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A detailed description of coupled heat and momentum transfer in a one-dimensional
porous medium saturated by a supercritical fluid subject to a heat flux at one of its 
boundaries is reported in this study. The derivation is performed with an asymptotic 
analysis of the linearized macroscopic mass, momentum, and energy equations, assuming
a van der Waals supercritical fluid and the mean-field theory, considering Darcy’s law
for momentum transfer. Three regimes of heat transfer separated by two crossovers are 
highlighted. The first regime, far enough from the critical point (CP), corresponds to the 
classical piston effect (PE), as in a plain fluid. While nearing the CP, a first crossover is
found, giving rise to a second regime in which the PE in the bulk fluid is supplemented by
a temperature gradient that results from a pressure gradient buildup. Below this crossover,
the critical speeding up by thermocompression of the bulk stops and a porous saturation of
the characteristic heat transfer timescale is reached. Closer to the CP, a second crossover
is identified that corresponds to the presence of a viscous pressure drop in the whole 
domain. Below this second crossover, the PE is faded away and, in this third regime, heat
transfer returns to a classical diffusive process. The two crossovers are characterized by
a single parameter that is the ratio between the acoustic time (i.e., the sound wave travel
time through a pore) and the pore-scale viscous diffusion time, namely, the acoustic pore 
Reynolds number.

DOI: 10.1103/PhysRevFluids.9.124402

I. INTRODUCTION

The detailed understanding of relaxation rates of a disturbed supercritical fluid is very important 
for designing applications and/or analyzing natural phenomena where the temperature and pressure 
ranges can overlap the region of the gas-liquid critical point (CP). Far from the CP, it is classically 
assumed that a thermally disturbed fluid system will equilibrate with a diffusion relaxation time
t ′
D inversely proportional to the thermal diffusivity D′

T = �′/(ρ ′C′
p), where �′ is the thermal 

conductivity and C′
p the specific heat at constant pressure. Introducing the correlation length ξ

of the fluid density fluctuations near a liquid-gas CP [1], it is also well known that ξ exhibits a 
diverging power-law behavior such as ξ ∝ τ −ν along the critical isochore. Here, ν is the universal
critical exponent for the correlation length and τ = (T0

′ − TC
′ )/TC

′ is the dimensionless distance to
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the CP, T ′
0 being the temperature of the fluid and T ′

C its critical temperature. It should be recalled
that ν = 0.63 is the exact Ising value, while ν = 1/2 is the corresponding mean-field value. Since
C′

p and �′ vary approximately as ξ 2 and ξ , respectively, it follows that t ′
D ∝ D′−1

T ∝ ξ . This result
implies that a diverging relaxation time t ′

D ∝ τ−ν will be observed for a fluid near its liquid-gas CP.
This singular relaxation rate, known as the critical slowing down of the heat diffusion transport, was
assumed to be correct for many ground-based experimental situations [2].

During the last two decades, more precise theoretical analyses [3–5] and experiments [6–9]
performed near the CP of a constant-volume fluid cell have demonstrated that the faster relaxation
rate of a disturbed pure fluid is due to the following adiabatic process. For a fixed volume sample, a
rapid change in the boundary temperature leads to a thin boundary diffusion layer (called the thermal
boundary layer (TBL) in the rest of this work) that acts like a piston to produce an adiabatic volume
change within the sample core (the bulk fluid). This unusual adiabatic process came to be known as
the piston effect (PE). After detailed pure thermodynamic analyses [6,7,10,11], direct simulation
[8,12] and analytical one-dimensional (1D) solutions of the Navier-Stokes equations using the
van der Waals equation of state [13–16], this new adiabatic relaxation behavior was definitively
understood to become prominent. Indeed, it was recognized that near the CP, the divergence in
the isothermal compressibility κ ′

T ∝ C′
p ∝ τ−ν , the isobaric thermal expansion α′

p ∝ C′
p ∝ τ−ν ,

and the specific heat ratio C′
p/C′

v ∝ τ−γ−α near the gas-liquid CP lead to a critical speeding-up
phenomenon. Here, γ and α are the universal critical exponents for the isothermal compressibility
and the specific heat at constant volume, C′

v , respectively. As a matter of fact, with C′
p ∝ ξ 2 and

�′ ∝ ξ , approximately, and neglecting the small diverging behavior of C′
v , the relaxation rate t ′

PE
of the heat transport by PE tends to zero as t ′

PE ∝ t ′
D/(C′

p/C′
v )2 ∝ ξ−3 ∝ τ 3ν . The homogeneous

pressure and temperature are typical features of the PE, except for temperature (and density) in 
the TBL. This last property motivated complementary theoretical approaches to describe the time 
evolution of temperature and density homogeneities in a microgravity and 1g environment [17,18]. 
Space experiments were performed confirming the fast temperature equilibration by the PE after a 
heating pulse [9] and the late-stage diffusive behavior of density changes during the final thermal 
equilibration of a closed fluid cell [19]. Recent experimental investigation of these phenomena has 
been reported in Ref. [20]. More details regarding the PE can be also found in Ref. [21].

The identification of the PE triggered a number of questions in the field of hydrodynamics 
of supercritical fluids which are Newtonian, viscous, and heat conducting fluids as dense as the 
corresponding liquid phase, as little viscous as the gas phase, and highly compressible [17]. Viscous 
effects are generally limited to thin boundary layers and do not affect much of the core flow. 
However, the assumption of a homogeneous pressure of the fluid sample in the early stages of the 
PE may fail close to the CP due to the divergence of the bulk viscosity which induces bulk spatial 
gradients [22,23]. Also, very close to the CP, the thermal equilibration time by PE can be shorter 
than the typical acoustic time [24]. Similarly, the boundary layer thickness can become less than the 
correlation length, a situation which has not been yet analyzed theoretically. Convection in closed 
cavities [12], hydrodynamic instabilities [25–29], and response to calibrated vibrations [30–33] have  
been addressed numerically or experimentally, under gravity and weightlessness conditions.

Whereas the specific properties of a near-critical fluid have motivated many developments in 
coupled heat and momentum transfer for a pure fluid [34,35], attention has barely been dedicated 
to the situation of a supercritical fluid saturated porous medium, although of fundamental impor-
tance. Applications in porous materials of major concern where the special characteristics of the 
supercritical fluid are exploited are numerous. This is the case for many processes in chemical 
engineering for which large mass diffusivity combined to a small viscosity is of particular interest. 
Applications, for example, are in chromatography, drying processes, fluid separation on porous 
columns, extraction or impregnation, crystallization, synthesis of ceramics, and particles of various 
materials ranging from nano- to macrodimensions [36–39]. For natural porous media, applications 
stem, for instance, from CO2 storage in depleted hydrocarbon reservoirs or deep saline aquifers to 
petroleum recovery. The use of supercritical CO2 in cooling devices like thermoacoustic systems
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in which porous materials are involved has also been considered recently. In most existing reported
work, the specific character of the supercritical fluid, particularly in near-critical conditions, and/or
the coupling between hydrodynamics and heat transfer (namely, the work of pressure forces in the
energy balance) is not taken into account [40–42]. A numerical investigation relying on a more
thorough physical description was proposed in Ref. [43] where the coupled heat and mass transfer
in a homogeneous porous medium saturated by a fluid close to its liquid-gas critical point was
solved. More recently, a numerical approach was employed on a micromodel structure considered
as an archetype of a model porous medium to analyze heat transfer during the transcritical path of
CO2 [44]. In this study, some results on the steady-state thermoconvective regime were shown in the
presence of gravity in a two-dimensional porous layer. Some measurements carried out on a porous
material saturated with a sub-, near-, and supercritical fluid were carried out, showing significant
contrast in heat diffusivity [45]. In a weightlessness environment, heat transfer in a cavity filled
with a near-critical fluid was found to be slower than the adiabatic transfer in a plain fluid in the
same conditions. The slowing down was justified by the heat transfer from the fluid to the solid
phase of the container.

