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Abstract. Surface melting is one of the primary drivers of
ice shelf collapse in Antarctica and is expected to increase
in the future as the global climate continues to warm be-
cause there is a statistically significant positive relationship
between air temperature and melting. Enhanced surface melt
will impact the mass balance of the Antarctic Ice Sheet (AIS)
and, through dynamic feedbacks, induce changes in global
mean sea level (GMSL). However, the current understanding
of surface melt in Antarctica remains limited in terms of the
uncertainties in quantifying surface melt and understanding
the driving processes of surface melt in past, present and fu-
ture contexts. Here, we construct a novel grid-cell-level spa-
tially distributed positive degree-day (PDD) model, forced
with 2 m air temperature reanalysis data and spatially pa-
rameterized by minimizing the error with respect to satellite
estimates and surface energy balance (SEB) model outputs
on each computing cell over the period 1979 to 2022. We
evaluate the PDD model by performing a goodness-of-fit test
and cross-validation. We assess the accuracy of our param-
eterization method, based on the performance of the PDD
model when considering all computing cells as a whole, in-
dependently of the time window chosen for parameterization.
We conduct a sensitivity experiment by adding ± 10 % to
the training data (satellite estimates and SEB model outputs)
used for PDD parameterization and a sensitivity experiment
by adding constant temperature perturbations (+1, +2, +3,
+4 and +5 ◦C) to the 2 m air temperature field to force the
PDD model. We find that the PDD melt extent and amounts
change analogously to the variations in the training data with
steady statistically significant correlations and that the PDD
melt amounts increase nonlinearly with the temperature per-

turbations, demonstrating the consistency of our parameter-
ization and the applicability of the PDD model to warmer
climate scenarios. Within the limitations discussed, we sug-
gest that an appropriately parameterized PDD model can be
a valuable tool for exploring Antarctic surface melt beyond
the satellite era.

1 Introduction

Surface melting is common and well-studied over the Green-
land Ice Sheet (GrIS; e.g. Mernild et al., 2011; Colosio et al.,
2021; Sellevold and Vizcaino, 2021) and is known to play an
important role in ice sheet net mass balance and changes in
global mean sea level (GMSL), both now and in the past (e.g.
Ryan et al., 2019). It is likely to become even more important
in the future. Antarctica is currently much colder than Green-
land. Antarctic ice shelves have shown a statistically signifi-
cant negative trend in annual melt days (Banwell et al., 2023)
and no significant increase in melt amount in East Antarctica
in the past 40 years (Stokes et al., 2022). However, climate
projections have suggested that surface melt will increase
in the current century (e.g. Trusel et al., 2015; Kittel et al.,
2021; Stokes et al., 2022) – both in terms of area and vol-
ume of melting (Trusel et al., 2015; Lee et al., 2017). Stud-
ies have suggested that Antarctic surface melt can impact ice
sheet mass balance through surface thinning and runoff that
can increase ice shelf vulnerability, as meltwater can pond,
drain and further contribute to the structural weakness of ice
shelves (Glasser and Scambos, 2008; Bell et al., 2018; Stokes
et al., 2022). However, the roles of surface meltwater produc-
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tion in relation to ice shelf hydrofracture, surface rivers act-
ing as buffers and ice shelf surface hydrology are currently
less understood for Antarctica than Greenland (Bell et al.,
2018). This is concerning as surface melting will likely be-
come an increasingly important player in the Antarctic envi-
ronment through this century and the next. Surface melting
will not only impact the dynamics of the ice shelves and ice
sheet through meltwater production (e.g. Bell et al., 2018)
but will also impact the habitat of the Antarctic biodiversity
(Lee et al., 2017).

Continental-scale spaceborne observations of surface melt
are limited to the satellite era (1979–present), meaning that
current estimates of Antarctic surface melt are typically de-
rived from surface energy balance (SEB) or positive degree-
day (PDD) models. SEB models are employed in regional
climate models such as the Regional Atmospheric Climate
MOdel (RACMO; Van Wessem et al., 2018) and Modèle
Atmosphérique Régional (MAR; Agosta et al., 2019). PDD
models are employed in ice sheet models such as the SImula-
tion COde for POLythermal Ice Sheets (SICOPOLIS; Now-
icki et al., 2013), Ice Sheet System Model (ISSM; Larour
et al., 2012) and Parallel Ice Sheet Model (PISM Winkel-
mann et al., 2011). SEB models require diverse and detailed
input data that are not always available and require consider-
able computational resources. The PDD model, by compari-
son, has fewer input and computational requirements and is
therefore better suited for exploring surface melt scenarios in
the past and future. PDD models calculate surface melt based
on the temperature–melt relationship (Hock, 2005). A typical
PDD model has two parameters: (1) the threshold tempera-
ture (T0), which controls the decision of melt or no-melt and
(2) the degree-day factor (DDF), which controls meltwater
production.

Although PDD models are empirical, they are often suf-
ficient for estimating melt on the catchment scale (Hock,
2003, 2005) because of their two physical bases: (a) the ma-
jority of the heat required for snow and ice melt is primar-
ily a function of near-surface air temperature and (b) the
near-surface air temperature is correlated with longwave at-
mospheric radiation, shortwave radiation and sensible heat
fluxes (Ohmura, 2001). Wake and Marshall (2015) suggest
that Antarctic surface melt can be estimated solely from
monthly temperature.

However, as the DDF is related to all terms of the
SEB (Hock, 2005), a robust PDD model needs to incor-
porate DDFs that vary spatially and temporally (e.g. Hock,
2003, 2005; van den Broeke et al., 2010), not simply a uni-
form value that covers a wide region. This is because of the
variability in energy partitioning, which is affected by the
different climate, seasons and surfaces (Hock, 2003). Spa-
tial and temporal variability in DDF can result from topo-
graphic variation, such as the gradient of elevation, which
affects albedo and direct input solar radiation (Hock, 2003),
and seasonal variations in radiation. Spatial and temporal pa-

rameterization of DDF (model calibration), as well as model
verification, therefore need to be considered.

Although PDD schemes have been used in many Antarc-
tic numerical ice sheet models (e.g. Winkelmann et al., 2011;
Larour et al., 2012) as empirical approximations to compute
the ice ablation for the computation of surface mass balance
and in several studies for exploring surface melt in Antarc-
tica, particularly in the Antarctic Peninsula (e.g. Golledge
et al., 2010; Barrand et al., 2013; Costi et al., 2018), the spa-
tial variability in PDD parameters is rarely considered. More-
over, compared to PDD model approaches developed (e.g.
Reeh, 1991; Braithwaite, 1995) and improved (Fausto et al.,
2011; Wilton et al., 2017) for Greenland over many decades,
such assessments for the PDD approach for the Antarctic
domain are limited, and a spatially parameterized Antarctic
PDD model has not yet been achieved.

In this study, we focus on constructing a computationally
efficient cell-level (spatially variable) PDD model to esti-
mate surface melt in Antarctica through the past 4 decades,
by statistically optimizing the parameters of the PDD model
individually in each computing cell. We use the European
Centre for Medium-Range Weather Forecasts Reanalysis v5
(ECMWF ERA5; Hersbach et al., 2023a, b) 2 m air tem-
perature as input and compare the simulated presence of
melt to satellite estimates of melt days from three satellite
products and the Regional Atmospheric Climate Model ver-
sion 2.3p2 (RACMO2.3p2; Van Wessem et al., 2018) sur-
face melt amount simulations. We also use the same data and
method to parameterize a spatially uniform PDD model. We
then examine the distributions of melt days and melt amount
from PDD outputs against satellite melt day estimates and
RACMO2.3p2 melt amount simulations respectively. Fol-
lowing this, we perform a three-fold cross-validation, to-
gether with sensitivity experiments to evaluate our parame-
terization method and the PDD model.

2 Data

2.1 Reanalysis data

The dataset we use in this study is the ECMWF ERA5 reanal-
ysis (Hersbach et al., 2023b) (Table 1). It has hourly data for
three-dimensional (pressure level) atmospheric fields (Hers-
bach et al., 2023a) and on a single level for the atmosphere
and land surface (Hersbach et al., 2023b). It replaced the
previous ECMWF reanalysis product ERA-Interim in 2019
(Hersbach et al., 2020), and has become the new state-of-
the-art ECMWF reanalysis product for global and Antarctic
weather and climate (Hersbach et al., 2020; Gossart et al.,
2019).

The particular ERA5 product we use in this study is the
hourly 2 m air temperature data, which have been evaluated
and used previously for studies in Antarctica (e.g. Gossart
et al., 2019; Tetzner et al., 2019; Zhu et al., 2021). As-
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Table 1. Table of data that we use in this study.

Data type Time period Spatial resolution Temporal resolution Reference

ERA5 reanalysisa 1979–2021 0.25◦× 0.25 ◦ long/lat Hourly Hersbach et al. (2023b)
Zwally Antarctic drainage basin – 1000 m – Zwally et al. (2012)
Satellite SMMR and SSM/Ib 1979–2021 25 km× 25 km Daily Picard and Fily (2006)
Satellite AMSR-Ec 2002–2011 12.5 km× 12.5 km Daily Picard et al. (2007)
Satellite AMSR-2c 2012–2021 12.5 km× 12.5 km Daily This study
RACMO2.3p2d 1979–2021 27 km× 27 km Monthly Van Wessem et al. (2018)

a The 2 m air temperature data are on single level (Hersbach et al., 2023b). b Satellite local acquisition times over Antarctica are around 06:00 and 18:00. c Satellite
local acquisition times over Antarctica are around 00:00 (descending) and 12:00 (ascending). d RACMO2.3p2 surface melt simulations.

sessments have shown that ERA5 near-surface (or 2 m) air
temperature data are a robust tool for exploring the Antarc-
tic climate (e.g. Gossart et al., 2019; Zhu et al., 2021).
ERA5 performs better at representing near-surface temper-
ature than its predecessors, the Climate Forecast System Re-
analysis (CFSR), and the Modern-Era Retrospective Anal-
ysis for Research and Applications, version 2 (MERRA-2;
Gossart et al., 2019). It is continuously being updated and is
one of the most state-of-the-art reanalysis datasets available.
However, compared to 48 automatic weather station (AWS)
observations, it is reported to have a cold bias over the entire
continent apart from the winter months (June–July–August;
Zhu et al., 2021). This cold bias is reported at 0.34 ◦C an-
nually and at 1.06 ◦C during December–January–February
(DJF; Zhu et al., 2021).

