technique to obtain a
mesh autoencoder independent of a fixed mesh template.

• Demonstrations showcasing our method’s capacity to re-
construct superior-quality meshes and generate an inter-
pretable embedding space optimal for shape sampling and
manipulation.

2. Related Work
In this section, we review previous works related to our re-
search. We organize them into three main categories.

Mesh Autoencoders and Generative Models De-
formable shape representation and generation is a
well-studied domain [8, 13, 23, 34]. [37] and [52] (CoMA)
introduce some of the first mesh autoencoders. The authors
of CoMA, the Neural3DMM network [11], and [66] utilize
mesh downsampling and mesh upsampling layers for pool-
ing and unpooling, which are combined with either spectral
or spiral convolutional layers. By manually choosing latent
vertices for the embedding space, [69] defines a MeshConv
autoencoder that allows interpolating in the latent space.
All the above-mentioned mesh convolutional autoencoders
work only for collections of meshes with the same con-
nectivity because the pooling and/or convolutional layers
depend on the adjacency matrix. [26] (spatial CoSMA)
introduce a patch-based approach. The meshes have to be
remeshed to semi-regular mesh connectivity. The resulting
regular patches are input separately to an autoencoder using
spatial convolution, allowing for an analysis of meshes
of different sizes. Spectral CoSMA [27] combines this
patch-based approach with Chebyshev convolutions [14]
on the patches. The MeshCNN architecture [29] can be
implemented as an encoder and decoder. Nevertheless, the
pooling is feature-dependent, so the embeddings can be of
different significance.

For surfaces that are represented as signed distance func-
tions and in other implicit representations, [22] and [46]
achieve good results in shape reconstruction and comple-
tion. Nevertheless, their generalization and scalability are
often limited to a small set of deformations and require big
training data. Another parallel line of work is representa-
tion learning on point clouds [1, 51, 67]. In theory, these
methods can handle surface meshes when disregarding the
faces defining the surface mesh. However, these methods
only reconstruct and generate point clouds, which is a dif-

ferent and more straightforward task compared to what our
work aims for because of their permutation invariance.

The compact representation of the input data by the au-
toencoder can be used for data generation and manipula-
tion. The features are randomly sampled or combined lin-
early, generating shapes in positions that the user controls.
[19, 27, 52] show mesh generative results by sampling from
an autoencoder’s or variational autoencoder’s mesh feature
space. Other generative approaches [60, 64] rely on a non-
learned deformation representation of meshes of fixed con-
nectivity.

Shape Matching Shape matching has been extensively
studied in computer graphics. While a comprehensive re-
view is beyond the scope of this paper, interested readers
can refer to recent surveys [12, 24, 25] for a more in-depth
discussion. One of the methods most related to our work
is the functional map pipeline, which was introduced in
[43, 44] and has since been extended in many follow-up
works [2, 3, 5, 6, 18, 40, 53]. The main advantage of this
method is that it transforms the problem of optimizing for
a point-to-point map (which is quadratic in the number of
vertices) into the optimization of a functional map (which
consists of small quadratic matrices), making the optimiza-
tion process feasible. To find the functional map, earlier
works relied on hand-crafted feature functions defined on
source and target shapes, such as HKS [59], WKS [7],
or SHOT [55] features. Follow-up research improved the
pipeline by introducing additional regularization [33, 42],
and proposing efficient refinement methods [53]. More re-
cently, the functional map pipeline has been incorporated
into deep learning, with the seminal work of [36] and sub-
sequent works [5, 16, 35, 56] using differentiable functional
map losses and regularization to learn feature functions with
neural networks. Another line of work focused on making
the learning unsupervised [2, 4, 17, 54], which can be use-
ful in the absence of ground truth correspondences. This
was achieved by imposing structural properties such as bi-
jectivity and orthonormality on functional maps in the re-
duced basis [54], penalizing the geodesic distortion of the
predicted maps [28], or combining intrinsic and extrinsic
shape alignment [17]. However, all of these works focused
on establishing correspondences and did not investigate any
relationship with shape reconstruction or generation.

