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Abstract—We present a novel test generation algorithm for
hardware accelerators of Spiking Neural Networks (SNNs). The
algorithm is based on advanced optimization tailored for the
spiking domain. It adaptively crafts input samples towards
high coverage of hardware-level faults. Time-consuming fault
simulation during test generation is circumvented by defining loss
functions targeting the maximization of fault sensitisation and
fault effect propagation to the output. Comparing the proposed
algorithm to the existing ones on three benchmarks, it scales
up for large SNN models, and it drastically reduces the test
generation runtime from days to hours and the test duration
from minutes to seconds. The resultant test input shows near
perfect fault coverage and has a duration equivalent to a few
dataset samples, thus, besides post-manufacturing testing, it is
also suited for in-field testing.

Index Terms—Neuromorphic computing, spiking neural net-
works, testing, reliability.

I. INTRODUCTION

The brain is the most brilliant computing machine achieving
impressive features, such as recognition, reasoning, learning,
control, etc., with a low power budget. Neuromorphic com-
puting aims at emulating brain-like functionality to perform
a wide variety of cognitive tasks with energy advantage
compared to a von Neumann computer and traditional artificial
neural networks (ANNs) [1], [2]. Neurmomorphic processors
implement a spiking neural network (SNN) similar to the
brain structure. The design of neuromorphic processors and
hardware accelerators supporting SNNs is attracting high
interest nowadays [3].

Testing methodologies need to be developed in parallel
for such specialized integrated circuits. Traditional testing
methodologies for digital circuits may not apply as these de-
signs may be mixed analog-digital, may not include flip-flops
allowing to insert scan chains, and some use emerging non-
volatile memristive technologies in a crossbar configuration
[4]. Another challenge is that these designs are programmable
allowing to map onto them different SNN models, thus there is
a lack of specifiability necessitating a functional test approach.
However, testing the functionality of a neural network implies
performing inference on a large dataset, which is too time
consuming to be adopted as a testing methodology in high-
volume manufacturing [5]. Efficient testing of AI hardware
accelerators is an emerging research field [4], but the focus so
far has been more on ANNs rather than SNNs [6].
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Existing testing methodologies for SNNs can be broadly
categorized into built-in self-testing and functional testing.
Built-in self-testing employs extra on-chip resources to detect
abnormalities down at the neuron-level and can be combined
with fault mitigation strategies [7]–[16]. In contrast, functional
testing assumes an SNN model mapped on hardware and aims
at identifying a set of inputs that can distinguish functional
from faulty devices [17]–[20].

In this work, we propose a novel functional test generation
algorithm for SNNs. In previous approaches for SNNs [17]–
[20]1, the inputs are either taken from the available dataset
[17], [18] or are adversarial examples [17], [19] or are random
[20]. As these types of inputs are not geared towards fault
detection, the resultant test set ends up comprising tens to
hundreds of inputs to achieve high fault coverage. In [19],
[20], different test configurations, i.e., models, must be loaded
onto the chip which increases further test application time due
to the switching time. Test generation time is also a concern
for all previous methods as during the course of the algorithm
the test set is verified by repetitive fault simulations whose
number is unbounded and can significantly exceed the size of
the fault model, which already explodes for large networks.

Herein, we propose an algorithm that optimizes an input
towards low test application time and high fault coverage.
We show that a few back-to-back optimized inputs suffice
to achieve near perfect fault coverage. The optimization is
performed in the spiking domain using loss functions that take
as argument the spike trains at the output of neurons. These
loss functions allow to circumvent fault simulation during
test generation. Thus, the algorithm runtime is independent
of the fault model size and is governed by the SNN inference
time, rendering test generation fast and scalable. A single fault
simulation campaign may be performed in the end to verify
the fault coverage. Finally, the compact test set can be stored
on-chip, taking up a small memory space, for in-field testing.

The proposed test generation algorithm makes no assump-
tion about the architecture of the SNN, i.e., fully connected,
convolutional or recurrent, no assumption about the infor-
mation coding scheme, i.e., rate coding or time-to-first-spike
coding, and is generic and independent of the SNN hardware
accelerator design.

