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An analytical solution of the thermal vortex ring in the similarity regime is derived in this study. An attempt
is first made to find a steadily-propagating solution as an extension of the Hill’s vortex by considering its
modification by buoyancy. However, the derived solution is incomplete, because the internal and external
solutions cannot match properly. Unsteadiness of the system due to the presence of buoyancy removes
this inconsistency. Separating dependencies in time and space leads to a temporal tendency of the vortex-
ring radius proportional to t1/2 with t the time, as expected from the similarity solution. Modifications
to the spatial dependency are relatively minor compared to the original steadily-propagating solution.
The analytical solution overall reproduces the basic characteristics of thermal vortex rings found in recent
numerical simulations, especially a negative dynamic drag, albeit in a very qualitative manner.

DOC/convection/ring/modon/ms.tex, 14 December 2024

1. Introduction

The vortex ring is an axisymmetric doughnut-shaped vortex, constituting a vortex pair in the
vertical section, like the rings produced by a smoker. It can be studied in the laboratory by
mechanically generating it in a similar manner. Alternatively, a vortex ring can be generated
ejecting an isolated buoyancy anomaly. This latter type, a thermal vortex ring, is the theme
of this paper.

Mechanically-generated vortex rings are more straightforward to study theoretically because
they can be described purely in terms of the vortex dynamics in the inviscid limit, a limit
that is also adopted in this work. As a result, it is also much easier to describe their steady
propagation, and hence various theoretical solutions are also available. The best known is an
analytical solution derived by Hill (1894) for a vortex ring filling a sphere. An alternative
solution is obtained by taking an opposite limit of assuming that the vorticity is found only
on a particular circle around a vertical axis; the solution for this vortex circle is presented in
Lamb (1932). The vortex-circle solution can further be improved by including a contribution
of a small, but finite, size of the vortex-ring core around the circle (e.g., Hicks 1884, Sullivan
et al. 2008). Other versions replace Hill’s vortex by a “fat” vortex ring almost touching a
sphere (e.g., Frankel 1972, Norbury 1972). As a synthesis of these two approaches, Norbury’s
(1973) iterative procedure derives a family of steadily propagating solutions with any arbitrary
size of vortex-ring core. However, these more general approaches than Hill’s solution do not
provide closed analytical forms for the solutions.
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These approaches for “inertial” vortex rings can also be applied to a category of thermal
vortex rings, the so-called bubbles, because they are generated by injecting a lighter fluid into
a working fluid (typically air into water). Thus, the system takes a form of two fluids with
two different densities. Walters and Davidson (1963) consider the initial formation process of
a bubble by a series of Legendre polynomials. Pedley (1968) analytically derives a similarity
solution by Turner (1957) by considering a limit of small vortex core. Lundgren and Mansour
(1991) consider a modification to Hicks’ (1884) solution by buoyancy. However, a major diffi-
culty with the bubble dynamics is its inherently unsteady behaviour, which is best described
by a contour-dynamics method (Chang and Llewellyn Smith 2018, 2020).

The purpose of this study is to extend these existing studies of “inertial” vortex rings as well
as bubbles to thermal vortex rings. The thermal vortex ring, or simply, thermal, has long been
considered an important building block of atmospheric convection (cf., Yano 2014). Indeed,
there is renewed interest in the problem of thermal vortex rings, thanks to improvements
of our capacity for both numerical computations (Sherwood et al. 2013, Romps and Charn
2015, Hernandez-Deckers and Sherwood 2016, Morrison and Peters 2018, Tarshish et al. 2018,
Anders et al. 2019, Lecoanet and Jeevanjee 2019, McKim et al. 2020, Morrison et al. 2022)
and laboratory experiments (Zhao et al. 2013, Lai et al. 2015, Vasel-Be-Hagh et al. 2015).
Among the recent studies, we specifically refer to Morrison et al. (2022: hereafter MJY) to
compare with the results of this study.

The basic strategy of this study is to extend the Hill’s vortex solution to a buoyant case. As
the case with Hill’s vortex ring, the focus will be initially on steadily propagating solutions
with no azimuthal dependence, but with a modification of the vortex-ring size due to the
presence of buoyancy. In laboratory and numerical experiments, such a state is established
after a transient formation of a vortex ring from an initial isolated buoyant anomaly with a
quiescent state. From a theoretical point of view, this state has been investigated under the
framework of a similarity theory (Scorer 1957, Turner 1957). The basic motivation of this
study is to derive analytical solutions of thermal vortex rings, albeit under approximations.

For this purpose, we invoke a strongly nonlinear theory of the vortices, called the modons,
as reviewed by Flierl (1987). Under this framework, the Hill’s solution is obtained by assuming
a homogeneous potential vorticity anomaly inside the vortex-ring core. In the next section,
where a basic formulation is introduced, the effect of the buoyancy is included into this
framework by generalising the potential vorticity.

The first important aspect of this generalisation is that the presence of the buoyancy no
longer permits a perfectly spherical vortex ring as the case for Hill’s solution. Consequently,
the shape of the vortex ring, characterised by its radius, R, must also be determined as
a function of the angle from the vertical axis of the vortex ring, θ, as a free boundary in
Sec. 2. A general closed analytical expression for steadily-propagating solutions can, indeed,
be derived inside and outside the spherical vortex-ring boundary, but only separately: they
cannot be connected continuously over the spherical boundary. This problem is initially solved
by assuming a constant radius, R0, to the leading order, and the deviation of the radius, R,
from this basic state is treated as a “perturbation”. More precisely, the deformation of the
boundary is expressed by expanding the vortex-ring radius as a power series in cos θ, where
θ is the angle from the vertical axis of the vortex ring. Now, a consistent solution can be
obtained but only up to O(cos2 θ) (Sec. 2.5).

Physically speaking, a purely steadily propagating solution, pursued in Sec. 2, is not pos-
sible due to the presence of nonvanishing buoyancy in the domain average, which accelerates
the thermal as a whole upwards with time. For this reason, an explicit time dependence is
introduced under the separation of variables in Sec. 3 so that the unsteady tendency of the
evolution can be taken into account. The time dependence reduces to a question of an ex-
pansion of the vortex ring, whereas its spatial dependence can still be determined by similar
equations. Thus, the full unsteady solution can be derived simply with additional terms added
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to the original steadily-propagating solution.
The analytical results obtained in Sec. 3 are compared with the existing numerical ex-

periments, notably, by MJY in Sec. 4. Here, we specifically refer to their higher-resolution
run (HIGHRES case) to compare it with our analytical results. The choice is made based
on our judgment that this run with a high spatial resolution is closest to the inviscid limit
in this study. Their lower-resolution run as well as other recent numerical experiments con-
tain more significant dissipation in the momentum equation either numerically or physically.
Here, we choose to compare the results in terms of the momentum budget, because it is a
more commonly-accepted approach to describe the dynamics of thermal vortex rings. We refer
especially to the recent efforts by Morrison (2016a, b), and Morrison and Peters (2018).

To perform the comparisons, we need to keep in mind certain caveats. First, this theoretical
study focuses on the similarity regime, in which the vortex ring propagates steadily with time
keeping overall the same shape, albeit with a growing tendency of the size due to the buoyancy.
In numerical experiments, which are typically initiated with an isolated buoyancy anomaly
with a quiescent state, this state is realised only after an initial transient evolution. Thus,
the comparisons exclusively focus on the later stage of those simulations, when a similarity
condition is expected to be satisfied.

Second, the analytical results obtained in this study are under the axisymmetric assumption,
whereas all those numerical experiments were performed with fully three-dimensional config-
urations. We expect that comparisons are useful to a good extent, because those numerically-
simulated vortex rings are predominantly axisymmetric, although the presence of azimuthal
flows is hardly negligible. The vorticity-budget analysis of the HIGHRES run performed by a
separate study (Yano and Morrison 2024) supports this expectation.

Nevertheless, it is also likely that this study with the axisymmetric assumption in the in-
viscid limit involves various implicit assumptions. For example, a quasi-steady assumption of
the model under the separation of variables could fail if a thermal tries to pinch off on the
centreline, or at least develop a point where the boundary is no longer smooth. Furthermore,
the unsteady solutions are derived under relatively severe limits. First, a nonlinear unsteady
effect is neglected, expecting the modification to be relatively minor. Second, the solution is
derived under a severe truncation in Taylor expansion. Nevertheless, in spite of those limita-
tions, remarkably, the obtained unsteady solution reproduces the negative dynamic pressure
drag, albeit in a very crude manner, found in the numerical simulation by MJY.

