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Abstract: Satellite SAR (synthetic aperture radar) imagery offers global coverage and all-weather
recording capabilities, making it valuable for applications like remote sensing and maritime surveil-
lance. However, its use in machine learning-based automatic target classification faces challenges,
including the limited availability of SAR target training samples and the inherent constraints of SAR
images, which provide less detailed features compared to natural images. These issues hinder the
effective training of convolutional neural networks (CNNs) and complicate the transfer learning
process due to the distinct imaging mechanisms of SAR and natural images. To address these
challenges, we propose a shallow CNN architecture specifically designed to optimize performance
on SAR datasets. Evaluations were performed on three datasets: FUSAR-Ship, OpenSARShip, and
MSTAR. While the FUSAR-Ship and OpenSARShip datasets present difficulties due to their limited
and imbalanced class distributions, MSTAR serves as a benchmark with balanced classes. To compare
and optimize the proposed shallow architecture, we examine various properties of CNN compo-
nents, such as the filter numbers and sizes in the convolution layers, to reduce redundancy, improve
discrimination capability, and decrease network size and learning time. In the second phase of
this paper, we combine the CNN with Long short-term memory (LSTM) networks to enhance SAR
image classification. Comparative experiments with six state-of-the-art CNN architectures (VGG16,
ResNet50, Xception, DenseNet121, EfficientNetB0, and MobileNetV2) demonstrate the superiority of
the proposed approach, achieving competitive accuracy while significantly reducing training times
and network complexity. This study underscores the potential of customized architectures to address
SAR-specific challenges and enhance the efficiency of target classification.

Keywords: SAR imagery; ships classification; deep learning; convolutional neural networks; synthetic
aperture radar (SAR)

1. Introduction

Synthetic aperture radar (SAR) technology has revolutionized maritime surveillance
and object and vessel classification by providing high-resolution, all-weather imaging capa-
bilities. SAR sensors have become instrumental in monitoring vast maritime areas and in
ship detection, identification, and classification. In recent years, significant advancements
have been made in the field of ship and object classification using SAR imagery, enhanc-
ing maritime security, search-and-rescue operations, marine transportation management,
marine security situational awareness, environmental monitoring, and so on.

With the rapid development of satellite imagery, the need to analyze these images
grows more every day. A promising solution is the use of artificial intelligence to extract
and classify the different targets found in satellite images. In the case of vehicles, artificial
intelligence (AI) can help recognize models and determine specific features such as the
speed of movement or the dimensions of the targets. Multiple techniques and algorithms
have been developed to find better solutions, leading to the use of deep neural networks.
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By adapting deep neural networks specialized in object detection and identification, we
can now recognize specific ships and vehicles using satellite imagery.

Recently, with advances in computational power and the ability to parallelize cal-
culations using GPUs, DL architectures as instances of ML algorithms have been further
investigated. Unlike traditional machine learning methods, deep neural networks (DNNs)
mimic the functioning of the human brain and are parametric, meaning the number of their
parameters is independent of the size of the training dataset. This feature is crucial during
the prediction phase, as it reduces processing time and enhances the applicability of these
algorithms for real-time image processing. Additional interest in using DL schemes arises
from their rapid implementation on FPGAs [1] and ASICs [2].

DL has made great progress in a variety of real-world problems, e.g., detection, recog-
nition, identification, motion tracking, action recognition, prediction, and data denoising or
dehazing. In this context, we can mention CNNs, the “Boltzmann family” including deep
belief networks, deep Boltzmann machines, and stacked auto-encoders (for denoising). Fur-
thermore, we can also refer to recurrent neural networks (RNNs), which are more adapted
for signals processed over variable observation windows [3]. In RNNs, long short-term
memory (LSTM) networks [4] are usually used to explore temporal aspects and correlation
in sequential and multi-view data [5].

Nevertheless, DL still has some limitations in generalizing performances and optimiza-
tion architecture components in real-world applications that need to be studied in depth by
researchers. One challenge is the insufficient number of SAR ship training samples, which
hinders the effective training of CNNs. Additionally, the limited information available in
SAR images, compared to natural images like those in ImageNet, restricts the extraction of
discriminative feature descriptors. To overcome the problem of insufficient and unbalanced
data, one of the most suitable strategies is to pre-train models from large datasets and adapt
these models by transfer learning and fine-tuning on the target dataset (i.e., a SAR images
dataset) [6,7]. The second strategy deals with online and offline data augmentation [8–10]
and investigation on semi-supervised and unsupervised learning methods to deal with lim-
ited labeled SAR data [11]. Techniques like self-training and clustering-based approaches
aim to enhance classification performance with minimal labeled samples.

On the other hand, to extract the most discriminative representation features from
SAR images for target objects (such as ships and vehicles), extensive research has been
conducted on various aspects, including network architecture design and optimization [12],
embedding attention mechanisms [13–15], feature and/or decision fusion [16,17], learning
strategies [18], one-shot learning [16,19], and more. Hence, efforts have been made to
improve the performance of SAR object classification. However, these usually require more
complex network structures, higher-dimensional features, and more costly storage costs.

Furthermore, a limited SAR dataset proves to be insufficient for adequately learning
numerous parameters within a complex CNN. This inadequacy leads to overfitting the
features of the ship extracted by CNN exhibiting significant redundancy, directly compro-
mising the models’ discriminative capabilities [20]. In [21], many studies have explored
CNN architectures for ship classification, leveraging their ability to automatically learn
features from SAR images. These architectures are often fine-tuned or adapted to suit the
unique characteristics of SAR data, achieving improved classification accuracy.

The authors in [22] provide a comprehensive overview of recent advances in ship
detection and classification using deep learning models, focusing on SAR imagery. They
review various architectures, including CNNs and detection models, and discuss chal-
lenges and future directions in the field. In ship classification, the complex nature of
SAR data and the variability of ship signatures pose significant challenges for traditional
classification methods. Existing approaches often struggle to effectively capture both the
spatial and temporal characteristics of SAR images without including the sequential and
temporal information.

To address these limitations, this paper proposes a novel deep learning architecture
that combines shallow convolutional neural networks (CNNs) and long short-term memory
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(LSTM) for ship classification on limited datasets. By leveraging the strengths of both CNNs
and LSTMs, our model effectively captures both local spatial features and temporal depen-
dencies within limited SAR images, leading to significant improvements in classification
accuracy compared to state-of-the-art methods.