The rest of the article is structured as follows. Section
II provides an overview of the principle of operation of
SNNs. Section III describes fault modeling and simulation

1Functional testing approaches for ANNs are proposed in [21]–[27].



Fig. 1: LIF neuron model behavior.

for SNNs. Section IV presents the proposed test generation
algorithm. Section V describes the experimental setup. Section
VI describes the results. Section VII concludes the paper
pointing to ideas for future work.

II. SNN OVERVIEW

SNNs use discrete events, called spikes, and exploit the
timing of spikes to encode, process and transmit information
between neurons. This computational paradigm is inspired by
the human brain and has the advantage of being low power
thanks to the event-based and asynchronous operation.

The most hardware friendly and commonly used spiking
neuron model is the Leaky Integrate and Fire (LIF), illustrated
in Fig. 1. It balances biological realism with computational
simplicity, making it suitable for a hardware implementation.
The neuron is modelled with a membrane potential u(t) which
increases by w every time an input spike emitted from another
neuron arrives, where w is the weight of the synapse linking
the two neurons. When the membrane potential reaches a
predefined threshold value, the neuron emits a spike and the
membrane potential is reset. The neuron has two additional
functionalities. The membrane potential is continuously leak-
ing over time and the neuron enters a refractory period after
firing a spike, during which it does not integrate incoming
spikes and, thereby, does not produce any output spikes.

III. SNN FAULT MODELING AND SIMULATION

Fault modeling translates hardware-level fault effects to
behavioral fault models that can be used thereafter to perform
fault simulation at the application level, thus speeding up the
analysis compared to performing fault simulation at the circuit
level [28]–[33]. This also makes test generation hardware-
independent and allows implementing it on the software plat-
form used to train the SNN. A fault injection tool orchestrates
automatic sequential fault injection in the SNN model and
assesses the effect of each fault on the inference accuracy
[34], [35]. Main fault models for SNNs include [5], [7]–[20],
[28]–[31], [34], [35]:

• Neuron faults: At the extreme a neuron can be (a) satu-
rated, i.e., it produces non-stop output spikes even in the
absence of input activity; (b) dead, i.e., it halts input spike
propagation. In addition, (c) the output spike train can
show timing variations that can be caused by variations in
neuron parameters such as membrane potential, threshold,
leakage or refractory period.

• Synapse faults: At the extreme a synapse can be (a)
dead, i.e., have zero weight; (b) positively (negatively)

saturated, i.e., have a very large (small) weight making
it a positive (negative) outlier with respect to the weight
distribution. In addition, (c) a synapse weight can have a
perturbed value, for example induced by a bit-flip in the
memory storing the value in digital format.

A fault is critical if it alters the top-1 prediction for at least
one sample in the available dataset. However, some faults end
up being benign, i.e., they have no effect, their effect is masked
as it propagates through the network or they alter the output
spike trains but without altering the top-1 prediction. Benign
faults having no effect typically involve neurons and synapses
that do not participate in the computations, as a result of
training or the network architecture. An example is neurons
on the perimeter of a feature map and their corresponding
synapses that are not part of any receptive field during the
strided convolutions.

A testing methodology is evaluated based on its capability
of detecting primarily the critical faults, while benign fault
detection is a bonus since they may turn out to be critical for
other SNN models mapped on the same hardware platform.

IV. TEST GENERATION ALGORITHM

A. Terminology and notation

Let the SNN have L layers with N ℓ neurons in layer ℓ,
ℓ = 1, · · · , L, with NL being the number of output classes.

In SNNs, the input I is spatio-temporal composed of spike
trains entering the neurons in the first layer. It can be modelled
with a binary tensor of dimensions N1×(Tin∗f), where Tin is
the duration of the input and f is the frequency of the internal
clock. The temporal dimension is decomposed into (Tin ∗ f)
equidistant time instances tj = j/f , j = 1, · · · , (Tin ∗ f).
I(i, j) = 1 if neuron i in the first layer receives a spike at
time tj , otherwise I(i, j) = 0.