2. Steadily-Propagating Solution

2.1. Formulation

We adopt the Boussinesq approximation with cylindrical coordinates (s, ϕ, z), with velocities
(vs, vϕ, vz), but also occasionally refer to the spherical coordinates (r, θ, ϕ). Axisymmetry is
assumed throughout, dropping the ϕ-dependence in the following. As a result, the vorticity
has only an azimuthal component ζ ≡ ζ · ϕ̂ = ∂vs/∂z − ∂vz/∂s. This is not conserved since
vortex tubes will be stretched as they move radially. This point is seen more directly by
realising that the azimuthal coordinate, ϕ, acts as a passive scalar, because there is no flow in
the azimuthal direction. Thus, with application of Ertel’s theorem, ζ · ∇ϕ = ζ/s is conserved
in absence of buoyancy, and: (

∂

∂t
+ vs

∂

∂s
+ vz

∂

∂z

)
q = −1

s

∂b

∂s
. (1a)

Here, q = ζ/s plays an analogous role to the potential vorticity in the shallow water system,
because the vortex tube stretches as the radius, s, of the vortex-tube circle increases, and vice
versa. However, under the presence of the buoyancy, this quantity, q, is no longer conserved,
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as seen on the right-hand side. Thus, it merely plays a role of “relative potential vorticity”,
as a part of the total potential vorticity to be defined below by Eq. (7b). The equation for
the buoyancy is: (

∂

∂t
+ vs

∂

∂s
+ vz

∂

∂z

)
b = 0, (1b)

assuming there is no buoyancy source to this system.

2.2. Steady Propagation Problem

For now, we seek a steadily propagating solution with velocity, c, upwards. The time derivatives
can be absorbed into the vertical derivatives by transforming the vertical coordinate and the
vertical velocity by:

z = z′ − ct,

vz = v′z − c.

After removing the primes from the transformed variables, Eqs. (1a, b) reduce to(
vs
∂

∂s
+ vz

∂

∂z

)
q = −1

s

∂b

∂s
, (2a)(

vs
∂

∂s
+ vz

∂

∂z

)
b = 0. (2b)

By adopting a moving coordinate, the system asymptotically tends to a homogeneous vertical
flow downwards at large distances, thus

vz → −c (3a)

vs → 0 (3b)

as z → ±∞. Eqs. (2a, b) are the basic set of equations to be considered until the end of Sec. 2.
A streamfunction, ψ, can be introduced by:

vz = −1

s

∂ψ

∂s
, (4a)

vs =
1

s

∂ψ

∂z
, (4b)

and the potential vorticity is given by

q ≡ ζ

s
=

1

s

(
∂

∂s

1

s

∂

∂s
+

1

s

∂2

∂z2

)
ψ. (4c)

With the help of the definition of streamfunction (Eqs. 4a, b), Eqs. (2a, b) further reduce
to:

J(q, ψ) = −1

s

∂b

∂s
, (5a)

J(b, ψ) = 0, (5b)

where J is the Jacobian defined by

J(a, b) =
1

s

(
∂a

∂s

∂b

∂z
− ∂a

∂z

∂b

∂s

)
.
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The boundary conditions (3a,b) also reduce to:

ψ(s, z → ±∞)→ 1

2
cs2. (5c)

It immediately follows from Eq. (5b) that a general solution for the buoyancy, b, is given by

b = F(ψ),

in terms of a functional, F , of ψ. In the following, we adopt a linear approximation of the
general form above by setting,

b = −αψ, (6)

inside the vortex ring (r ≤ R), and set b = 0 in the exterior (r > R). Here, α is a positive
definite constant, and an arbitrary constant for the streamfunction at the vortex-ring boundary
is set zero. The sign convention for α is chosen from an anticipation that a positive vorticity
corresponds to a positive buoyancy.

From a physical point of view, the parameter, α, can be called the buoyancy parameter,
because 1/α measures the efficiency of the buoyancy in maintaining a steady flow, with the
latter measured by the streamfunction. In the present study, this “efficiency” parameter, 1/α,
remains an undetermined free parameter. We believe that it depends on an initial condition
of a problem, and is determined as a consequence of an initial transient evolution, that leads
to a final similarity solution. We only focus on the latter aspect in the present study. It will
also be shown immediately below that the buoyancy parameter, α, can also be understood in
analogy with the β parameter in the quasi-geostrophic system.

We expect that this simplification (Eq. 6) can qualitatively represent more general cases,
in which α depends on ψ: Eq. (6) suggests that, in general, the differential buoyancy forcing,
−∂b/∂s, is re-interpreted as a generation of the potential vorticity by a downward flow (i.e.,
vz < 0), because −∂b/∂s = α∂ψ/∂s = −αvz.

By substituting Eq. (6) into Eq. (5a):

J(Q,ψ) = 0, (7a)

where Q is considered a “total” potential vorticity of this system, defined by

Q = q + αz. (7b)

for inside the vortex ring (r ≤ R), and Q = q in the exterior (r > R). Note that the
parameter α in the above definition can be interpreted in analogy with the β parameter in the
quasi-geostrophic potential vorticity with the vertical direction taking the role of the latitude
(cf., Pedlosky 1987). Although this analogy with quasi-geostrophy is drawn under a steady
assumption, it will be seen later in Sec. 3 that it remains relevant for an unsteady problem.

In the following, we focus on a potential-vorticity patch of the form

Q =

{
Q0 r ≤ R
0 r > R,

(8)

where Q0 > 0 is a constant. Under this formulation, the boundary, R, remains arbitrary and
must be determined by consistency.

By substituting the expression (8) into the definition of Q (7b), we find:

ζ =

{
Q0 s− αsz, r ≤ R,
0, r > R.

(9)

By further substituting Eq. (9) into the definition of the vorticity (4c), the problem to solve
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reduces to (
∂

∂s

1

s

∂

∂s
+

1

s

∂2

∂z2

)
ψ =

{
Q0 s− αsz, r ≤ R,
0, r > R.

(10)

We divide the above problem into the two components by setting ψ = ψ̄ + ψ′, which satisfy(
∂

∂s

1

s

∂

∂s
+

1

s

∂2

∂z2

)
ψ̄ =

{
Q0 s r ≤ R
0 r > R,

(11a)

(
∂

∂s

1

s

∂

∂s
+

1

s

∂2

∂z2

)
ψ′ =

{
−αsz r ≤ R
0 r > R.

(11b)

In the following, we designate the components with ψ̄ and ψ′, respectively, the leading order
and the perturbation, because formally, they are obtained by the leading order and the first
order in expansion in terms of α. However, we also emphasise that the smallness of α is not
assumed when deriving the perturbation solution in this section.

To obtain the solutions for Eqs. (11a, b), the following differential relation becomes useful:(
∂

∂s

1

s

∂

∂s
+

1

s

∂2

∂z2

)
slzmrn = [l(l−2)z2+m(m−1)s2]sl−3zm−2rn+n[2(l+m)+n−1]sl−1zmrn−2.

(12)
This is proved by recalling that r2 = s2 + z2, ∂r/∂s = s/r, and ∂r/∂z = z/r.

2.3. Leading-Order Solution

The leading-order solution, ψ̄, corresponds to the classical solution of Hill’s vortex. We pose
the condition of vanishing streamfunction at r = R0, setting R = R0 in Eqs. (9), (10), and
(11a, b) tentatively. Recall that the boundary condition at infinity is given by Eq. (5c). Under
these conditions, with the help of Eq. (12), we find the leading-order solution

ψ̄ =


A

2
s2(R2

0 − r2),

c

2
s2(1− R3

0

r3
),

v̄s =

−Asz,3c

2

R3
0

r5
sz,

v̄z =

−A(R2
0 − r2 − s2), r ≤ R0,

c

[
R3

0

r3

(
1− 3s2

2r2

)
− 1

]
, r > R0.

(13a, b, c)
A relation between the two constants, A and c, is found by continuity of the velocity at
r = R0, so A = −3c/2R2

0. Recall that c is the propagation speed of the vortex ring, which is
determined from the vorticity intensity, Q0, and

c = 2Q0R
2
0/15. (14)

2.4. Buoyancy Contribution

The perturbation solution, ψ′, for Eq. (11b) is derived for the interior and exterior, respectively.
As for the leading-order solution, we assume a spherical vortex ring for now. With the help
of Eq. (12), we find that an inhomogeneous solution with the inhomogeneous term, sz, is
obtained by setting l = 2, m = 1, and n = 2. We also add a homogeneous solution with l = 2,
m = 1, and n = 0 so that the boundary condition at r = R0, ψ′ = 0, is satisfied. Thus:

ψ′ =
α

14
s2z(R2

0 − r2), v′s =
αs

14
(R2

0 − r2 − 2z2), v′z = −αz
7

(R2
0 − r2 − s2) (15a, b, c)

for r ≤ R0.
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The solution (15a, b, c) can be extended to the exterior (r > R0) using the condition of
continuity to yield:

ψ′ = βs2z

[
1− (

R0

r
)5

]
R2

0, v′s = βR2
0s

[
1− (

R0

r
)5 +

5R5
0z

2

r7

]
, v′z = −2βR2

0z

[
1− (

R0

r
)5 +

5R5
0s

2

2r7

]
.