Clearly, the specific hydrodynamics and associated coupled phenomena of a supercritical fluid
together with the porous medium properties call upon a more detailed fundamental analysis for a
better understanding and control of such a complex fluid-solid system. In particular our aim in the
following work is to analyze whether the PE persists in porous media and, if this is the case, whether
the associated scaling laws are modified by the presence of the porous matrix from which strong
viscous effects might be expected due to shear within the pores. The analysis is carried out over
a homogeneous 1D porous medium saturated by a van der Waals supercritical fluid while using a
heuristic macroscopic model for the coupled heat and momentum transfer based on Darcy’s law,
local thermal equilibrium, and mean-field theory. The problem is solved with the help of matched
asymptotic expansions [46], the solution of which highlights a much richer phenomenology of heat
transfer than in the case of a plain fluid. In fact, our analysis shows that, far enough from the CP, the
piston effect exists as in the pure fluid. While nearing the CP, a first crossover is found below which
pressure and temperature gradients appear in the bulk. Even closer to the CP, a second crossover
is encountered characterized by pressure and temperature gradients in both the bulk and TBL.
These overall results provide a frame to anticipate further fundamental developments on convection,
stability in super- and subcritical conditions, as well on the design of innovative applications taking
advantage of the specific features of the porous medium or near-critical fluid system.

With the aim of addressing the above questions, the paper is organized as follows. The physical
model for the problem of coupled heat and momentum transfer in porous media along with the
related assumptions are detailed in Sec. II. The solution to this problem is discussed in both the
TBL (Sec. III) and the bulk (Sec. IV) before a closing description of the two crossovers given in
Sec. V. The complete analysis shows three different regimes of heat transfer. An illustrative case
example is developed in Sec. VI prior to concluding remarks reported in Sec. VII.

II. PHYSICAL MODEL

The configuration under study is that of a pair of parallel impermeable planes of infinite
extensions and distant by L′, embedding a homogeneous nondeformable porous medium which
pores are saturated by a near-(super)critical fluid. The system is supposed to be initially in ther-
modynamic equilibrium with the fluid at its critical density, ρ ′

c, and a temperature T ′
0 > T ′

c so that
τ = (T ′

0 − T ′)/T ′
c � 1. At t ′ � 0, the left boundary is heated with a flux φ′(t ′) yielding a coupled

mechanism of heat and momentum transfer (see Fig. 1). In the rest of this paper, subscripts c and 0 
are used to denote quantities in the fluid phase at the CP and at the initial conditions, respectively, 
whereas the prime variables are dimensional quantities. The analysis of the coupled heat, mass, 
and momentum transfer is carried out at the macroscopic scale, i.e., on the basis of an average 
description of the physical mechanism over a representative elementary volume of the saturated 
porous material. In the absence of a more detailed development of averaged equations, our analysis
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FIG. 1. The one-dimensional model with the TBL of thickness δ and the bulk. All quantities are indicated
is their dimensionless form (see text for their definitions).

relies on the classical mass, momentum, and energy balance equations operating for classical fluids
in porous media that are heuristically extended to the case involving a supercritical fluid. Under
these circumstances, the macroscopic continuity equation for a compressible fluid is [47]

ρ ′
t ′ + (ρ ′u′)x′ = 0, (1)

where ρ ′ is the local mean fluid density and u′ is the interstitial velocity, both being mean values
taken over the fluid volume in the porous medium (i.e., intrinsic phase averages). Subscripts t ′ and
x′ denote the partial derivatives with respect to time and space.

A complete form of the momentum balance equation derived in Ref. [48] may be considered,
which is, however, rather complex for an analytical treatment. For tractability, a simplified version,
corresponding the unsteady form of Darcy’s law that describes the creeping motion of a viscous
fluid in a homogeneous porous medium at the macroscopic scale, is used [49]. This form assumes
that the pressure gradient at the pore scale is small compared to that at the macroscopic scale and
can be written as

ρ ′[(u′
t ′ + f (u′)u′)] + P′

x′ = −μ′

K ′ εpu′, (2)

where P′ is the phase average fluid pressure, μ′ is the shear viscosity, and εp the porosity, i.e., the
ratio of the total accessible pore volume to the total volume of the sample. The term ρ ′ f (u′)u′ in
Eq. (2) is the Forchheimer correction to Darcy’s law and represents the contribution of inertia to the
macroscopic flow [50,51]. This term scales as u′3 or u′2 depending on the flow regime. The intrinsic
permeability K ′ (m2) is typically of the order of the square of the characteristic pore size and can
typically vary from 10−19 m2 for tight rocks to 10−9 m2 for sintered materials for instance.

The choice for the equation of state results from a compromise between simplicity of the model
and accuracy of the description. In the present case, the van der Waals equation of state is employed
since its linearized form leads to relatively simple and phenomenologically sound scaling laws.
For the thermophysical properties, real critical exponents could be used to give more accurate
scaling laws (for comparison with experiments, for example), to the cost, however, of a much more
cumbersome development. The van der Waals equation of state is expressed as

P′ = ρ ′r′T ′

1 − b′ρ ′ − a′ρ ′2, (3)

where T ′ is the intrinsic fluid phase average temperature. The two given constants a′ and b′ depend 
on the properties of the fluid under consideration (for CO2, a′ = 189 J m3 kg−2 and b′ = 9.76 × 
10−4 m3 kg−1, whereas r′ = 189 J kg−1 K−1).

For the energy balance, a one-temperature model including a term representing the work of 
pressure forces is used. By using such a model, local thermal equilibrium is assumed, which seems 
reasonable as justified in Ref. [43]. The model can be easily inferred from an analogous result 
previously derived for an incompressible fluid saturating a homogeneous porous medium under 
the local thermal equilibrium assumption [52]. In essence, the solid contribution to the energy 
balance only modifies the heat capacity and the thermal conductivity of the system. Using the
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expression of the internal energy E ′ = (C′
v )eqT ′ − a′ρ ′ that follows from Eq. (3), the energy balance

equation takes the form

(ρ ′C′
v )eq[T ′

t ′ + εpu′T ′
x′] = −εp(P′ + a′ρ ′2)u′

x′ + (�′
eqT ′

x′ )x′ , (4)

where (ρ ′C′
v )eq = εp(ρ ′C′

v )fluid + (1 − εp)ρ ′
sC

′
s denotes an equivalent specific heat for the fluid-

saturated porous medium in which the subscript “s” stands for the solid phase. In addition,
�′

eq = �′
fluid

2εp

(3−εp) is an effective heat conductivity for the fluid-saturated porous medium. This
expression follows from Maxwell’s approximation [53]. In this expression, the contribution from the
solid phase is omitted with the idea that it is negligible with respect to the diverging conductivity of
the supercritical fluid [1]. The mean-field theory, which is the most consistent with the van der Waals
equation of state, gives the heat conductivity for the supercritical fluid as �′

fluid = �′
b + �′F

0 τ−0.5 ∼=
�′F

0 τ−0.5, where the background value �′
b can also be neglected compared to the diverging critical

contribution �′F
0 τ−0.5.