Let Oℓi denote the output of neuron i in layer ℓ. Oℓi

is a binary vector of length Tinf ∗ f , where Tinf is the
inference time window. Oℓi(j) = 1 if neuron i in layer ℓ
fires a spike at time tj = j/f ,j = 1, · · · , Tinf ∗ f . We define
Oℓ = [Oℓ1, · · · , OℓNℓ

] and O = [O1, · · · , Oℓ].
The input-output relationship can be expressed as:

OL = f(I). (1)

Let us now consider a set of Nf faults {fj}
Nf

j=1. In the
presence of a fault, we can write Eq. (1) as:

OL(fj) = f(I, fj). (2)

We consider that fault fj is detected if it alters the output spike
trains:

∥OL −OL(fj)∥1 > 0, (3)

where ∥ · ∥1 is the L1 norm. Denoting by D = {fj : ∥OL −
OL(fj)∥1 > 0} the set of detected faults, the fault coverage
can be defined as:

FC =

Nf∑
j=1

1D(j)/Nf , (4)

where 1D(j) is the indicator function of D, i.e., 1D(j) = 1
if fj ∈ D and 1D(j) = 0 otherwise.



Fig. 2: Test generation algorithm flow.

B. Optimization formulation

The objective of test generation is to find an input that
maximizes FC:

max
I

FC. (5)

Using FC as the fitness of a visited input during optimiza-
tion is impractical since the fault space quickly explodes with
the size of the SNN model and evaluating FC for a single
input can take several days. The cost of the optimization is
O(M ∗ TFS), where M is the number of algorithm iterations
and TFS is the fault simulation experiment time to compute
FC for a given input.

To address this challenge, we propose to reformulate the
problem as a multi-objective optimization problem where the
computation of FC is replaced with a set of custom loss
functions {Li(O)}Ki=1 that take as argument spike trains at
the outputs of neurons and target sensitization of faults and
the propagation of their effect to the output:

min
I

K∑
i=1

αi ∗ Li(O), (6)

where αi are the weights for scalarizing the different loss
functions and aggregating them into a single loss function.
In this way, fault simulation is circumvented during test
generation and is performed if needed only once for the final
optimized test input to verify its fault coverage. As the loss
functions are computed very fast, the cost of the optimization
significantly reduces from O(M ∗ TFS) to O(M + TFS).

C. Test generation algorithm

A simplified view of the test generation algorithm flow is
illustrated in Fig. 2. Each j-th iteration of the algorithm is
divided into two stages and produces an input Ijin with variable
duration T j

in. In each stage, the input is optimized using
different loss functions, namely four loss functions in stage 1
and one loss function in stage 2. During the input optimization
the SNN model stays fixed. Let N and NA denote the sets
of neurons and activated neurons, respectively, where initially
NA = ∅. At the end of each iteration, we record the activated
neurons, i.e., NA ← {nℓi : |Oℓi| > 1}, where nℓi denotes
the i neuron in layer ℓ. The target set of neurons that the next
iteration focuses on excludes all previously activated neurons
and is given by NT = N \ NA. The algorithm ends until all
neurons are activated, i.e., |NA| = |N | , or until a time tlimit

has elapsed.

As spiking neurons have a memory, before starting a new
iteration, we need to reset the membrane potential of all
neurons. The SNN is reset to “sleep” mode by applying a
zero input 0j whose duration equals T j

in.
If d is the number of inputs that have been generated at the

end of the optimization, the final test is the concatenation of
all inputs interleaved with zero inputs:

I = {I1in, 01, I2in, 02, · · · , 0d−1, Idin}, (7)

The duration of the final test is given by:

Ttest =

d−1∑
j=1

(
2 ∗ T j

in

)
+ T d

in. (8)

Next we describe the loss functions in each stage towards
high fault coverage and the input optimization algorithm
within a stage to produce one input chunk.