(16a, b, c)
with β = −α/35. However, this solution has a problem, because the vertical velocity increases
linearly with z to infinity, i.e., as z → ±∞, v′z → −βz. Thus, to remove this singularity at
infinity, we need to subtract βs2z from the streamfunction of both interior and exterior:

ψ′ =


αs2z

(
R2

10
− r2

14

)
−βs2z

(
R

r

)5

R2,

v′s =


αs

(
R2

10
− r2 + 2z2

14

)
−βs

(
R0

r

)7

(r2 − 5z2),

v′z =


−αz

(
R2

5
− r2 + s2

7

)
, r ≤ R0

βz

(
R0

r

)7

(2r2 − 5s2). r > R0

(17a, b, c)

2.5. Deformation of the Vortex-Ring Boundary

The final adjusted solution (17a, b, c) no longer satisfies the condition of ψ = 0 at r = R0.
It follows that the boundary, R, of the vortex ring is no longer spherical, and a departure
from this shape must be considered. To address this problem, we first recast the perturbation
streamfunction into

ψ′ =


s2z

14

(
γR2

0 − αr2
)
, r ≤ R,

−βs2z
R7

0

r5
, r > R

(18)

by introducing an additional parameter, γ, so that there is more freedom to define the bound-
ary, R, consistently. It also follows that

v′s =


αs

14
(γ̃R2

0 − r2 − 2z2)

−βs(R0

r
)7(r2 − 5z2),

v′z =

−
αz

7
(γ̃R2

0 − r2 − s2), r ≤ R

βz(
R0

r
)7(2r2 − 5s2), r > R,

(19a, b)

where γ̃ = γ/α.
The basic requirement to define the vortex-ring boundary is to seek a solution that satisfies

ψ
∣∣∣
r=R−

= ψ
∣∣∣
r=R+

= 0, (20)

where ψ = ψ̄ + ψ′, and the subscripts − and + indicate the values from the internal and
external solutions, setting an arbitrary constant for the streamfunction to be zero.

By substituting the general solution forms above, we obtain for r ≤ R,

α̂

7Ã
µR̃(α̃R̃2 − γ̃) + R̃2 − 1 = 0, (21a)

and for r > R,

(R̃3 − 1)R̃− 15α̂β̃µ = 0. (21b)
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Here, we set µ = cos θ, and

R̃ = R/R0, (22a)

α̂ = αR0/Q0, (22b)

Ã = A/Q0 = −1/5, (22c)

γ̃ = γ/α, (22d)

β̃ = β/α. (22e)

The fact that Eqs. (21a,b) are not identical leads to a difficulty in determining the vortex-ring
shape consistently to higher orders under the present form of the solution, as seen immediately
below.

Based on the form of the equations (21a,b), we seek a solution by the Taylor expansion

R̃ = 1 +

N∑
n=1

R̃nµ
n, (23)

with the truncation at N . After substituting this expression (23) into Eqs. (21a, b), the
problem can be solved with increasing orders in powers of µ, by defining expansion coefficients,
R̃n. The results for n = 1, 2, 3 from the conditions (21a) and (21b), respectively, are:

R̃1 =
α̂

14Ã
(γ̃ − 1), (24a)

R̃2 = −R̃
2
1

2
+

α̂

14Ã
(γ̃ − 3)R̃1 (24b)

R̃3 = −R̃1R̃2 +
α̂

14Ã
(γ̃ − 3)R̃2 −

3

14Ã
α̂R̃2

1, (24c)

and

R̃1 = 5α̂β̃, (25a)

R̃2 = −2R̃2
1, (25b)

R̃3 =
20

3
R̃3

1. (25c)

Here, the boundary deformation defined in terms of R̃n (n = 1, 2, 3) above both from the
internal and external solutions must be identical. Thus, for example, by comparing Eqs. (24a)
and (25a), we find that the condition,

γ̃ − 1

14Ã
= 5β̃,

must be satisfied. Also taking into account the consistency between Eqs. (24b) and (25b), we
define the parameters as:

β̃ = − 2

35
, (26a)

γ̃ =
9

5
. (26b)

As a result, the boundary deformation is determined up to n = 2 in Eq. (23) consistently.
The obtained deformation tendency here is consistent with known numerical results (MJY,

Lai et al. 2015, Tarshish et al. 2018, Leoanet and Jeevanjee 2019): Eqs. (25a) and (26a) show
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that the vortex ring is displaced downwards at O(µ), and Eq. (25b) that the vortex ring is
elongated in the lateral direction to O(µ2).

However, by substituing these results into Eq. (24c), we find

R̃3 =
5

4
R̃3

1, (27)

which is not consistent with Eq. (25c), thus the boundary deformation has been determined
only up to O(µ2) with the truncation N = 2. Above this order, the internal and external
solutions cannot match properly.

2.6. Presentation of the Solution

In spite of its incompleteness, it is still worthwhile to examine the spatial structure of the
steadily-propagating solution just derived, because it reproduces qualitatively well recent nu-
merical results (MJY, Lai et al. 2015, Tarshish et al. 2018, Leoanet and Jeevanjee 2019) with
an enhanced circulation to an upper half and a vertically squeezed vortex-ring shape, as shown
by the bottom frame in Fig. 1.

Furthermore, thanks to the analytical procedure adopted, it is also possible to understand
how this structure is generated: the leading-order solution (Hill’s vortex: top frame) is modified
in such a manner that the total potential vorticity, Q (Eq. 7b), is homogeneous inside the
vortex ring (r ≤ R) by compensating the background potential vorticity, αz, due to the
buoyancy, increasing vertically, by a perturbation, ψ′. Thus, negative and positive vorticity
perturbations must be generated, in compensation, to the upper and lower halves of the ring.
That leads to a quadratic vorticity field in vertical section, as seen in the middle frame. As a
result, a closed streamline defining the boundary of the vortex ring is squeezed downwards to
maintain the continuity. This squeezing further leads to an enhancement of the circulation at
the upper half as seen in the bottom frame. Note that the perturbation field itself tends to
decrease and enhance the circulations, respectively, in the upper and the lower halves.

3. Unsteady Problem

Up to now, we have sought a steadily-propagating solution for a thermal vortex ring as a
generalisation of Hill’s vortex. However, such a solution should not exist in a strict sense,
because the system (cf., Eq. 6) is associated with a positive buoyancy averaged over the
vortex-ring volume (r ≤ R). Thus, the system must evolve in a unsteady manner by following
a given buoyancy acceleration. This reflects upon the fact that the deformation of its boundary
could be determined consistently only to the second order of a power series in µ = cos θ in
Eq. (23). We may also note that the obtained steadily-propagating solution above also remains
discontinuous in the tangential velocity along the vortex-ring boundary. This discontinuity will
also be partially corrected in the following unsteady formulation (cf., Eq. 36c).

Here, the “buoyancy acceleration” does not happen directly in the vertical direction. As an
analysis of the impulse dynamics by Turner (1957) suggests, and as confirmed by Yano (2023),
a differential buoyancy force acts on the vorticity (Eq. 1a) to expand the thermal with time.
This expansion is often described by “entrainment” in the literature.

However, a representation of the dynamics of thermal vortex rings in terms of the entrain-
ment rate is inherently limited in the sense that it cannot define their shapes. In the following,
we are going to demonstrate that the expansion of the thermal vortex ring with time can be
explained without explicitly introducing the entrainment in the formulation. This is a ma-
jor difference from the dynamics of the entrainment plumes: the latter cannot be described
properly without entrainment. Note that a thermal vortex ring will expand with time due to



14 December 2024 Geophysical and Astrophysical Fluid Dynamics ms

10 Jun-Ichi Yano and Glenn R. Flierl

its own vortex dynamics: no smaller–scale eddies are involved as the case with the entraining
plume (cf., Morton et al. 1956). Here, the buoyancy is advected outwards directly by the
vortex–ring circulation, rather than by small–scale mixing; only the latter type of mixing can
legitimately called the entrainment.

However, the whole picture is slightly more involved than just remarked. More precisely,
the expansion is associated with outward spiral movements of fluid particles. In this respect,
the boundary of the vortex ring becomes no longer a simple material surface in the same
sense as for the entraining plume: a compensating advective inflow is required to conserve the
total mass of the vortex ring, from a bottom along the ring axis. Because the inflow has no
buoyancy, the overall spiral movement leads to a complex spiral structure of the buoyancy
field.

Under these considerations, in this section, we generalise the formulation for the steadily-
propagating vortex ring of previous sections to an unsteady problem. For this purpose, the
axisymmetry assumption is maintained, and the time dependence is introduced by the sep-
aration of variables. Under these assumptions, those fine details just described cannot be
properly represented, being effectively filtered out. As a result, the expansion of the thermal
vortex ring is treated as a type of wave propagation, rather than that of a material surface.
This last interpretation reflects the fact that the separation of variables implicitly introduces
a homogenisation process. The attempt of this section is tentative at the best also due to the
various additional approximations introduced in the analysis, and far from fully describing an
expected complex structure just outlined. An important goal here is, nevertheless, to point
out a possibility of constructing a self-contained analytical solution even for an unsteady state,
and also consequently, to provide simple interpretations.

We first introduce, in the next subsection, the separation of variables, and solve the time
dependence of the system. As it turns out, the remaining spatial dependency is analogous
to the original steadily-propagating problem (Eqs. 7a and 5b), but adding inhomogeneous
terms to the right-hand sides. Thus, we focus on deriving an inhomogeneous solution, to be
designated as ψ̃′ for the streamfunction, for example. The inhomogeneous solutions is to be
added to the original steadily-propagating solution, ψ̄ + ψ′, Thus, the full solution becomes:

ψ = ψ̄ + ψ′ + ψ̃′. (28)

We seek an inhomogeneous solution satisfying continuity of the streamfunction, buoyancy, as
well as the tangential velocity at the vortex-ring boundary. The formulation of the problem
presented in the following is general in the sense that by proceeding to the higher orders of
the adopted Taylor expansions, the solutions can be derived to any desired orders.