The boundary and initial conditions reflect the above-mentioned 1D heat transport model and
can be written as

u′ = 0, at x′ = 0 and x′ = L′, (5a)

−�′
eq T ′

x′ = ′(t ′), at x′ = 0, t ′ � 0, (5b)

T ′
x′ = 0, at x′ = 1, t ′ � 0, (5c)

u′
0 = 0, T ′

0 = (1 + τ )T ′
c , ρ ′

0 = ρ ′
c, at t ′ < 0. (5d)

Each dimensional quantity ψ ′ = (T ′, ρ ′, P′, u′) is now rescaled under the form ψ = (ψ ′−ψ ′
init )

ψ ′
re f

where

ψ ′
init corresponds to the initial value and ψ ′

re f is the reference value. The reference velocity, time, and
pressure are taken as the values for the fluid in its ideal gas form. More precisely, u′

re f is the sound

velocity, u′
re f = c′

0 =
√

γ0r′T ′
re f , where T ′

re f = T ′
c and γ0 is the ratio of the specific heat coefficients

for the fluid considered as an ideal gas. The reference time is the acoustic time t ′
a = L′/c′

0 and the
reference pressure is taken as P′

re f = ρ ′
re f r′T ′

re f . The reference density is ρ ′
re f = ρ ′

c. Length is made
dimensionless by L′, i.e., x = x′/L′.

Replacing the different fluid properties and independent variables as functions of their respective
nondimensional counterparts, the linearized dimensionless governing equations and associated
boundary conditions can be written as follows:

ρt + ux = 0, (6a)

ut + γ −1
0 Px = − 1

Rea Da
u, (6b)

(ρCv )eqTt = −3

2
ux + γ0

γ0 − 1

1

Pr0 Rea
τ−1/2Txx, (6c)

P = 3

2
T + 9

4
τρ. (6d)

u(t, x) = 0, at x = 0 and x = 1, (6e)

−τ−1/2Tx = (t ), at x = 0, t � 0, (6f)

Tx = 0, at x = 1, t � 0, (6g)

ρ = u = T = P = 0, at t < 0. (6h)

In Eqs. (6b) and (6c), Rea = c′
0L′/ν ′

0 is the acoustic Reynolds number, with ν ′
0 the kinematic 

viscosity of the fluid at the initial conditions. This dimensionless number represents the ratio of
the characteristic viscous diffusion time to the acoustic propagation time in a fluid cavity of length
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L′. For usual critical fluids 1/Rea is a small parameter typically on the order of 10−8; larger values
correspond to more viscous supercritical fluids. The Darcy number is defined as Da = K ′/(εpL′2).
The ratio 1/(Rea Da) can vary over several orders of magnitude (typically from 10−4 to 106

with L′ = 1 cm) while 1
(Re2

aDa)
remains small compared to unity. In Eq. (6c), Pr0 is an equivalent

Prandtl number defined by Pr0 = ν ′
0

D′eq
T0

, where D′eq
T0

is an equivalent thermal diffusivity defined by

D′eq
T0

= 2
3−εp

�′F
0 /(ρ ′

cC
′
p0

), where C′
p0 = γ0

γ0−1 r′ is the specific heat at constant pressure of the ideal

gas. One should note that the mean-field theory yields a τ−1 divergence of the heat capacity at
constant pressure [1] and thus a heat diffusivity which tends to zero as τ 0.5. This implies that the
sample heat diffusion characteristic time scales as

√
τ/Rea with respect to the sample acoustic time.

On the left-hand side of Eq. (6c), the term (ρCv )eq is the equivalent nondimensional product of the
heat capacity at constant volume by the density of the fluid given by

(ρCv )eq =
(ρ ′C′

v )eq

ρ ′
cr′ = 1

γ0 − 1
+ 1 − εp

εp
ρsCs. (7)

In this last relationship, Cv0 = C′
v0/r′ = 1/(γ0 − 1) is the dimensionless heat capacity at constant

volume of the near-critical fluid considered as a constant in the framework of the mean-field theory
whereas ρsCs is the dimensionless product of the heat capacity by the density of the solid defined
by ρsCs = ρ ′

sC
′
s/(ρ ′

cr′). In the boundary condition expressed in Eq. (6f) for the temperature,  is the
dimensionless heat flux at x = 0, defined as (t ) = ′(t ′)L′/(T ′

c �′F
0 ).

At time t = 0, heat supply at x = 0 diffuses into the medium and the asymptotic analysis of the
coupled equations on a given timescale ζ−1 (counted in sample acoustic time) is carried out. This
timescale is that of the PE for the pure fluid that is much longer than the acoustic timescale and
much shorter than the heat diffusion timescale [5], yielding the following hierarchy when Pr0 is
assumed of order 1:

τ 1/2

Rea
� ζ � 1. (8)

This property defines a rescaled time variable θ = ζ t which will be the basis of the development of
the perturbed equations in the next section. Our goal is to analyze whether, like in plain supercritical
fluids, a temperature equilibration timescale does exist which is much shorter than the sample heat
diffusion time and how it is modified by the presence of the porous medium.

III. THERMAL BOUNDARY LAYER ANALYSIS

The domain is first divided into two subregions (see Fig. 1), namely, the thermal boundary layer
(TBL) of dimensionless thickness δ and the bulk. Solution to the above set of balance equations is
sought by carrying out matched asymptotic expansions in these two domains. The heat flux imposed
at x = 0 and t = 0 induces perturbations on density, velocity, pressure, and temperature within the
boundary layer. The respective first orders of magnitude of these perturbations are η̃ρ, η̃u, η̃P,
and η̃T . The thickness of this TBL is of the order of magnitude of the heat penetration depth on
the chosen timescale ζ−1, and is thus much smaller than 1. Introducing the first-order expansions
defined by ρ = η̃ρ ρ̃, u = η̃uũ, P = η̃PP̃, and T = η̃T T̃ into the governing Eqs. (6) yields the first-
order perturbation equations in the TBL that can be written as

ζ η̃ρρ̃θ + δ−1η̃uũz = 0, (9a)

ζ η̃uũθ + δ−1γ −1
0 η̃PP̃z = − 1

Rea Da
η̃uũ, (9b)

(ρCv )eqζ η̃T T̃θ = −3

2
δ−1η̃uũz + γ0

γ0 − 1

1

Pr0 Rea
δ−2η̃T τ−1/2T̃zz, (9c)
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η̃PP̃ = 3

2
η̃T T̃ + 9

4
τ η̃ρρ̃, (9d)

−δ−1τ−1/2η̃T T̃z = ϕW (θ ), at z = 0, θ � 0, (9e)

ρ̃ = ũ = T̃ = P̃ = 0, at θ < 0, (9f)

ũ(z, θ ) = 0, at z = 0, (9g)

where z = δ−1(x′/L′) = δ−1x is the rescaled boundary layer space variable. The two terms on the
right-hand side of the energy balance equation [Eq. (9c)] represent the perturbed form of the work
of pressure forces −( 3

2 )δ−1η̃uũz and that of heat diffusion γ0

γ0−1
1

Pr0 Rea
δ−2η̃T τ−1/2T̃zz. In the boundary

condition given by Eq. (9e), ϕ is the characteristic value of the boundary heat flux at the timescale
θ and 0 � W (θ ) � 1 is the time modulation.