In this context, several literature works are presented combining LSTM networks with
CNN frameworks to enhance target detection and recognition in remote sensing data. The
authors in [23] introduce an architecture known as Multi-Stream CNN (MS-CNN) for auto-
matic target recognition (ATR) in synthetic aperture radar (SAR) by utilizing SAR images
from various perspectives. They specifically implement a multi-input architecture that
combines information from different views of the same target from diverse angles, allowing
the innovative multi-view design of MS-CNN to maximize the utility of limited SAR image
data and boost recognition performance. The authors provide a comprehensive overview of
the literature on LSTMs that are specifically applied to multi-view ATR methods. To reduce
the influence of azimuth variation on SAR ATR and extract azimuth-robust features from
SAR series, the authors in [24] propose a Conv-BiLSTM Prototypical Network (CBLPN),
which uses as the feature extractor a convolutional bidirectional long short-term memory
(Conv-BiLSTM) adapted for few training samples. For classification, the authors propose a
classifier based on Euclidean distance for few training samples.

Target detection in maritime radar data often struggles with issues such as clutter
and low signal-to-noise ratios. To overcome these limitations, the work in [25] proposes
a novel CNN-LSTM architecture specifically designed for augmenting target detection in
real maritime wide-area surveillance radar data.

Some recent works explore the fusion of SAR imagery with other modalities, such as
optical imagery or AIS (automatic identification system) data, using deep learning tech-
niques. These multi-modal fusion methods [10] enhance the classification performance by
leveraging complementary information from different sources. New techniques are being
developed to enhance the ability to differentiate between features or to improve the perfor-
mance of networks. They include attention mechanisms such as RasNet architecture [13]
and Transformer-based architectures [26]. These architectures have gained traction for ship
classification from SAR imagery. These mechanisms allow the model to focus on relevant
regions in the SAR image, improving its ability to capture intricate ship features and aiding
in accurate classification. In the same context, addressing the variability of spatiotemporal
resolutions in SAR images, the RSMamba method is proposed [27]. RsMamba proposes an
innovative architecture for remote sensing image classification. This approach leverages the
State Space Model (SSM) framework alongside the hardware-efficient Mamba design [28],
effectively combining a global receptive field with linear modeling complexity to deliver
both efficiency and accuracy in classification tasks.

Researchers are also investigating semi-supervised and unsupervised learning
methods [29] to deal with limited labeled SAR data. Techniques like self-training and
clustering-based approaches aim to enhance classification performance with minimal la-
beled samples.

In the literature, the hybridization of CNNs and LSTM has been proposed across
various application domains. For trajectory prediction, CNN-LSTM hybrid models [30]
have been widely applied to aircraft 4D trajectory modeling and human-driven vehicle path
forecasting, demonstrating their efficiency in handling spatial–temporal complexities. In
machine vision and fuel consumption, the authors in [31] propose CNN-LSTM frameworks
adapted for tasks such as feature extraction and prediction, improving accuracy and
robustness. A comprehensive overview for advancements in deep learning techniques
and the combination of CNN-LSTM in maritime applications can be found in [32]. In the
medical field, particularly for COVID-19 detection and analysis, the study [5] introduces a
hybrid CNN-LSTM approach to classify COVID-19 cases using sequential and temporal
chest X-ray (CXR) images.
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Our main contributions can be summarized as follows:

1. Specific focus on single-view SAR imagery: Unlike other studies, our research targets
the challenges of synthetic aperture radar (SAR) imagery, such as limited labeled
datasets, imbalanced class distributions, and non-sequential images.

2. Proposed optimizations: We propose a shallow CNN combined with LSTM to reduce
network complexity, minimize training time, and improve classification accuracy for
SAR datasets. This contrasts with standard CNN-LSTM implementations, which often
prioritize depth and complexity. Through a systematic evaluation of CNN components,
such as the number and size of filters, we aim to optimize the model’s performance
while minimizing computational cost and training time.

3. Comprehensive validation: We validated our architecture on three distinct SAR
datasets (FUSAR-Ship, OpenSARShip, and MSTAR), showcasing its adaptability and
competitive performance in handling datasets of varying size, balance, and difficulty.

As part of this paper, we present a brief concept, the dataset, and the theoretical
description of the proposed architectures. Then, we summarize the implementation of
the different algorithms and the choices and solutions taken to circumvent the obstacles
encountered. Finally, we evaluate and compare the proposed architectures with the results
of classical convolutional neural networks.

2. Convolutional Neural Networks (CNNs)
2.1. Description of CNN

The principle consists of extracting the relevant features in an automatic way and
carrying out the classification or identification phase. In this paper, we are only interested
in the classification task.

CNN architectures can be broadly classified as shallow or deep, each suited to different
tasks and datasets.

In this paper, we are inspired in the first step by a shallow architecture introduced
in [16,33]. This relatively simple CNN architecture is composed of two convolution layers,
two max-pooling layers, and three FC layers.

There are also many complex architectures that are widely used in the field of optical
images due to the abundance of annotated data in this domain. This allows DNNs applied
to this domain to have very good performances. We can cite, for example, the following very
deep architectures: VGG [34], ResNet [35], Xception [36], DenseNet [37], MobileNetV2 [38],
EfficientNet [39], and Siamese and RasNet Neural Networks [13,16].

2.1.1. Description of CNN Architecture Adopted

In this section, the proposed CNN architecture is highlighted. The design aims to
balance computational efficiency and overfitting prevention. The proposed architecture
includes three convolutional (CONV) layers and three fully connected layers, n f c = 3. Input
data comprise a tensor R ∈ RNR×Ns×Ns , where NR = 1 and Ns = 128. The proposed CNN
includes four steps in convolutional layers to extract features before classification. These
steps comprise the following:

• Zero-padding step: Ensures no information is lost at the borders during convolution.
If (Z1,Z2) ∈ N2 denotes the number of zeros added to the last two tensor dimensions,
the zero-padding step constructs the tensor Rpad = (rpad

t,s1,s2
) ∈ RNR×(Ns+Z1)×(Ns+Z2).