In this study, however, to facilitate the analytical progress, the problem is solved under
linearisation in respect to ψ̃′, by heavily truncating the Taylor expansions, but to an extent
that it provides an enough freedom to satisfy the boundary conditions for the streamfunction
and the buoyancy up to O(µ3) under an expansion of the form (23). On the other hand,
the continuity of the tangential velocity can be satisfied only up to O(µ) due to a technical
reason. As a major departure from the steadily-propagating problem, the ordering by µ no
longer follows that of α̂ under the unsteady problem. Here, a solution consistent to O(α̂)
is sought, thus this truncation is also adopted in presenting the results subsequently. The
following derivation is rather lengthy, and the technical details are provided separately in the
Appendix.

Note that a basic analysis with the separation of variables of the same system has already
been presented by Yano (2023). However, this study presents a new, closed-form analytical
solution.



14 December 2024 Geophysical and Astrophysical Fluid Dynamics ms

Propagating Thermal Vortex-Ring 11

3.1. Separation of Variables and Time-Dependence

In order to take into account the unsteady evolution of the thermal vortex ring following
Yano (2023), we introduce a time dependence by assuming the separation of variables to the
potential vorticity, q = ζ/s and the buoyancy, b:

q = q̂(t)q̃(r/R0), (29a)

b = b̂(t)b̃(r/R0) (29b)

with R0 = R0(t) now a time-dependent ring size, representing the expansion of the thermal

with time. We also set ψ = ψ̂(t)ψ̃(r/R0) and v = ψ̂(t)ṽ(r/R0). Note that Eqs. (29a, b) are
a particular form of separable solutions, but being consistent with the form expected from
the similarity solution suggested by Turner (1957) and Scorer (1957). We do not exclude a
possibility of another solution form. However, such a solution is likely not be to in a closed
form.

We further introduce re-scaled coordinates by

ξ = s/R0, η = z/R0 (29c)

so that the time derivative in equations becomes

∂

∂t

∣∣∣
r

=
∂

∂t

∣∣∣
ρ
− Ṙ0

R0
ρ
∂

∂ρ
, (29d)

where ρ = r/R0, and the subscripts to the partial derivatives suggest a variable kept constant
in operations. Note that the shape of the vortex ring, characterised by an angle-dependent
radius, R(θ), evolves as the reference radius, R0(t), evolves with time by following the relation
(22a). Furthermore, a perturbation buoyancy, b′, must be added to the relation (6):

b = −αψ + b′. (29e)

We also set: b′ = b̂(t)b̃′(r/R0).
By substituting Eqs. (29a, b, c, d, e) into Eqs. (1a, b), we seek a consistent separable solution.

Note first that the total buoyancy, b̄R3
0, is conserved in this system with b̄ a vortex-ring volume

averaged buoyancy, which suggests setting

b̂ = b0/R
3
0(t) (30a)

with b0 a constant. As a result, the time dependence of the buoyancy is completely described
in terms of the change in the vortex-ring radius, R0(t).

Realise further that to accomplish a separation of variables, all the other time dependency
of the variables must also be described in terms of that of R0(t). As a result, Yano (2023)
identifies the following forms

q̂ = ζ0/R
3
0(t), ψ̂ = ζ0R0(t), α =

ζ0

R4
0(t)

α̂ (30b, c, d)

with ζ0 and α̂ constants. As also shown in Yano (2023), these conditions reduce the problem
of time-dependence of the system into

R0Ṙ0 = fζ0 (31a)

with a separation constant defined by f(> 0), which measures the buoyancy force acting on
the expansion of the vortex ring. This leads to the known similarity solution (Scorer 1957) for
the radius,

R0(t) = (2fζ0)1/2t1/2 (31b)
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in an explicit manner. It also follows that the buoyancy and the potential-vorticity intensities
also evolve as

b̂ ∼ R−3
0 ∼ t−3/2, q̂ ∼ R−3

0 ∼ t−3/2.

A constant for the potential vorticity inside the vortex-ring core can also be set Q0 = Q̂0Q̃0.
Here, we have the freedom of partitioning a single constant into two constants. We find it
convenient to introduce a normalisation Q̃0 = 1. Thus, Q̂0 = Q0, and it follows that

ζ0 = Q0R
3
0, b0 = Q2

0R
6
0. (31c, d)

Finally, from the definition (14) of the phase speed, c, we find that c decreases with time by
following an expansion of the thermal vortex rings as:

c =
2Q0R

2
0

15
=

2

15

ζ0

R0
∼ t−1/2.

Here, the second equality is obtained with the help of Eq. (31c); the final result is obtained
by further substituting the result (31b).

3.2. Spatial Dependence of the System

We are now left with the problem of solving the spatial dependence of the system, the problem
left unaddressed by Yano (2023). This problem turns out to be a relatively straightforward
extension of the steady propagation problem, with the original dependent variables replaced
by the tilde variables, q̃, ψ̃, etc. By focusing on the spatial dependencies, the time dependencies
designated by hats, q̂, ψ̂, etc. can simply be treated as normalisation factors for the variables,
with the tilde variables as normalised counterparts.

As a result of the separation of the variables, the equations for the spatial dependencies are:

J̃(Q̃, ψ̃) = ξf

(
3 + ρ

∂

∂ρ

)
q̃ − ∂b̃′

∂ξ
, (32a)

J̃(b̃, ψ̃) = ξf

(
3 + ρ

∂

∂ρ

)
b̃ (32b)

in place of Eqs. (7a) and (5b). Here, all the notations are equivalent to those in Eqs. (7a) and
(5b), but with the tilde added to suggest normalisations.

Note that apart from the normalisations, the left-hand sides of Eqs. (32a, b) are equivalent
to those in the original equations, whereas the right-hand sides represent modifications due
to the unsteadiness. In this respect, it is useful to designate the original steadily-propagating
solutions (i.e., homogeneous solutions) by the subscript h, and set:

Q̃ = Q̃h + q̃′, (33a)

ψ̃ = ψ̃h + ψ̃′. (33b)

Here, we can set ψ̃h = ψ̄ + ψ′, and their substitution into Eq. (7b) leads to an explicit
definition of Q̃h; ψ̄ and ψ′ are defined by Eqs. (13a) and (18), but resetting the constants
to the normalised values, i.e., Ã = −1/5 and c̃ ≡ c/Q0R

2
0 = 2/15. The right-hand sides of

Eqs. (32a, b) are found only in the interior of the vortex ring, r ≤ R, thus only the modification
to the interior solution due to the unsteadiness needs to be considered in the following.

Substituting Eqs. (33a, b) into Eqs. (32a, b), and after linearisation in respect to ψ̃′, ne-



14 December 2024 Geophysical and Astrophysical Fluid Dynamics ms

Propagating Thermal Vortex-Ring 13

glecting the terms, J̃(q̃′, ψ̃′) and J̃(b̃′, ψ̃′), in both equations, we obtain

J̃(q̃′, ψ̃h) = ξf(3 + ρ
∂

∂ρ
)q̃ − ∂b̃′

∂ξ
, (34a)

J̃(b̃′, ψ̃h) = ξf(3 + ρ
∂

∂ρ
)(−α̂ψ̃ + b̃′), (34b)

keeping in mind that q̃ = q̃h+q̃′ and ψ̃ = ψ̃h+ψ̃′ in the right-hand sides. Linearisation, adopted
here for facilitating an analytical progress, should not have severe consequences, because only
a modification of O(α̂) due to the unsteadiness is required to the original solution.

Eqs. (34a, b) can be solved by setting

q̃′ =
∑
n,m

qnmξ
nηm, (35a)

ψ̃′ =
∑
n,m

ψnmξ
nηm, (35b)

b̃′ =
∑
n,m

bnmξ
nηm, (35c)

where qnm, ψnm, and bnm are the expansion coefficients. By substituting Eqs. (35a, b, c) into
Eqs. (34a, b), we obtain recursion relations for qnm and bnm. By symmetry of the system,
the odd coefficients, ψ2n+1,m, vanish. As already remarked, these Taylor series can solve this
linearised problem up to any orders of accuracy by proceeding to the higher-order terms.
However, for now, with the goal of solving the problem accurately up to O(µ3), the expansion
is terminated at n = 3 and m = 3 for ψ2n,m.

3.3. Boundary Conditions

The following three conditions are imposed at the vortex-ring boundary, r = R:

ψ = 0, (36a)

b = 0, (36b)

n · ∇
(
ψ
∣∣∣
r=R+

− ψ
∣∣∣
r=R−

)
= 0 (36c)

with n a vector normal to the vortex-ring boundary, which is defined by:

n · ∇ = σs
∂

∂s
+ σz

∂

∂z
, (37)

where

σs = (1 + 2R̃1µ+ 3R̃2µ
2 + 4R̃3µ

3) sin θ,

σz = −R̃1 + (1− 2R̃2)µ+ (2R̃1 − 3R̃3)µ2 + 3(R̃2 − R̃3)µ3 + 4R̃3µ
4

recalling the definitions (22a) and (23). Also keep in mind that the external boundary con-
ditions (25a, b, c) for the steadily-propagating solutions are still valid for the unsteady case
here.