A. Scaling analysis in the thermal boundary layer

The condition to keep the whole continuity equation of the compressible fluid is to match orders
of magnitude of both terms in Eq. (9a), i.e.,

ζ η̃ρ = δ−1η̃u, (10)

so that the mass conservation equation can be rewritten as

ρ̃θ + ũz = 0. (11)

The boundary condition given by Eq. (9e) for temperature readily gives the order of magnitude
for the temperature in the TBL,

η̃T = δτ 1/2ϕ, (12)

and Eq. (9e) can be also rewritten as

T̃z = −W (θ ), at z = 0, θ � 0. (13)

Coupling of the thermodynamic variables expressed in the equation of state (9d) gives the orders
of magnitude for the pressure and density in the TBL according to

η̃P = τ η̃ρ = η̃T , (14)

so that the equation of state becomes

P̃ = 3
2 T̃ + 9

4 ρ̃. (15)

From Eqs. (10) and (14), it is clear that ζ η̃T � η̃uδ
−1 independently of the values of ζ and δ.

When this is considered in the energy balance equation [Eq. (9c)], it follows that

η̃u = Re−1
a δ−1η̃T τ−1/2, (16)

so that the TBL energy balance equation can be written as

3

2
ũz = γ0

γ0 − 1

1

Pr0
T̃zz. (17)

Equations (10), (14), and (16) link space and timescales through the relation

ζ δ2 = Re−1
a τ 1/2, (18)

and provide the order of magnitude of the velocity in the TBL,

η̃u = Re−1
a ϕ. (19)
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B. A crossover to viscous effects in the boundary layer

Substituting the orders of magnitude for the pressure and velocity in the momentum balance
equation [Eq. (9b)] leads to

ζ

Rea
ũθ + γ −1

0 τ 1/2P̃z = − 1

Re2
a Da

ũ. (20)

In this equation, viscous effects are obviously negligible if

τ 1/2 � 1

Re2
a Da

. (21)

Furthermore, if

Da Rea � 1, (22)

which will be assumed throughout this work, then the following relation holds,

τ 1/2 � 1

Re2
a Da

� 1

Rea
� ζ

Rea
, (23)

and the unsteady term is always negligible in the momentum equation for the TBL.
It is thus clear that the condition expressed in Eq. (21) defines a crossover value, τc2, to viscous

effects in the boundary layer on the τ scale. This crossover value is given by

τc2 =
(

1

Re2
a Da

)2

. (24)

At this point, it is important to note that

Re2
a Da =

⎛
⎜⎝c′

0

√
K ′
εp

ν ′
0

⎞
⎟⎠

2

= Re2
p, (25)

which defines the acoustic pore Reynolds number, Rep, with
√

K ′
εp

the characteristic length at the pore

scale (i.e., the pore diameter). This dimensionless number is nothing else than the ratio between the
viscous diffusion time and acoustic time at the pore scale and simply leads to τc2 = 1/Re4

p. This
indicates that τc2 increases with increasing viscosity and decreasing pore size. However, unless the
porous material is very weakly permeable, this value can be very close to the CP for some supercriti-
cal fluids so that the description of the fluid motion by the Navier-Stokes equations at the microscale
can be questionable. For instance, for CO2 (T ′

c = 304.13 K, μ′
0 = 1.37 × 10−5 kg m−1 s−1, ρ ′

c =
467.8 kg m−3, c′

0 ≈ 265 m s−2) saturating a porous material having the characteristics εp = 0.2,
K ′ = 3 × 10−18 m2, this crossover is at about 2 × 10−4 K from the critical temperature. It should
be noted, however, that this crossover value depends on the fourth power of the viscosity and may
thus be farther from the CP for much viscous fluids.

If condition (21) is fulfilled, the momentum balance equation reduces to

P̃z = 0. (26)

As a consequence, when τ � τc2, the governing equations in the boundary layer [Eqs. (11), (15),
(17), and (26)] are the same as for plain critical fluids [15]. The solution of this set of equations with 
the boundary condition given in Eq. (13) is recalled in Appendix A. Heat deposited at the boundary 
of the medium diffuses within the TBL, which expands due to the strong compressibility of the fluid, 
inducing a large compression of the fluid in the bulk region which is analyzed in the next section.
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IV. THE BULK ANALYSIS

The nonvanishing fluid velocity at the edge of the TBL generates density, velocity, pressure,
and temperature perturbations in the bulk of respective first orders of magnitude ηρ, ηu, ηP, and
ηT . Introducing the first-order expansions ρ = ηρρ, u = ηuu, P = ηPP, and T = ηT T into the
governing Eqs. (6) leads to the first-order perturbation equations in the bulk that can be written
as follows:

ζηρρθ + ηuux = 0, (27a)

ζηuuθ + γ −1
0 ηPPx = − 1

Rea Da
ηuu, (27b)

(ρCv )eqζηT T θ = −3

2
ηuux + γ0

γ0 − 1

1

Pr0 Rea
ηT τ−1/2T xx, (27c)

ηPP = 3

2
ηT T + 9

4
τηρρ, (27d)

ρ = u = T = P = 0, at θ < 0, (27e)

u(x, θ ) = 0, at x = 1, (27f)

T x(x, θ ) = 0, at x = 1. (27g)

Boundary conditions at x = 0 are replaced by the matching conditions with the boundary
layer which, at the first order, are simply given by limz→∞ η̃ψ ψ̃ (z, θ ) = ηψψ (x = 0, θ ) (ψ =
(T, ρ, P, u)).

A. Scaling analysis in the bulk

From Eqs. (A4)–(A8), P̃(z, θ ), T̃ (z, θ ), and ũ(z, θ ) tend to a finite value at the edge of the
boundary layer, whereas ρ̃(z, θ ) tends to zero, from which it can be deduced that

ηT = η̃T , ηP = η̃P, ηu = η̃u, ηρ � η̃ρ . (28)

Balancing both terms in the mass conservation equation [Eq. (27a)] in the bulk implies

ζηρ = ηu, (29)

and hence the mass conservation in the bulk is

ρθ + ux = 0. (30)

Matching the transient term with the largest term that expresses the work of pressure forces in
the energy balance equation [Eq. (27c)] in the bulk yields

ζηT = ηu, (31)

and consequently the energy balance in the bulk is given by

(ρCv )eqT θ = − 3
2 ux. (32)

The coupling between temperature and pressure in the equation of state implies

ηP = ηT , (33)

and taking into account the relation in Eq. (28) for ηρ gives the approximate equation of state in the
bulk,

P = 3
2 T . (34)
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The relationship given by Eq. (31), together with those reported in Eqs. (28), (12), and (19), gives

ζ δ = τ−1/2

Rea
. (35)

Taking into account the expression provided by Eq. (18) yields

δ = τ, (36)

which, once inserted back into Eq. (35), provides the timescale for the PE,

ζ = τ−3/2

Rea
. (37)

The various orders of magnitude are

ηT = ηP = η̃T = η̃P = τ 3/2ϕ, η̃ρ = τ 1/2ϕ, ηρ = τ 3/2ϕ. (38)

It should be noted here that the relationship given in Eq. (37), and the definition of the rescaled
time variable θ = ζ t , indicate that, as far as τ � 1

Re2/3
a

, a constraint that is assumed to be satisfied in
the sequel of this paper, the following hierarchy holds:

τ 1/2

Rea
� 1

Rea
� ζ = τ−3/2

Rea
� 1. (39)

This means that the heat equilibration timescale is shorter than the heat diffusion timescale in the
ideal gas but longer than the acoustic characteristic time of the plain fluid cavity.