• Convolutional step: Extracts features by applying filters to the input tensor. Each filter
moves across the tensor with defined strides, producing an output that highlights key
spatial patterns. The process is parameterized by the number, size, and strides of the
filters, optimizing feature extraction for the classification task.
If K denotes the number of filters, Wk = (wk

t,u1,u2
) ∈ RNR×U1×U2 represents the kth

filter where (U1,U2) ∈ N∗2 is the size of all filters, and (a1,a2) ∈ N∗2 denotes the strides
of filters along the last two dimensions, then the output of the convolutional step is
mathematically given by
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rconv
k,s1c ,s2c

=
T

∑
t=1

U1

∑
u1=1

U2

∑
u2=1

wk
t,u1,u2

rpad
t,a1βc+u1,a2ωc+u2

; (1)

where
βc = s1c − 1

ωc = s2c − 1

s1c ∈ [1, 2, . . . , Nconv,1]

s2c ∈ [1, 2, . . . , Nconv,2]

k ∈ [1, 2, . . . , K]

Nconv,1 = floor
(

Ns + Z1 − U1

a1

)
+ 1, and

Nconv,2 = floor
(

Ns + Z2 − U2

a2

)
+ 1

Then, the resulting tensor is given by

Rconv = (rconv
k,s1c ,s2c

) ∈ RK×Nconv,1×Nconv,2 (2)

An activation function is then applied to this tensor. The Rectified Linear Unit (ReLU)
activation function is used.

• Max-pooling step: Downsamples the feature maps by retaining the highest value
within a defined window, reducing dimensionality while preserving the most sig-
nificant features. This process enhances computational efficiency and focuses on
dominant spatial patterns.
If (V1,V2) ∈ N∗2 is the size of the max-pooling window and (b1,b2) ∈ N∗2 are its strides
along the last two dimensions, respectively, the output of max-pooling applied on the
activated CONV tensor

Rconv.act = (rconv.act
k,s1c ,s2c

) ∈ RK×Nconv,1×Nconv,2 (3)

can be expressed by

routput
k,s1mp ,s2mp

=
V1max

v1=1

V2max
v2=1

(rconv.act
k,b1βmp+v1,b2ωmp+v2

) ; (4)

where
k ∈ [1, 2, . . . , K]

βmp = s1mp − 1

ωmp = s2mp − 1

s1mp ∈ [1, 2, . . . , Nmaxp,1]

s2mp ∈ [1, 2, . . . , Nmaxp,2]

Nmaxp,1 = ⌊Nconv,1 − V1

b1
⌋+ 1, and

Nmaxp,2 = ⌊Nconv,2 − V2

b2
⌋+ 1

• Dropout step: Mitigates overfitting by randomly setting a fraction of the tensor’s
elements to zero during training. This regularization technique reduces the network’s
reliance on specific neurons, improving its generalization to unseen data.

The structure of the dense layers and feature extraction influence the classification
performance, and the choice between deep or shallow architectures depends on the charac-
teristics of the dataset and the application tasks.
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The used datasets represent shallow datasets, i.e., each has a low number of samples
per class relative to the size of dataset required to train deep learning-based methods.
In fact, the FUSAR-Ship, MSTAR, and OpenSARShip datasets only have 580, 275, and
224 training samples per class on average, respectively.

Basha et al. [40] reported that shallow models perform better than deeper CNNs
on shallower datasets. On the basis of this observation, the number of FC layers is fixed
to three.

Another observation reported in [40] is that deeper architectures require fewer neurons
in FC layers in order to achieve better performance, regardless of the size and type of the
dataset. Therefore, to reduce the output, FC layers decrease in terms of the number of
neurons used, that is, if Ni and Nout are, respectively, the number of neurons in the ith and
the last FC layers, where i ∈ [1, 2, 3], then N1 > N2 > N3 > Nout. A parameter N ∈ N∗

is defined to parameterize the number of neurons in the first three FC layers, which are
determined as N1 = N, N2 = 3N

4 , and N3 = N
2 . Nout = C is the number of targeted classes.

The output of the FC layers depends on the weight between the neurons and the
activation function. Let Li and Lj represent two fully connected layers, where the neurons
in Li are fully connected to those in Lj and (Ni, Nj) ∈ N∗2 denote their respective number

of neurons. If (yni ,w
nj
ni ) ∈ R2 represent the output of the ni

th neuron in layer Li and the
connection weight between this neuron and the nj

th neuron in layer Lj, the input value of
the nj

th neuron is calculated as follows:

xnj =
Ni

∑
ni=1

w
nj
ni yni (5)

where nj ∈ [1, . . . , Nj].
Next, the resulting value is processed by a ReLU activation function. In each of the

first two FC layers, half of the ReLU activation outputs are set to zero by a dropout before
being passed to the next FC layer. No dropout is applied in the last two layers, as the
information in these these layers is crucial for classification. Table 1 presents the initial
parameter configuration for the proposed CNN architecture, where the bolded settings are
fixed and the others are subject to a model selection procedure.

The proposed system minimizes the Cross-Entropy (CE) loss between the truth label
classes of training images and their estimates provided by the CNN output layer. The
optimization of the weight values is performed using backpropagation and an Adam
optimizer with an initial learning rate of 10−4 that was decreased by a factor of 0.2 whenever
the validation loss stopped improving for more than 10 epochs (adaptive decay). During
each training process, the training dataset is decomposed into batches of 32 images. For
each epoch, the metrics (loss and accuracy) in the validation set are calculated, and weights
are saved if a lower value of the loss is obtained. Early stopping is applied to terminate the
training if the validation loss does not decrease after a set number of epochs, which is fixed
at 15 iterations in this study.

Table 1. Proposed CNN architecture for ship classification.

CNN Layer Layer Steps Parameters

Input R ∈ RNR×Ns×Ns

CONV #1

Zero padding 2D
I

Conv 2D
I

Max-pooling 2D
Dropout

(Z1,Z2)1 = (1,1)
K1 = 64, (U1,U2)1 = (2,2)

(a1,a2)1 = (1,1)
act = ’ReLU’

(V1,V2)1 = (4,4), (b1,b2)1 = (4,4)
25%
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Table 1. Cont.

CNN Layer Layer Steps Parameters

CONV #2

Zero padding 2D
I

Conv 2D
I

Max-pooling 2D
Dropout

(Z1,Z2)2 = (1,1)
K2 = 64, (U1,U2)2 = (2,2)

(a1,a2)2 = (1,1)
act = ’ReLU’

(V1,V2)2 = (4,4), (b1,b2)2 = (4,4)
25%

CONV #3

Zero padding 2D
I

Conv 2D
I

Max-pooling 2D
Dropout

(Z1,Z2)3 = (1,1)
K3 = 128, (U1,U2)3 = (2,2)

(a1,a2)3 = (1,1)
act = ’ReLU’

(V1,V2)3 = (4,4), (b1,b2)3 = (4,4)
25%

FC #1
Dense.

Dropout
N1 = N, act = ’ReLU’

50%

FC #2
Dense.