Structure of the Feature Space The representation
learned by an autoencoder typically resides in a lower-
dimensional representation space than the input. In this
work, our goal is to create a representation space that is
shared among different mesh representations and collec-
tions. A common method for point clouds is performing
(weighted) vertex-wise feature averaging [49, 50]. When
neglecting the surface structure defined by the faces, one
can apply this approach to the vertices only. However, this
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Figure 1. Method overview Our method consists of two stages. In the first stage (left), we train a deep functional map network to extract
p2p maps between the input shapes (see Section 4.2). These p2p maps are then used for spectral pooling by constructing the limit shape
space, which is used as the embedding space in our mesh autoencoder in stage 2 (right, see Sections 4.1 and 4.3).

approach is highly sensitive to the distribution of vertices
in 3D space, and it cannot guarantee that features of differ-
ent shapes lie in the same manifold a priori. An alternative
approach is to use a template and analyze the features with
respect to the template [20, 21, 32]. However, the use of
a template can introduce bias. To avoid this, some meth-
ods construct a new 3D template shape that resembles the
centroid of the collection [31]. In our work, we avoid con-
structing such a shape by using the limit shape basis CCLB
[30]. This approach defines a latent shape in the spectral
space to which all shapes are connected via a functional
map, thereby avoiding embedding it in the ambient space
and introducing potential bias.

3. Motivation, Notation & Background

In this section, we express our motivation for creating an
autoencoder that can process meshes with varying connec-
tivities. This is a shift from traditional autoencoders, which
mainly work with point clouds and meshes with fixed con-
nectivities. We also touch upon the functional map frame-
work and the idea of limit shape construction. These con-
cepts are crucial to our proposed method. We use the same
notation throughout to make the paper easier to follow.

3.1. Motivation

Autoencoders have made significant strides in learning
compact representations across various data types. In the
3D domain, they have been particularly successful with
point cloud data due to its permutation-invariance prop-
erty, streamlining the encoding and decoding processes
[1, 45, 63, 65]. However, when applied to triangular
meshes, this strength becomes a limitation.

Triangular meshes, in contrast to point clouds, encapsu-
late the detailed geometry and topology of 3D surfaces, es-
sential for applications like computer graphics where accu-
rate 3D representations underpin realistic renderings. They

impose an inherent structure on the 3D data, encoding both
geometric and topological relationships among vertices.
Unlike the permutation-invariant nature of point clouds, the
order in triangular meshes is pivotal as it defines the mesh’s
connectivity. Tampering with this order could obliterate
connectivity data, thereby diminishing the mesh’s repre-
sentational utility. This distinctive characteristic of meshes
makes tailoring autoencoders for them notably challenging.

The prevailing approaches to address this challenge of-
ten assume that all meshes maintain a 1-to-1 correspon-
dence, meaning they possess identical mesh connectivity
[11, 52, 69]. While this perspective facilitates preserv-
ing mesh structures during encoding and decoding through
mesh resampling, it also restricts the versatility of these
methods. In practice, a strict 1-to-1 correspondence is an
exception rather than the rule. Forcing diverse meshes into
identical connectivity introduces intricate challenges, of-
ten necessitating remeshing and manual fine-tuning. Such
remeshing might produce distortions, undermining the orig-
inal mesh’s quality. Furthermore, when the mesh struc-
ture encapsulates salient features about an object, remesh-
ing might not be just unfeasible but also undesirable.

Another ambition in the field is to situate the meshes
within a shared embedding space, allowing for both com-
parative and manipulative operations on the shapes. Con-
temporary mesh autoencoders, however, hinge on fixed
mesh connectivity to form this shared space [11, 26, 27, 52].

Motivated by these challenges, our work seeks to
develop a novel Mesh Autoencoder for DIverse Shape
COllections (DISCO-AE) capable of handling arbitrary tri-
angular meshes, thereby eliminating the need for 1-to-1 cor-
respondence, and representing them in a joined embedding
space.

3.2. Notation

We consider a 3D shape Si, represented as a triangular mesh
comprising ni vertices. We obtain its cotangent Laplace-



Beltrami decomposition [61] and represent the first k eigen-
vectors of Si in the matrix Φi ∈ Rni×k. Additionally, we
construct a diagonal matrix ∆i ∈ Rk×k, with its diagonal
elements containing the first k eigenvalues of Si. We also
define the diagonal matrix of area weights as Mi ∈ Rn×n.
It should be noted that Φi is orthogonal with respect to Mi

and that Φ⊤
i MiΦi = Ik, where Ik denotes the Rk×k identity

matrix. We further denote Φ†
i = Φ⊤

i Mi and use the (left)
Moore-Penrose pseudo-inverse symbol, ·†, to represent it.