B. A crossover to viscous effects in the bulk

Substituting expressions given in Eqs. (36)–(38) into the momentum balance equation [Eq. (27b)]
gives

1

Re2
a τ 3/2

uθ + τ 3/2 Px

γ0
= − 1

Re2
a Da

u = − 1

Re2
p

u. (40)

Evidently, if τ � ( 1
Re2

a Da
)2/3 = 1

Re4/3
p

, keeping in mind the conditions Da Rea � 1 and τ � 1
Re2/3

a
,

the following hierarchy holds,

1

Rea τ 3/2
� Rea Da � 1

Rea Da
� Rea τ 3/2, (41)

and Darcy’s equation in the bulk also reduces to

Px = 0. (42)

This obviously defines another crossover τc1 on τ given by

τc1 =
(

1

Re2
a Da

)2/3

= 1

Re4/3
p

, (43)

below which viscous effects become significant in the bulk.
As a consequence, when τ � τc1, the governing equations are exactly the same as those for 

the plain supercritical fluid [5,15] and the solution in the bulk displays homogeneous temperature, 
pressure, and density which are reported in Appendix A. It should be noted here that the system 
of Eqs. (30), (32), and (34) yields a first-order equation in space for the energy equation in the 
above first-order expansion analysis. This implies that the thermal boundary condition at x = 1 
in Eq. (27g) is not necessary because mechanisms occurring at the acoustic timescale have been 
filtered out by using the PE timescale. This timescale, ζ , on which temperature in the sample is
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homogenized by thermocompressive heating, decreases to zero as τ 3/2. Thus, it is much smaller
than the heat diffusion time, which increases to infinity as τ−1/2 [5]. This critical speeding up of
the heat transfer contrasts with the critical heat diffusion slowing down. In other words, as far as
the condition τ � 1/Re4/3

p is fulfilled, the PE is not affected by the porous matrix. In this case, the
solution that is uniformly valid in both the TBL and bulk is provided in Appendix A [see Eqs. (A13)–
(A16)].

When nearing the CP so that τ becomes close to τc1 = 1/Re4/3
p , a pressure gradient, compensated

by viscous shear, builds up in the bulk. As for τc2, this value depends only on the pore-scale

characteristic length
√

K ′
εp

for a given fluid. For carbon dioxide and the same characteristic values

of the porous material as those considered for τc2, this crossover value to the viscous effect of the
porous material on the PE is at about 2.5 K above the critical temperature.

As a summary, it must be emphasized that both crossovers τc1 and τc2 are only functions of the

ratio between the pore-scale acoustic wave travel time,

√
K ′
εp

c′
0

, and the pore-scale viscous diffusion

time, ( K ′
εp

)/ν ′
0, that is, the inverse of the acoustic pore Reynolds number, Rep [see Eq. (25)]. More

specifically, τc1 varies as 1/Re4/3
p , whereas τc2 depends on 1/Re4

p. For a fixed fluid, the crossovers
are therefore solely dependent upon the characteristic pore size

√
K ′/εp and they decrease when the

pore size increases. The physical significance of this behavior lies in the fact that when the contrast
between the acoustic wave travel time and viscous diffusion time increases (this is favored by large
pores), viscous effects relax at a characteristic time that is much larger than the time of travel of
the thermocompressive wave. Consequently, viscous dissipation and thermoacoustic heat transfer
do not overlap. However, if τ is sufficiently decreased (down to values smaller than τc1), viscous
effects become important enough to counteract the fluid expansion.

V. ANALYSIS OF THE CROSSOVERS

As shown in the previous sections, when the distance to the CP, τ , approaches τc1 (or even closer
to the CP, when τ ∼ τc2), the pressure gradient and the viscous shear in Darcy’s law become of the
same order of magnitude (in the bulk for τc1 as well as in the TBL for τc2). The pressure gradient
becomes of first order in the pressure asymptotic expansion which is thus no longer well ordered.
Accordingly, the asymptotic expansions, as performed in the previous section, are singular for the
values τc1 and τc2 of the small parameter τ . As a consequence, they no longer correctly approximate
the solutions of the governing equations, and crossover-type solutions, sometimes also named inner
descriptions [15], are needed. These crossover-type expansions are obtained for τ → 0 with a fixed
value of the crossover parameter τ̃i defined by the ratio τ̃i = τ/τci (index i = 1, 2 corresponds to
one of the crossover values). The crossover solutions presented below are obtained following the
same procedure as the one detailed in the previous section.

A. First crossover

In this section, the solution when τ is close to τc1 is reinspected. An inner description is necessary
where τ̃1 = τ/τc1 is kept of order 1 while τ → 0. In this limit of τ , i.e., 1/Re2

p � 1 (which further
means that, due to the condition given by Eq. (22), 1

Rea
� ReaDa � 1), and because the solution

presented above is singular when 1/Re2
p is zero, the development must be carried out again. This

can be performed in a similar way as the one detailed in the previous sections, except τc1 is now
kept in the orders of magnitude equations while τ̃1 remains in the balance equations. When this is
done, the following orders of magnitude are obtained:

η̃T = η̃p = ηT = ηP = ηρ = τ
3/2
c1 ϕ, η̃ρ = τ

1/2
c1 ϕ, η̃u = ηu = ϕ/Rea. (44)
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Moreover, the TBL thickness is obtained as δ = τc1, and the timescale parameter is ζ = ReaDa.
The condition given by Eq. (22) thus becomes a necessary condition for the equilibration time to be
longer than the acoustic time. Here, it must be noticed that the PE characteristic time is no longer
decreasing with τ . It keeps a constant value independent of the distance, τ , to the CP. This is in
contrast with the pure PE above the crossover to viscous effects in the bulk [cf. Eq. (37)]. This
phenomenon will be referred to as the porous saturation of the PE. Indeed, above the first crossover,
i.e., for τ 3/2 > 1

Re2
p
, the PE timescale is θPE = 1

Rea
t/τ 3/2 while, at the first crossover, θ = 1

Rea
t/ 1

Re2
p
.

This shows that the porous saturation timescale θ of the PE is a longer timescale than the pure piston
effect timescale θPE . At the crossover, the PE, which is, however, slowed down by the effect of the
porous matrix, still speeds up heat transfer compared to diffusion.

As far as the condition expressed in Eq. (21) is fulfilled, pressure remains homogeneous in the
TBL, the expansion of which is not affected by the porous medium, whereas a pressure gradient
becomes significant in the bulk. The overall set of balance equations in both the TBL and the bulk
as well as the uniformly valid solutions for density, temperature, velocity, and pressure are reported
in Appendix B. It can be easily verified that these solutions exactly match those corresponding to
the PE reported above in the limit τ̃1 → ∞.

As expected, the TBL remains purely diffusive while a temperature (and pressure) gradient takes
place in the bulk which physical origin lies in the viscous dissipation due to the porous matrix. The
dissipation itself originates from significant viscous shear within the pores when τ is close to τc1,
yielding a macroscopic pressure gradient as described by Darcy’s law during partial reflections of
acoustic waves emitted by the expanding fluid contained in the TBL. This last feature has to be
checked by direct numerical solutions of the equations at the acoustic timescale as was done for
the PE in a plain supercritical fluid [12]. Interestingly, it should be noted that only the boundary
layer part of the solution explicitly depends on the crossover parameter τ̃1; the bulk part, at the
timescale θ , is written only in terms of the two kernels KT (x, v) and Ku(x, v) [Eqs. (B17) and (B21)],
which do not involve τ̃1. This result comes from the fact that conservation equations in the bulk are
independent of τ̃1 and that the velocity at the outer edge of the TBL is constant and equal to 2

3 AW (θ ).
In comparison to the PE previously investigated, the first crossover leads to a time rescaling and the
superposition of the bulk pressure and temperature gradients which are independent of the distance
to the CP near τc1.