Dropout
N2 = N

2 , act = ’ReLU’
50%

Output Dense N3 = Nout = C, act = ’identity’

2.1.2. Model Selection for the CNN (Methodology)

This subsection discusses the model selection procedure of the proposed CNN archi-
tecture. In this part, the variations of some parameters according to permanent settings
shown in Table 1 are highlighted.

We aim to find the best numbers and size of convolutional kernels, as well as the
best number of neurons in FC layers resulting in the best possible performance on the
validation set.

To ease this analysis, we consider architectures where the size of convolutional kernels
is the same for all CONV layers, i.e., (U1,U2)i = (U1,U2), i ∈ [1, 2, 3]. Squared kernels
are tested with sizes ranging from (2,2) to (28,28) (Figure 1). So, the optimal parameters
for (U1,U2) are (4,4) for FUSAR-Ship, near (20,20) for OpenSARShip, and near (25,25)
for MSTAR.

We then explore variations where the number of convolutional kernels in the last
CONV layer is twice that of the first layer, i.e., K3 = 2K1, and where the number of kernels
in the second CONV layer is set equal to one of the other layers, i.e., K2 = K1 or K2 = K3.
High numbers of kernels (Ki > 512, i ∈ [1, 2, 3]) are not tested to avoid excessively long
training times and to reduce the risk of overfitting (Table 2).

Figure 1. Classification performance of the CNN on the validation set in the function of the squared
size of convolutional kernels (U1,U2) with U1 = U2 and (K1,K2,K3) = (64,64,128) and N = 256.
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Table 2. Validation performance of the CNN for variations in the numbers of kernels in CONV layers
with optimized values of (U1, U2) and N = 256.

(K1, K2, K3) Validation Accuracy (%)
FUSAR-Ship OpenSARShip MSTAR

(32,32,64) 64.95 73.04 97.55

(32,64,64) 65.03 73.19 97.92

(64,64,128) 65.94 74.81 97.96

(64,128,128) 65.51 75.56 98.65

(128,128,256) 65.03 74.07 98.72

(128,256,256) 63.57 73.93 98.69

(256,256,512) 64.34 74.07 98.65

(256,512,512) 63.61 74.22 99.12
The cells highlighted in bold indicate the highest validation accuracies achieved for each dataset.

With the number of neurons in the FC layers defined by the parameter N, we explore
different variations of this parameter (Table 3).

Table 3. Validation performance of the CNN for variations in FC layer neurons with the optimal
values of (U1, U2) and (K1, K2, K3).

N Validation Accuracy (%)
FUSAR-Ship OpenSARShip MSTAR

128 64.60 73.48 98.91

256 65.94 75.56 99.12

384 64.82 75.41 98.83

512 64.34 74.22 98.69
The cells highlighted in bold indicate the highest validation accuracies achieved for each dataset.

Carefully selecting the width of the CNN is crucial for achieving optimal performance.
At this stage, the number and size of kernels are set to their optimal values. The output
tensor from the final CONV layer has dimensions N f = 2 × 2 × K3. Given the decreasing
number of neurons in the FC layers, the following conditions must be met: N1 < N f , and
N(n f c−1) > Nout. These conditions restrict the parameter N in the interval [N f ,2Nout]. We
then choose a set of values uniformly distributed over this interval to be evaluated as N.

The optimal parameters for the proposed CNN model for each of the considered
datasets are shown in Table 4. Note that better prediction performance is found for deeper
datasets, e.g., OpenSARShip and MSTAR. These parameters are used in the CNN-LSTM
hybrid network architecture (Section 3.3).

Table 4. Optimal parameters of the proposed CNN for each dataset and validation performances of
the optimal architectures.

Dataset Optimal Parameters Validation
Accuracy (%)(U1,U2) (k1,k2,k3) N

FUSAR-Ship (4,4) (64,64,128) 256 65.94

OpenSARShip (20,20) (64,128,128) 256 75.56

MSTAR (25,25) (128,128,256) 256 99.12
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3. Recurrent Neural Networks (RNNs)
3.1. Description of RNN

An RNN is a DNN that possesses recurrent connections which give the ability to
map an input sequence to an output sequence while at each step taking the information of
previous steps into account.

Two major difficulties have been identified when training an RNN: the vanishing
and exploding gradient problems [41]. When the gradient vanishes, the network basically
stops learning, and when it explodes, it can cause weights to oscillate between different
values [3]. These two phenomena have a similar origin. When applying backpropagation
on DNNs, one must concatenate more and more multiplications of activations as it goes
back in the network. These activations are bounded, in the case of the sigmoid function,
between [0, 1], and this causes the gradient signal to vanish. This problem appears in
every DNN, although simple solutions have been found for feed forward networks, such
as the use of the ReLU [42] instead of the sigmoid function and the introduction of skip
connections in so-called Residual Networks (ResNets) [35].

3.2. Long Short-Term Memory Network (LSTM)

Hochreiter and Schmidhuber [4] proposed a way around the vanishing/exploding
gradient problems to allow RNNs to learn long-term dependencies by introducing a gating
mechanism: the long short-term memory (LSTM) (cf. Figure 2).

Figure 2. The repeating LSTM module [43].

The first step in an LSTM is to decide what information we are going to throw away
from the cell state. This decision is made by a sigmoid layer called the forget gate layer. It
looks at ht−1 and xt and outputs a number between 0 (completely forget) and 1 (completely
keep) for each number in the cell state Ct−1:

f t = σ(W f · [ht−1, xt] + b f ) (6)

The subsequent step involves determining the new information to be stored in the cell
state. Initially, a sigmoid layer, known as the input gate layer, determines which values
need updating. Following this, a tanh layer generates a vector of new potential candidate
values, C̃t, that might be incorporated into the state:

it = σ(W i · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)
(7)

Afterwards, the old cell state, Ct−1, is updated into the new cell state Ct. The old state
is multiplied by f t, then the new scaled candidate values itC̃t are added:

Ct = f t ◦ Ct−1 + it ◦ C̃t (8)
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Finally, the output will be a filtered version of the cell state. Initially, a sigmoid layer
determines which portions of the cell state will be sent as output. Following this, the
cell state undergoes a tanh transformation (to limit the values between −1 and 1) and is
then multiplied by the output of the sigmoid gate, ensuring that only the chosen parts
are output:

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ◦ tanh(Ct)
(9)

3.3. Combined CNN-LSTM Hybrid Network Adopted
3.3.1. Description of CNN-LSTM Architecture Adopted

In this work, a hybrid method was developed to classify ships using SAR images. The
structure of this architecture is conceived by combining CNN and LSTM networks where a
CNN is used to extract the complex features from input images and an LSTM is used as
a classifier.

