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Abstract—Residential buildings contribute approximately
30% of global greenhouse gas emissions, with electric water
boilers accounting for around 20% of total energy consumption.
The development of a smart renewable energy system and
control requires adequate and accurate forecasting models
to mitigate both short-term and long-term energy demand.
Accurate forecasting of hot water consumption is crucial for
optimizing load demand scheduling and grid energy manage-
ment in residential dwellings. This study develops hybrid fore-
casting models by combining a seasonal auto-regressive model
(SARIMA) with machine learning models, specifically Support
Vector Regression (SVR) and Artificial Neural Network (ANN).
The study uses six months of hot water consumption data from
residential electric boilers, categorized into hourly and daily
scenarios. The models are evaluated based on performance
metrics, including Root Mean Squared Error (RMSE) and
Mean Absolute Error (MAE). Results obtain, indicate that the
SARIMA-ANN model outperforms the SARIMA-SVR model in
terms of both predictive accuracy and computational efficiency.
The SARIMA-ANN model’s superior feature mapping, in both
long- and short-time frames, makes it optimal and robust for
Model Predictive Control (MPC) applications and real-time
use, especially in renewable energy grid integration. It offers a
more scalable solution compared to the hyperplane-dependent
SARIMA-SVR model.

Index Terms—Energy consumption, Electric water boilers,
Hybrid machine learning model, Hot water consumption, Res-
idential buildings.

I. INTRODUCTION

With the rise in global warming, transitioning to green
energy sources like PV systems has become essential. This
shift is crucial, especially given the projected 50% increase
in energy demand due to industrial and residential activi-
ties, with the residential sector accounting for 20% of this
increase. A significant portion of residential energy con-
sumption comes from hot water use, including showering,
kitchen activities, and bathing, which contributes to energy
demand fluctuations. Electric water boilers alone account
for 45.8% of home energy consumption [1]. Implementing
energy-saving measures in this sector can significantly reduce
overall energy usage, lower greenhouse gas emissions, and

support a more sustainable energy system. The development
of robust forecasting models that can accurately predict hot
water usage based on hourly and daily consumption can help
mitigate this challenge [2], [3]. These hot water consumption
patterns span across the year and include various end-use
activities such as showering, kitchen use, bathtub reheating,
and bathtub filling.

Accurate models are crucial for enhancing Model Pre-
dictive Control (MPC) strategies for demand side response
management. However, developing these models presents
challenges, particularly in handling the complexities of time
series data, regression analysis, and the non-linearity of user
pattern and behavior. This non-linearity is especially evident
in the hourly, daily, and seasonal variations in hot water
usage. Load demand models have evolved from traditional
statistical methods to advanced machine learning and hy-
brid techniques [4]–[7]. Time series models like ARIMA
are widely used for capturing seasonal trends, stochastic
behaviours, and temporal dynamics in hot water consumption
data [6], [8]–[12].

Aurore Lomet et al. [13] developed an ARIMA model to
forecast daily domestic hot water (DHW) consumption, ac-
counting for weekly periodicity, prior-day consumption, and
random fluctuations, demonstrating its potential. Traditional
regression analysis, such as linear regression, remains im-
portant for modeling the relationship between hot water and
energy consumption, considering factors like ambient temper-
ature and usage behaviour over time [14], [15]. Techniques
like Support Vector Regression (SVR) are also effective for
handling non-linearity and are recognized as powerful tools
in machine learning, complementing classical methods like
ARIMA, exponential smoothing, and ARMAX [16]–[18].

In recent years, machine learning technologies such as
Artificial Neural Networks (ANNs) have become popular
for modeling hot water consumption due to their ability to
manage the complexities of non-linear end-user consump-
tion [19]–[21]. Sheng Cao et al., [22] proposed using a



support vector machine (SVM) to predict occupants’ show-
ering behaviors, achieving a 33% reduction in hot water
demand compared to traditional control methods. Similarly,
techniques like SVR and ensemble methods have shown
exceptional performance in managing high-dimensional and
non-linear data [4], [6], [23]. Christopher Bennett et al., [19],
developed an ANN-based model for residential water end-use
demand forecasting. Combining classical regression methods
with machine learning has paved the way for more accurate
and hybrid load demand models, particularly in scenarios
involving complex stochastic user behaviour in residential
building applications for grid demand response management
[24]. These hybrid models leverage the strengths and com-
pensate for the weaknesses of each approach to obtain a more
accurate hot water consumption profile [25].