In the present inner description, the viscous pressure drop was neglected in the TBL since
this term is τc1 smaller than p̃z. If this term were, however, kept in the description, the diffusion
coefficient for ρ̃ (and T̃ ) would be given by Aτ̃1/(1 + 4

9 Aγ0τc1τ̃
−1/2
1 ). Approximating this coefficient

by Aτ̃1, as was done in the present crossover analysis, remains valid when τ̃1 is decreased until it
reaches a value such that τc1τ̃

−1/2 ∼ 1, i.e., when τ̃ = τ/τc1 ∼ τ 2
c1, which means τ ∼ τ 3

c1 = τc2. As
expected, the inner description detailed above must hence be revisited while nearing the CP with
τ close to τc2, in which circumstances a second crossover analysis must be performed. This is the
purpose of the following section.

B. Second crossover

When nearing the CP much closer than τc1, the already-mentioned value τ ∼ τc2 = 1/Re4
p may

be reached for which the pressure gradient reaches the TBL and this requires the inner description
to be reconsidered with τ̃2 = τ/τc2. At this crossover, fluid expansion in the TBL will be weakened
due to viscous effects, suggesting that the PE will be strongly affected. The procedure to obtain this
second crossover solution is similar to that already used for the first one and it is sufficient to only
report the main results. The orders of magnitude are given by

η̃T = η̃p = τc2ϕ, η̃ρ = ϕ, η̃u = ηu = ϕ

Rea
, ηT = ηP = ηρ = τ

1/2
c2 ϕ. (45)

The TBL thickness is now δ = τ
1/2
c2 = 1/Re2

p while the timescale is unchanged with respect to the
first crossover, i.e., ζ = ReaDa. Conservation equations and uniformly valid solutions are reported 
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TABLE I. Thermophysical parameters of the supercritical fluid (CO2) and properties of the porous medium
(whose solid skeleton is made of aluminum oxide) used for the case example.

Fluid (CO2) Porous medium (aluminum oxide)

T ′
c (K) 304.14 ρ ′

s (kg m−3) 3390
ρ ′

c (kg m−3) 467.8 K ′ (m2) 3 × 10−18

P′
c (MPa) 7.37 εp (−) 0.2

r ′ (J kg−1 K−1) 189 C′
s (J kg−1 K−1) 850

C′
p0 (J kg−1 K−1) 819

γ0 = C′
p0/C′

v0 (−) 1.3
ν ′

0 (m2 s−1) 2.93 × 10−8

�′F
0 (W m−1 K−1) 3.38 × 10−3

in Appendix C. In the limit τ̃2 → ∞ for which A2(τ̃2) ∼ Aτ̃
1/2
2 = A1(τ̃2) [see Eq. (C16) for the

definition of A2(τ̃2)], it can be easily verified that these solutions are identical to those at the first
crossover.

The solution T (x, t ) [see Eq. (C18)] clearly indicates that the PE is strongly weakened. The
physical mechanisms of the fading away of the PE can be explained by the solution ũ(z, θ ) for the
velocity in the TBL that is given by

ũ(z, θ ) = 2

3
A2(τ̃2)τ̃−1/2

2

(
W (θ ) −

∫ θ

0

z

2
√

πA2(τ̃2)v3
exp

(
− z2

4A2(τ̃2)v

)
W (θ − v)dv

)
. (46)

The fluid expanding velocity at the outer edge of the TBL is such that ũ∞(θ ) = limz→∞ ũ(z, θ ) =
2
3 A2(τ̃2)τ̃−1/2

2 W (θ ) which is obviously decreasing to zero as τ̃
1/2
2 . This clearly demonstrates that the

PE is faded away by viscous shear in the TBL that thwarts fluid expansion and yields a progressive
return to heat transfer by diffusion. The strong dependence of ũ∞(θ ) on τ̃2 generates gradients in
the bulk part of the solution. These gradients are strongly dependent on the distance to the CP near
τc2, a feature that contrasts with the behavior near τc1.

VI. CASE EXAMPLE

This section is dedicated to an illustration of the above predictions of the three different regimes
of heat transfer. This is carried out in a one-dimensional porous domain saturated by a near-critical
fluid. The porous matrix and fluid properties are reported in Table I.

The three regimes with the two crossovers which have been theoretically characterized in the
previous sections are the following (see Fig. 2):

Regime (I): When τ � τc1 = 1/Re4/3
p , the PE dominates and heat propagates like in a pure

supercritical fluid, regardless the presence of the porous matrix. This regime can be called pure

Regime (III)
(Pure porous effect)

Regime (II)
(Hindered PE)

Regime (I)
(Pure PE)

Crossover 2
(τ = τc2 = 1/Re4

p)
Crossover 1

(τ = τc1 = 1/Re
4/3
p )

τ

FIG. 2. Heat transfer regimes depending on the distance, τ , to the critical point. The three regimes are

pseparated by two crossovers, τc1 = 1/Re4/3 and τc2 = 1/Re4
p. Regime (I) (τ � τc1) corresponds to the pure PE.

Regime (II) (τc2 < τ  < τc1) is where viscous effects counteract the thermoacoustic heat transfer in a so-called 
hindered PE. Regime (III) corresponds to heat transfer by diffusion (pure porous effect).
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FIG. 3. Dimensionless temperature perturbation profiles as a function of x for three different dimensionless 
times, θ , corresponding to the same values of t : t = 0.1Reaτ 3/2, t = 0.4Reaτ 3/2, and t = 0.9Reaτ 3/2 in which τ 
is the one used in (a), i.e., τ = 20τc1: (a) regime (I), pure PE [solution from Eq. (A14)], τ = 20τc1; (b) regime 
(II), hindered PE at τ = τc1 [solution from Eq. (B19)]; and (c) regime (III), pure porous effect at τ = τc2 
[solution from Eq. (C18)]. Physical parameters are recalled in Table I.

PE. When τ becomes of the order of τc1, a temperature (and pressure) gradient appears in the bulk, 
the features of the TBL being unmodified.

Regime (II): This regime between the two crossovers is characterized by the presence of pres-
sure and temperature gradients in the bulk superimposed to the PE. This regime can be referred
to as hindered PE. While decreasing τ close enough to τc2 = 1/Re4

p, the viscous pressure gradient 
reaches the TBL and thermal diffusion effects become important in the overall medium.

Regime (III): When τ is decreased below τc2, the PE fades away progressively and heat transfer 
is completely governed by diffusion. This regime can be called pure porous effect.

The porous medium has a length L′ = 1 mm leading to Rea ≈ 9.3 × 106, Da = 1.5 × 10−11, 
and Rep = 36 while the two crossover values are τc1 ≈ 8.37 × 10−3 and τc2 ≈ 5.87 × 10−7. A  
heat flux ′(t ′ ) = 10 W m−2 (yielding ϕ = 0.01 and W (θ ) = 1) is applied at x = 0. The resulting 
dimensionless temperature perturbations along the porous domain (0 � x � 1) are reported in 
Fig. 3, for three different dimensionless times and for three values of τ corresponding to each of
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the three regimes: (I) Fig. 3(a), (II) Fig. 3(b), and (III) Fig. 3(c). The three dimensionless times are
identical and correspond to t = 0.1Reaτ

3/2, t = 0.4Reaτ
3/2, and t = 0.9Reaτ

3/2 in which τ is the
one used in Fig. 3(a), i.e., τ = 20τc1. Solutions in Figs. 3(b) and 3(c) are obtained with τ̃1 = 1 and
τ̃2 = 1, respectively.