Note that the boundary condition on the buoyancy (36b) must be considered separately
in the unsteady problem, because the unsteady correction, b̃′, to the buoyancy is determined
separately from the streamfunction, no longer satisfying the relation (6). The last condition
(36c) ensures the continuity of the velocity at the vortex-ring boundary. However, for the
reason explained in the Appendix (cf., Eqs. A.3a, b, c), application of this last boundary
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condition must be terminated at O(µ) in expansion in µ. We believe that this additional
constraint arises due to a limitation of assuming a similarity form of the solution (29a, b).

These three conditions reduce to

Ã

2
(1− R̃2) + α̂

γ̃ − R̃2

14
µR̃+

∞∑
n=0

λnµ
n = 0, (38a)

α̂Ã

2
(1− R̃2) +

α̂2µ

14
(γ̃ − R̃2)R̃ =

∞∑
n=0

Bnµ
n, (38b)

3∑
n=0

[σs(W̃Dn + α̂En − 2Fn) + σz(W̃Gn + α̂Hn − 2Kn)] = 0, (38c)

where the coefficients, λn, σs, σz, Bn,Dn, En, Fn,Gn,Hn, andKn are defined in the Appendix.
These three boundary conditions are solved in the increasing order of µ up to O(µ3) for

(38a, b) and O(µ) for (38c). It leads to the 10 conditions, with the leading order O(µ0), to
be satisfied with the parameters, β̃, γ̃, and f̃ = f/α̂, and the coefficients, q20, b20, b40, ψ20,
ψ21, ψ22, ψ23 to be determined. Here, note the nonlinearity in the boundary conditions (38a,
b), thus the obtained solutions are not superposable, although the governing equation (34a,
b) has been linearised.

To avoid analytical complexities, these coefficients are defined only to the leading orders
with all the contributions above O(α̂) neglected: this is not as major compromise as it may
appear because we can still define the vortex-ring form to a higher order in µ than it was
possible with a purely-propagating assumption in the last section.

After a lengthy deduction outlined in the Appendix, the leading-order coefficients are de-
termined to be:

f̃ =
448

44785
+O(α̂) ' 0.0100, (39a)

ψ̃21 = − 2402

24115
+O(α̂) ' −9.96× 10−2, (39b)

ψ̃23 =
192

4823
+O(α̂) ' 0.0398, (39c)

γ̃ = 14(γ̃0 − β̃) +O(α̂), (39d)

where ψ̃21 = α̂−1ψ21, ψ̃23 = α̂−1ψ23, and

γ̃0 =
69873

626990
+O(α̂) ' 0.111.

Finally, the boundary-deformation parameter, β̃, is determined from the second-order poly-
nomial equation:(

2− 39

4Ã
f̃

)
β̃2+

[
1

2

(
13

14
− γ̃0

)
+ 13f̃

]
β̃+

3

2
f̃

[
1

14
− 7γ̃0 + (19 +

1

Ã
)f̃

]
−3f̃

(
3ψ̃21 − ψ̃23

)
= 0.

(39e)
The other coefficients turn to be O(α̂2), and are neglected in the following presentations.

By solving Eq. (39e), we obtain two eigenvalues for β̃: a large positive value (0.213) and
a slightly negative value (−3.07 × 10−3). These two eigenvalues lead to the two nonlinear
eigensolutions, which are referred as the first and the second modes, respectively. The basic
parameters of those two eigensolutions are listed in Table 1 along with those for the steady-
propagation derived in the last section. Keep in mind that the nondimensional buoyancy
parameter, α̃, remains a free parameter of the problem even for the unsteady case.
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Table 1. Basic Parameters of the Obtained Modes

β̃ γ̃

Steadily-propagating solution −5.71× 10−2 1.8
First Mode 0.213 4.55
Second Mode −3.07× 10−3 1.60

The streamfunctions in Figs. 1 and 2 are obtained with
the above parameters from a general formula (28) with
ψ̄ and ψ′ defined by Eqs. (13a) and (18), respectively.

For the steadily-propagating solution, ψ̃′ = 0, and for

the unsteady solutions, ψ̃′ is defined by Eq. (35b) with
the leading coefficients defined by Eqs. (39b, c), and
higher coefficients determined by the recursion relation
(A.1c).

The obtained solution for the first mode shown in Fig. 2(a), with α̂ = 0.3, compares well
with that of MJY (see their Fig. 6). A top heavy circulation of the thermal vortex ring is
also found in Lai et al. (2015, Fig. 7) as well as a composite by Romps and Chrain (2015,
Fig. 10). However, the composite of the latter work presents a vertical elongation of the vortex
ring. On the other hand, the tendency of the thermal vortex ring to elongate horizontally is
also identified by Tarshish et al. (2018, their Fig. 3), and Leoanet and Jeevanjee (2019, their
Fig. 2).

The second mode leads only to a very weak deformation of the boundary, which is hardly
visible graphically (Fig. 2(b)) even when α̂ is set fairly large (α̂ = 1 here). The continuity of
the solution is, instead, accomplished by more explicitly adding and subtracting the vorticity
at the top and the bottom of the vortex ring, as seen in the middle frame. As a result, a top
heavy circulation also appears.

4. Comparisons with Numerical Results

Two nonlinear eigensolutions have been obtained analytically for a given buoyancy parameter,
α̂, in the last section. As an application, we principally perform the analysis of the momen-
tum budget of those obtained solutions in this section. The purpose here is the two-fold:
to test whether the obtained analytical solutions can reproduce the numerical results with
higher resolutions, notably by Morrison et al. (2022, MJY). The analytical result here can, in
turn, provide a physical interpretation for those numerical results. Keep in mind that all the
following results are based on truncation at O(α̂).

4.1. Geometrical Factor

Before proceeding to the momentum budget, we briefly examine the geometrical factor, Γ,
which is defined by

Γ = πR3
0/V, (40)

because it is the best quantity to characterize the evaluated deformation of the vortex-ring
shape. Here, V is the volume of the vortex ring, which is evaluated by:

V = 2π

∫ π

0

∫ R(θ)

0
r2 sin θdrdθ =

2π

3

∫ π

0
R3(θ) sin θdθ =

2π

3
R3

0

∫ 1

−1
R̃3(µ)dµ. (41)

In this evaluation, we only consider the terms up to O(µ3) in R̃3:

R̃3 ' 1 + 3R̃1µ+ 3(R̃2
1 + R̃2)µ2 + (R̃3

1 + 3R̃3 + 6R̃1R̃2)µ3.
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This truncation rule to O(µ3) will be applied systematically to any expressions, R̃n, with an
integer, n, without remark in the following.

The final result is:

V =
4

3
πR3

0Ṽ , (42a)

where

Ṽ ' 1− R̃2
1. (42b)

By substituting the expression (42a) into Eq. (40), the latter reduces to:

Γ =
3

4Ṽ
. (43)

Because the vortex-ring shape of the first mode is vertically squeezed with the increasing
buoyancy effect, α̂, the normalised volume decreases with the increasing α̂, thus the geomet-
rical factor (40) increases with the increasing α̂, as shown by the solid curve in Fig. 3. MJY
shows Γ ' 1 in their similarity regime. We find from the plot that this value is obtained with
α̂ ' 0.5 with the first mode. On the other hand, the geometrical factor of the second mode
(long dash) remains almost perfectly that of the sphere, Γ = 3/4, for the full range of α̂ on
plot.

4.2. Momentum Budget: Formulation

The momentum equation to be considered is:

dw

dt
= −1

ρ

∂pd
∂z
− 1

ρ

∂pb
∂z

+ b. (44)

Here, the pressure, p, has been decomposed into the dynamic and the buoyancy contributions
by setting, p = pd + pb.

After a volume average, we obtain a standard description for the momentum budget of a
vortex ring (cf., Morrison et al. 2022):

d〈w〉
dt

= −1

ρ
〈∂pd
∂z
〉 − 1

ρ
〈∂pb
∂z
〉+ 〈b〉+ E. (45)

Here, the bracket, 〈∗〉, indicates the average over the vortex-ring volume, and the last term,
E, represents a contribution of the change of the vortex-ring volume with time, commonly
called “entrainment”. In the following diagnosis, the volume-averaged vertical velocity is set
equal to the propagation speed, i.e., 〈w〉 = c, as expected for a quasi-steadily propagating
solution.