2.2 Satellite data

The number of melt days retrieved from the satellite ob-
servations is used to parameterize the threshold tempera-
ture (T0) for the PDD model. We use the 42-year daily
(once every 2 d before 1988) satellite Antarctic surface melt
dataset produced by Picard and Fily (2006) (Table 1). The
dataset contains daily estimates as a binary of melt or no-melt
on a 25 km× 25 km southern polar stereographic grid. The
dataset is obtained by applying the melt detecting algorithm
(Torinesi et al., 2003; Picard and Fily, 2006) to detect the
presence of surface liquid water on the Scanning Multichan-
nel Microwave Radiometer (SMMR) and three Special Sen-
sor Microwave Imager (SSM/I) observed passive-microwave
data from the National Snow and Ice Data Center (NSIDC;
Picard and Fily, 2006). SMMR and SSM/I sensors are carried
by sun-synchronous orbit satellites observing Earth at least
twice per day (Picard and Fily, 2006). For Antarctica, the lo-
cal acquisition times are around 06:00 and 18:00. The bright-
ness temperature is the daily average of all the passes (those
around 06:00 and those around 18:00). There is a reported
data gap longer than 1 month during the period from De-
cember 1987 to January 1988 (Torinesi et al., 2003; Johnson
et al., 2022), and we find additional missing data during the
prolonged summer (from November to March) in 1986/1987
(13 d), 1987/1988 (44 d), 1988/1989 (8 d) and 1991/1992

(9 d), which are significantly longer than the length of the
missing data period of the remaining 38 years (0 or 1 d,
Fig. A1 in Appendix A). We therefore omit those periods
from our comparison to the satellite estimates.

We also use a more recently developed satellite melt day
dataset which uses a similar algorithm as Torinesi et al.
(2003) and Picard and Fily (2006) used for the Advanced
Microwave Scanning Radiometer on the Earth Observation
Satellite (AMSR-E) and the Advanced Microwave Scanning
Radiometer 2 (AMSR-2) observed passive-microwave data
from the Japan Aerospace Exploration Agency (JAXA, Ta-
ble 1). This dataset is on a 12.5 km× 12.5 km southern po-
lar stereographic grid. It has twice-daily observations over
Antarctica covering 2002 to 2011 (AMSR-E) and 2012 to
2021 (AMSR-2, Table 1). These sensors have a local acqui-
sition time over Antarctica of around 00:00 (descending) and
12:00 (ascending).

2.3 Regional climate model SEB output

To parameterize the DDF for the PDD model, we compare
our ERA5 forced numerical experiments to the Antarctic
surface melt simulations from RACMO2.3p2 (Van Wessem
et al., 2018). RACMO2.3p2 simulates Antarctic surface melt
by solving the SEB model which is defined as (Van Wessem
et al., 2018):

QM = SW↓+SW↑+LW↓+LW↑+SHF+LHF+Gs, (1)

whereQM is the energy available for melting, SW↓ and SW↑
are the downward and upward shortwave radiative fluxes,
LW↓ and LW↑ are the downward and upward longwave ra-
diative fluxes, SHF and LHF are the sensible and latent tur-
bulent heat fluxes and Gs is the subsurface conductive heat
flux (Van Wessem et al., 2018).

RACMO2.3p2 Antarctic surface melt simulations used
here cover the time period from January 1979 to
February 2021 with monthly temporal resolution and
27 km× 27 km spatial resolution (Table 1).
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Figure 1. The research domain and 27 Antarctic drainage basins
(Zwally et al., 2012) used in this study.

2.4 Interpolation and research domain

The spatially coarsest dataset used in this study is the ERA5
reanalysis data, which are in 0.25◦ longitude× 0.25◦ lati-
tude geographic coordinates (Table 1). For consistency with
the other data we analyse, we use the southern polar stereo-
graphic coordinates instead of the geographic coordinates.
We use the Climate Data Operators (CDO; Schulzweida,
2021) to bilinearly remap ERA5 reanalysis data from
longitude–latitude geographic coordinates to NSIDC Sea
Ice Polar Stereographic South Projected Coordinate System
(NSIDC, 2022) (hereafter “polar stereographic grid”). We
use a spatial resolution of 30 km, minimizing the number of
missing pixels and maximizing the resolution. For consis-
tency, we also use CDO to remap all data products used in
this study (Table 1) to the same 30 km× 30 km polar stereo-
graphic grid. The research domain is shown in Fig. 1.

3 Methods

3.1 PDD model

Using an empirical relationship between air temperature and
melt, temperature index models are the most commonly used
method for assessing surface melt of ice and snow due to
their simplicity as they are only meteorologically forced by
the air temperature (Hock, 2005). Not only does the simplic-
ity of the approach enable fast run times and require low
computational resources, but the air temperature input data
are also much easier to obtain than the full inputs (e.g. ra-

diation fluxes, temperature, wind speed, humidity, ice/snow
density and surface roughness (van den Broeke et al., 2010))
required by the SEB model. If appropriately parameterized,
the temperature index approach offers accurate performance
(Ohmura, 2001) and provides a robust surface melt represen-
tation. However, because of the temperature dependency, the
robustness of the temperature index approach is therefore at-
tributed to the temperature–melt correlation.

The PDD model calculates the water equivalent of surface
snow melt (M , mmw.e.). It integrates the near-surface air
temperatures above a predefined threshold, which are multi-
plied by the empirical DDF (mmw.e. ◦C−1 d−1; e.g. Hock,
2005). The adjusted PDD model we use in this study can be
written as

day∑
i=1

M =
1
24

DDF
day∑
i=1

24∑
j=1

T ?

T ? =

{
T − T0 if T − T0 > 0

0 otherwise
, (2)

where T is the hourly temperature and T0 is the threshold
temperature.

3.2 Model parameterization

3.2.1 Threshold temperature T0

To parameterize the threshold temperature (T0) for our PDD
model, we firstly focus on the binary melt/no-melt signal. We
use the ERA5 2 m air temperature data to force the model and
run 151 numerical experiments for T0 ranging from−10.0 to
+5.0 ◦C with a 0.1 ◦C interval. We define a melt day (MD?)
as a day in which the daily input of the ERA5 2 m air tem-
perature (T ) exceeds T0. Note that T is either the daily mean
of 06:00 and 18:00 or the daily mean of 00:00 and 12:00 de-
pending on the satellite estimates we compare (detailed in the
paragraph below). In each T0 experiment, we calculate the to-
tal number of melt days from 1 April of that year to 31 March
of the following year as the “annual number of melt days”.
The modified Eq. (2) can be written as

Annual number of melt days=
t2∑
i=t1

MD?

t1 = 1 April Year
t2 = 31 March (Year+ 1)

MD? =
{

1 if T − T0 > 0
0 otherwise

. (3)

Because the satellite melt day product of SMMR and SS-
M/I (Table 1) is retrieved from the local acquisition times at
around 06:00 and 18:00, we compute the mean of 06:00 and
18:00 ERA5 2 m air temperature data for the input T for the
PDD model (Eq. 3). For the satellite product from AMSR-E
and AMSR-2 (Table 1), we compute the mean of 00:00 and
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12:00 ERA5 2 m air temperature data as of their local acqui-
sition times. Next, we calculate the result of Eq. (3) for each
T0 experiment.

In order to obtain the optimal T0, we calculate the root
mean square error (RMSE) between the time series of the
annual number of melt days for the satellite estimates and
the model experiments in the overlapping years. As we treat
each computing cell individually, all calculations are carried
out on each cell independently in each iteration (T0 exper-
iment). Although these three satellite products have differ-
ent time periods (Table 1), we assume their comparability as
these satellite products are derived from the same algorithm
and threshold (Picard and Fily, 2006). Therefore, we calcu-
late the mean of RMSE between three satellite estimates for
each cell. Finally, we define the optimal T0 of each comput-
ing cell, where the T0 experiment has the minimal RMSE.
If there are multiple T0 experiments that have same mini-
mal RMSE for their computing cell, we calculate the mean
of those T0 as the optimal T0 (this only happens on the cells
that have very few melt days).

3.2.2 Degree-day factor, DDF

The DDF is a scaling parameter that controls the meltwa-
ter production and is related to all terms of the SEB (Hock,
2005). To parameterize the DDF for our PDD model, we sub-
stitute the optimal T0 found in Sect. 3.2.1 into the Eq. (2),
and run a series of numerical experiments forced by the
hourly ERA5 2 m air temperature data: we firstly set the
DDF to 1 mmw.e. ◦C−1 d−1; then we iterate 291 times with
0.1 mmw.e. ◦C−1 d−1 increments.

In order to determine the optimal DDF, we repeat the cal-
culations for the RMSE between the annual melt amount cal-
culated in each DDF experiment and the melt amount from
RACMO2.3p2 simulations for each computing cell. Simi-
larly, we define the optimal DDF where the experiment has
the minimal RMSE for each computing cell. If there are mul-
tiple DDF experiments that have the same minimal RMSE
for their computing cell, we calculate the mean of these DDF
as the optimal DDF (this only happened for the cells with
very low melt amounts).

3.3 Model evaluation

3.3.1 Goodness-of-fit testing

Limited by the duration of the satellite era and reanaly-
sis data, the time series of annual data for each computing
cell is no larger than 45 years with non-normality. We use
the two-sample Kolmogorov–Smirnov test (hereafter, two-
sample KS test) to evaluate the dissimilarity between the
PDD results and RACMO2.3p2 melt volume outputs at a
confidence level of 5 %. We define a “same distribution cell”
as a cell with no statistically significant evidence from the
two-sample KS test for the rejection of the null hypothesis

Figure 2. Schematic overview of the time periods for each CV fold-
ers and the HIGH/LOW sensitivity experiments. Panel (a) is for
satellite estimates and PDD melt day calculations. Panel (b) is for
RACMO2.3p2 simulations and PDD melt amount calculations.

(that the two samples are from the same continuous distribu-
tion).

3.3.2 K-fold cross-validation

We consider the spatial variability in PDD parameters by
parameterizating the model in each computing cell for the
whole time period. However, this does not allow us to explore
the variability in the PDD parameters in a temporal sense, as
Ismail et al. (2023) suggest that the temporal variability in
DDF should also be considered. Due to the short period of
the satellite-era and the scarcity of in situ Antarctic surface
melt data (Gossart et al., 2019), our PDD model is param-
eterized and evaluated using the same dataset covering the
past 4 decades.

To therefore assess the temporal dependency of the
PDD parameters, we perform an adjusted three-fold cross-
validation (hereafter 3-fold CV). The satellite melt occur-
rence estimates used in this study cover 38 years (four years
have been omitted). Therefore, we sequentially divide the
satellite estimates into two 13-year folds and one 12-year
fold (Fig. 2a and Table 2). Note that in Sect. 3.2.1, we cal-
culate the RMSE between the PDD and three satellite esti-
mates in their overlapping period respectively and calculate
the mean of these three RMSE. However, the second fold has
actually only 7 years of overlap between the SMMR and SS-
M/I sensors and the AMSR-E sensor. Here, we firstly calcu-
late the mean of satellite estimates between their overlapping
periods prior to the 3-fold CV and then we perform the 3-fold
CV. The 3-fold CV has three independent members. In Mem-
ber 1, we take the first and second fold to parameterize the
PDD model and test the model on the third fold. In Member
2, we take the first and third fold to parameterize the PDD
model and test the model on the second fold. In Member 3,
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Table 2. Periods of training and testing folds for the T0 and DDF three-fold cross-validation respectively.