In Fig. 3(a), results correspond to the pure PE, in accordance with previous studies in a plain fluid
cavity [5,15] and for which the two distinct zones are clearly apparent: (i) a boundary layer, which
grows with time, where diffusion effects are dominant, and (ii) a homogeneous bulk temperature
resulting from the PE which increases with time. In contrast, the temperature perturbation profiles
in Fig. 3(b) do not correspond to the pure PE regime, exhibiting two main features: (i) a thin and
time growing TBL remains at x = 0; (ii) a temperature gradient, which originates from the pressure
gradient in the bulk region, settles down, starting from the outer edge of the TBL. This gradient
progressively develops and spreads over the whole region of the bulk. Finally, the temperature
perturbation fields for τ = τc2 represented in Fig. 3(c) show no PE as they rather correspond to
diffusive profiles. The pressure gradient that reaches the TBL contributes to fade away the PE thus
preventing heat propagation at constant temperature by thermoacoustic effects.

VII. CONCLUSION

A complete one-dimensional asymptotic analysis has been performed within the framework
of the mean-field theory and the classical Darcy model in order to analyze the coupled heat and
momentum transfer in a one-dimensional homogeneous porous medium saturated by a supercritical
fluid and subjected to a heat flux at one edge. This analysis shows that heat transfer is characterized
by three distinct regimes, separated by two crossovers, τc1 and τc2. These crossovers only depend on

the acoustic pore Reynolds number defined as Rep = c′
0

√
K ′
εp

ν ′
0

and τc1 and τc2 vary with this parameter
according to a −4/3 and −4 power law, respectively. When the temperature of the fluid is such that 
τ is significantly larger than τc1, heat transfer occurs as in a plain supercritical fluid by PE: a TBL 
develops at the heated edge of the medium, the expansion of which leads to a thermocompressive 
heating of the bulk featuring a constant pressure and temperature ahead of the boundary layer. 
When τ is of the same order or smaller than τc1, viscous stress within the bulk becomes significant 
enough to oppose the fluid expansion: pressure and temperature gradients resulting from viscous 
dissipation build up in the bulk where heat diffusion and the piston effect are superimposed. This first 
crossover also corresponds to a critical speeding up standstill of the PE. Indeed, the characteristic 
PE timescale becomes constant, a phenomenon that can be referred to as a porous saturation of the 
PE. While further decreasing τ to or below τc2, the viscous shear stress becomes also significant in 
the boundary layer and the piston effect is faded away.

This analysis clarifies some of the fundamental aspects of coupled heat and momentum transfer 
in a near-(super)critical fluid-saturated porous medium and should serve as the basis of further 
investigations including the validation of the proposed theory by the development of numerical 
solutions at the pore scale that is out of the scope of the present work. It also opens the way for 
many other physical implications, including instabilities, the role of a body force (gravity), and, in 
two-phase flow, the coupling with capillary effects.
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APPENDIX A: SOLUTIONS IN THE PURE PE REGIME

This appendix reports on the solutions for ρ̃, T̃ , ũ, and p̃ in the TBL when τ � τc2 and for ρ, T ,
u, and p in the bulk when τ � τc1, corresponding to the classical PE.

1. TBL

The procedure starts with the solution of the diffusion equation on ρ̃ which is obtained by
combining Eqs. (11), (15), (17), and (26), yielding

ρ̃θ = Aρ̃zz, (A1)

where

A = γ0

γ0 − 1
Pr−1

0 . (A2)

The associated boundary condition follows from Eqs. (13), (15), and (26) and is given by

ρ̃z(z = 0, θ ) = − 2
3 T̃z(z = 0, θ ) = 2

3W (θ ), (A3)

while the initial condition is given by Eq. (9f). Using the fact that ρ̃ is bounded for z ∈ [0, 1], the
solution is

ρ̃(z, θ ) = −2

3
A

∫ θ

0
Kρ (z, v)W (θ − v)dv, (A4)

which involves the normalized diffusion kernel for density, Kρ (z, v):

Kρ (z, v) = 1√
πAv

exp

(
− z2

4Av

)
. (A5)

Taking now into account the equation of state (15) and the homogeneous character of the pressure
in the boundary layer [Eq. (26)], Eq. (A4) gives the temperature field,

T̃ (z, θ ) = A
∫ θ

0
Kρ (z, v)W (θ − v)dv + T̃∞(θ ), (A6)

where T̃∞(θ ) is determined by the matching condition with the bulk. The velocity can be obtained
from the continuity equation (11) as

ũ(z, θ ) = 2

3
A

(
W (θ ) −

∫ θ

0

z

2
√

πAv3
exp

(
− z2

4Av

)
W (θ − v)dv

)
. (A7)

It is important to note here that the velocity tends to a nonzero value at the edge of the boundary
layer which reflects the fluid expansion and induces a compression perturbation in the bulk.

Substituting Eqs. (A4) and (A6) into the equation of state (15), the homogeneous character of
the pressure in the boundary layer is expressed as

P̃(z, θ ) ≡ P̃(θ ) = 3
2 T̃∞(θ ). (A8)

2. Bulk

The solution to the set of Eqs. (30), (32), (34), and (27b) along with the impervious boundary
condition at x = 1 can be obtained in a straightforward manner yielding ρ, T , u, and P, namely,

ρ(x, θ ) = 2

3
A

∫ θ

0
W (v)dv, (A9)

T (x, θ ) = A

(ρCv )eq

∫ θ

0
W (v)dv, (A10)
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u(x, θ ) = 2

3
AW (θ )(1 − x), (A11)

P(x, θ ) = 3

2
T (x, θ ). (A12)

Matching the temperature between the TBL and the bulk immediately provides the expression of
T̃∞(θ ) involved in Eq. (A6), i.e., T̃∞(θ ) = A

(ρCv )eq

∫ θ

0 W (θ )dθ .

3. Uniformly valid solutions (0 � x � 1)

When τ � τc1 = 1/Re4/3
p , uniformly valid solutions for 0 � x � 1 are hence

ρ(x, θ ) = 2

3
Aτ 1/2ϕ

∫ θ

0

(
τW (v) − Kρ

( x

τ
, v

)
W (θ − v)

)
dv, (A13)

T (x, θ ) = ϕτ 3/2A

(∫ θ

0
Kρ

( x

τ
, v

)
W (θ − v)dv + 1

(ρCv )eq

∫ θ

0
W (v)dv

)
, (A14)

u(x, θ ) = 2

3

Aϕ

Rea

(
W (θ )(1 − x) −

∫ θ

0

x

2τ
√

πAv3
exp

(
− x2

4τ 2Av

)
W (θ − v)dv

)
, (A15)

P(x, θ ) = 3

2
ϕτ 3/2 A

(ρCv )eq

∫ θ

0
W (v)dv, (A16)

where Kρ ( x
τ
, v) is given by Eq. (A5).