3.3. Functional map pipeline

We use the notation S1 and S2 to refer to a source and target
shape, respectively. The pointwise map T12 : S1 → S2

is defined as the function that maps each vertex in S1 to
a corresponding vertex in S2. To represent this map, we
use the matrix Π12 ∈ Rn1×n2 , which takes the value 1 if
T12(i) = j, and 0 otherwise. However, with an increasing
number of vertices in the shapes, the size of the matrix Π12

grows quadratically, which is computationally infeasible.
To address this issue, we adopt the functional map

paradigm proposed in [43]. This approach reduces the di-
mensionality of Π12 by representing it in the spectral basis.
Specifically, we construct the functional map C21, which
maps functions defined on S2 to functions defined on S1,
using the expression C21 = Φ†

1Π12Φ2. The functional map
has a small size of (k×k), with k usually around 30, making
the optimization process feasible.

To find the functional maps that map S1 and S2, we first
obtain two d-dimensional feature functions, also known as
probes, F1 and F2 defined on S1 and S2 respectively (Fi ∈
Rni×d). We then compute the coefficients Ai of the feature
functions in their corresponding reduced basis using Ai =
Φ†

iFi. Next, we formulate an optimization problem:

argmin
C

∥CA1 −A2∥2F , (1)

where C is the sought-after functional map.

3.4. Canonical Consistent Latent Basis

Given a collection of related 3D shapes S1, . . . , Sn, and a
set of functional maps between some shape pairs, we build
a functional map network on the collection as follows. We
construct a graph G = (V, E), where the i-th vertex rep-
resents the functional space of the shape Si, and the edge
(i, j) exists if the functional maps Cij and Cji are given,
in which case, the graph is symmetric. We assume that our
graph is connected, which means that there exists a path be-
tween any two shapes in the collection.

With this construction in hand, we can translate func-
tions between any shapes Si and Sj in the shape collec-
tion. Nevertheless, we do not have a common basis. We
solve this by using the limit shape construction as in [62],
which provides a latent basis Yi for the collection’s shape

features, such that Ci,jYi ≈ Yj ,∀i, j. These latent bases
Yi ∈ Rk1×k1 (k1 is the same dimension of the functional
maps) can be interpreted as functional maps from a latent
shape to each shape Si.

To further enhance the stability of this construction
and eliminate shape metric ambiguity, [30] introduced the
canonical consistent latent basis (CCLB) Ỹi ∈ Rk1×k2 ,
which has been shown to yield better results. The CCLB
enables unbiased comparisons of the shape features in the
collection. Therefore, we use this common basis to define
the embedding space of our autoencoder, which captures
the diversity of our shape collection. To reduce the insta-
bilities that could rise from imperfect p2p maps, we chose
a star graph topology for G by connecting all shapes to the
corresponding template shape.

4. Method
In this section, we introduce our proposed model for shape
representation and generation, resolving the challenges mo-
tivated in the previous section. For that, we introduce a
novel spectral mesh pooling and present an unsupervised
learning method of functional maps to construct point-to-
point maps between a collection of shapes, This is the first
stage of our approach, for which we provide an overview in
Figure 1. The second stage of our model is an autoencoder
making use of the novel spectral pooling. We refer to the
autoencoder for DIverse 3D Shape COllections as DISCO-
AE.

4.1. Spectral Pooling

We develop a spectral mesh pooling operator to reduce the
dimensionality of the meshes in the spectral domain to han-
dle meshes of different connectivity and represent them in a
joined low-dimensional embedding space.

In the case of classical representation learning for 2D im-
ages with convolutional networks, all image samples have
a fixed size and are in 1-to-1 correspondence. The convo-
lutional filters calculate vertex-wise features, then pooling
summarizes many vertex-wise features, reducing the num-
ber of pixels. This is done uniformly for all the images in
correspondence, and hence, features from different samples
are comparable to each other. Therefore, pooling in 2D can
also be interpreted as a projection from a high dimensional
basis to a lower dimensional basis functions. Here, the car-
dinality of the basis is equal to the number of pixels. Be-
cause of the 1-to-1 correspondence, all the images are de-
scribed on the same basis. A similar pooling operator can-
not be constructed for meshes with different mesh connec-
tivities. We can only obtain point-to-point maps between
the shapes that allow the projection of a function from one
shape to another.