Figure 3 illustrates the proposed combined network for SAR image classification.
Each CONV layer has the same steps described in Section 2. The convolutional kernel is
extracted by multiplying the superposition matrix in all convolution operations. In the
last part of the architecture, the function map is flattened into K3 vectors of length 2 × 2
transferred to the LSTM layer to extract dependency information in terms of kernel ranking.
This advanced RNN layer consists of a multiple-input multiple-output (MIMO) structure
where several flattened convolutional kernels with multiple ranks, analogous to time steps
in the common use of LSTMs, are fed to the network to obtain multiple output features.
The output of the LSTM layer is K3 vectors of length nhidden, where nhidden is the size of the
hidden state, which will be optimized during model selection since the performance of
such a network depends on this hyperparameter. In total, 50% dropout layers are applied
to the outputs of hidden layers, and then an FC layer with N neurons connects the hidden
state to the FC layer of the softmax function. Finally, this final FC layer is used to predict
into Nout categories presented in the given dataset.

7
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+

Dropout

(𝐾3 × 2 × 2)
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LSTM . . .LSTM LSTM LSTM LSTM

Dropout . . .Dropout Dropout Dropout Dropout
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(𝐾3⦁𝒏𝒉𝒊𝒅𝒅𝒆𝒏)
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LSTM (Long Short Term

Memory) repeating module [4]:

[4] C. Olah, “Understanding LSTM networks,” Tech. Rep., 2015. [Online]. Available: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Hyperparameters:

- the size of filters (𝑈1, 𝑈2)

- the number of filters (𝑘1, 𝑘2, 𝑘3)

- the size of hidden state (𝒏𝒉𝒊𝒅𝒅𝒆𝒏)

- the width of FC layer (𝑁)

Figure 3. Illustration of the CNN-LSTM network for SAR image classification.

The structure of the proposed architecture is shown in Table 5. Layers 1–6 of the
network are convolutional layers, and layer 7 is the LSTM layer. After the CONV layers,
the output shape is found (K3, 2, 2) per image. The input size of the LSTM layer is (K3, 4).
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After analyzing LSTM characteristics, the architecture finally sorts SAR images through an
FC layer and a softmax layer.

Table 5. The full summary of the proposed CNN-LSTM hybrid network.

Layer Type Kernel Kernel Size Stride Input Size

1 Convolution2D K1 U1 × U2 1 1 × 128 × 128
2 Pool - 4 × 4 4 K1 × 128× 128
3 Convolution2D K2 U1 × U2 1 K1 × 32 × 32
4 Pool - 4 × 4 4 K2 × 32 × 32
5 Convolution2D K3 U1 × U2 1 K2 × 8 × 8
6 Pool - 4 × 4 4 K3 × 8 × 8
7 LSTM - - - K3 × 4
8 FC N - - K3.nhidden
9 Softmax Nout - - N

3.3.2. Model Selection for the CNN-LSTM (Methodology)

To simplify the analysis, the convolutional kernels are assumed to have the same size
across all CONV layers. Squared kernels with sizes ranging from (2,2) to (28,28) are tested
(Figure 4). So, the optimal parameters for (U1,U2) are (11,11) for FUSAR-Ship, close to
(18,18) for OpenSARShip, and near (24,24) for MSTAR.

In Table 6, we present the accuracy of the model on the validation basis obtained for
each dataset. The hyperparameters with the best accuracy are retained.

Figure 4. Classification performance of the CNN-LSTM on the validation set in the function of the
squared size of convolutional kernels (U1,U2) with U1 = U2 and (K1,K2,K3) = (64,64,128), nhidden =
128, and N = 128.

Table 6. Validation performance of the CNN-LSTM for variations in the numbers of kernels in CONV
layers with optimized values of (U1, U2) and nhidden = 128, N = 256.

(K1, K2, K3) Validation Accuracy (%)
FUSAR-Ship OpenSARShip MSTAR

(32,32,64) 63.78 74.53 97.72

(32,64,64) 64.04 74.06 98.35

(64,64,128) 65.29 75.78 99.04

(64,128,128) 63.48 74.84 98.64

(128,128,256) 65.20 74.84 98.90

(128,256,256) 64.82 74.53 99.15
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Table 6. Cont.

(K1, K2, K3) Validation Accuracy (%)
FUSAR-Ship OpenSARShip MSTAR

(256,256,512) 63.74 74.84 99.01

(256,512,512) 64.17 75.00 99.04
The cells highlighted in bold indicate the highest validation accuracies achieved for each dataset.

In Table 7, we varied the size of hidden state (nhidden) using the hyperparameters
selected in the previous phase. Furthermore, in Table 8, we varied the number of neurons
in the FC layer (N) using the hyperparameters selected in the previous phase.

Table 7. Validation performance of the CNN-LSTM for variations in the size of hidden state (nhidden)
with the optimal values of (U1, U2) and (K1, K2, K3) and N = 128.

nhidden
Validation Accuracy (%)

FUSAR-Ship OpenSARShip MSTAR

32 65.16 75.31 99.23

64 64.52 75.47 99.08

96 63.78 73.91 99.19

128 65.29 75.78 99.15

160 64.34 74.69 99.15

192 64.69 74.84 98.71
The cells highlighted in bold indicate the highest validation accuracies achieved for each dataset.

Table 8. Classification performance of the CNN-LSTM on the validation set in the function of the number
of neurons in the FC layer (N), with the optimized (U1, U2), (K1, K2, K3), and nhidden hyperparameters.

N Validation Accuracy (%)
FUSAR-Ship OpenSARShip MSTAR

64 64.82 75.32 99.16

128 65.29 75.78 99.15

184 64.85 75.11 99.34

256 64.94 74.98 99.43

320 64.88 75.21 99.52

384 64.91 74.84 99.49
The cells highlighted in bold indicate the highest validation accuracies achieved for each dataset.

The optimal parameters for the proposed CNN-LSTM network are shown in Table 9
for each dataset. It can be noticed that the optimal CNN-LSTM architectures result in
slightly higher prediction accuracies than those of the optimal CNNs, yet this trend has to
be verified on the testing dataset.

Table 9. Optimal parameters of the proposed combined CNN-LSTM network for each dataset and
validation performances of the optimal architectures.