Our study highlights the need for a comparative analy-
sis of hybrid models (SARIMA-ANN and SARIMA-SVR)
specifically for hot water consumption in residential building
applications, an area that has received limited attention.
Such a study could help identify the most suitable modeling
technique based on forecasting accuracy and computational
efficiency. Table I summarizes related literature on hot water
consumption in residential dwellings, focusing on research
methods, forecast horizons, data scenarios, and gaps in hybrid
model comparisons. This study combines classical regression
(SARIMA) with two machine learning techniques (SVR
and ANN) to develop SARIMA-ANN and SARIMA-SVR
models. The focus is on forecasting hot water consump-
tion in residential buildings and comparing the accuracy of
these models in both short-term and long-term forecasting
horizons using various performance metrics. The article is
structured as follows: first, the methodology for developing
the forecasting models; followed by results and discussion;
a comparative analysis of the models; and concluding with
recommendations for future research.

II. METHODOLOGY

The research methodology employed in this study aims
to compare two hybrid forecasting models that integrate
time series and regression techniques (SARIMA) with ma-
chine learning methods (SVR and ANN). These integrations
yield two hybrid models: SARIMA-SVR and SARIMA-
ANN, which are developed through empirical evaluation
and a structured methodology. The primary objectives are
to compare the prediction and forecast accuracy of these
models across two different scenarios for domestic hot water
boiler consumption, as detailed in Table II. The models’ per-
formance is evaluated using RMSE and MAE performance
metrics. This section outlines the detailed model development
and research methodology framework, as illustrated in Figure
1.

A. Data description and processing

The hot water consumption data for this case study was
obtained from 67 apartments. Data were collected from

Fig. 1. Research methodology framework

December 1, 2020, to June 11, 2021. The data were used
to evaluate forecasts, categorizing the consumption into two
distinct scenarios, as detailed in Table II. The statistical
description of the training period data-set is presented in
Figure 2 and Figure 3.

The daily consumption scenario (Fig. 3) shows more
significant variability and higher average usage compared
to the hourly scenario (Fig. 2), indicating more consistent
daily consumption patterns with distinct peaks, especially
in apartments 4, 5, and 10. Furthermore, the models were
trained using 80% of the data, with the remaining 20%
serving as the test set. Furthermore, Table II, outlines the
different scenarios used for evaluating the forecasting models,
detailing the time-step, training period, and forecast length
for each scenario.

B. Hybrid model development

In this study, the hybridization of seasonal learning regres-
sion (SARIMA) with machine learning techniques (ANN and
SVR) is modeled using a two-stage prediction and forecasting
approach. In the first stage, the SARIMA model is employed
to capture the seasonal linear components within a 24hour
seasonality. The residuals obtained from the SARIMA model,
along with the hourly and daily data, are then used as features
in the second stage prediction using the machine learning
models.



TABLE I
COMPARISON OF VARIOUS RESEARCH METHODS AND DATA SCENARIOS

Authors
Research Methods

Forecast horizon Data Scenarios Research disparityRegression Machine Learning Hybrid

Fargallo et al.
[26]

✓a –b 98 apartments, 2015
to 2021

failed to compare hy-
brid techniques

Louis-Gabriel et
al. [27]

✓ – 40-unit residential
building located
in Quebec City
(Canada)

failed to compare Hy-
brid techniques

Ferrantelli et al.
[28]

✓ – Finland dwellings,
November & August

failed to compare Hy-
brid techniques

Juan de Santiago
et al. [29]

✓ – 401 per person in
swiss dwelling

failed to compare Hy-
brid techniques

Azar Nilsson et
al. [20]

✓ monthly Yazd, Iran, from 2011
to 2020

Did not consider Hy-
brid techniques

Xin Zhou et al.
[25]

✓ ✓ – Female hostel univer-
sity in Xi’an, China,
1 March to 30 Nov.
2022

Did not consider vari-
ous periods or scenar-
ios

Gelazan et al.
[30]

✓ hourly 1hour, 2hours, 3hours
for 2006 EWB

failed to compare hy-
brid models

Lomet et al. [31] ✓ daily 8 residents EWBs in
France, 2009 to 2011,
10 Liters timesteps

failed to compare hy-
brid models

Barteczko et al.
[32]