To solve the pooling for meshes, we propose to adapt the
CCLB method (initially developed for deformation detec-
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Figure 2. Reconstructed meshes from the GALLOP dataset. Vertex-wise error is highlighted.

tion) and introduce a novel intrinsic spectral mesh pooling.
We project vertex-wise features that are calculated for ev-
ery shape separately to the common CCLB basis, reducing
the dimension from the number of vertices to the size of the
limit shape. We calculate the limit shape basis CCLB as
described in 3.4. It has dimension k2 and uses eigendecom-
positions of the Laplacians of size k1 ≥ k2. It will be the
common basis for the low-dimensional embedding space.
For the spectral unpooling, we project the features from the
limit shape basis back to the vertex representation.

Note that in the special case, when the dimension of the
limit shape equals one (k1 = k2 = 1), the spectral pooling
corresponds to a global ± mean pooling for all the shapes in
the collection. The spectral unpooling duplicates the aver-
age feature into the vertices of the shape. We formally state
and prove this observation in the supplementary materials.

4.2. Unsupervised Maps Extraction

This step aims to generate point-to-point (p2p) maps be-
tween a collection of shapes for training the autoencoder.
While most mesh autoencoder requires p2p supervision, ob-
taining p2p maps is challenging since it requires significant
labeling effort, which is prohibitive. To overcome this chal-
lenge, we propose learning approximate p2p maps in an
unsupervised manner and introducing additional regulariza-
tion in the loss to rectify the defaults in the maps.

To achieve this, we learn the maps using the unsuper-
vised functional maps setting. We followed the approach
of [16] by training a DiffusionNet network [57] to gener-
ate feature functions that will estimate a functional map be-
tween a source and a target shape. We supervise the training
by imposing structural properties on the functional maps.

Specifically, given a source and target shape S1 and S2,
we first extract d-dimensional feature functions F1 and F2,
respectively using DiffusionNet. We then project these fea-
tures onto the reduced Laplacian basis Ai = Φ†

iFi. Next,
we estimate the functional map between S1 and S2 using:

argmin
C

∥CA1 −A2∥2F + λ∥C∆1 −∆2C∥2F . (2)

The second term is a regularization that promotes the
isometry of the maps, as described in [43]. This operation

is differentiable. To train the network, we predict the func-
tional map in both directions (i.e., C12 and C21) and then
penalize the deviation of the predicted maps from bijectiv-
ity and orthogonality. The first loss requires the maps to be
the inverse of each other, while the second loss regularizes
the maps to be locally area-preserving, as several previous
works demonstrate [54, 56]. We can write these losses as:

L = ∥C12C21 − I∥2F +
∑

i,j∈{1,2}

∥C⊤
ijCij − I∥2F (3)

Once the network is trained, we extract functional maps
between all pairs of shapes and convert them to p2p maps.
To improve the quality of the maps, we use the recent re-
finement method ZoomOut [40]. This method navigates be-
tween the spectral and spatial domains while progressively
increasing the number of spectral basis functions. The final
maps are then used to train the autoencoder.

4.3. Our Architecture

Given a shape collection of meshes that can have different
connectivity, we define our architecture employing the con-
tributions explained in the previous paragraphs. Using ex-
isting (ground truth) or unsupervised learned point-to-point
maps (as in Section 4.2), we calculate functional maps be-
tween the shapes and then construct the functional map net-
work, as well as the limit shape basis CCLB for the intro-
duced spectral pooling. In addition, we chose a set of tem-
plate meshes from the collection for the different categories
of meshes, which will be used for the reconstructions.

Our autoencoder makes use of the surface-based con-
volutional network DiffusionNet [57], which has proven to
learn discretization agnostic vertex-wise shape features. We
input the vertex 3D coordinates of shape Si to the encoder.
Four trainable DiffusionNet Blocks [57] are applied to cal-
culate F -dimensional vertex-wise features. Then we ap-
ply spectral pooling, and these features are projected to the
CCLB by multiplying them from the left by Y †

i Φ
†
i . This

low-dimensional representation zi of dimensionality F · k2
is now independent of the mesh connectivity of Si because
it is represented in the common CCLB basis.