Dataset Optimal Parameters Validation
Accuracy (%)(U1,U2) (k1,k2,k3) nhidden N

FUSAR-Ship (11,11) (64,64,128) 128 128 65.29

OpenSARShip (18,18) (64,64,128) 128 128 75.78

MSTAR (24,24) (128,256,256) 32 320 99.52
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4. Brief Presentation of the SAR Datasets

Unlike optical images in computer vision, which can be easily collected and inter-
preted, SAR images are much more difficult to annotate due to their complex properties.
Several publicly available datasets of SAR images were identified with which to conduct
experiments and evaluate ship classification using the proposed architecture. In this section,
we briefly present the applied datasets we chose to work on, MSTAR, OpenSARShip, and
FUSAR-Ship.

4.1. MSTAR Data and Pre-Processing

The MSTAR (Moving and Stationary Target Acquisition and Recognition) database
(https://www.sdms.afrl.af.mil/index.php?collection=mstar, accessed on 10 July 2022) [44]
contains a set of images collected in 1996 in X band (8–12 GHz) with HH polarization and a
resolution of 30 cm. The used acquisition mode is the hyperfine capture or Spotlight, which
allows one to have better resolutions because the airborne radar is always directed towards
the target during its movement [45].

Figure 5 presents an example of SAR images of the different targets. The pixel values
of MSTAR data are on a scale of 0 to 255. Therefore, we convert them to floating point
numbers and normalize the values by applying a factor of 1

255 . The images of MSTAR are
of size 128 × 128 pixels. The database is provided with an already restored distribution
into test and entire training databases. For the training process, we randomly split the
entire training database into training and validation subsets with ratios of 80% and 20%,
respectively. The validation base allows the monitoring of the quality of training and thus
serves as a good indicator for hyperparameter tuning for model selection.

Figure 5. Example presentation in the MSTAR dataset. (a) 2S1; (b) BMP2; (c) BRDM2; (d) BTR60; (e)
BTR70: (f) D7; (g) T62; (h) T72; (i) ZIL31; (j) ZSU234.

The MSTAR database is a publicly available dataset of synthetic aperture radar (SAR)
images. This benchmark is used for automatic target recognition (ATR) tasks. It consists of
5165 images of 10 classes that correspond to different ground targets, such as trucks, tanks,
and cars. The numbers of images per class for entire training and test sets are summarized
in Table 10.

Table 10. The distribution of MSTAR data in the entire training/test database.

Targets 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234

Entire training 299 233 298 256 233 299 299 232 299 299
Test 274 195 274 195 196 274 273 196 274 274

4.2. OpenSARShip Data and Pre-Processing

The SAR image database OpenSARShip [46] is used in the recent scientific literature
for the evaluation of SAR image classification algorithms [33,47]. This dataset is composed

https://www.sdms.afrl.af.mil/index.php?collection=mstar
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of SAR image chips of ships, extracted from images produced by Sentinel-1 satellites. These
vignettes are derived from two types of products: SLC and GRD. For each of these products,
VV and VH polarities are provided, in amplitude only for GRD and in complex for SLC.
The corresponding files are provided in different forms: original data, calibrated data,
pseudo-color visualization, and grayscale visualization.

The characteristics of the objects in this dataset are also very variable. In particular, the
dataset presents a very variable number of instances per class, as well as a great variability
of the dimensions and the resolution of the images.

The dataset includes 5673 objects in 68 different classes. The classes correspond to
the “Elaborated_type” characteristic present in the metadata of each object provided in the
OpenSARShip dataset. Note that different classes have a very small number of instances,
which does not allow for efficient deep learning to extract discriminative information that
is useful in the generalization phase. To overcome this problem, we retained only the most
represented classes of this dataset when using it. This observation is generally noted and
adopted in the literature. The authors in [33,47] retained only three classes: respectively,
{Bulk Carrier, Container Ship, Tanker} and {Cargo, Bulk Carrier, Container Ship}. In this
study, we retained three classes: {Cargo, Bulk Carrier, Container Ship}.

The SAR images in this dataset also vary greatly in size and resolution, and this
difference can greatly complicate the learning task of the neural network (Figure 6). Indeed,
objects of the same class but with very different resolutions present different characteristics.
It is then more complex for a neural network to extract discriminating characteristics of a
class compared to the others. For this reason, the authors in [47] retained images with a
minimum size of 70 × 70 pixels to ensure a minimum resolution when using them. So, we
also selected and retained only the targets with the following characteristics:

• Type OD product: GRD.
• Polarization: VV.
• Image size: > 70 × 70, and we resized the images to 128 × 128 pixels.
• Class: {Cargo, Bulk Carrier, Container Ship}.

(a) (b)

Figure 6. Examples of objects (a) from the OpenSARShip dataset and (b) from the selected OpenSAR-
Ship subpart (VV amplitude).

In order to perform training, we needed to batch the images, which required images of
the same size. We therefore resized the images to 128 × 128 pixels. Each image was either
cropped while keeping the central part or filled with null pixels. Therefore, we did not
change the pixel values since no interpolation was performed.

For the evaluation of deep learning algorithms, the data were divided into three subparts:
a training base, a validation base, and a test base. We thus obtained the class distribution in
the four subsets given by Table 11. The training base allowed the model to learn the deep
learning algorithms. The validation base allowed the monitoring of the quality of the train-
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ing process and thus served as an indicator for hyperparameter tuning. The entire training
set, which contains both training and validation sets, was used to re-train the model with
the optimal hyperparameters. The test base allowed a prediction performance evaluation
independently of the training process and thus allowed us to measure the generalization
capability of the trained algorithm.

Table 11. The number of instances per class in the three subsets resulting from splitting the selected
OpenSARShip data.

Training Validation Entire Training Test
80% Entire Training 20% Entire Training 80% Dataset 20% Dataset

Cargo 99 25 124 31
Bulk Carrier 335 84 419 105
Container Ship 104 26 130 33

4.3. FUSAR-Ship Data and Pre-Processing

FUSAR-Ship is an open SAR-AIS matchup dataset derived from the Gaofen-3 satellite,
backed by the Key Laboratory for Information Science of Electromagnetic Waves (MoE) at
Fudan University. Gaofen-3 (GF-3) serves as China’s inaugural civil C-Band fully polarimet-
ric spaceborne synthetic aperture radar (SAR), mainly tasked with oceanic remote sensing
and marine monitoring. The FUSAR-Ship dataset was assembled using an automatic
SAR-AIS matchup procedure applied to over 100 GF-3 scenes, encompassing a wide range
of sea, land, coastal, river, and island environments (Figure 7). It comprises more than
5000 ship image chips with corresponding AIS messages (AIS: automatic identification
system) and includes various other maritime targets and background clutter. FUSAR-Ship
is designed as a public benchmark dataset for the detection and recognition of ships and
marine targets [48].