Member Training fold Testing fold

T0 CONTROL 1979/1980–2020/2021a –
T0 Member 1 1979/1980–2008/2009a 2009/2010–2020/2021
T0 Member 2 1979/1980–1995/1996a and 2009/2010–2020/2021 1996/1997–2008/2009
T0 Member 3 1996/1997–2020/2021 1979/1980–1995/1996a

DDF CONTROL 1979/1980–2019/2020 –
DDF Member 1 1979/1980–2006/2007 2007/2008–2019/2020
DDF Member 2 1979/1980–1992/1993 and 2007/2008–2019/2020 1993/1994–2006/2007
DDF Member 3 1993/1994–2019/2020 1979/1980–1992/1993

a periods of 1986/1987 to 1988/1989 and 1991/1992 are omitted.

we take the second and third fold to parameterize the PDD
model and test the model on the first fold. Similarly, we re-
peat the calculations for RACMO2.3p2 surface melt amount
but the folds are divided into two 14-year folds and one 13-
year fold (Fig. 2b and Table 2).

3.3.3 Sensitivity experiments

Although RACMO2.3p2 is suggested to be one of the best
models for reconstructing Antarctic climate, a cold bias of
−0.51 K for the near-surface temperatures is also reported
(Mottram et al., 2021). However, it is unclear how much this
cold bias influences the output of RACMO2.3p2 snowmelt
simulations, at least on the spatial scale. Satellite estimates
are more direct products for Antarctic surface melt. How-
ever, biases in satellite products are likely due to the incon-
sistency in the characteristics of satellite sensors caused by
frequent equipment replacements, which occurred four times
in the period 1979–2005 (Picard and Fily, 2006; Picard et al.,
2007).

To explore the sensitivity of PDD parameters and model
outputs to biases in both the satellite and RACMO2.3p2
products, we perform two sensitivity experiments. In the first
sensitivity experiment, we explore the response of T0 and the
PDD melt day and cumulative melting surface (CMS) out-
puts to perturbations in satellite estimates. The CMS, also
known as a melt index (e.g. Trusel et al., 2012), is calcu-
lated by multiplying the cell area (km2) by the total annual
melt days (d) in that same cell (Trusel et al., 2012). We in-
crease/decrease (HIGH/LOW run) satellite CMS estimates
by 10 % (Fig. 2a) for each grid cell; then we repeat the T0
parameterization as described in Sect. 3.2.1 respectively. In
the second sensitivity experiment, we explore the sensitiv-
ity of the DDF and the PDD melt amount outputs to per-
turbations in RACMO2.3p2 melt estimates. We increase/de-
crease (HIGH/LOW run) RACMO2.3p2 melt estimates by
10 % (Fig. 2b) for each grid cell; we then repeat the DDF pa-
rameterization as described in Sect. 3.2.2 respectively. Note
that in the context of the sensitivity experiments, our opti-

mal parameterization of T0 and DDF in Sect. 3.2.1 and 3.2.2
constitutes our CONTROL run.

To assess the applicability of our PDD model in sim-
ulating melt under warmer climate scenarios, we conduct
temperature–melt sensitivity experiments. To do this, we add
constant temperature perturbations of +1, +2, +3, +4 and
+5 ◦C to the whole 43-year (1979/1980 to 2021/2022) ERA5
2 m air temperature field to force our PDD model.

4 Results and discussion

4.1 Optimal PDD parameters

Figure 3a shows the spatial distribution of the optimal T0
values selected through 151 T0 experiments conducted on
each computing cell based on the minimal RMSE criterion.
The mean of all optimal T0 is −2.32 ◦C. The majority of
cells have a negative T0, indicating that using T0 = 0 ◦C as a
melt threshold may substantially underestimate melt events,
a finding consistent with other work (Jakobs et al., 2020).

The probability distribution of T0 across all grid cells is
approximately normal (Fig. 3c). There is a small number of
cells distributed below −5.5 ◦C, which is around 1.96 stan-
dard deviations lower than the mean (−5.57 ◦C, Fig. 3c). We
highlight these lower-end tail cells in yellow in Fig. 3a. These
cells are mainly distributed in two areas. One is the interior
boundary of the satellite observational area (Fig. A2 in Ap-
pendix A) over the drainage basins (e.g. Basin 1, 9, 21 and
22), which is not surprising as the optimal T0 values there
might not be significant given the non-statistically signifi-
cant (p ≥ 0.05) temperature–melt correlation over those cells
(Fig. B1 in Appendix B). The other area is the central Amery
Ice Shelf (Fig. 3a). We speculate that this feature may be re-
lated to the presence of local rocks (e.g. Fricker et al., 2021;
Spergel et al., 2021) or it could be a result of frequent surface
melt events over the central Amery Ice Shelf (as suggested by
the low T0 value), which are likely to have a low intensity (as
indicated by the low DDF value).

Figure 3b shows the spatial map of the optimal DDFs
identified for each computing cell. We show that a large
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Figure 3. (a) The optimal T0 (◦C) of each computing cell. (b) The optimal DDF (mmw.e.◦C−1 d−1) for each computing cell. (c) Probability
histogram of the optimal T0 (◦C). Red curve is the fitted normal distribution. Vertical dashed red line is the mean of T0 for all computing
cells. Dotted blue line is the median of T0 for all computing cells. (d) Probability histogram for the optimal DDF (mmw.e.◦C−1 d−1). Red
curve is the fitted exponential distribution. Vertical dashed red line is the mean of DDF for all computing cells. Dotted blue line is the median
of DDF for all computing cells.

number of DDFs with relatively low magnitude (from 1 to
4.5 mmw.e. ◦C−1 d−1, coloured light yellow) are distributed
over ice shelves other than the Ross Ice Shelf and Filchner–
Ronne Ice Shelf (Fig. 3b). We highlight DDFs larger than
15.5 mmw.e. ◦C−1 d−1 in red in Fig. 3b. Although the mag-
nitude of the DDF over the cells located in the west Ross
Ice Shelf and south-east Filchner–Ronne Ice Shelf may ex-
ceed the upper boundary (30 mmw.e. ◦C−1 d−1) of our DDF
experiments that we heuristically defined in Sect. 3.2.2, we
do not expand the upper boundary of the DDF or perform
more DDF experiments. This is because (1) the temperature–
melt correlations over those cells are not statistically sig-
nificant (p ≥ 0.05, Fig. B1), and therefore the PDD model
which is based on the temperature–melt relationship for these
cells may not be significant; (2) the total number of these
cells is less than 5 % of the total number of the computing
cells (Fig. 3d); (3) surface melting in these cells is negligi-
ble under present-day conditions and even remains negligi-
ble in RCP8.5 2100 future projection (Trusel et al., 2015);
(4) these parameters are empirically defined by minimiz-

ing the RMSE between PDD experiments and satellite esti-
mates/RACMO2.3p2 simulations, which means the optimal
parameters are likely less robust over cells where melt is rare.
Figure 3d summarizes the statistics of DDFs. The probability
distribution of the DDFs is asymmetrical and strongly right-
skewed (Fig. 3d).

We also use the same method and data to parameterize a
spatially uniform PDD (hereafter, “uni-PDD”) model (one
T0 and DDF for all computing cells, Appendix C). For con-
venience, we name the grid-cell-level spatially distributed
PDD “dist-PDD”. The optimal T0 for uni-PDD is −2.6 ◦C
and the optimal DDF is 1.9 mmw.e. ◦C−1 d−1 (Fig. C1 in
Appendix C).

4.2 Model evaluation

4.2.1 Goodness-of-fit

We evaluate the parameterized dist-PDD and uni-PDD model
outputs (melt day and melt amount) for each computing cell
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by testing the statistical significance of the similarity be-
tween the satellite estimates or RACMO2.3p2 simulations
and the dist-PDD/uni-PDD model-derived empirical distri-
bution functions. Figure 4 shows the two-sample KS test re-
sults for each computing cell. The dist-PDD model improves
the proportion of cells with the same distribution of melt days
and melt amount from 60.04 %/65.94 % to 86.07 %/71.16 %
respectively compared to the uni-PDD model. Overall, the
dist-PDD model shows good agreement with the satellite es-
timates and RACMO2.3p2 simulations in estimating both the
annual total of melt days and melt amount (Fig. 4c and d).
Our dist-PDD model is particularly well suited for estimating
surface melt over the ice shelves in the Antarctic Peninsula,
while cells located in other ice shelves, such as the Filchner–
Ronne Ice Shelf, ice shelves in Dronning Maud Land, Amery
Ice Shelf and Ross Ice Shelf, do not perform as well for both
the surface melt days and amount (Fig. 4c and d). It is es-
pecially encouraging that the PDD model performs well in
the Antarctic Peninsula given the fact that it is the region of
Antarctica experiencing most intense surface melting both at
the present (Trusel et al., 2013; Johnson et al., 2022) and in
future projections (Trusel et al., 2015).

Next, we evaluate the parameterized dist-PDD/uni-PDD
model outputs for the whole of Antarctica. Firstly, we
evaluate the parameterized optimal T0 and its related dist-
PDD/uni-PDD outputs on the surface melt day. To do this,
we calculate the CMS (d km2) for satellite estimates and dist-
PDD/uni-PDD outputs respectively. We show that in Fig. 5a
that the dist-PDD and satellite CMS time series are generally
in good agreement regarding both the amplitude and the tem-
poral variability, apart from a small number of years includ-
ing from 1979/1980 to 1982/1983, the year 2014/2015, the
year 2016/2017 and the year 2019/2020. Although there is a
dist-PDD underestimation of CMS for the first decade (1980
to 1990), the CMS of dist-PDD at the end of the 38-year
period is in good agreement with the CMS of satellite esti-
mates (−3.06 % PDD CMS underestimation compared to the
satellite CMS, Fig. 5b). The positive correlation between the
satellite CMS and the dist-PDD CMS is strongly statistically
significant (Spearman’s ρ = 0.5203, p < 0.01, Table 3). The
probability histogram for biases between the dist-PDD and
satellite CMS also indicates good agreement between the
dist-PDD and satellite CMS (Fig. D1 in Appendix D). The
biases are distributed symmetrically around the mean, which
is approximated to zero (Fig. D1).

Globally, we show that the accuracy of the PDD models in
estimating the surface melt days has improved from the uni-
PDD model to the dist-PDD model (Table 3 and Fig. 5), and
the dist-PDD model has the ability to capture the main spatial
patterns of surface melt days when compared to the satellite
estimates for a majority of the computing cells (Fig. 5). The
computing cells that have relatively large disagreement be-
tween the mean annual melt days of dist-PDD outputs and
of satellite estimates are mainly located over the ice shelves
in the Antarctic Peninsula (∼−2.5 to−22.5 d), over the Ab-

bot Ice Shelf (∼−5.5 to −12.5 d over the marine edge and
∼+2.5 to +7.5 d over the interior) and over the Shackleton
Ice Shelf (∼+7.5 to +12.5 d). However, these cells, with
large absolute differences, experience frequent surface melt
(Fig. D2a and d in Appendix D), meaning that the relative
differences in melt are low (Fig. D2g). In addition, these
cells only amount to around 5 % of the total computing cells
(Fig. D1b), and overall for all computing cells, the mean of
the average differences between the dist-PDD and satellite
annual melt days is approximately zero (−0.12 d, Fig. D1b).
It is not surprising that the dist-PDD model captures the main
spatial patterns of melt given the statistically significant posi-
tive correlation between surface melt and 2 m air temperature
in most of the Antarctic ice shelf and coastal cells used in the
calculations (Fig. B1).