4.3. Pressure Problem

Recall that the dynamic and buoyancy pressures, pd and pb, are obtained by solving the
Poisson problems:

1

ρ
∇2pd = −∇ · (v · ∇v), (46a)

1

ρ
∇2pb =

∂b

∂z
. (46b)

Here, by considering the solution only to O(α̂), the source terms on the right-hand sides are
also truncated at O(α̂). For this reason, the buoyancy is more specifically approximated by
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b ' −α̂ψ with ψ ' ψ̄. The contribution of b̃′ is found only at O(α̂2). Eqs. (46a,b) are solved
by expanding both pd and pb with the Legendre functions, Pn(µ), thus

p =

N∑
n=1

p̃n(r)Pn(µ) (47)

with the subscripts d and b are to be added for the two pressure components.
The problem is solved by posing the continuity of the pressure up to the first derivative at

the vortex-ring boundary, r = R(θ), in the normal direction, where the normal direction, n,
is defined by Eq. (37). Here, also for solving this boundary problem with facility, we apply
the Taylor expansion to these boundary conditions under in terms of R − R0 up to the first
order, i.e.,

∆p
∣∣∣
r=R
' ∆p

∣∣∣
r=R0

+
∂∆p

∂r

∣∣∣
r=R0

(R−R0)

∂∆p

∂r

∣∣∣
r=R
' ∂∆p

∂r

∣∣∣
r=R0

+
∂2∆p

∂r2

∣∣∣
r=R0

(R−R0),

consistent with the general strategy of truncation at O(α̂). Here, ∆p is the difference of the
external and internal pressure solutions. The expansion in Legendre functions is truncated at
N = 6: this rather strong truncation is adopted by considering the degree of truncation in the
unsteady solution given by Eqs. (35a, b, c).

The obtained pressures, pd and pb, will be presented in terms of the volume average. This
last step is facilitated by noting that the pressure gradient averaged over the vortex-ring
volume is given, after a partial integral, by:

V

〈
∂

∂z

[
p

ρ

]〉
= 2π

∫ R(θ=π/2)

0

[
p

ρ

]z=R(µ)µ

−R(−µ)µ

sds

= 2πR2
0

∫ 1

−1

[
p

ρ

]
r=R

Λ(µ)dµ, (48a)

where

Λ(µ) = R̃2µ− R̃dR̃
dµ

(1− µ2). (48b)

Its explicit form is obtained by substituting Eq. (23) with N = 1, corresponding to the
truncation at O(α̂).

The dynamic pressure acting on the thermal vortex ring is often represented as a drag force
in terms of a drag coefficient, Cd, as:

1

ρ
〈∂pd
∂z
〉 =

Γ

2
Cd

c2

R0
, (49)

where Γ is the geometrical factor defined by Eq. (43). In turn, the buoyancy pressure can be
considered a force counteracting against the buoyancy; thus the effective buoyancy, be, may
be defined by

be = −1

ρ
〈∂pb
∂z
〉+ 〈b〉. (50a)

It may alternatively be expressed as

be = Cv〈b〉 (50b)

in terms of the virtual mass coefficient, Cv (cf., de Roode et al. 2012, Tarshish et al. 2018). Note
that some works alternatively define the virtual mass coefficient, γv, by setting Cv = (1+γv)

−1
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(e.g., Simpson and Wiggert, 1969, Haman and Malinowski 1989, Bechtold et al. 2001).

4.4. Pressure gradient at infinity

.
As going to be seen in the next two subsections, the results with the pressure-gradient forces

tend to be rather singular. Inspection of both dynamic and buoyancy pressure fields suggests
that this is due to strong distortions of the pressure fields around the vortex-ring boundary.

As seen in Sec. 2, singularities arise along the boundary in attempt of constructing a steadily-
propagating thermal vortex ring solution: first, the vortex-ring boundary cannot be determined
consistently in such a manner that boundary corresponds to a constant streamfunction line.
Moreover, the attempted construction of the solution still leaves further discontinuities in the
velocity and the buoyancy: the tangent component of the velocity remains discontinuous along
the boundary leading to infinite shear. The buoyancy also remains discontinuous, leading to
discontinuity of the buoyancy-gradient force crossing the vortex-ring boundary.

All those discontinuities have been designed to be removed in constructing the unsteady
solution in the last section. However, the obtained solution still retains steep gradients close
to the boundary due to a severe truncation adopted in constructing the solutions. The strong
steepness around the boundary further leads to abnormal behaviours in pressure gradients.

A possible way of avoiding those singular tendencies is to move the boundary for evaluating
the average pressure gradients to infinity: averaging it over a sphere of the radius, r, and
taking the asymptotic limit, r →∞. Thus, the average pressure gradient is evaluated as:

〈∂p
∂z
〉 =

4πr3/3

V
〈∂p
∂z
〉
∣∣∣
r→∞

, (51)

where 〈∂p/∂z〉|r→∞ indicates the average is computed in the limit, r →∞ over a sphere with
a radius r. Substituting (47) into Eq. (51) we find:

〈∂p
∂z
〉 =

4Γ

3
p̂1 (52)

to the leading order, noting that p̃1(r) = p̂1r
−2 for the external pressure with p̂1 a constant,

both for the dynamic and buoyancy pressures. This formula (52) permits us to evaluate the
pressure gradients in terms only of a single expansion coefficient, p̂1.

4.5. Dynamic-Pressure Drag

The drag coefficients, Cd, evaluated for the two nonlinear modes obtained in the last section
are plotted in Fig. 4 as functions of α̂. These results can be qualitatively interpreted by
invoking the Bernoulli principle obtained for the dynamic pressure:

pd
ρ

= −v2

2
+ const. (53)

especially for the steadily-propagating component of the solution, although the principle does
not strictly apply to the unsteady component. Since the vortex-ring circulation is squeezed
upwards with both modes, it is expected that the circulation is also overall enhanced in the
upper side of the vortex ring. With a simple application of the Bernoulli principle (53), it
follows that the dynamic pressure force must overall act positive upwards, being associated
with a negative pressure drag.

The results in Fig. 4 based on Eqs. (48a, b) present a rather excessively negative Cd for
both modes (solid and long dash), with an overall monotonically decreasing tendency with
α̂, except for a singular behaviour found with the first mode (solid) at α̂ ' 0.4, and also a



14 December 2024 Geophysical and Astrophysical Fluid Dynamics ms

Propagating Thermal Vortex-Ring 19

bounce back above α̂ ' 0.8. The dynamic-pressure drag for first mode (short dash) evaluated
at infinity by Eq. (52) more consistently decreases with the increasing α̂. After removing the
singular behaviour of the dynamic pressure field around the boundary, the drag, Cd, becomes
even more excessively negative. the average over the vortex-ring volume (cf., Eqs. 48a, b: short
dash). On the other hand, the curve for the second mode with Eq. (52) perfectly matches that
with the average over the vortex-ring volume (cf., Eqs. 48a, b: long dash).

The negative drag coefficient, Cd, obtained here is qualitatively consistent with the result of
MJY. However, estimated values herein are most likely exaggerated due to a strong truncation
of the solution at O(α̂): MJY obtained only a modest negative value with Cd ' −0.1. As
already remarked in the beginning of Sec. 4.4, these singularities found with the first mode
are consequences of artificial “resonances” resulting from a strong truncation in Eq. (47),
which cannot remove strong pressure gradients over the vortex-ring boundary.

4.6. Buoyancy Pressure

Fig. 5 shows the results for the virtual mass coefficient, Cv (cf., Eq. 50b). For both modes
(solid and long dash) obtained by the direct evaluation (48a, b) over the vortex volume,
the reduction of the virtual mass, Cv, from the normalised value is rather small (just about
5%). The first mode (solid) even increases with the increasing α̂, and Cv surpasses unity at
α̂ ' 0.35.

The virtual mass, Cv, evaluated with the pressure gradient at infinity (Eq. 52), is more
sensible with the first mode (short dash): it overall monotonically decreases with increasing α̂
by following from an expected tendency of the buoyancy pressure to counteract the buoyancy
force, apart of singular oscillations due to a heavy truncation of the solution. The adopted
asymptotic limit successfully removes a singular behaviour of the buoyancy pressure around
the vortex-ring boundary. A high-resolution simulation result by MJY with Cv ' 0.5 is re-
covered at α̂ ' 0.35. This value is not very far from an estimate, α̂ ' 0.5, obtained by fitting
the value of the geometrical factor, Γ, with MJY’s result in Fig. 3.

On the other hand, the second mode simply presents a constant with α̂ on the plot both
for the direct evaluation (48a, b: long dash) and the pressure at infinity (52: chain dash). The
change of the evaluation method merely changes a constant value, with a smaller value for
the latter. Thus, we conclude that the first nonlinear mode is more relevant than the second
for interpreting the numerical results by MJY. Note that MJY’s simulation is initiated with
a homogeneous spherical buoyancy anomaly with a quiescent state. This particular initial
condition leads to the first nonlinear mode.

5. Summary and Conclusions

An analytical solution of a thermal vortex ring has been derived from a consideration of the
vortex dynamics. This system is described by a type of potential vorticity, q = ζ/s, defined
in terms of the azimuthal vorticity, ζ, and the distance, s, from the vertical axis of the vortex
ring. This potential vorticity is conserved in the absence of buoyancy because a vortex ring
can be considered a ring-shaped vortex tube, in which its circle plays a role of the length of
a vortex tube.

When the buoyancy is added to this system, it acts on the potential vorticity as a differential
force (cf., Eq. 1a). Furthermore, under a steady-propagation assumption, this term can be
interpreted in analogy with the β-effect of quasi-geostrophic flows, in which a “background
vorticity” induced by buoyancy increases with height. When the buoyancy is assumed to be
proportional to the local streamfunction, this analogue β-parameter becomes a constant, α,
as assumed herein. Thus, in the presence of buoyancy, a total potential vorticity, Q = q+αz,
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including the background potential vorticity induced by buoyancy, is conserved under the
steadily-propagation assumption.