Figure 7. Different categories of ships in FUSAR-Ship [48].

All image chips are 512 × 512 pixels and are extracted from the original GF-3 L1A
images. The ship is consistently positioned at the center, though the chip might also contain
adjacent ships or other items.

In this study, we chose a subset that contains four common ship classes, Cargo, Bulk
Carrier, Fishing, and Tanker, from the original dataset. For the evaluation of deep learning
algorithms, we proceeded with the same process presented for the two previous datasets.
The data were divided into three subparts: a training set, a validation set, and a test set. We
thus obtained the class distribution in the four subsets given by Table 12.
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Table 12. The number of instances per class in the four subsets resulting from splitting the selected
FUSAR-ships dataset.

Training Validation Entire Training Test
80% Entire Training 20% Entire Training 80% Dataset 20% Dataset

Cargo 1083 271 1354 339
Bulk Carrier 174 44 218 55
Fishing 502 126 628 157
Tanker 94 24 118 30

5. Experiments and Results on SAR Images

The PyTorch open source library was used to implement the proposed solution in
Python 3.7. Training was supported by an NVIDIA-SMI 440.82 with CUDA toolkit 10.1.

Figures 8 and 9 show a comparison between the training plots of the proposed net-
works for each of the FUSAR-Ship, OpenSARShip, and MSTAR datasets. The evolution of
CE loss during training is shown in Figure 8, while the evolution of classification accuracy is
shown in Figure 9. We can see that for the case of the OpenSARShip dataset, the combined
network is more stable while learning and converges faster. In contrast, an opposite trend
is observed for the deeper MSTAR dataset. In this case, the proposed CNN converges faster,
but it has a stability that is similar to that of the combined network.

(a) (b)

(c)

Figure 8. Evolution of the CE loss during training for (a) FUSAR-Ship, (b) OpenSARShip, and
(c) MSTAR datasets.

By analyzing the results, it is demonstrated that a combination of CNN and LSTM has
significant effects on the classification of ships based on the automatic extraction of features
from SAR images.

Figures 10–12 depict the normalized confusion matrices of the proposed DNNs for ship
classification on the FUSAR-Ship, OpenSARShip, and MSTAR testing sets, respectively.

For the OpenSARShip test set, the proposed methods have a relatively good clas-
sification performance for the class “Bulk Carrier”, which is the most represented class
in the test set, i.e., 62.13% of testing samples. For both networks, there are still cases of
misclassification for the least represented classes. It can be seen that for the CNN, 20 of
“Cargo” ships were misjudged as “Bulk Carrier”, with an inter-class error of 64.5%, and
13 of the ”Container Ship” images were misjudged as “Bulk Carrier”, with an inter-class
error of 39.4%, indicating that both “Cargo” and “Container Ship” are the classifications that
can be easily confused with “Bulk Carrier”. This is mainly due to the imbalance between
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classes in terms of the number of samples and the low number of training images. Overall,
the main difference between both networks is that for the hybrid network, the inter-class
error is null between the least represented classes, that is, ”Cargo” and ”Container Ship”,
in contrast to 3.2% for the proposed CNN.

(a) (b)

(c)

Figure 9. Evolution of classification accuracy during training for (a) FUSAR-Ship, (b) OpenSARShip,
and (c) MSTAR datasets.

Regarding the MSTAR dataset, both proposed architectures classify test images with
high accuracy. Among ten classes, there are four classes whose images are perfectly classi-
fied, and there are, respectively, six and seven classes whose classification accuracy is higher
than 99% for the CNN and the CNN-LSTM. For both cases, the class with the relatively low
classification accuracy is “BMP2”. Regarding the prediction of images belonging to this
class, it is found that the proposed CNN-LSTM network slightly outperforms the competi-
tive CNN network as it has a lesser confusion ratio between “BMP2” and “T72”, i.e., 9% for
the combined network in contrast to 6% for the CNN. Hence, the proposed CNN-LSTM
system can efficiently classify ship images on a deeper and more balanced dataset.

(a) (b)

Figure 10. Normalized confusion matrix of the proposed (a) CNN and (b) CNN-LSTM architectures
using FUSAR-Ship dataset.
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(a) (b)

Figure 11. Normalized confusion matrix of the proposed (a) CNN and (b) CNN-LSTM architectures
using OpenSARShip dataset.

(a) (b)

Figure 12. Normalized confusion matrix of the proposed (a) CNN and (b) CNN-LSTM architectures
using MSTAR dataset.

The comparative study presented in Tables 13–15 evaluates the performance of the
proposed CNN and CNN-LSTM networks against existing state-of-the-art architectures.
This analysis reveals the strengths and limitations of the proposed methods, offering a
balanced perspective on their application.

One significant advantage of the proposed methods is their efficiency in training
time. The CNN-LSTM network substantially reduces training time compared to both
the standalone CNN and other architectures. On the OpenSARShip dataset (Table 14),
the CNN-LSTM network completes training in just 132.61 s, whereas VGG16 requires
718.57 s. Such efficiency makes the CNN-LSTM particularly suitable for time-sensitive
applications and scenarios with computational constraints. Additionally, the CNN-LSTM
achieves a marked reduction in test loss, improving probabilistic class predictions. On
the OpenSARShip and MSTAR datasets, the test loss is reduced by 63.93% and 38.78%,
respectively, when compared to the standalone CNN (Tables 14 and 15).

The CNN-LSTM also delivers competitive accuracy, outperforming most existing
architectures. For instance, on the OpenSARShip dataset, the CNN-LSTM achieves an accu-
racy of 70.41%, which is higher than ResNet50 (57.99%) and Xception (65.09%) (Table 14).
Furthermore, the proposed methods demonstrate strong adaptability to datasets with fewer
and unbalanced instances, such as OpenSARShip, highlighting their robustness in chal-
lenging scenarios. The lightweight design of the standalone CNN, with a parameter count
as low as 363 k on FUSAR-Ship, adds to its appeal for resource-constrained environments
(Table 13).
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However, the proposed methods have some limitations. While the CNN-LSTM offers
significant efficiency gains, its accuracy improvements over top-performing architectures
like VGG16 are modest. On the MSTAR dataset, the CNN-LSTM achieves 98.35% accuracy,
only slightly higher than VGG16’s 98.14%. Additionally, both the CNN and CNN-LSTM
networks exhibit higher test loss on certain datasets, such as FUSAR-Ship, where their test
loss ((4.8501 and 4.1756, respectively) surpasses that of DenseNet121 (3.4620) and Xception
(2.8643) (Table 13).