1) Stage 1: The first loss function ensures that all output
neurons produce at least one spike during the inference win-
dow Tinf since intuitively this will reinforce the sensitization
of the fault effect to the output:

L1(O
L) =

NL∑
i=1

max(0, 1− ∥OLi∥1). (9)

The second loss function ensures that all neurons are
activated, i.e., applying the input makes all neurons generate
spikes:

L2(O) =

L∑
ℓ=1

Nℓ∑
i=1

max(0, 1− ∥Oℓi∥1). (10)

The rationale for this loss function is that neuron activation is
the necessary condition for exposing dead and timing variation
neuron faults. Furthermore, this loss function improves unifor-
mity of spiking activity across all neurons, thus equalizing the
importance of neurons during computation, which intuitively
helps exposing any neuron fault.

The third loss function aims at exposing timing variation
neuron faults by promoting the temporal diversity of the output
spike trains of neurons. Temporal diversity TDℓi of neuron i
in layer ℓ is expressed as the number of times the neuron’s
output changes state during the inference:

TDℓi =

Tinf∗f∑
j=2

|Oℓi(j)−Oℓi(j − 1)|. (11)

The third loss function is expressed as:

L3(O) =

L∑
ℓ=1

Nℓ∑
i=1

max(0, TDmin − TDℓi), (12)

where TDmin is a minimum imposed temporal diversity to
avoid penalizing the neuron.

The fourth loss function targets specifically the activation of
synapse and dead neuron faults. When a neuron is activated,
this by default propagates spikes through all synapses emanat-
ing from the neuron. However, this does not necessarily mean
that all synapse faults will be activated. The reason is that
incoming synapses to a neuron compete and one synapse may



overshadow the other. More specifically, a synapse that has a
large weight and propagates many spikes will contribute more
to the increase of the membrane potential of the post-synaptic
neuron, possibly largely dominating the contribution of other
weaker synapses that propagate less spikes and, thereby,
masking their fault. Similarly, if a dead neuron connects with
weak synapses to other neurons, it is likely that the dead fault
effect will be masked. To address these issues, the fourth loss
function ensures uniformity across synapses by minimizing the
variance of the contributions of the non-zero weight synapses
to the post-synaptic neuron:

L4(O) =

L∑
ℓ=1

Nℓ∑
i=1

Var
j

(
wℓ−1,ℓ

j,i ∗ |Oℓ−1,j |
)
, (13)

where wℓ−1,ℓ
j,i is the weight of the synapse connecting neuron

j in layer ℓ− 1 to neuron i in layer ℓ.
In the first stage, the input optimization is formulated as:

min
I

4∑
i=1

αi ∗ Li(O). (14)

Note that there is no loss function that targets specifically
saturated neurons. This is because by default saturated neurons
are self-activated and this activation is the most extreme, i.e.,
the neuron produces non-stop spikes.

2) Stage 2: Neuron activation does not necessarily mean
that the neuron fault effect will reach the output. More
specifically, the spike train of an activated neuron that gets
modified due to a fault is blended with spike trains fired by
other neurons in the same layer when it reaches a neuron in the
next layer. The neuron in the next layer may thus be receiving
a high spike rate entering a refractory period. During this time,
any fault effect information carried into its input spike train
is being dropped. Therefore, the fault effect information may
fade out progressively as it propagates through the network
and not reach the output due to the refractoriness of neurons.
To help the fault effects reach the output, in a second stage,
we fine-tune the generated input from the first stage aiming
at nullifying the excessive spikes across the network that do
not contribute to the output. Essentially, this stage reduces the
amount of spikes neurons receive and, thereby, the information
loss during their refractory phase. This optimization keeps the
output spike trains OL from the first stage constant and is
formulated as follows:

min
I

L5(O) s.t. constant OL, (15)

where the fifth loss function is defined as follows:

L5(O) =

L−1∑
ℓ=1

Nℓ∑
i=1

|Oℓi|. (16)

3) Input optimization algorithm within a stage: The input
optimization in stages 1 and 2, formulated in Eqs. (14) and
(15), respectively, is performed using the gradient descent-
based Adam optimizer with adaptive learning rate lr. The flow
of the algorithm is illustrated in Fig. 3. As the input to the SNN
has a non-differentiable binary format, we start with a random

Fig. 3: Input optimization algorithm flow.

real-valued tensor Ireal with dimension N1 × Tin,min ∗ f .
In a first step, we use the Gumbel-Softmax function [36],
[37] to produce a real-valued tensor Isoft that approximates
binary values and allows effective gradient descend-based
optimization:

Isoft = GumbelSoftmax(Ireal, τ). (17)
The temperature parameter τ controls the smoothness of
the approximation. As τ approaches 0, Isoft becomes more
discrete, closely approximating binary values. In a second step,
we apply the Straight Through Estimator (STE) function [38]
to Isoft:

Iin = STE(Isoft). (18)

In the forward pass, STE binarizes Isoft using a threshold 0.5
to produce the spiking input tensor Iin that is applied to the
SNN. After the forward pass, we record the spike trains O,
compute the loss function L, and backpropagate the error to
the input using the same backpropagation pipeline that is used
during the training of the SNN. When, we reach the input, the
STE function passes on the incoming gradient as if it was an
identity function. The tensor Ireal is adjusted as follows:

Ireal ← Ireal − lr ∗ ∇Ireal
L. (19)

Within a stage this procedure is repeated Nstage#
steps times,

where the superscript stage# denotes the stage number. If
no new neurons are activated after Nstage#

steps iterations, i.e.,
NA ∩ NT = ∅, then the duration of the input is increased by
β time steps to Tin,min ∗ f + β and the stage optimization is
repeated. The stage optimization returns the best Iin that is
visited.

V. EXPERIMENTAL SETUP

A. Case studies

The proposed test generation methodology is demonstrated
on three benchmark SNNs trained for the NMNIST [39], IBM
DVS128 Gesture [40], and Spiking Heidelberg Digits (SHD)
[41] datasets. Figs. 4, 5, and 6 show the SNN architectures
and Table I provides the main characteristics. NMNIST is a
spiking version of the original frame-based MNIST dataset
containing 70K images of handwritten digits from 0 to 9. It



Fig. 4: SNN architecture for the NMNIST dataset.

Fig. 5: SNN architecture for the IBM DVS128 Gesture dataset.

was produced by moving a Dynamic Vision Sensor (DVS)
while it views MNIST images on an LCD monitor. The IBM
DVS128 Gesture dataset was produced by a DVS capturing 11
different hand and arm gestures performed by 29 individuals
under 3 different lighting conditions. The SHD dataset consists
of 10420 audio recordings of spoken digits from 0 to 9 in
German and English languages converted into spike trains.

B. SNN framework

The SNN training and test generation are performed using
the SLAYER framework [42] which is built upon PyTorch
[43]. The nominal and faulty SNN instances are accelerated
on a NVIDIA A100 GPU. Fault injection is performed di-
rectly in SLAYER by modifying the synapse weights, neuron
parameters, and neuron output spike trains.

C. Optimization parameters

The user-defined parameters of the optimization algorithm
are set as follows. Tin,min is set as the minimum input duration
that produces non-zero output for all neurons in the output
layer. Its value is defined by performing an initial optimization
minI L1(O

L) starting with Tin,min = 1ms. TDmin is set to
Tin,min/10. The numbers of steps within each optimization
stage are set to N1

steps = 2000 and N2
steps = N1

steps/2. The
time limit termination condition is set to tlimit = 3h. The
input duration increment β is set to 10ms and it doubles
every time the input duration increases. For the temperature τ
in the Gumbel-Softmax function we use an annealing schedule
with maximum value 0.9. The initial learning rate lr in
the Adam optimizer is set to 0.1 and adjusts based on an
annealing schedule. The weight factors ai of the loss functions
in stage 1 of the optimization equal the inverse of the expected
magnitude of the loss function to ensure balanced contribution
to the total loss.

VI. RESULTS

As a first step, a full fault simulation was performed so as
to label faults as benign or critical and to be able to calculate
the FC of the optimized test stimulus in the end. Table II
shows for the three benchmarks the resultant number of critical
and benign faults, as well as the total fault simulation time.
Such large times in the order of days make prohibitive solving
the optimization problem in a straightforward way, i.e., using

Fig. 6: SNN architecture for the SHD dataset.