The computing cells that have relatively large absolute dif-
ferences in SD are mainly located over the Wilkins Ice Shelf
(∼+4.5 to+13.5 d) and over the south of Larsen C Ice Shelf
(∼−7.5 to −10.5 d). Similar to the cells that have relatively
large absolute differences in their means, the relative differ-
ences are low (Fig. D2h) and these cells amount only to a
negligible proportion (less than 5 %) of the total number of
the computing cells (Fig. D1b). However, around 20 % of
the computing cells have −1 to −3 d SD biases (Fig. D1b),
spatially distributed widely over the eastern Ross Ice Shelf,
West Antarctica drainage basins 18 and 19, the Abbot Ice
Shelf, ice shelves in Dronning Maud Land and the Amery Ice
Shelf (Fig. 5h). The biases in trend are not symmetrical about
zero, both shown by the dominant area of red colour (all
ice shelves in the Antarctic Peninsula, almost all ice shelves
in Dronning Maud Land and nearly the whole Amery Ice
Shelf) to blue (some computing cells over the Wilkes Land)
in Fig. 5i and a slightly right-skewed probability histogram of
trend biases with a positive mean (+0.04 dyr−1, Fig. D1c).

Secondly, we evaluate the parameterized optimal DDF and
the simulated surface melt amount. Similar to the negative bi-
ases between the dist-PDD and the satellite estimates for the
CMS for the period from 1979/1980 to 1982/1983 (Fig. 5a),
the negative biases of dist-PDD against RACMO2.3p2 are
also present when compared to the annual melt amount
for 1982/1983 (Fig. 6a). The abnormally extensive melt in
1982/1983 has been reported by previous studies (Zwally and
Fiegles, 1994; Liu et al., 2006; Johnson et al., 2022). It is sug-
gested to be driven by the Southern Annular Mode (SAM)
because of an inverse relationship between the number of
melt days in Dronning Maud Land and the southward migra-
tion of the southern westerly winds (Johnson et al., 2022).
The disagreement of the dist-PDD model for this extensive
melt event is most likely explained by the absence of any sub-
stantial temperature anomaly in the ERA5 2 m temperature
input (Fig. E1 in Appendix E) because of the temperature
dependency of the PDD model (Eq. 2) and the temperature–
melt relationship (Fig. B1). It could also partly be explained
by the fact that the dist-PDD parameters were defined based
on fitting multi-decadal time series between dist-PDD exper-
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Figure 4. The two-sample KS test results. The two-sample KS tests are performed individually for each of the 4515 computing cells. The
test result “Same” means the tested cell is a “same distribution cell” where there is no statistically significant evidence for the rejection of
the null hypothesis that the testing two samples are from the same continuous distribution (Sect. 3.3.1). Otherwise, the cell is a “different
distribution cell” (“Different”). Panels (c) and (a): the two-sample KS test results for testing the annual number of melt days between the
satellite estimates and the dist-PDD/uni-PDD model outputs. Panels (d) and (b): the two-sample KS test results for testing the annual melt
amount between RACMO2.3p2 simulations and the dist-PDD/uni-PDD model outputs.

Table 3. Summary of the statistics for Fig. 5c. The Spearman’s ρ and P value for dist-PDD/uni-PDD CMS with the satellite CMS. Slope,
R2, RMSE and P value for the ordinary least squares (OLS) fit between dist-PDD/uni-PDD CMS and satellite CMS. Note that the satellite
estimates from 2002/2003 to 2010/2011 are the average the SMMR and SSM/I sensors and the AMSR-E sensor. The satellite estimates from
2012/2013 to 2020/2021 are the average the SMMR and SSM/I sensors and the AMSR-2 sensor. All the statistics are calculated over the
period from 1979/1980 to 2020/2021 (with 1986/1987 to 1988/1989 and 1991/1992 omitted).

Member Spearman’s ρ P value OLS slope R2 RMSE (d km2) P value

uni-PDD v.s. satellite 0.4881 P < 0.05 0.3421 0.208 4.09× 106 P < 0.05
dist-PDD v.s. satellite 0.5203 P < 0.01 0.3004 0.229 3.38× 106 P < 0.05

iments and satellite/RACMO2.3p2 (Sect. 3.2.1 and 3.2.2),
meaning that some inter-/intra-annual signals may not be
fully captured.

Apart from the 1982/1983 event, other negative biases
from dist-PDD are also evident in the period from 1991/1992
to 1992/1993 (Fig. 6a). However, we cannot compare this
dist-PDD melt amount bias period to the dist-PDD CMS
bias as the year 1991/1992 is omitted for the entire anal-
ysis related to the satellite estimates due to the miss-

ing satellite data. Excluding these periods, the time se-
ries of annual melt amount of the dist-PDD outputs and
RACMO2.3p2 simulations are generally in good agreement,
especially after 1992/1993, when the two curves start to
overlap (Fig. 6a), while the dist-PDD-satellite CMS val-
ues show some disagreement (e.g. 1995/1996, 1999/2000,
2014/2015, 2016/2017 and 2019/2020, Fig. 5a). It is also ev-
ident from the statistically significant strong positive corre-
lation (Spearman’s ρ = 0.8052, p < 0.01, Table 4) that the
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Figure 5. (a) Time series for the cumulative melting surface (CMS; d km2) for satellite estimates during the period from 1979/1980 to
2020/2021 (with 1986/1987 to 1988/1989 and 1991/1992 omitted), and for dist-PDD/uni-PDD outputs during the period from 1979/1980 to
2021/2022. (b) CMS for satellite estimates and dist-PDD/uni-PDD outputs from 1979/1980 to 2020/2021 (with 1986/1987 to 1988/1989 and
1991/1992 omitted). (c) scatter plot and ordinary least squares (OLS) fit between satellite CMS and dist-PDD/uni-PDD CMS. Panels (d) to
(i): absolute differences between mean, standard deviation (SD) and trend of dist-PDD/uni-PDD outputs and satellite estimates of the annual
melt days. Mean, SD and trend for the dist-PDD/uni-PDD outputs and satellite estimates are calculated over the period from 1979/1980 to
2020/2021 (with 1986/1987 to 1988/1989 and 1991/1992 omitted) respectively. Note that for all panels the satellite estimates from 2002/2003
to 2010/2011 are the average of the SMMR and SSM/I sensors and the AMSR-E sensor. The satellite estimates from 2012/2013 to 2020/2021
are the average of the SMMR and SSM/I sensors and the AMSR-2 sensor.

Table 4. Summary of the statistics for Fig. 6c. The Spearman’s ρ and P value for dist-PDD/uni-PDD melt amount with the RACMO2.3p2
melt amount. Slope, R2, RMSE and P value for the ordinary least squares (OLS) fit between dist-PDD/uni-PDD melt amount and
RACMO2.3p2 melt amount. All the statistics are calculated over the period from 1979/1980 to 2019/2020.

Member Spearman’s ρ P value OLS slope R2 RMSE (mm w.e.) P value

uni-PDD v.s. RACMO2.3p2 0.7052 P < 0.01 0.9416 0.091 2.16× 104 P < 0.01
dist-PDD v.s. RACMO2.3p2 0.8052 P < 0.01 0.5307 0.55 1.42× 104 P < 0.01
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Figure 6. (a) Time series for the annual melt amount (mm w.e.) for RACMO2.3p2 simulations during the period from 1979/1980 to
2019/2020 and for dist-PDD/uni-PDD outputs during the period from 1979/1980 to 2021/2022. (b) Cumulative annual melt amount for
RACMO2.3p2 simulations and dist-PDD/uni-PDD outputs from 1979/1980 to 2019/2020. (c) Scatter plot and ordinary least squares (OLS)
fit between satellite annual melt amount and dist-PDD/uni-PDD annual melt amount. Panels (d) to (i): absolute differences between mean,
standard deviation (SD) and trend of dist-PDD/uni-PDD outputs and RACMO2.3p2 simulations on the annual melt amount. Mean, SD and
trend for the dist-PDD/uni-PDD outputs and satellite estimates are calculated over the period from 1979/1980 to 2019/2020 respectively.

dist-PDD is in good agreement with RACMO2.3p2 annual
melt amount. However, the probability histogram of dist-
PDD melt biases is slightly left-skewed with a negative mean
(−0.08× 105 mm w.e., Fig. D3 in Appendix D) and the dist-
PDD model underestimates around 9.81 % for the 41-year
integrated annual melt amount compared to RACMO2.3p2
(Fig. 6b). Nevertheless, this underestimation of the 41-year
integrated annual melt amount does not change through the
past 4 decades, as we show that in Fig. 6b, the two curves
differ in the first decade (i.e. the gap between the two curves
is increasing from ∼ 1980 to ∼ 1990) and become paral-
lel for the following 3 decades. Although the 41-year inte-

grated annual melt amounts for 2019/2020 between uni-PDD
and RACMO2.3p2 show very good agreement (−0.79 %, as
shown in Fig. 6b), the two cumulative curves are not parallel.
The uni-PDD curve diverges from the RACMO2.3p2 curve
for around 15 years and then converges to RACMO2.3p2 for
the rest of the time period (as shown in Fig. 6b). This indi-
cates that the uni-PDD model is not sufficiently flexible to
accurately estimate surface melt amount.

Figure 6d to i show the spatial maps for the difference
between the mean, SD and trend of the dist-PDD/uni-PDD
annual melt amount and RACMO2.3p2 mean annual melt
amount for the period from 1979/1980 to 2019/2020. The
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spatial maps for the mean, SD and trend of the dist-PDD/uni-
PDD annual melt amount and RACMO2.3p2 mean annual
melt amount for the same period are shown in Fig. D4 in
Appendix D. Consistent with the PDD melt day estimates,
using the dist-PDD model improves the accuracy of surface
melt amount estimation compared to using spatially uniform
PDD parameters. As shown in Fig. 6g, h and i, the differ-
ences over most of the computing cells are equal to or close
to zero, which is similar to the spatial difference maps be-
tween the dist-PDD outputs and satellite estimates shown in
Fig. 5g, h and i. This indicates that the dist-PDD model has
the ability to capture the main spatial patterns of both the sur-
face melt days and amount, when compared to the satellite
estimates and RACMO2.3p2 simulations, for the majority of
the computing cells. Less than 5 % of the total number of all
computing cells are 15 mm w.e. below or above the bias in
the mean (Fig. 6g). These cells are distributed over the west-
ern Antarctic Peninsula, ice shelves in Dronning Maud Land
and the Amery Ice Shelf. For the disagreement in SD, around
10 % of the total number of the computing cells are biased by
−5 to −15 mm w.e. (Fig. 6h). The computing cells that have
relatively large disagreement in SD are spatially distributed
over the Antarctic Peninsula, ice shelves in eastern Dronning
Maud Land, the Amery Ice Shelf and ice shelves in west-
ern Wilkes Land (Fig. 6h). The bias in trends between the
dist-PDD and RACMO2.3p2 annual melt amount is similar
to the bias in trends between the dist-PDD and satellite an-
nual melt days, as they both have the same positive spatial
bias patterns (Antarctic Peninsula, Dronning Maud Land and
Amery Ice Shelf, Figs. 5i and 6i) and similar right-skewed
probability histograms with positive means (Figs. D1c and
D3c). This could be explained by other players driving sur-
face melting, such as the SAM (Torinesi et al., 2003; Tedesco
and Monaghan, 2009; Johnson et al., 2022), which explains
∼ 11 %–36 % of the melt day variability (Johnson et al.,
2022). However, these biases in trends are a reflection of the
trend of the input temperature (Fig. D5 in Appendix D) be-
cause of the correlation between air temperature and surface
melt (Fig. B1). The disagreement in trends, therefore, is actu-
ally between the satellite/RACMO2.3p2 and ERA5 2 m tem-
perature, rather than between the satellite/RACMO2.3p2 and
the dist-PDD model itself.