The decoder applies spectral unpooling and projects the
features represented in the CCLB to the template shape St



by multiplying it by ΦtYt from the left. At this point, we
concatenate the vertex-wise 3D coordinates of the template
shape to the projected features to provide more information
for the reconstruction of the input shape. Finally, four train-
able DiffusionNet Blocks reconstruct the 3D coordinates of
the input shape on the template mesh’s vertices.

4.4. Losses

Our autoencoder is fully differentiable, and we denote the
input shape as S. The encoder and the decoder are re-
spectively represented as enc and dec, the reconstruction is
X = dec(enc(S)). We train our network using two losses.

Point-to-point (p2p) loss: Given a point-to-point map Π
(either ground truth or extracted by the first stage) between
the template and the input shape, the p2p loss is defined as
L1 = ∥ΠS − X∥2F . However, in the case of unsupervised
maps, this loss may provide inaccurate signals as the p2p
map is often faulty and not entirely correct. To address this
issue, we use an additional loss.

Reconstruction loss: Given the reconstruction X , we
construct the matrix DX such that DX

i,j = ∥Xi − Xj∥2F .
We create the matrix DS for ΠS in the same manner. The
reconstruction loss is L2 = ∥DS −DX∥2F . This loss com-
putes the cumulative reconstruction error and each point re-
ceives reconstruction feedback from the other n− 1 points.
Thus, even if the p2p map is faulty in some places, the faulty
points receive signals from the non-faulty ones. As this loss
is rotation invariant, it cannot be used alone. Our final loss
combines the two losses: L = L1 + λL2.

5. Experiments
We evaluate our architecture on various tasks using three
different shape collections. We denote our method as
DISCO-AE for DIverse Shape COllection Auto-Encoder.

5.1. Shape Collections

We conduct experiments using three distinct datasets previ-
ously utilized in recent studies [26, 27].

The GALLOP shape collection contains triangular
meshes representing a motion sequence with 48 timesteps
from a galloping horse, elephant, and camel [58]. The gal-
loping movement is similar but the meshes representing the
surfaces of the three animals differ in connectivity and the
number of vertices. We use the last 14 timesteps for testing.

The FAUST collection contains 100 meshes [9]. The ir-
regular surface meshes represent 10 different bodies in 10
different poses. We apply two different train-test splits, fol-
lowing previous works [27]. In the first setting, known as
“unknown poses”, the network is trained on 8 poses out
of 10, and tested on the remaining 2, while in the second
setting, known as “unknown individuals”, the network is
trained on 8 individuals and tested on the remaining 2.

GT CoMA
Neural Mesh spatial spectral

Ours
3DMM Conv CoSMA CoSMA

Figure 3. Reconstructed meshes from the FAUST dataset of the
”unknown individuals” setup. Vertex-wise error is highlighted.
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Figure 4. Reconstructions from the unsupervised experiments on
the TRUCK and FAUST datasets. Vertex-wise error is highlighted
using the same color range as for the supervised experiments.

The TRUCK shape collection [27] contains 32 completed
frontal car crash simulations of 6 different components [41].
Only 10 simulations are included in the training set. In this
dataset, the components represented by surface meshes of-
ten deform in different patterns during the crash. One goal
is to detect clusters corresponding to different deformation
patterns in the components’ embeddings in order to speed
up the analysis of car crash simulations [10].

5.2. Results

We compare our method to five recent baseline architec-
tures: CoMA [52], Neural3DMM [11], MeshConv [69],
spatial CoSMA [26], and spectral CoSMA [27]. For all
baseline autoencoders, we chose embedding sizes follow-
ing previous works. The first three do not allow an analy-
sis of meshes with different mesh connectivity by the same
trained architecture. The latter two methods allow an analy-
sis of different meshes with different connectivity after be-
ing remeshed to a semi-regular mesh representation by in-
putting patches of the meshes to the AE. Nevertheless, their
shape features depend on the semi-regular mesh connectiv-
ity; hence, the embedding space is not joint. The recon-
structed semi-regular meshes are projected back to the orig-
inal meshes using a parametrization to calculate the error.
All these baseline mesh AE are supervised, so we compare