Another drawback is the increased parameter count of the CNN-LSTM compared to the
standalone CNN. On the MSTAR dataset, the CNN-LSTM’s parameters reach 59.33 M, signifi-
cantly more than the standalone CNN’s 31.10M, potentially increasing memory requirements
(Table 14). Lastly, while the CNN-LSTM performs well on datasets like OpenSARShip and
MSTAR, its variable performance across datasets, such as the higher test loss on FUSAR-Ship,
suggests it may not universally outperform existing architectures (Table 13).

Table 13. Performance comparison of the proposed CNN and CNN-LSTM networks with existing
systems on FUSAR-Ship dataset.

Architecture Number of Training Number Test Loss Test
Parameters Time (s) of Epochs Accuracy (%)

VGG16 134.28M 711.18 99 4.3436 65.23
ResNet50 23.52M 4602.78 763 3.8623 67.99
Xception 20.82M 2822.80 505 2.8643 67.13

DenseNet121 6.96M 5250.83 388 3.4620 71.08
EfficientNetB0 4.01M 1178.61 131 2.3526 61.45
MobileNetV2 2.23M 1090.02 250 2.9414 57.31

Proposed CNN 363k 3447.87 4109 4.8501 67.47
Proposed CNN-LSTM 3.66M 377.54 163 4.1756 65.58

Table 14. Performance comparison of the proposed CNN and CNN-LSTM networks with existing
systems on OpenSARShip dataset.

Architecture Number of Training Number Test Loss Test
Parameters Time (s) of Epochs Accuracy (%)

VGG16 134.27M 718.57 270 2.0185 72.19
ResNet50 23.51M 3502.18 1854 5.8233 57.99
Xception 20.81M 1958.26 978 4.1148 65.09

DenseNet121 6.96M 5578.21 1447 8.4319 56.80
EfficientNetB0 4.01M 254.74 111 2.9316 52.07
MobileNetV2 2.23M 621.78 398 2.5883 56.21

Proposed CNN 10.02M 1375.10 1642 6.9658 69.82
Proposed

CNN-LSTM 6.17M 132.61 166 2.5124 70.41

In summary, the proposed CNN and CNN-LSTM networks offer significant advan-
tages in efficiency and robustness, particularly for datasets with unbalanced classes or in
resource-constrained environments. However, their marginal accuracy improvements and
variability in performance across datasets indicate that further refinements may be neces-
sary to achieve consistent superiority over state-of-the-art architectures. These methods
remain a promising step forward in designing efficient and adaptable neural networks.

Table 15. Performance comparison of the proposed CNN and CNN-LSTM networks with existing
systems on MSTAR dataset.

Architecture Number of Training Number Test Loss Test
Parameters Time (s) of Epochs Accuracy (%)

VGG16 138.30M 1073.35 132 0.1532 98.14
ResNet50 23.53M 2902.83 425 0.2698 95.67
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Table 15. Cont.

Architecture Number of Training Number Test Loss Test
Parameters Time (s) of Epochs Accuracy (%)

Xception 20.83M 3397.96 504 0.1836 95.34
DenseNet121 6.96M 11188.50 731 0.1543 97.77

EfficientNetB0 4.02M 1541.87 155 0.5745 86.85
MobileNetV2 2.24M 1671.27 275 4.2541 40.74

Proposed CNN 31.10M 1880.30 289 0.1239 98.52
Proposed CNN-LSTM 59.33M 686.19 74 0.0910 98.35

6. Conclusions

This study addresses the challenges of using deep neural networks (DNNs) for target
classification in synthetic aperture radar (SAR) images, particularly with limited labeled
data. By balancing complexity and performance, we proposed a CNN architecture and
evaluated it on the OpenSARShip, MSTAR, and FUSAR-Ship datasets, focusing on super-
vised learning with minimal annotated data. Key hyperparameters were optimized through
a validation-based model selection process, ensuring robust generalization. We further pro-
posed replacing dense layers with LSTM layers for convolutional feature classification. This
combination enhanced both classification accuracy and training efficiency. Comparative
analysis demonstrated that our model offers competitive performance while maintaining
lower computational costs compared to state-of-the-art architectures commonly used in
optical image processing.

Looking ahead, future studies could explore integrating shallow DNNs with atten-
tion mechanisms [26] to focus selectively on relevant image regions, thereby improving
classification accuracy. Additionally, including advanced techniques such as dilated convo-
lutions—including Hybrid Dilated CNNs (HDCs) [49], mixed convolutional kernels [11],
and multi-dilated convolutional blocks—could further enhance feature extraction and
reduce reliance on pooling operations [50].

Unsupervised learning represents another promising avenue, enabling the use of large
unannotated datasets to independently learn essential image characteristics. Expanding
annotated datasets through Generative Adversarial Networks (GANs) or other data aug-
mentation methods could also significantly improve performance. These perspectives hold
potential for advancing ship classification and other remote sensing applications.
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MS-CNN Multi-Stream CNN
Conv-BiLSTM Convolutional bidirectional long short-term memory
CBLPN Conv-BiLSTM Prototypical Network
SAR Synthetic aperture radar
MSTAR Moving and Stationary Target Acquisition and Recognition
AIS Automatic identification system
DNN Deep neural network
FC Fully connected
CE Cross Entropy
GPU Graphics processing unit
FPGA Field-Programmable Gate Array
ASIC Application-Specific Integrated Circuit
RNN Recurrent neural network
GRD Ground Range Detected
SLC Single Look Complex
VV Vertical–Vertical polarization
VH Vertical–Horizontal polarization
HDC Hybrid Dilated CNN
GAN Generative Adversarial Network
ReLU Rectified Linear Unit
MIMO Multiple input multiple output
IT Inferotemporal Cortex
RGC Retinal Ganglion Cells
LGN Lateral Geniculate Nucleus
IoT Internet of Things
CSI Channel State Information
RF Radio Frequency
SSID Service Set Identifier
BPTT Backpropagation Through Time
HOG Histogram of Oriented Gradients
GRSS Geoscience and Remote Sensing Society
ATR Automatic target recognition
CUDA Compute Unified Device Architecture
SMI System Management Interface
VGG Visual Geometry Group
ResNet Residual Network
Xception Extreme Inception
DenseNet Densely Connected Convolutional Networks
EfficientNet Efficient Network
MobileNet Mobile Network
FUSAR-Ship Fudan University SAR-Ship
HH Horizontal–Horizontal polarization
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