4.2.2 Temporal dependency of the dist-PDD
parameters

To evaluate our dist-PDD model in a temporal sense, we per-
form 3-fold CV for T0 and DDF (as described in Sect. 3.3.2)
respectively.

Figure 7 shows the results of the 3-fold CV on T0 and DDF.
We show that in Fig. 7a to f that there are changes in the
value of T0 and DDF for a dominant number of the com-
puting cells, depending on the time window (i.e. the training
fold) we choose to parameterize the dist-PDD model. Espe-
cially for the DDF members, we show conspicuous changes

in the values of the DDFs in the computing cells over the
western and southern Ross Ice Shelf, the Filchner–Ronne Ice
Shelf and coastal basins 2 and 3 (Fig. 7d, e and f), which in-
dicates that a large temporal variability in dist-PDD parame-
ters may exist. However, this indication may not be reliable
for the western and southern Ross Ice Shelf and coastal basin
2, given that there is no statistically significant evidence for
the temperature–melt relationship (Fig. B1).

Although we show parameter changes associated with
the time windows for the dominant number of the com-
puting cells, these changes diminish when we look at the
whole population of the parameters in each member (Fig. 7g
to l). It is evident that the probability histogram of the
optimal parameters and the probability histogram of each
member’s parameters are closely comparable, with negligi-
ble differences between means (excluding DDF Member 2
where the differences between means is relatively larger:
+0.8 mmw.e. ◦C−1 d−1, Fig. 7k).

Next, we evaluate each member’s parameters on the test-
ing fold. Firstly, we calculate the CMS/annual melt amount
for the time windows of the testing folds from the dist-PDD
models that are parameterized by the training folds for each
T0 and DDF members respectively. Overall, the curves of
each member are comparable and overlapping with the CON-
TROL (Fig. 7m to r), indicating the temporal consistency of
our dist-PDD model and the ability of our dist-PDD model
in estimating the Antarctic-wide surface melt in terms of the
melt occurrence (CMS) and the melt totals (amount) is in-
dependent of the time windows chosen for the parameteriza-
tion. Although the parameters in each computing cells vary
through the parameterization time window, the overall per-
formance of the dist-PDD model for all the computing cells
as a whole is generally consistent.

Secondly, we calculate the Spearman’s ρ and its statisti-
cal significance for the testing fold between each member
and the CONTROL (Fig. 7s to x). Apart from T0 Mem-
ber 1, we show that each member’s dist-PDD estimates are
significantly (ρ ≥ 0.99, p ≤ 0.05) correlated with the CON-
TROL dist-PDD estimates (Fig. 7t to x). However, this is
not surprising given the comparable probability distributions
of parameters and the indistinguishable cumulative curves
between each member’s dist-PDD and the CONTROL dist-
PDD (Fig. 7g to r). The estimates of T0 Member 1 dist-PDD
estimates and dist-PDD CONTROL are strongly correlated
with the training fold (black dots in Fig. 7s), which is not sur-
prising as T0 Member 1 dist-PDD is parameterized by those
dist-PDD CONTROL estimates. Estimates of T0 Member 1
dist-PDD and dist-PDD CONTROL are not significantly cor-
related (ρ = 0.19, p ≥ 0.05) with the testing fold (red dots,
Fig. 7s).

To further explore this disagreement in the testing fold,
we plot the time series of CMS for satellite estimates, CON-
TROL estimates and T0 Member 1 estimates in Fig. F1 in
Appendix F. We find that T0 Member 1 estimates in the test-
ing fold are likely not unrealistic values. Instead, they are in
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Figure 7. Panels (a) to (f): differences between the T0/DDF parameterized in each member of the T0/DDF 3-fold CV and the optimal T0/DDF
respectively. Panels (g) to (l): probability distributions for the T0/DDF of each T0/DDF 3-fold CV and the optimal T0/DDF respectively. Ver-
tical black lines indicate the mean of optimal T0s/DDFs. Vertical dotted red lines indicate the mean of T0/DDF for each member respectively.
Panels (m) to (r): CMS/annual melt amount for satellite estimates/RACMO2.3p2 simulations, CONTROL (which is the PDD model run with
optimal T0 and DDF) and each member for the period of the testing fold respectively. We calculate the difference in CMS/annual melt amount
between each member and the CONTROL, at the end of the testing fold respectively. Panels (s) to (x): scatter plots for the CMS/annual melt
amount of each 3-fold CV member against the CONTROL respectively. The Spearman’s ρ and its statistical significance, as well and the
slope, RMSE and average bias for the OLS fit, for the testing fold between each member and the CONTROL are calculated respectively. This
analysis is based on dist-PDD.

good agreement with the satellite estimates over the testing
fold period, as the time series of satellite CMS and Mem-
ber 1 CMS almost overlap. Therefore the disagreement be-
tween T0 Member 1 estimates and the CONTROL estimates
over the testing fold period might explain the disagreement
between the satellite estimates and CONTROL estimates as
the time series of satellite CMS and Member 1 CMS almost
overlap. Although the abilities of Member 1 T0 and optimal
T0 in capturing the cumulative satellite estimates are robust
and indistinguishable (Fig. 7m), the agreement between the
time series of Member 1 T0 and satellite CMS may suggest
that T0 parameterized by the Member 1 training fold (which
is the period from 1979/1980 to 2008/2009 with 1986/1987–
1988/1989 and 1991/1992 omitted) are more robust in cap-
turing the inter-annual variability in the satellite estimates
(for the period from 2009/2010 to 2020/2021) than the opti-

mal T0 that is parameterized by the full 38-year period. How-
ever, the data sample used to parameterize the Member 1 T0
is only two-thirds the full data length used to estimate the
optimal T0, giving us less confidence in the reliability of the
Member 1 T0s for the full 38-year period.

4.2.3 Sensitivity experiments and implementation in
future predictions

Figure 8 shows the result from our sensitivity experiments.
We show changes in the dist-PDD parameters associated
with the increase (HIGH run, +10 % magnitude of the satel-
lite/RACMO2.3p2 data) and decrease (LOW run, −10 %
magnitude of the satellite/RACMO2.3p2 data) in the satel-
lite estimates and RACMO2.3p2 simulations (Fig. 8a to
d). It is expected that T0 decreases/increases with the in-
crease/decrease in the satellite estimates because a decrease
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in the threshold temperature is expected to increase the oc-
currence of temperatures above the threshold to produce
more melt days, and vice versa. The increase/decrease in
RACMO2.3p2 simulations leads to an increase/decrease on
the DDFs, which is also expected because T0 is predefined
for the DDF parameterization; thus the sum of the degrees
above T0 becomes invariant. Therefore, as a scaling number,
the DDF is expected to increase to amplify the sum of the de-
grees above T0 to match the increase in RACMO2.3p2 melt
amount simulations, and vice versa.

Figure 8e shows that the dist-PDD model is less sensi-
tive to the low melt scenario than the satellite estimates as
the dist-PDD estimates only decrease by 9.78 % for the inte-
grated 38-year CMS, while the satellite estimates decrease
by 10 %. Although the dist-PDD model is more sensitive
to the high melt scenario than the satellite estimates, where
we show that dist-PDD increases by 10.84 % in the 38-year
integrated CMS with the 10 % increase in the satellite esti-
mates, this increase in dist-PDD estimates is linear with re-
spect to the increase in satellite estimates and is of the same
proportion (Fig. 8e). For the sensitivity experiments on the
DDF, we show that the dist-PDD model is less sensitive than
RACMO2.3p2 in both the HIGH and LOW melt scenarios.
Taken together, the sensitivity of the dist-PDD model is lin-
ear (the correlations do not change much across different sen-
sitivity experiments, Fig. 8f and h) and by the same order of
magnitude to both the satellite estimates and RACMO2.3p2
simulations, suggesting that our parameterization method is
consistent with both the high and low melt scenarios.

Figure 9 shows the results from our temperature–melt sen-
sitivity experiments. We show a nonlinear increase in our
dist-PDD estimates of Antarctic surface melt totals as the
temperature perturbation gradually rises from +0 to +5 ◦C.
It is not surprising that both the mean and standard devia-
tion increase, given the anticipated nonlinear growth in melt
volume resulting from the expansion of both the melt area
and amount. The nonlinearity of temperature–melt sensitiv-
ity of our dist-PDD model is consistent with the nonlinear-
ity temperature–melt relationship that is reported by other
studies (Trusel et al., 2015; Bell et al., 2018; Banwell et al.,
2023), further implying the applicability of our dist-PDD
model to warmer climate scenarios.

4.3 Limitations of the PDD model

The PDD model has the notable advantage of high compu-
tational efficiency due to its one-dimensional nature and be-
ing solely forced by 2 m air temperature. However, in real-
ity the 2 m air temperature is not the sole driver of Antarctic
surface melting (Fig. B1). A primary limitation of the PDD
model is systematically introduced by the temperature de-
pendency, making it difficult to accurately estimate surface
melt strengthened/weakened or triggered by other compo-
nents of the surface energy budget that may accompany kata-
batic winds (Lenaerts et al., 2017) and climatic phenomena

such as the SAM (e.g. Tedesco and Monaghan, 2009; John-
son et al., 2022), El Niño–Southern Oscillation (Tedesco and
Monaghan, 2009; Scott et al., 2019), Föhn winds (e.g. Turton
et al., 2020), atmospheric rivers (Wille et al., 2019), sea ice
concentrations (Scott et al., 2019), or proximity to dark sur-
faces such as bare rock (Kingslake et al., 2017). Although we
combine observations and model simulations to robustly es-
tablish our dist-PDD parameterization and consider the spa-
tial variability in model parameters, the dist-PDD model can-
not fully replicate a few of the extensive melt events captured
by satellites and RACMO2.3p2 (Figs. 5a and 6a).

In addition, the model simply multiplies a scaling num-
ber (DDF) by the summation of temperature above a certain
threshold (T0). It lacks the ability to simulate or account for
other physical mechanisms such as meltwater ponding, per-
colation through the snowpack, refreezing and so on. As the
model is parameterized and calibrated by satellite- and SEB-
derived estimates, it is also limited by the various assump-
tions and shortcomings inherent in these methods. Although
we perform a number of cross-validation and sensitivity ex-
periments, due to the scarcity of surface melt data from in
situ measurements (Gossart et al., 2019), our dist-PDD out-
put has yet to be confirmed by other datasets.