✓ – 130L EWB 47 data failed to compare hy-
brid models

Denis et al. [14] ✓ yearly USA dwelling hot
water consumption

failed to compare hy-
brid models

Xu et al. [7] ✓ daily 150 EWB hot water
consumption

failed to compare hy-
brid models

Bennett et al.
[19]

✓ liter/person Southeast queen land
residential end-user
study (SEWREUS)

failed to compare hy-
brid models

S. Cao et al. [22] ✓ – 7 occupants,
8.33L/mins daily and
hour consumption

failed to compare hy-
brid models

Aki et al. [4] ✓ – Osaka Japan, April
2007 to March 2010

failed to compare hy-
brid models

D. Kim et al. [33] ✓ – 2017 to 2022, data of
apartment complex in
Seongnam-si, Korea

failed to compare hy-
brid models

Rzeznik et al.
[34]

✓ daily 2021 Grudziadz, in
Central Poland

Neglected to consider
hybrid models

a Method considered by author
b Demand not considered by author

TABLE II
SCENARIOS (TIME-STEP) DATA FOR FORECASTING MODEL EVALUATION

Scenarios Time-step Training
period

Forecast
length

Hourly hourly 7 days 24 hours
Daily 24 hours 6 months 30 days

The SARIMA residuals, representing the significant non-
linear relationships between the actual time series data and
the SARIMA-predicted values, are input into the machine
learning models (ANN and SVR) to address the non-linear
complexities that the SARIMA model could not capture.The
final prediction is obtained by combining the weighted
outputs from both the SARIMA model and the machine
learning models. The novel hybrid models developed in

this research, SARIMA-ANN and SARIMA-SVR, aim to
enhance prediction accuracy by leveraging the strengths of
both regression and machine learning techniques.

C. SARIMA-ANN Model Development

The Auto ARIMA algorithm searches for the optimal
combination of p, d, q, P , D, Q, and s parameters to find
the best-fitting SARIMA model based on the Akaike Infor-
mation Criterion (AIC). The best-fit SARIMA configuration,
((1, 0, 1), (1, 0, 1, 24)), was selected for hybridization with
machine learning models (ANN and SVR) from empirical
analysis. By analyzing 24-hourly hot water consumption data
with s = 24 representing the daily cycle, the model cap-
tures both regular daily consumption patterns and non-linear
variations. This configuration enables accurate predictions for
both short-term (hourly) and long-term (daily) forecasts. The



Fig. 2. Hot water hourly consumption scenario

Fig. 3. Hot water daily consumption scenario

hot water forecasting model uses the entire dataset to predict
future consumption levels:

x̂t+1 = ζ + ϕ1∆xt + ϕ2∆xt−1 + ϕ3∆xt−2 + θ1ϵt (1)

where x̂t+1 is the forecast at time t + 1, ζ is a constant,
and θ1 models the error as a linear combination of past
errors up to the q-th lag. The residual error of the SARIMA
forecast is used as input to the machine learning models
to capture the non-linear components that the SARIMA
model cannot address. Forecast errors are computed as the
difference between the actual observed values in the test set
and the forecasted values produced by the SARIMA model:

ft = yt − ŷt (2)

where yt is the actual observed value at time t and ŷt is the
forecasted value at time t. The forecast error ft reflects the
discrepancies between the actual outcomes and the model’s

forecasts. Both et (residuals) and ft (forecast errors) are used
as inputs to the ANN, which aims to learn from these errors
to correct similar mistakes in future predictions and capture
the non-linear patterns that the linear model (SARIMA)
might miss. The hybrid forecasts subsequently combine the
SARIMA forecasts ŷf,t with the ANN-forecasted ẑfore,t using
a weighted sum, yielding the final forecasts of the hybridized
model:

ŷf,adj,t = w1 · ŷf,t + w2 · ẑfore,t (3)

where ŷf,adj,t is the final hybrid forecast at time t, and w1

and w2 are the respective weights for the SARIMA and ANN
forecast contributions.

D. SARIMA-SVR Model Development

Similar to the SARIMA-ANN implementation, the
SARIMA model in the SARIMA-SVR design calculates
residuals et as follows:

et = Xt − ŷt (4)

where et represents the residual at time t, Xt is the actual
observed value at time t, and ŷt is the value predicted by the
SARIMA model at time t.