TABLE I: Benchmark SNNs characteristics.
NMNIST IBM SHD

Prediction accuracy 98.19% 86.36% 76.59%
# Output classes 10 11 20
# Neurons 1790 25099 404
# Synapses 61908 1059616 124928
Input spatial dimension 2×34×34 2×128×128 700×1×1
Input temporal dimension 300ms 1.45 s 1 s
Size training set 60K 1080 8332
Size testing set 10K 261 2088

FC as the loss function, as pointed out in Section IV-B, thus
necessitating an alternative test generation strategy as the one
proposed herein.

Table III shows various metrics when applying the proposed
test algorithm to the three benchmarks. The test generation
runtime is only a few hours and scales very well as the size of
the network increases, i.e., going from the smaller NMNIST
and SHD SNNs to the larger IBM SNN. In all cases, the
generated test stimulus has a duration equivalent to less than
a dozen original input samples from the dataset. Therefore,
besides its use for fast functional post-manufacturing testing,
it can be used in addition for in-field testing. The test activates
a large percentage of neurons and, thereby, their outgoing
synapses, achieving a near perfect coverage of critical faults.
As an auxiliary benefit it detects a large percentage of benign
faults too. The last row in Table III, shows the maximum drop
in prediction accuracy if a critical fault goes undetected, i.e.,
in essence, it shows the worst case effect that a test escape
can have on the SNN performance.

Figs. 7, 8 and 9 provide illustrations taking as an example
the IBM SNN. Fig. 7 shows snapshots at different time stamps
of the optimized test stimulus. Blue and red dots indicate
spikes with positive and negative polarity, respectively. Fig. 8
compares the neuron activity when applying the optimized test
input and a randomly chosen input sample from the dataset.
It shows a custom grid layout of all neurons across layers,
where the yellow (purple) color indicates that the neuron is
activated (non-activated). As it can be seen, the optimized test
input activates a much higher percentage of neurons compared
to the original input sample, i.e., 82.81% as opposed to 29%.
As fault coverage is proportional to neuron activation, this
color map clearly illustrates the benefit of input optimization.
Fig. 9 shows the fault effect propagation to the output layer,
expressed as the per-class spike count difference with respect
to the expected fault-free response. The per-class spike count
difference distributions are shown with different color and are
superimposed. For illustrating their tails, the x-axis is broken
down into three parts. While a spike count difference of one
suffices to detect the fault, for most faults the optimized test
spreads widely their effect across the network and propagates
it to produce a high output spike train corruption.



TABLE II: Fault simulation results.
NMNIST IBM SHD

# Critical Neuron Faults 2922 25378 794
# Benign Neuron Faults 658 24820 14

# Critical Synapse Faults 96203 934872 311955
# Benign Synapse Faults 89521 2243976 62829

Fault Simulation Time ∼ 5 days ∼ 19 days ∼ 8 days

TABLE III: Test generation efficiency metrics.
Metric NMNIST IBM SHD
Test generation runtime 1.5 h 2.5 h 2 h
Test duration (samples) ∼ 8.76 ∼ 11.48 ∼ 7.82
Test duration (time) 4.96 sec 31.86 sec 14.64 sec
Activated neurons 98.71% 82.81% 91.33%
FC Critical neuron faults 99.97% 99.86% 98.99%
FC Critical synapse faults 96.96% 99.42% 97.25%
FC Benign neuron faults 47.26% 82.29% 21.43%
FC Benign synapse faults 78.02% 58.98% 54.40%
Maximum accuracy drop
for undetected critical neu-
ron (synapse) faults

0.1%(1.1%) 0.4%(0.9%) 0.3%(1.5%)

TABLE IV: Comparison with previous works.
Publication [17] [18] [19] [20] This

work
NMNIST
SNN model

784×128×
10

Fig. 4 784 ×
256 ×
32 × 10

784 ×
1024×
512 ×
10

Fig. 4

# Neurons 922 1790 1082 2330 1790
# Synapses 101632 61908 209216 1332224 61908
Test stimulus
type

Dataset,
Adversarial

Dataset Adversarial Random Optimized

Test genera-
tion time

26.19 days
(one synapse
fault type)

10
days

- - 1.5 h

# Test config-
urations

1 1 18 44 1

Test duration
(samples)