Unsuper- No FAUST GALLOP TRUCK
Method vised remesh Unknown poses Unknown indiv. Camel Elephant Horse (×100)

CoMA ✗ ✓ 569.3 ± 203.1 28.3 ± 6.4 7.8 ± 1.4 24.3 ± 4.4 3.2 ± 0.3 -
Neural3DMM ✗ ✓ 246.2 ± 5.4 10.4 ± 0.9 12.4 ± 0.1 29.7 ± 3.5 4.7 ± 0.1 -
MeshConv ✗ ✓ 18.2 ± 2.2 3.5 ± 0.4 9.2 ± 0.4 - 1 7.3 ± 0.1 -
spatial CoSMA ✗ ✗ 2.8 ± 0.2 1.3 ± 0.1 4.2 ± 0.03 17.8 ± 0.8 1.8 ± 0.02 187.8 ± 11.7
spectral CoSMA ✗ ✗ 1.1 ± 0.01 0.9 ± 0.02 3.3 ± 0.01 20.0 ± 0.3 1.2 ± 0.01 15.7 ± 0.5
DISCO-AE - sup. (ours) ✗ ✓ 2.4 ± 0.08 0.7 ± 0.01 0.3 ± 0.03 1.09 ± 0.08 0.11 ± 0.01 1.01 ± 0.1

Global pooling ✓ ✓ 475 ± 26.2 35.5 ± 1.0 25.2 ± 5.6 22.4 ± 0.2 3.9 ± 0.9 14.6 ± 1.9
DISCO-AE - unsup. (ours) ✓ ✓ 4.3 ± 0.1 2.0 ± 0.05 6.8 ± 0.3 21.0 ± 0.2 1.2 ± 0.02 10.9 ± 0.6

Table 1. Euclidean errors between the reconstructed and original mesh of the FAUST, GALLOP, and TRUCK datasets. The reported
numbers are mean errors over 3 runs randomly initialized. ± denotes the standard deviation.

our approach to them using supervised point-to-point maps.
The second is to train the autoencoder using the unsuper-

vised maps produced by the first stage, see section 4.2. As
a comparison, we construct a baseline method that uses un-
supervised point-to-point maps and global average pooling
instead of the introduced spectral mesh pooling. This cor-
responds to the case when the dimensionality of the CCLB
is 1 (k1 = k2 = 1), see section 4.1.

5.2.1 Mesh Reconstructions

We initiate our analysis by conducting a conventional re-
construction experiment. First, we encode a shape S from
the test set, which was never seen during the training phase,
into a latent code. This is decoded subsequently using our
decoder. We compare the output to the initial shape to as-
sess the reconstruction. We sum up the vertex-wise squared
Euclidean distances between the vertex coordinates of the
input shapes and their reconstructions to determine the re-
construction error. To obtain uniform results, we normalize
all meshes into the range [−1, 1]. We report all reconstruc-
tion errors in Table 1.

For the FAUST dataset, our supervised method achieves
the best result in the ”unknown individuals” setting and the
second-best result in the ”unknown poses” setting (see Fig-
ure 3). In addition, our results are more stable than some
of the baselines, as indicated by the standard deviation.
Our unsupervised results are better than the supervised re-
sults that do not require any remeshing, which demonstrates
the usefulness of our approach and the regularization intro-
duced by the losses to mitigate errors in the maps. Addition-
ally, our spectral pooling strongly improves the reconstruc-
tion quality for the unsupervised experiments compared to
using global pooling in the encoder, see Figure 4.

For the GALLOP dataset, we train our network on all cat-
egories in the supervised setting. However, due to the highly
non-isometric nature of the three categories, most unsuper-
vised methods for shape matching fail. Thus, we train our
unsupervised method on each category individually. The

1MeshConv AE for the elephant is too large to train on 40 GB GPU.

mesh-dependent baselines are also trained on each animal
separately. Only spatial and spectral CoSMA train on the
three animals together since mesh patches are input sepa-
rately. Our supervised method achieves the best results for
all categories, see Table 1. Reconstructed meshes are visu-
alized in Figure 2. Concerning our unsupervised method,
it achieves comparable results with the baselines and out-
performs the unsupervised global pooling approach. This
demonstrates that learning high-quality mesh autoencoders
is possible even in the absence of ground truth maps.