The forecast ŷt+k for a future time t+ k is given as:

ŷt+k = SAR(Xt) (5)

where ŷt+k is the forecasted value k periods ahead of the
last observed time t. The forecast from the SARIMA model
for future time t + k is denoted as f̂SAR

t+k , while f̂SVR
t+k is the

corresponding forecast from the SVR model for the same
future time t+ k.

The hybrid forecasts f̂ hyb
t+k for future time t + k are

computed as:

f̂ hyb
t+k = w1 · f̂SAR

t+k + w2 · f̂SVR
t+k (6)

where w1 and w2 are the weights assigned to the SARIMA
and SVR predictions, respectively, and f̂SAR

t+k and f̂SVR
t+k rep-

resent the individual model forecasts at time t+ k.

III. RESULTS AND DISCUSSION

The SARIMA-ANN shows superior accuracy, particularly
in short-term forecasting (1-hour), where it achieves an R2

of 0.9766 and an RMSE of 0.0223. However, SARIMA-SVR
is significantly computationally expensive, making SARIMA-
ANN a more efficient model for real-time forecasting in both
short and long-term scenarios.

The computational efficiency was evaluated by comparing
computation times under identical simulation parameters
across different scenarios. The models were developed using
the Python programming language and tested on a system
equipped with an 8th Gen Intel Core i5-8265U CPU @
1.60GHz,1.80GHz, and 16.0 GB RAM. Comparative results



TABLE III
SUMMARY OF FORECAST PERFORMANCE METRICS FOR SARIMA-SVR AND SARIMA-ANN MODELS

Scenario (Timestep) Algorithms Model Computation Time R2 RMSE MAE MSE

1 hour SARIMA-SVR 3 mins 44.2 s 0.5080 0.0862 0.0692 0.0074
SARIMA-ANN 0.7802 s 0.9766 0.0223 0.0074 0.0005

24 hours SARIMA-SVR 3 mins 13.0 s 0.2678 0.0616 0.0466 0.0038
SARIMA-ANN 0.6949 s 0.4051 0.1229 0.1032 0.0152

for the prediction and forecasting capabilities are presented
in Table III. The SARIMA-ANN model demonstrated low
computation times in both scenarios, while the SARIMA-
SVR model was the most computationally expensive, taking
3 minutes and 44 seconds in scenario one (hourly).

Fig. 4. Prediction & forecasting for hourly Scenario

Fig. 5. Prediction & forecasting daily Scenario

The results in these figures 4 and 5, show a clear pattern
in how the SARIMA-ANN and SARIMA-SVR models fit
to time series hot water boiler consumption data. In both
hourly and daily scenarios, the SARIMA-ANN model (black
line) aligns more closely with the actual data (green line),
capturing both short-term fluctuations and long-term trends
more accurately than the SARIMA-SVR model (red line),
which exhibits greater deviations. The forecasted areas fur-
ther emphasize SARIMA-ANN’s superior ability to model
hot water boiler consumption patterns, maintaining better
consistency in both trends and forecasted values, whereas

SARIMA-SVR struggles, especially during peak consump-
tion periods, making SARIMA-ANN a better choice for hot
water boiler consumption forecasting.

IV. CONCLUSION

To accurately address demand response with the integra-
tion of green energy systems in residential dwellings, it
is crucial to develop accurate and robust models for hot
water consumption, which this research aims to achieve.
The novelty lies in incorporating daily and time-of-day
features into the ANN model, along with the non-linear
residuals that SARIMA could not capture in the second-
stage prediction. These feature inputs enhance the hybrid
model’s accuracy and robustness in capturing stochastic user
behavior. SARIMA-ANN has demonstrated optimal perfor-
mance in both short-term and long-term predictions, which
is significant for real-time kWh deployment, smart meter
management, and mini-grid integration for demand response
applications.

The SARIMA-ANN model proved more effective in map-
ping features than the SARIMA-SVR model, which relies
on hyperplanes and incurs higher computational costs as the
feature space and scalability increase. The hidden layers of
the ANN effectively learned and captured the high dimen-
sional feature space. Future work should explore the use of
1D Convolutional Neural Networks (CNN) or transformer
models to better forecast intrinsic variations, further improv-
ing forecasting accuracy and computational efficiency.
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