302 195 662 190 ∼8.76

Test duration
(time)

3.015 min 1.945
min

6.615
min

1.895
min

4.96
sec

Table IV provides a comparison to previous methods in
terms of test duration for achieving maximum fault coverage.
The comparison is done for the NMNIST SNN which is the
only common benchmark. A direct quantitative comparison
is possible only to [18], as we implemented this method and
applied it on our NMNIST SNN of Fig. 4 and fault model.
The comparison to [17], [19], [20] is qualitative as the SNN is
a 3- or 4-layer fully-connected network and the fault model is
somewhat different. As it can be seen, our method drastically
reduces the test duration from a few hundred samples to
less than ten samples or, equivalently, from a few minutes
to a few seconds. The underline reason is that our method
optimizes a short input for high fault coverage, whereas all
other methods are based on greedy algorithms that keep adding
inputs, i.e., from the dataset, adversarial or random, which
are not designed for detecting faults, until maximum fault
coverage is reached. The works in [19], [20] add extra test
application time due to configuration switching. In terms of
test generation time, our method takes 1.5 h while the method
in [18] takes 10 days. For the method in [17] test generation is
performed per fault type and is reported to be 26.19 days only
for synapse weight perturbation faults. Test generation time is
not reported in [19], [20] but it should be in the order of days
too due to the greedy nature of the algorithm. Although test

(a) 1 ms. (b) 200 ms. (c) 700 ms. (d) 1000 ms.

Fig. 7: Snapshots of the optimized test stimulus.

(a) Optimized test input. (b) Random dataset input sample.

Fig. 8: Neuron activity per layer for the optimized test input vs. a
random input sample from the dataset.

(a) Neuron Faults. (b) Synaptic Faults.

Fig. 9: Per-class spike count difference distribution for detected faults.

generation time is an one-time off-line effort, in other works
it depends on the fault model size which increases with the
SNN model size, while in our method it is independent of the
fault model size and scales very well with the SNN model
size, as shown in Table III.

VII. CONCLUSION

We presented a novel test generation algorithm for SNNs
that employs optimization in the spiking domain to craft a
short duration test input that maximizes fault coverage. The
test input is adjusted to minimize loss functions defined on
the network’s spiking activity that are inversely proportional to
fault coverage. In this way, time-consuming fault simulations
are avoided and the algorithm scales up very well for any
SNN size. The comparison with previous algorithms on the
NMNIST benchmark demonstrated a test duration reduction
of over 95% and a test generation time reduction of over
99%. The algorithm is demonstrated on three benchmarks,
i.e., NMNIST, IBM DVS128 Gesture, and SHD, achieving
over 99% neuron critical fault coverage and over 96% critical
synapse fault coverage, while the test input size is equivalent
to less than a dozen dataset samples and, thereby, is also
suitable for periodic online testing. Future work will focus on
defining new loss functions to further improve fault coverage
and reduce test duration.
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Barranco, and H.-G. Stratigopoulos, “Neuron fault tolerance in spiking
neural networks,” in Proc. Design Autom. Test Europe Conf. (DATE),
Feb. 2021, pp. 743–748.

[14] R. V. W. Putra, M. A. Hanif, and M. Shafique, “SoftSNN: Low-cost
fault tolerance for spiking neural network accelerators under soft errors,”
in Proc. 59th Design Autom. Conf. (DAC), Jul. 2022, p. 151–156.

[15] T. Spyrou and H.-G. Stratigopoulos, “On-line testing of neuromorphic
hardware,” in Proc. IEEE Eur. Test Symp. (ETS), May 2023.

[16] A. Saha, C. Amarnath, and A. Chatterjee, “A resilience framework
for synapse weight errors and firing threshold perturbations in RRAM
spiking neural networks,” in Proc. IEEE Eur. Test Symp. (ETS), May
2023.

[17] H.-Y. Tseng, I-W. Chiu, M.-T. Wu, and J. C.-M. Li, “Machine
learning-based test pattern generation for neuromorphic chips,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2021.

[18] S. A. El-Sayed, T. Spyrou, L. A. Camuñas-Mesa, and H.-G. Stratigopou-
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