APPENDIX B: SOLUTIONS AT THE FIRST CROSSOVER

This appendix reports on the balance equations for the TBL and the bulk, as well as the corre-
sponding uniformly valid solutions for ρ, T, u, and p at the first crossover, i.e., when τ approaches
τc1 = 1/Re4/3

p and for which the crossover parameter is τ̃1 = τ/τc1. Combining Eqs. (9) with orders
of magnitude of Eq. (44) while using the TBL thickness δ = τc1 and timescale ζ = ReaDa, the
following set of equations valid in the TBL is obtained:

ρ̃θ + ũz = 0, (B1)

P̃z = 0, (B2)

0 = −3

2
ũz + Aτ̃

−1/2
1 T̃zz, (B3)

P̃ = 3

2
T̃ + 9

4
τ̃1ρ̃, (B4)

T̃z = −τ̃
1/2
1 W (θ ), at z = 0, θ � 0, (B5)

ρ̃ = ũ = T̃ = P̃ = 0, at θ < 0, (B6)

ũ(z, θ ) = 0, at z = 0. (B7)

In Eq. (B3), A is given by Eq. (A2),
Similarly, when Eqs. (27) are considered, the following conservation equations and boundary

conditions valid in the bulk are obtained:

ρθ + ux = 0, (B8)

Px = −γ0u, (B9)
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(ρCv )eqT θ = − 3
2 ux, (B10)

P = 3
2 T , (B11)

ρ = u = T = P = 0, at θ < 0, (B12)

u(x, θ ) = 0, at x = 1, (B13)

T x(x, θ ) = 0, at x = 1. (B14)

These two sets of equations can be solved using the Laplace transform and when the matching
conditions given by limz→∞ η̃ψ ψ̃ (z, θ ) = ηψψ (x = 0, θ ) (ψ = (T, ρ, P, u)) are applied, the fol-
lowing solutions, that are uniformly valid over space (0 � x � 1), are obtained. Density is given
by

ρ(x, θ ) = −2

3
Aτ

1/2
c1 ϕ

∫ θ

0
(Kρ1(x, v) − τc1KT (x, v))W (θ − v)dv, (B15)

where Kρ1(v, x) is a Gaussian diffusion kernel defined as

Kρ1(x, v) = 1√
πA1(τ̃1)v

exp

(
− x2

4τ 2
c1A1(τ̃1)v

)
, (B16)

in which A1(τ̃1) = Aτ̃
1/2
1 and KT (x, v) is a kernel associated to the temperature,

KT (x, v) = 1 + 2
∞∑

n=1

(−1)ne−n2π2Bv cos(nπ (1 − x)), (B17)

where

B = 9

4γ0(ρCv )eq
. (B18)

The solution for the temperature is

T (x, θ ) = Aτ
3/2
c1 ϕ

∫ θ

0

(
τ1Kρ1(x, v) + 1

(ρCv )eq
KT (x, v)

)
W (θ − v)dv, (B19)

and the velocity is given by

u(x, θ ) = 2

3

A

Rea
ϕ

∫ θ

0

(
Ku(x, v) − x

2τc1

√
πA1(τ̃1)v3

exp

(
− x2

4τ 2
c1A1(τ̃1)v

))
W (θ − v)dv. (B20)

In this last expression, Ku(x, v) is the velocity kernel defined by

Ku(x, v) = 2πB
∞∑

n=1

(−1)n+1ne−n2π2Bv sin(nπ (1 − x)), x = 0, Ku(0, v) = δ(v), (B21)

in which δ(v) is the Dirac delta distribution at v.
Finally, the pressure is given by

p(x, θ ) = 3

2

A

(ρCv )eq
τ

3/2
c1 ϕ

∫ θ

0
KT (x, v)W (θ − v)dv. (B22)
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APPENDIX C: SOLUTIONS AT THE SECOND CROSSOVER

This appendix summarizes the results at the second crossover when τ is close to τc2 = 1/Re4
p,

the crossover parameter being defined as τ̃2 = τ/τc2. When orders of magnitude of Eq. (45) are
introduced in the general balance equations [Eqs. (9)], keeping in mind that the TBL thickness and
the timescale are respectively given by δ = τ

1/2
c2 and ζ = ReaDa, the following set of conservation

equations and boundary conditions are obtained for the TBL:

ρ̃θ + ũz = 0, (C1)

P̃z = −γ0ũ, (C2)

0 = − 3
2 ũz + Aτ̃

−1/2
2 T̃zz, (C3)

P̃ = 3
2 T̃ + 9

4 τ̃2ρ̃, (C4)

T̃z = −τ̃
1/2
2 W (θ ), at z = 0, θ � 0, (C5)

ρ̃ = ũ = T̃ = P̃ = 0, at θ < 0, (C6)

ũ(z, θ ) = 0, at z = 0, (C7)

where A is given by Eq. (A2).
Following the same procedure with Eqs. (27), one obtains the following equations valid in the

bulk:

ρθ + ux = 0, (C8)

Px = −γ0u, (C9)

(ρCv )eqT θ = − 3
2 ux, (C10)

P = 3
2 T , (C11)

ρ = u = T = P = 0, at θ < 0, (C12)

u(x, θ ) = 0, at x = 1, (C13)

T x(x, θ ) = 0, at x = 1. (C14)

As for the first crossover, these two sets of equations can be solved using the Laplace trans-
form along with the matching conditions given by limz→∞ η̃ψ ψ̃ (z, θ ) = ηψψ (x = 0, θ ) (ψ =
(T, ρ, P, u)), yielding the following solutions for ρ, T, u, and p that are uniformly valid over space
(0 � x � 1):

ρ(x, θ ) = 2

3
A2(τ̃2)τ̃−1/2

2 ϕ

∫ θ

0

(−Kρ2(x, v) + τ
1/2
c2 KT (x, v)

)
W (θ − v)dv, (C15)

in which

A2(τ̃2) = τ̃2

A−1τ̃
1/2
2 + 4

9γ0

, (C16)
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and where KT (x, v) is given by Eq. (B17), whereas Kρ2(x, v) is a Gaussian diffusion kernel defined
as

Kρ2(x, v) = 1√
πA2(τ̃2)v

exp

(
− x2

4τc2A2(τ̃2)v

)
. (C17)

The solution for the temperature is

T (x, θ )

= A2(τ̃2)τ̃−1/2
2 τ

1/2
c2 ϕ

∫ θ

0

(
1

(ρCv )eq
KT (x, v) + τ

1/2
c2

(
τ̃2 − 4

9
γ0A2(τ̃2)

)
Kρ2(x, v)

)
W (θ − v)dv,

(C18)

and for the velocity, it is given by

u(x, θ )

= 2

3
A2(τ̃2)τ̃−1/2

2

1

Rea
ϕ

∫ θ

0

(
Ku(x, v) − x

2τ
1/2
c2

√
πA2(τ̃2)v3

exp

(
− x2

4τc2A2(τ̃2)v

))
W (θ − v)dv,

(C19)

where Ku(x, v) is the velocity kernel given by Eq. (B21). The pressure is obtained as

p(x, θ ) = A2(τ̃2)τ̃−1/2
2 τ

1/2
c2 ϕ

∫ θ

0

(
3

2(ρCv )eq
KT (x, v) − 2

3
γ0τ

1/2
c2 Kρ2(x, v)

)
W (θ − v)dv. (C20)

In this last expression, the term involving Kρ2(x, v) has a negligible contribution since it is τ
1/2
c2

times smaller than the term involving KT (x, v), whatever the value of τ̃2.
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