5 Conclusions

We have constructed a PDD model with spatially varying pa-
rameters (dist-PDD) and with spatially uniform parameters
(uni-PDD) based on the temperature–melt relationship (e.g.
Hock, 2005; Trusel et al., 2015) and used them to estimate
surface melt in Antarctica through the past 4 decades. We
parameterized the dist-PDD and uni-PDD models by running
numerical experiments on each individual computing cell to
iterate over various combinations of the threshold tempera-
ture and the DDF (Sect. 3.2). We individually selected an op-
timal parameter combination by locating the minimal RMSE
between the dist-PDD/uni-PDD and satellite estimates and
SEB simulations, for every computing cell(s). We indepen-
dently performed two-sample KS tests on each computing
cell in order to assess the goodness-of-fit for the parameter-
ized dist-PDD and uni-PDD models. We also temporally and
spatially compared the dist-PDD/uni-PDD estimations, satel-
lite estimates and RACMO2.3p2 simulations to evaluate the
parameterized dist-PDD/uni-PDD model. We found that our
dist-PDD model improves the accuracy of Antarctic surface
melt estimates compared to the uni-PDD setting and has the
ability to capture the main spatial and temporal features for a
majority of cells in Antarctica under a range of melt regimes
(Sect. 4.2.1).

As the parameters were parameterized spatially, the dist-
PDD is overall in good agreement with the spatial patterns
shown by the satellite and RACMO2.3p2 data, with the ex-
ception of an underestimation of melt days and amounts in
the ice shelves of the western Antarctic Peninsula and an
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Figure 8. Panels (a) and (b): difference between T0 parameterized in the HIGH/LOW experiment and the CONTROL (optimal) T0. Panels
(c) and (d): spatial maps for the difference between the DDF parameterized in the HIGH/LOW experiment and the CONTROL (optimal)
DDF. Panels (e) and (g): CMS/annual melt amount for the satellite estimates/RACMO2.3p2 simulations and dist-PDD outputs. Note that
the period for (e) is from 1979/1980 to 2020/2021 (with 1986/1987 to 1988/1989 and 1991/1992 omitted). The period for (g) is from
1979/1980 to 2019/2020. The upper and lower boundaries of the semi-transparent shaded areas indicate the HIGH/LOW satellite estimates
and the HIGH/LOW dist-PDD outputs. The percentage difference annotated in the bottom-left corner is calculated between the HIGH-
/LOW and the CONTROL for each variable (by “variable”, we mean satellite melt occurrence data/dist-PDD melt occurrence and amount
data/RACMO2.3p2 melt amount data) respectively. Panels (f) and (h): scatter plots and the Spearman’s ρ (with its statistical significance)
for dist-PDD outputs and satellite/RACMO2.3p2, from each sensitivity experiment (HIGH, LOW and CONTROL). This analysis is based
on dist-PDD.

Figure 9. (a) Scatter plot between annual mean 2 m air temperature (T2m) and Antarctic annual melt totals for each temperature–melt
sensitivity experiment for the period from 1979/1980 to 2021/2022. (b) Boxplot of Antarctic annual melt totals for each temperature–melt
sensitivity experiment for the period from 1979/1980 to 2021/2022.
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overestimation of melt days on Shackleton Ice Shelf and of
melt amount on Amery Ice Shelf. The most inadequate es-
timation was in 1982/1983, for which we found large dist-
PDD underestimation of both the melt days and amount.
We suggest that this underestimation corresponds to SAM-
influenced climatic conditions and that the dist-PDD lacks
the ability to accurately capture melt if it arises from effects
such as Föhn winds that are not reflected in the input ERA5
2 m air temperature fields used to force the calculations (e.g.
Turton et al., 2020).

These limitations aside, we found overall high fidelity
of the dist-PDD model, as suggested by the 3-fold CV.
Although the dist-PDD parameters vary on the cell level
through the different time window chosen for parameteri-
zation, the probability distribution for all computing cells
changes negligibly and the overall performance of the dist-
PDD model when considering all computing cells is consis-
tent. From the sensitivity experiments, we found the changes
in the dist-PDD estimates are comparable to the changes in
training data (satellite and RACMO2.3p2 data). The correla-
tions between the dist-PDD estimates and training data ex-
hibit stability regardless of the changes in the training data.

The dist-PDD model not only relatively accurately esti-
mates surface melt in Antarctica compared with the satellite
estimates and more sophisticated SEB model; it is also highly
computationally efficient. These advantages may allow us to
use the dist-PDD model to explore Antarctic surface melt in
a longer-term context into the future and over periods of the
geological past for which neither satellite observations nor
SEB components are available. This efficiency also allows
our model to be employed at a far higher spatial resolution
than regional climate models. However, due to the systemat-
ical limitations of the PDD model and the scarcity of Antarc-
tic surface melt data available (Gossart et al., 2019), more
work is needed, such as model evaluation by independent
melt data and discussions of approximations to the physical
processes (e.g. refreezing) taking place after surface melting.
Nevertheless, PDD models have been used in many numeri-
cal ice sheet models for the empirical approximation of sur-
face mass balance computations due to their unique advan-
tages in terms of their simple temperature dependency and
computational efficiency. We propose that our spatially pa-
rameterized implementation extends the utility of the PDD
approach and, when parameterized appropriately, can pro-
vide a valuable tool for exploring surface melt in Antarctica
in the past, present and future.

Appendix A: Satellite data

The number of melt days and the area of surface melt can be
detected using microwave brightness temperature data since
1979 (e.g. Torinesi et al., 2003; Picard and Fily, 2006). The
theoretical basis of this approach is that changes between
dry and wet snow can be distinguished by the upwelling

microwave brightness temperature change (Chang and Glo-
ersen, 1975). When dry snow is melting, the meltwater at the
surface significantly changes the dielectric properties of the
surface by increasing absorption and increasing microwave
emission (Chang and Gloersen, 1975; Zwally and Fiegles,
1994). By applying an empirical threshold with an appropri-
ate surface melt detecting algorithm (Torinesi et al., 2003),
the number of melt days and the spatial extent of surface
melt can be detected (e.g. Torinesi et al., 2003; Picard and
Fily, 2006). This satellite observational approach has been
developed and used for Antarctic surface melt investigations
(e.g. Picard and Fily, 2006; Johnson et al., 2022), showing
it as a valuable and powerful tool that can be used to study
and understand the surface melt frequency in Antarctica on
both continental and regional scales (Johnson et al., 2022).
However, this approach does not allow for melt volume to be
retrieved.
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Figure A1. Daily percentage of missing data for satellite estimates. Satellite SMMR and SSM/I cover the period from 1 April 1979 to
31 March 2021. Satellite AMSR-E covers the period from 1 April 2002 to 31 March 2011. Satellite AMSR-2 covers the period from
1 April 2012 to 31 December 2021.

Figure A2. (a) Mask of the satellite SMMR and SSM/I observational area. (b) Mask of the satellite AMSR (AMSR-E and AMSR-2)
observational area. Both masks are bilinearly remapped to the 30 km× 30 km polar stereographic grid.
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Appendix B: Temperature–melt relationship

The positive relationship between 2 m air temperature and
surface melt on Antarctic ice shelves (Trusel et al., 2015) al-
lows us to use temperature to empirically estimate Antarctic
surface melt via the PDD model. To assess this positive re-
lationship, we calculate the Spearman’s rank correlation be-
tween the mean summer (DJF) ERA5 2 m air temperature
and RACMO2.3p2 annual surface melt amount for the pe-
riod from 1979/1980 to 2019/2020. Figure 3 indicates that
most of the cells in Antarctic ice shelves and drainage basin
coastal zones, apart from the Ross Ice Shelf or nearby basins
(17, 18 and 19), have statistically significant (p < 0.05) pos-
itive correlations. Although the interior basins 19, 20 and
21 show negative correlations without statistical significance
(p ≥ 0.05), the annual melt there is negligible compared to
the ice shelves and coastal areas. Overall, the correlation map
shows a result consistent with Trusel et al. (2015): Antarctic
ice-shelf near-surface temperature and surface melt are posi-
tively correlated, which allows us to empirically construct a
temperature index model to explore surface melt in Antarc-
tica, especially in Antarctic ice shelves.

Figure B1. Correlation map between the mean DJF ERA5 2 m air
temperature and RACMO2.3p2 annual surface melt amount for the
period from 1979/1980 to 2019/2020. It is calculated by the Spear-
man’s rank correlation coefficient on each cell. Black dots mark the
cells where the correlations are statistically significant (p < 0.05).
Grey cells are either outside our research area (as shown in Fig. 1)
or did not ever melt during the period.
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Appendix C: Spatially uniform PDD model

Figure C1. (a) Dotted red curve is the average of the RMSE across all satellites along each uni-PDD T0 experiment. In each uni-PDD T0
experiment, we calculate the RMSE between the time series of the annual sum of melt days over all computing cells between the uni-PDD
model and each satellite estimate. Blue envelope covers the span of the three individual satellite results. Vertical dashed black line marks the
optimal uni-PDD T0 suggested by the minimal RMSE. (b) Red curve is the RMSE along each uni-PDD DDF experiment. In each uni-PDD
DDF experiment, we calculate the RMSE between the time series of the annual sum of melt amount over all computing cells between the
uni-PDD model and RACMO2.3p2. Vertical dashed black line marks the optimal uni-PDD DDF suggested by the minimal RMSE.

Appendix D: PDD model evaluation

Figure D1. Panel (a): probability histogram for the biases between the dist-PDD and satellite CMS. Vertical dashed red line indicates the
mean of all biases. Panels (b) and (c): probability histograms for the biases between the dist-PDD outputs and satellite estimates of mean,
SD and trend. Vertical dashed red line indicates the mean of all biases between means. Vertical blue line indicates the mean of all biases
between SDs. Vertical dashed black line indicates the mean of all biases between trends. Note that for all panels the satellite estimates from
2002/2003 to 2010/2011 are the average the SMMR and SSM/I sensors and the AMSR-E sensor. The satellite estimates from 2012/2013 to
2020/2021 are the average the SMMR and SSM/I sensors and the AMSR-2 sensor.
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Figure D2. Panels (a) to (f): mean, SD and trend of dist-PDD/satellite melt days for the period 1979/1980 to 2020/2021 respectively. Panels
(g) to (i): relative difference between dist-PDD and satellite melt day mean, SD and trend for the period 1979/1980 to 2020/2021 respectively.
Note that for all panels the satellite estimates from 2002/2003 to 2010/2011 are the average the SMMR and SSM/I sensors and the AMSR-E
sensor. The satellite estimates from 2012/2013 to 2020/2021 are the average the SMMR and SSM/I sensors and the AMSR-2 sensor. For all
panels, the periods 1986/1987, 1987/1988, 1988/1989 and 1991/1992 are omitted.
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Figure D3. Panel (a): probability histogram for the biases between the dist-PDD and RACMO2.3p2 melt amounts. Vertical dashed red line
indicates the mean of all biases. Panels (b) and (c): probability histograms for the biases between the dist-PDD outputs and RACMO2.3p2
simulations on mean, SD and trend. Vertical dashed red line indicates the mean of all biases between means. Vertical blue line indicates the
mean of all biases between SDs. Vertical dashed black line indicates the mean of all biases between trends.
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Figure D4. Panels (a) to (f): mean, SD and trend of dist-PDD/RACMO2.3p2 melt amounts for the period 1979/1980 to 2019/2020 respec-
tively. Panels (g) to (i): relative difference between dist-PDD and RACMO2.3p2 melt amount mean, SD and trend for the period 1979/1980
to 2019/2020 respectively.
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Figure D5. Trend of the mean DJF ERA5 2 m air temperature
on each computing cell during the period 1979/1980–2019/2020.
Black dots mark the trends that are statistically significant (p <
0.05).