Finally, we report in Table 1 the result on the TRUCK
dataset. Due to its big size, we only test our method against
the best two performing methods. Once again, our method
achieves the best results in the supervised case. Addition-
ally, our unsupervised reconstruction quality is superior to
all supervised baselines. We provide visualizations of the
reconstructed meshes in the supplementary material for the
supervised and Figure 4 for the unsupervised methods.

Qualitatively, our reconstructed meshes are smooth, de-
form naturally, and do not have any outlier vertices, which
is not the case for some baseline methods. The provided
reconstructed meshes from all three datasets and supervised
and unsupervised experiments in Figures 2 to 4 are smooth
and have the lowest reconstruction error.

5.2.2 Low-Dimensional Embeddings

For every mesh from the collections, we obtain a hidden
representation of size k2 × F . The shape features from the
same collection can be visualized in 2D or 3D using a prin-
cipal component analysis [47], see Figure 5.

Similar to the other approaches, we embed the different
shape categories separately from each other. In the case of
the FAUST dataset, several clusters form in the embedding
space of the unsupervised experiment, which corresponds to
different positions. Additionally, along the horizontal axis,
the position of the arms can be split into raised or not raised.

Additionally, for the first time, we can jointly visualize
the features from various shapes of different connectivity
in a common basis. It allows for a joint visualization of
the galloping sequences of camel, horse, and elephant from



Figure 5. Embeddings in 3D or 2D of the learned representations in the common basis. Left: FAUST positions marked with a triangle raise
the arms. Middle: galloping sequences from the GALLOP dataset with timesteps provided in the plot. Right: two TRUCK components
deform in two clusters over time, corresponding to the deformation patterns (Branch A and B) visualized in the supplementary material.

reconstructed
test shape interpolation in the embedding space

reconstructed
test shape

Figure 6. Interpolating between different FAUST test shapes.

the GALLOP shape collection. The CoSMA baselines, on
the other hand, only generate embeddings of every animal
separately. Figure 5 visualizes the learned features in 3D
for the supervised experiment because the unsupervised one
was conducted on the animals separately. The sequences
align over time up to translation but are still separated from
each other, which captures the different shape categories.

For two TRUCK components, we aim to detect two clus-
ters corresponding to a different deformation behavior, sim-
ilarly to [27]. These different TRUCK components can, for
the first time, be visualized together using the representa-
tion in the CCLB. The two deformation branches in two
different components are split along the same axis of the
3-dimensional embedding space, and the features of both
components align over time, see Figure 5 for the embedding
from the unsupervised experiment. This visualizes nicely
that the deformation of the two components manifests in
similar deformation patterns.

5.2.3 Shape Generation and Manipulation

To show that the shape features lie on a smooth manifold
and that the network is not overfitting to the training sam-
ples, we generate new shapes by sampling from the latent
feature space from the supervised “unknown individuals”
setting. We conduct three different generative experiments
on the FAUST shape collection: interpolation of two test
shapes (Figure 6), as well as generation of combined po-
sitions and feature transfer between two different bodies

(supplementary material). The figures show the smooth and
well-formed generated shapes with correctly and naturally
positioned limbs. While the feature transfer results can be
compared to an actual shape from the collection, our inter-
polation and position combination experiments create well-
formed samples that cannot be found in the shape collec-
tion. Additionally, the combination of positions and feature
transfer shows that our embedding space allows algebraic
manipulation (addition and subtraction) of shape embed-
dings.

6. Conclusion & Limitations
In this work, we introduce a novel unsupervised method for
learning representations of diverse deformable shape collec-
tions. Our presented autoencoder architecture reconstructs
shapes in higher quality than various baseline methods. Ad-
ditionally, the computed features of meshes with different
connectivity, non-isometric deformations and from different
categories lie in the same embedding space. This smooth
embedding space, which allows for interpolation and al-
gebraic manipulation, motivates the application of spectral
pooling for generative models.

One limitation of our work is that it does not yet handle
shape collections with high non-isometry, such as the GAL-
LOP shape collection, where we were unable to learn good
point-to-point maps between different classes (i.e., between
horses and elephants). While our network uses a set of fixed
templates for reconstruction, it would be interesting to in-
vestigate whether the decoder can generate multiple mesh
topologies without the use of a template. We leave this as
future work.
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