Under this framework, the classical solution of Hill’s vortex is obtained by assuming a
constant potential vortitcy inside a sphere in the absence of buoyancy. Generalisation of
this solution to the buoyant case is straightforward in the potential vorticity framework just
outlined (cf., Flierl 1987): the presence of the background vorticity induced by buoyancy adds
“perturbation” terms to Hill’s solution, which can also be solved in a fully nonlinear manner.
The generated perturbation fields take a form of a quadratic vorticity in vertical section as
expected from an analogy of the buoyancy effect with the β effect.

The difficulty in completing this solution is that the presence of buoyancy makes the vortex
ring no longer perfectly spherical, as with Hill’s vortex. It has been sought to determine the
deformation of the vortex-ring boundary by assuming a form (23) of power series in µ = cos θ,
where θ is an angle away from the vortex-ring axis. However, as it turns out, it has been
possible to determine the deformation only up to O(µ2). Beyond this order, the internal and
external solutions remain unmatched. However, importantly, this incomplete solution (Fig. 1)
already depicts well the tendency of thermal vortex rings to flatten in vertical direction, as
seen in numerical simulations (Morrison et al. 2022, Lai et al. 2015, Tarshish et al. 2018,
Leoanet and Jeevanjee 2019).

Physically speaking, the difficulty of completing a steadily-propagation solution stems from
the fact that a thermal vortex ring cannot be purely propagating vertically, but evolves un-
steadily because there is always a net upward buoyancy force. The original steady formulation
has been modified by accounting for the time-dependence by the separation of variables. This
formulation reduces the time dependency into that of the radius of the vortex ring, which
can be shown to evolve as ∼ t1/2, as expected from the similarity solution (Scorer 1957). The
remaining problem of spatial dependence remains close to the original steadily-propagating
problem except for additional inhomogeneous terms arising from the unsteadiness. Inclusion
of these effects permit determining the deformation of the vortex-ring boundary to any ar-
bitrary order of power series in µ = cos θ with the help of an infinite series of undetermined
coefficients, q2n,0 (n = 1, . . .), in Taylor expansion (35a). Here, the problem is solved to O(µ3).
The solution is determined accurately to O(α̂) accordingly, where α̂ is a normalised version
of the β-parameter (or buoyancy parameter) of the problem, as defined by Eq. (22b). As a
result, the streamfunction solution is modified at O(α̂) due to the unsteadiness, whereas the
modification to the buoyancy remains to O(α̂2), thus not explicitly considered. Here, for fa-
cilitating the analytical solution, the inhomogeneous equation for the unsteady problem has
been linearised in respect to an unsteady component of the variable. The unsteady component
has been solved under Taylor expansions with a relatively severe truncations, as well.

The two nonlinear eigensolutions, with a nonlinearity arising from the boundary conditions
(38a, b, c), are identified: both are characterised by stronger circulations to the vortex ring at
the upper half. However, these two solutions achieve this configuration in qualitatively different
manners. The first mode consists of a noticeable displacement of the vortex-ring boundary
downwards. As a result, the vortex-ring circulation is squeezed in upper half (Fig. 2(a)).
On the other hand, the second mode generates this structure by more directly adding and
subtracting the vorticity at the upper and from the lower halves, respectively (Fig. 2(b)). In
this case, the vortex ring hardly deforms from an original spherical shape. Note that in both
cases, further modifications due to the unsteadiness tend to cancel out a quadratic structure
generated by the buoyancy “β” effect inside the vortex ring (r < R(θ)): under the unsteady
regime, the buoyancy “β” effect (or baroclinic forcing) mostly works as a driving force for
expanding the thermal vortex ring with time, in the analogous manner as the normal β-effect
leads to Rossby waves.

An immediate consequence expected from a stronger circulation at the upper half is an
upward dynamic pressure-gradient force, associated with a negative dynamic-pressure drag,
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as inferred qualitatively from the Bernoulli principle (53). This result is also qualitatively con-
sistent with a diagnosis from a high-resolution numerical simulation by Morrison et al. (2022,
MJY). However, the negative drags obtained from the analytical solutions are most likely
exaggerated due to the fact that only the leading terms have been considered in unsteady
contributions. In contrast, only a weakly negative drag coefficient, Cd ' −0.1, is found in
MJY’s numerical simulation.

On the other hand, the virtual mass, Cv, based on the buoyancy-pressure gradient averaged
over an asymptotically large sphere, as well as the geometrical factor, Γ, provide reasonable
agreements with those obtained by MJY with the buoyancy parameter, α̂ ' 0.35–0.5, for the
first nonlinear eigensolution: this overall consistency of the estimated buoyancy parameter, α̂,
is remarkable, considering various simplifications involved in the present study. In contrast,
the deformation of the second solution is too weak to be compared with the numerical result
by MJY.

Analytical solutions can elucidate physical aspects not immediately obvious from numeri-
cal simulations: a close equivalence of the present system with the quasi-geostrophy with an
β effect played by the buoyancy parameter, α, is most notable. At the same time, some of
the results are not quantitatively satisfactory, most notably, a highly exaggerated negative
dynamics-pressure drag. The limitations of the obtained results are due to various simplifi-
cations introduced in this study. These are divided into two major categories: physical and
mathematical. Physically speaking, the formulation is developed under the Boussinesq approx-
imation, and with further simplifications. The most notable is a linear relationship between
the buoyancy and the streamfunction inside the vortex-ring core assumed in the steadily-
propagating solution. The separation of variables adopted in deriving the unsteady evolution
of the vortex ring may also be pointed out. However, this last simplification is likely to be
less severely restrictive than it appears, with the focus of this study on the similarity regime,
in which the circulation pattern of the vortex ring is overall conserved with time associated
with its expansion. Nevertheless, few subtle issues are expected, as already remarked at the
beginning of Sec. 3.

The unsteady solutions have been derived under further mathematical simplifications. First,
an inhomogeneous problem for the correction terms due to the unsteadiness is solved under the
linearisation of those terms. The solutions have been further restricted by applying a severe
truncation in the Taylor expansions. These simplifications have been necessary to facilitate the
analytical progress, which would become much more tedious otherwise. They can certainly be
relaxed, and the steps to be taken would be further facilitated by a more numerically-oriented
approach, such as a spectral method proposed by Boyd and Ma (1990), for example.

Appendix: Solution Procedures

This appendix provides details of the derivation of the solution in Sec. 3.
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A.1. Recursion Relations

The recursion relations to be solved for qnm and bnm are:

(m+ 1)Ãqn,m+1 + [(3 + n+m)f − n− 2m

14
γ]qnm + (n−m+ 1)Ãqn,m−1

+
3n− 2m+ 4

14
α̂qn,m−2 − 2(m+ 1)Ãqn−2,m+1 +

n− 4m− 2

14
α̂qn−2,m

+ δn0δm03fQ̃0 − δn0δm14α̂f = (n+ 2)bn+2,m, (A.1a)

(m+ 1)Ãbn,m+1 + [(3 + n+m)f − n− 2m

14
γ]bnm + (n−m+ 1)Ãbn,m−1 +

3n− 2m+ 4

14
α̂bn,m−2

− 2(m+ 1)Ãbn−2,m+1 +
n− 4m− 2

14
α̂bn−2,m + Fnm = 0. (A.1b)

Here, δn0, δm0, and δm1 are Kronecker’s delta, and Q̃0 = 1 is retained above as a marker for
the origin of the term, and.

F = −α̂f(3 + ρ
∂

∂ρ
)ψ̃ ≡

∑
n,m

Fnmξ
nηm,

From Eq. (A.1a), the series, q0m (m = 1, 2, . . .) is first obtained by setting n = 0 with
q00 = 0, then we proceed incrementally to a higher n. At each n, the leading coefficient qn0

remains undetermined, but the subsequent coefficients, qnm with m > 0 are determined in
terms of the former. These leading coefficients, qn0, provide freedom to satisfy the boundary
condition (20) to any order in µ.

From the determined Taylor series of q, the streamfunction can be determined from Eq. (4c).
Thus, its coefficients, {ψnm} are obtained from {qnm} by a recursion relation,

ψn+4,m =
−(m+ 2)(m+ 1)ψn+2,m+2 + qnm

(n+ 4)(n+ 2)
, (A.1c)

setting ψ0m = 0. It follows that

ψ4,m =
q0m

8
− (m+ 2)(m+ 1)

8
ψ2,m+2,

ψ6,m =
−(m+ 2)(m+ 1)ψ4,m+2 + q2m

24

for m = 0, 1, . . ..
The buoyancy coefficients, bnm, are in turn, determined from Eq. (A.1b). Here, F0m = 0 for

all m, and we find b0m = 0 (m = 0, . . .) from the boundary condition (36b). The procedure
for n ≥ 2 begins with m = 1 in the increasing order of m, with bn0 left to be determined
from the boundary condition. Keep in mind that the resulting buoyancy correction, b̃′, due to
the unsteadiness further influences the potential vorticity, q̃′, through the right-hand side of
Eq. (A.1a).