Appendix E: 1982/1983 event

Figure E1d and e suggest that there is a positive surface
melt anomaly in the ice shelves around Amundsen Sea,
Ross Ice Shelf, Amery Ice Shelf and ice shelves in Dron-
ning Maud Land during the period 1982/1983. However, our
dist-PDD model does not capture this event (Fig. E1a and
b). Our dist-PDD model shows significant negative bias in
both surface melt days and amounts compared to satellite
estimates and RACMO2.3p2 simulations for this 1982/1983
event (Fig. E1g and h).

Both ERA5 and RACMO2.3p2 exhibit similar spatial pat-
terns for the 1982/1983 DJF 2 m air temperature anomaly
(Fig. E1c and f). Although RACMO2.3p2 is forced by ERA5
2 m air temperature, its 2 m air temperature is consistently
warmer than that of ERA5 during the 1982/1983 DJF period.
This is particularly noticeable in the computing cells over the
ice shelves around the Amundsen Sea, Ross Ice Shelf, Amery
Ice Shelf and Dronning Maud Land, where we show that
significant negative biases for dist-PDD surface melt days
and amounts compared to satellite and RACMO2.3p2. These
cells also align with the cells where negative ERA5 2 m air
temperature biases towards RACMO2.3p2 are found.

We then assess the goodness-of-fit of the dist-PDD model
after removing the 1982/1983 period for dist-PDD, satellite
and RACMO2.3p2. The exclusion of the 1982/1983 period
significantly improves the accuracy of the dist-PDD model
in comparison to satellite and RACMO2.3p2 (Fig. E2). Al-
though there is a slight negative bias of dist-PDD (exclud-
ing 1982/1983) CMS compared to satellite data (exclud-
ing 1982/1983) in the first decade, the two CMS curves
converge after approximately the first decade and almost
overlap for the rest of the time period (Fig. E2a). Simi-

larly, the cumulative melt curves for dist-PDD (excluding
1982/1983) and RACMO2.3p2 (excluding 1982/1983) show
a slight divergence in the first decade but remain parallel
for the rest of the time period (Fig. E2b). By the end of
the integration period, the relative difference between dist-
PDD and satellite CMS decreased from−3.06 % to−0.73 %
(Fig. E2a), while the relative difference between dist-PDD
and RACMO2.3p2 melt amounts decreased from −9.81 %
to −7.52 % (Fig. E2b). These improvements are consistent
across correlations and OLS linear regression analyses, as
shown in Table E1, indicating the enhanced performance of
the dist-PDD model in estimating both surface melt days and
amounts compared to satellite and RACMO2.3p2 after ex-
cluding the 1982/1983 period.

On the basis of this additional experimentation, we are
able to confidently conclude that our model is accurate for
the vast majority of the time series and that any previously
apparent bias was almost entirely due to the anomalous con-
ditions of a single year.
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Figure E1. Panels (a) and (d): 1982/1983 dist-PDD/satellite melt day anomaly to the dist-PDD/satellite mean melt day over the period
1979/1980–2020/2021 (with 1982/1983, 1986/1987, 1987/1988, 1988/1989 and 1991/1992 omitted). Panel (g): absolute differences be-
tween 1982/1983 dist-PDD and satellite melt day. Panels (b) and (e): 1982/1983 dist-PDD/RACMO2.3p2 melt amount anomaly to the dist-
PDD/RACMO2.3p2 mean melt amount over the period 1979/1980–2019/2020 (with 1982/1983 omitted). Panel (h): absolute differences
between 1982/1983 dist-PDD and RACMO2.3p2 melt amount. Panels (c) and (f): 1982/1983 DJF ERA5/RACMO2.3p2 2 m air temperature
anomaly to the DJF ERA5/RACMO2.3p2 mean 2 m air temperature over the period 1979/1980–2019/2020 (with 1982/1983 omitted). Panel
(i): absolute differences between 1982/1983 DJF EAR5 and RACMO2.3p2 2 m air temperature. Note that for all panels the satellite estimates
from 2002/2003 to 2010/2011 are the average the SMMR and SSM/I sensors and the AMSR-E sensor. The satellite estimates from 2012/2013
to 2020/2021 are the average the SMMR and SSM/I sensors and the AMSR-2 sensor.
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Figure E2. (a) CMS for satellite estimates and dist-PDD/dist-PDD (1982/1983 omitted) outputs from 1979/1980 to 2020/2021 (with
1986/1987 to 1988/1989 and 1991/1992 omitted. (b) Cumulative annual melt amount for RACMO2.3p2 simulations and dist-PDD/dist-
PDD (1982/1983 omitted) outputs from 1979/1980 to 2019/2020.

Table E1. The Spearman’s ρ and P value for dist-PDD/dist-PDD (1982/1983 omitted) CMS/melt amounts with the satellite CM-
S/RACMO2.3p2 melt amounts. Slope, R2, RMSE and P value for the ordinary least squares (OLS) fit between dist-PDD/dist-PDD
(1982/1983 omitted) CMS/melt amounts and satellite CMS/RACMO2.3p2 melt amounts. Note that the satellite estimates from 2002/2003 to
2010/2011 are the average the SMMR and SSM/I sensors and the AMSR-E sensor. The satellite estimates from 2012/2013 to 2020/2021 are
the average the SMMR and SSM/I sensors and the AMSR-2 sensor. All the dist-PDD with satellite statistics are calculated over the period
from 1979/1980 to 2020/2021 (with 1986/1987 to 1988/1989 and 1991/1992 omitted). All the dist-PDD with RACMO2.3p2 statistics are
calculated over the period from 1979/1980 to 2019/2020.

Member Spearman’s ρ P value OLS slope R2 RMSE (d km2 or mm w.e.−1) P value

dist-PDD v.s. satellite 0.5203 P < 0.01 0.3004 0.229 3.38× 106 P < 0.01
dist-PDD∗ v.s. satellite∗ 0.5778 P < 0.01 0.3894 0.325 3.19× 106 P < 0.01

dist-PDD v.s. RACMO2.3p2 0.8052 P < 0.01 0.5307 0.55 1.42× 104 P < 0.01
dist-PDD∗ v.s. RACMO2.3p2∗ 0.8486 P < 0.01 0.6582 0.712 1.15× 104 P < 0.01

∗ 1982/1983 is omitted.

Appendix F: 3-fold CV T0 Member 1

Figure F1. Panels (a) and (b) are same as Fig. 7m and s. (c) Time series of the CMS for satellite estimates, CONTROL and Member 1 during
the testing fold period.
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https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al., 2023a) and
https://doi.org/10.24381/cds.bd0915c6 (Hersbach et al., 2023b).
The Zwally Antarctic drainage basin (Zwally et al., 2012) data
are available from http://imbie.org/imbie-3/drainage-basins/ (last
access: 30 August 2023) and https://earth.gsfc.nasa.gov/cryo/
data/polar-altimetry/antarctic-and-greenland-drainage-systems
(last access: 18 July 2023). The satellite SMMR and SSM/I
sensor and the AMSR-E and AMSR-2 sensor products are avail-
able from https://doi.org/10.18709/perscido.2022.09.ds376
(Picard, 2022). RACMO2.3p2 data are available from
https://doi.org/10.5281/zenodo.7845736 (van Wessem et al.,
2023). The annual dist-PDD and uni-PDD models data from
this study are available at https://doi.org/10.5281/zenodo.7131459
(Zheng et al., 2023). Data with higher temporal resolution (monthly,
daily, and hourly) for dist-PDD and uni-PDD models from this
study can be obtained by contacting yaowen.zheng@vuw.ac.nz.
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Wellington’s high-performance computing system). We would like
to acknowledge the editor, Brice Noël, and the referees, Christoph
Kittel and Devon Dunmire.

Financial support. Yaowen Zheng and Nicholas R. Golledge are
supported by the Royal Society of New Zealand (award no. RDF-
VUW1501). Nicholas R. Golledge and Alexandra Gossart are sup-
ported by the Ministry for Business Innovation and Employment
(grant no. ANTA1801; “Antarctic Science Platform”). Nicholas R.
Golledge received support from the Ministry for Business Innova-
tion and Employment (grant no. RTUV1705; “NZSeaRise”).

Review statement. This paper was edited by Brice Noël and re-
viewed by Christoph Kittel and Devon Dunmire.

References

Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H.,
van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., van
de Berg, W. J., and Fettweis, X.: Estimation of the Antarctic sur-
face mass balance using the regional climate model MAR (1979–
2015) and identification of dominant processes, The Cryosphere,
13, 281–296, https://doi.org/10.5194/tc-13-281-2019, 2019.

Banwell, A. F., Wever, N., Dunmire, D., and Picard, G.:
Quantifying Antarctic-Wide Ice-Shelf Surface Melt Vol-
ume Using Microwave and Firn Model Data: 1980
to 2021, Geophys. Res. Lett., 50, e2023GL102744,
https://doi.org/10.1029/2023GL102744, 2023.

Barrand, N. E., Vaughan, D. G., Steiner, N., Tedesco, M.,
Kuipers Munneke, P., Van Den Broeke, M. R., and Hosking, J. S.:
Trends in Antarctic Peninsula surface melting conditions from
observations and regional climate modeling, J. Geophys. Res.-
Earth, 118, 315–330, 2013.

Bell, R. E., Banwell, A. F., Trusel, L. D., and Kingslake, J.: Antarc-
tic surface hydrology and impacts on ice-sheet mass balance,
Nat. Clim. Change, 8, 1044–1052, 2018.

Braithwaite, R. J.: Positive degree-day factors for ablation on the
Greenland ice sheet studied by energy-balance modelling, J.
Glaciol., 41, 153–160, 1995.

Chang, T. and Gloersen, P.: Microwave emission from dry and wet
snow, in: Operational Applications of Satellite Snowcover Ob-
servations: The Proceedings of a Workshop Held August 18–20,
1975 at the Waystation, South Lake Tahoe, California, edited by:
Rango, A., Aeronautics, U. S. N., Administration, S., and Uni-
versity of Nevada, R., NASA SP, Scientific and Technical Infor-
mation Office, National Aeronautics and Space Administration,
https://ntrs.nasa.gov/citations/19760009500 (last access: 30 Au-
gust 2023), 1975.

Colosio, P., Tedesco, M., Ranzi, R., and Fettweis, X.: Surface melt-
ing over the Greenland ice sheet derived from enhanced reso-
lution passive microwave brightness temperatures (1979–2019),
The Cryosphere, 15, 2623–2646, https://doi.org/10.5194/tc-15-
2623-2021, 2021.