A.2. Boundary Conditions

The condition (36a) at r = R is immediately re-written as:

ψ̄ + ψ′ + ψ̃′ = 0,
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which further reduces to (38a) with the parameters defined by

λ0 = ψ20 + ψ40 + ψ60,

λ1 = ψ21 + ψ41 + ψ61 + 2R̃1(ψ40 + 2ψ60),

λ2 = ψ22 + ψ42 + ψ62 − ψ40 − 2ψ60

+ R̃1(ψ21 + 3ψ41 + 5ψ61) + R̃2
1(ψ40 + 6ψ60) + R̃2(2ψ40 + 4ψ60),

λ3 = ψ23 + ψ43 + ψ63 − ψ41 − 2ψ61

+ R̃1(2ψ22 + 4ψ42 + 6ψ62 − 2ψ40 − 8ψ60) + R̃2
1(3ψ41 + 10ψ61) + R̃1R̃2(2ψ40 + 12ψ60)

+ R̃2(ψ21 + 3ψ41 + 5ψ61) + 4̃R3
1ψ60 + R̃3(2ψ40 + 4ψ60),

under the truncation described in the text.
The condition (36b) is alternatively stated as:

−α̂(ψ̄ + ψ′) + b̃′ = 0,

at r = R. Here, the first two terms above contain a common factor of 1 − µ2. By comparing
them with the expansion (35c), we conclude b0m = 0 for all m. The remaining part reduces
to Eq. (38b) with the parameters defined by

α̂B0 = b20 + b40,

α̂B1 = b21 + b41 + 2R̃1b40,

α̂B2 = b22 − b40 + b42 + 2R̃1b21 + (R̃2
1 + 2R̃2)b40,

α̂B3 = b23 − 2b40 + b43 + R̃1(2b22 + 4b42 − b41) + R̃2(b21 + 3b41)

+ 3R̃2
1b41 + 2(R̃1R̃2 + R̃3)b40.

The condition (36c) reduces to (38c) with the parameters defined by

σs = 1 + 2R̃1µ+ 3R̃2µ
2 + 4R̃3µ

3,

σz = −R̃1 + (1− 2R̃2)µ+ (2R̃1 − 3R̃3)µ2 + 3(R̃2 − R̃3)µ3 +O(µ4),

D0 = 0, D1 =
3

2
R̃1 D2 = 3R̃2

1 D3 = (3− 7R̃2
1)R̃1

E0 = 0, E1 = 3β̃ +
γ̃

7
− 2

7
, E2 = (

5

7
γ̃ − 2)R̃1, E3 = −5β̃ +

1

7
+ 2(

5

7
γ̃ − 3)R̃1 + (

5

7
γ̃ − 2)R̃2,

F0 = ψ20 + 2ψ40 + 3ψ60, F1 = ψ21 + 2ψ41 + 3ψ61 + 4R̃1(ψ20 + 3ψ40 + 6ψ60),

F2 = ψ22 − 2ψ40 + 2ψ42 − 6ψ60 + 3ψ62 + R̃1(5ψ21 + 14ψ41 + 27ψ62) + R̃2
1(−2ψ20 + 6ψ40 + 36ψ60),

F3 = ψ23 − 2ψ41 + 2ψ43 − 6ψ61 + 3ψ63 + R̃1(6ψ22 − 12ψ40 + 16ψ42 − 48ψ60 + 30ψ62)

+ R̃2
1(14ψ41 + 54ψ61) + R̃3

1(
20

3
ψ20 − 8ψ60),

G0 = G1 = 0, G2 =
15

2
R̃1, G3 =

15

2
R̃2

1,

H0 = −β̃ +
γ̃ − 1

14
, H1 = (

5

14
γ̃ − 1

2
)R̃1, H2 = 5β̃ − 1

7
− (

10

7
γ̃ +

1

2
)R̃2

1, H3 = −R̃1 +
1

3
(
5

7
γ̃ +

1

2
)R̃3

1,

K0 = 0, K1 = ψ21 + ψ41 + ψ61, K2 = 2(ψ22 + ψ42 + ψ62) + R̃1(5ψ21 + 7ψ41 + 9ψ61),

K3 = −3ψ23 − ψ41 + 3ψ43 − 2ψ61 + 3ψ63 + 4R̃1(3ψ22 + 4ψ42 + 5ψ62) + R̃2
1(7ψ41 + 18ψ61).
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The three conditions at O(µ0) from Eqs. (38a, b, c) are simply:

ψ20 + ψ40 + ψ60 = 0,

b20 + b40 = 0,

ψ20 + 2ψ40 + 3ψ60 = 0.

The next important constraints are found at O(µ3) from (38a, b), which are: λ3 = O(α̂2) and
B3 = O(α̂2). They lead to:

f̃ = −7

3
Ãψ̃23 +O(α̂) =

4

13
˜̃
b20 +O(α̂), (A.2a)

where we have set ψnm = α̃ψ̃nm and bnm = α̃2˜̃bnm. Consistency of the conditions (38a, b) at
O(µ) leads to:

−ψ̃21 +
3

4
ψ̃23 =

223

32
f̃ +O(α̂). (A.2b)

Furthermore, consistency of the conditions (38a, c) at O(µ) leads to:

−5

3
ψ̃21 +

7

4
ψ̃23 =

1

21
− 49

32
f̃ +O(α̂). (A.2c)

From Eqs. (A.2a, b, c), f̃ , ψ21, and , ψ23 are determined as (39a, b, c) to the leading order.
Additionally, b20 is proved to be O(α̂2), as already suggested so that it does not appear in a
final solution up to O(α̂). It also follows b40 = O(α̂2). Moreover, the condition (38b) at O(µ)
leads to Eq. (39d), and it further substitution into (38b) at O(µ2) leads to Eq. (39e).

Finally, the condition (38c) at O(µ2) leads to:

ψ̃21 −
3

4
ψ̃23 = −95

32
f̃ +O(α̂), (A.2d)

which directly contradicts with (A.2b). Thus, the expansion of the condition (38c) must be
terminated at O(µ).

It is important to note the contradiction between (A.2b) and (A.2d) is not due to a finite
truncation considered here. It can be shown that (A.2b) and (A.2d) are, respectively, more
generally given by

λ1 = −4α̂f̃ +O(α̂2), (A.3a)

K1 = O(α̂2). (A.3b)

At the same time, it can shown that

K1 = λ1 +O(α̂2). (A.3c)

Thus, these two conditions (A.3a, b) are not mutually compatible, and the attempt to establish
the continuity of the tangent-component velocity must be terminated at O(µ). It suggests the
limit of the similarity form assumed by Eqs. (29a, b).
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Figure 1. Streamfunctions of the steadily–propagating thermal vortex–ring solution. Top: leading–order solution (Hill’s
vortex), ψ̄, defined by (2.13a); Middle: perturbation due to the buoyancy, ψ′, defined by (18); Bottom: total, ψ = ψ̄+ψ′.
Here, the signs are defined as would appear on the x–z plane for the range of -0.02–0.02 with an interval of 0.005 and
negative values indicated by dashed lines, with R0 = 1, c = 2/15, A = −1/5, and α̂ = 1.
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(a) The first mode with α̂ = 0.3. (b) The second mode with α̂ = 1.

Figure 2. Streamfunctions for the two nonlinear eigenmodes, in left and right, respectively, with the signs defined as
would appear on the x–z plane for the range of -0.02–0.02 with an interval of 0.005 and negative values indicated by

dashed lines, with R0 = 1, c = 2/15, and A = −1/5. From top to bottom: ψ̄, ψ′ + ψ̃′, and the total ψ.
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Figure 3. The geometrical factor, Γ, as a function of the nondimensional parameter, α̂ = αR0/Q0 = 2αR3
0/15c, which

measures a relative contribution of the buoyancy to the vortex dynamics for the first (solid) and second (long dash)
modes. Here, the geometrical factor is defined by Γ = πR3

0/V with V the volume of the vortex ring. Note that the value
for the second mode remains very close to that for the sphere (3/4).

Figure 4. The dynamic pressure drag, Cd, as a function of the nondimensional parameter, α̂, which measures the relative
contribution of the buoyancy to the vortex dynamics: for the first (solid) and second (long dash) modes. Furthermore,
the evaluation based on the pressure gradient at R→∞ is shown by a short–dashed curve for the first mode. The curve
for the second mode remains identical with the evaluation over the vortex–ring boundary.
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Figure 5. The virtual mass coefficient, Cv , which may be considered a nondimensional effective buoyancy, as a function
of the nondimensional parameter, α̂ = 2αR3

0/15c, which measures a relative contribution of the buoyancy to the vortex
dynamics. The results are obtained by truncating the expansion by Legendre functions at n = 6. Here, the buoyancy
pressure is diagnosed only by using the basic–buoyancy pressure distribution, b̄: for the first (solid) and second (long
dash) modes. Discontinuities with the former are due to singularities of the curve. Furthermore, the evaluations based
on the pressure gradient at R→∞ are also shown by short– and chain–dashed curves, respectively, for these two modes.