Costi, J., Arigony-Neto, J., Braun, M., Mavlyudov, B., Barrand,
N. E., Da Silva, A. B., Marques, W. C., and Simoes, J. C.: Esti-
mating surface melt and runoff on the Antarctic Peninsula using
ERA-Interim reanalysis data, Antarct. Sci., 30, 379–393, 2018.

Fausto, R. S., Ahlstrøm, A. P., Van As, D., and Steffen, K.: Present-
day temperature standard deviation parameterization for Green-
land, J. Glaciol., 57, 1181–1183, 2011.

Fricker, H. A., Arndt, P., Brunt, K. M., Datta, R. T., Fair, Z.,
Jasinski, M. F., Kingslake, J., Magruder, L. A., Moussavi, M.,
Pope, A., Spergel, J. J., Stoll, J. D., and Wouters, B.: ICESat-
2 meltwater depth estimates: application to surface melt on
Amery Ice Shelf, East Antarctica, Geophys. Res. Lett., 48,
e2020GL090550, https://doi.org/10.1029/2020GL090550, 2021.

Glasser, N. and Scambos, T. A.: A structural glaciological analysis
of the 2002 Larsen B ice-shelf collapse, J. Glaciol., 54, 3–16,
2008.

Golledge, N. R., Everest, J. D., Bradwell, T., and Johnson, J. S.:
Lichenometry on adelaide island, antarctic peninsula: size-
frequency studies, growth rates and snowpatches, Geogr. Ann.
A, 92, 111–124, 2010.

Gossart, A., Helsen, S., Lenaerts, J., Broucke, S. V., Van Lipzig, N.,
and Souverijns, N.: An evaluation of surface climatology in state-

The Cryosphere, 17, 3667–3694, 2023 https://doi.org/10.5194/tc-17-3667-2023

https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.bd0915c6
http://imbie.org/imbie-3/drainage-basins/
https://earth.gsfc.nasa.gov/cryo/data/polar-altimetry/antarctic-and-greenland-drainage-systems
https://earth.gsfc.nasa.gov/cryo/data/polar-altimetry/antarctic-and-greenland-drainage-systems
https://doi.org/10.18709/perscido.2022.09.ds376
https://doi.org/10.5281/zenodo.7845736
https://doi.org/10.5281/zenodo.7131459
https://doi.org/10.5194/tc-13-281-2019
https://doi.org/10.1029/2023GL102744
https://ntrs.nasa.gov/citations/19760009500
https://doi.org/10.5194/tc-15-2623-2021
https://doi.org/10.5194/tc-15-2623-2021
https://doi.org/10.1029/2020GL090550


Y. Zheng et al.: PDD model for estimating surface melt in Antarctica from 1979 to 2022 3693

of-the-art reanalyses over the Antarctic Ice Sheet, J. Climate, 32,
6899–6915, 2019.

Hersbach H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G.,
Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D.,
Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming,
J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S.,
Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P.,
Lopez, P., Lupu, C., Radnoti, G., Rosnay, P. D., Rozum, I., Vam-
borg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global re-
analysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, 2020.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum,
I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut,
J.-N.: ERA5 hourly data on single levels from 1940 to present,
Copernicus Climate Change Service (C3S) Climate Data Store
(CDS) [data set], https://doi.org/10.24381/cds.adbb2d47 (last ac-
cess: 30 August 2023), 2023a.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-
N.: ERA5 hourly data on pressure levels from 1940 to present,
Copernicus Climate Change Service (C3S) Climate Data Store
(CDS) [data set], https://doi.org/10.24381/cds.bd0915c6 (last ac-
cess: 30 August 2023), 2023b.

Hock, R.: Temperature index melt modelling in mountain areas, J.
Hydrol., 282, 104–115, 2003.

Hock, R.: Glacier melt: a review of processes and their modelling,
Prog. Phys. Geog., 29, 362–391, 2005.

Ismail, M. F., Bogacki, W., Disse, M., Schäfer, M., and
Kirschbauer, L.: Estimating degree-day factors of snow based
on energy flux components, The Cryosphere, 17, 211–231,
https://doi.org/10.5194/tc-17-211-2023, 2023.

Jakobs, C. L., Reijmer, C. H., Smeets, C. P., Trusel, L. D., Van
De Berg, W. J., Van Den Broeke, M. R., and Van Wessem, J. M.:
A benchmark dataset of in situ Antarctic surface melt rates and
energy balance, J. Glaciol., 66, 291–302, 2020.

Johnson, A., Hock, R., and Fahnestock, M.: Spatial variability and
regional trends of Antarctic ice shelf surface melt duration over
1979–2020 derived from passive microwave data, J. Glaciol., 68,
533–546, 2022.

Kingslake, J., Ely, J. C., Das, I., and Bell, R. E.: Widespread move-
ment of meltwater onto and across Antarctic ice shelves, Nature,
544, 349–352, 2017.

Kittel, C., Amory, C., Agosta, C., Jourdain, N. C., Hofer, S., Del-
hasse, A., Doutreloup, S., Huot, P.-V., Lang, C., Fichefet, T., and
Fettweis, X.: Diverging future surface mass balance between the
Antarctic ice shelves and grounded ice sheet, The Cryosphere,
15, 1215–1236, https://doi.org/10.5194/tc-15-1215-2021, 2021.

Larour, E., Seroussi, H., Morlighem, M., and Rignot, E.: Continen-
tal scale, high order, high spatial resolution, icesheet modeling
using the Ice Sheet System Model (ISSM), J. Geophys. Res., 117,
F01022, https://doi.org/10.1029/2011JF002140, 2012.

Lee, J. R., Raymond, B., Bracegirdle, T. J., Chadès, I., Fuller, R. A.,
Shaw, J. D., and Terauds, A.: Climate change drives expansion
of Antarctic ice-free habitat, Nature, 547, 49–54, 2017.

Lenaerts, J., Lhermitte, S., Drews, R., Ligtenberg, S., Berger, S.,
Helm, V., Smeets, C., Van Den Broeke, M., Van De Berg, W. J.,

Van Meijgaard, E., et al.: Meltwater produced by wind–albedo
interaction stored in an East Antarctic ice shelf, Nat. Clim.
Change, 7, 58–62, 2017.

Liu, H., Wang, L., and Jezek, K. C.: Spatiotemporal variations
of snowmelt in Antarctica derived from satellitescanning mul-
tichannel microwave radiometer and Special Sensor Microwave
Imager data (1978–2004), J. Geophys. Res., 111, F01003,
https://doi.org/10.1029/2005JF000318, 2006.

Mernild, S. H., Mote, T. L., and Liston, G. E.: Greenland ice sheet
surface melt extent and trends: 1960–2010, J. Glaciol., 57, 621–
628, 2011.

Mottram, R., Hansen, N., Kittel, C., van Wessem, J. M., Agosta, C.,
Amory, C., Boberg, F., van de Berg, W. J., Fettweis, X., Gossart,
A., van Lipzig, N. P. M., van Meijgaard, E., Orr, A., Phillips,
T., Webster, S., Simonsen, S. B., and Souverijns, N.: What is the
surface mass balance of Antarctica? An intercomparison of re-
gional climate model estimates, The Cryosphere, 15, 3751–3784,
https://doi.org/10.5194/tc-15-3751-2021, 2021.

Nowicki, S., Bindschadler, R. A., Abe-Ouchi, A., Aschwanden,
A., Bueler, E., Choi, H., Fastook, J., Granzow, G., Greve, R.,
Gutowski, G., Herzfeld, U., Jackson, C., Johnson, J., Khroulev,
C., Larour, E., Levermann, A., Lipscomb, W. H., Martin, M. A.,
Morlighem, M., Parizek, B. R., Pollard, D., Price, S. F., Ren, D.,
Rignot, E., Saito, F., Sato, T., Seddik, H., Seroussi, H., Takahashi,
K., Walker, R., and Wang, W. L.: Insights into spatial sensitivities
of ice mass response to environmental change from the SeaRISE
ice sheet modeling project I: Antarctica, J. Geophys. Res.-Earth,
118, 1002–1024, 2013.

NSIDC: A Guide to NSIDC’s Polar Stereographic Projection, https:
//nsidc.org/data/polar-stereo/ps_grids.html (last access: 30 Au-
gust 2023), 2022.

Ohmura, A.: Physical basis for the temperature-based melt-index
method, J. Appl. Meteorol., 40, 753–761, 2001.

Picard, G.: Snow status (wet/dry) in Antarctica
from SMMR, SSM/I, AMSR-E and AMSR2 pas-
sive microwave radiometers, PerSCiDO [data set],
https://doi.org/10.18709/perscido.2022.09.ds376 (last access:
30 August 2023), 2022.

Picard, G. and Fily, M.: Surface melting observations in Antarctica
by microwave radiometers: Correcting 26-year time series from
changes in acquisition hours, Remote Sens. Environ., 104, 325–
336, 2006.

Picard, G., Fily, M., and Gallée, H.: Surface melting derived from
microwave radiometers: a climatic indicator in Antarctica, Ann.
Glaciol., 46, 29–34, 2007.

Reeh, N.: Parameterization of melt rate and surface temperature in
the Greenland ice sheet, Polarforschung, 59, 113–128, 1991.

Ryan, J., Smith, L., Van As, D., Cooley, S., Cooper, M., Pitcher, L.,
and Hubbard, A.: Greenland Ice Sheet surface melt amplified by
snowline migration and bare ice exposure, Science Advances, 5,
eaav3738, https://doi.org/10.1126/sciadv.aav3738, 2019.

Schulzweida, U.: CDO User Guide, Zenodo [software],
https://doi.org/10.5281/zenodo.5614769, 2021.

Scott, R. C., Nicolas, J. P., Bromwich, D. H., Norris, J. R., and Lu-
bin, D.: Meteorological drivers and large-scale climate forcing of
West Antarctic surface melt, J. Climate, 32, 665–684, 2019.

Sellevold, R. and Vizcaino, M.: First application of artifi-
cial neural networks to estimate 21st century Greenland ice

https://doi.org/10.5194/tc-17-3667-2023 The Cryosphere, 17, 3667–3694, 2023

https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.bd0915c6
https://doi.org/10.5194/tc-17-211-2023
https://doi.org/10.5194/tc-15-1215-2021
https://doi.org/10.1029/2011JF002140
https://doi.org/10.1029/2005JF000318
https://doi.org/10.5194/tc-15-3751-2021
https://nsidc.org/data/polar-stereo/ps_grids.html
https://nsidc.org/data/polar-stereo/ps_grids.html
https://doi.org/10.18709/perscido.2022.09.ds376
https://doi.org/10.1126/sciadv.aav3738
https://doi.org/10.5281/zenodo.5614769


3694 Y. Zheng et al.: PDD model for estimating surface melt in Antarctica from 1979 to 2022

sheet surface melt, Geophys. Res. Lett., 48, e2021GL092449,
https://doi.org/10.1029/2021GL092449, 2021.

Spergel, J. J., Kingslake, J., Creyts, T., van Wessem, M., and Fricker,
H. A.: Surface meltwater drainage and ponding on Amery Ice
Shelf, East Antarctica, 1973–2019, J. Glaciol., 67, 985–998,
2021.

Stokes, C. R., Abram, N. J., Bentley, M. J., Edwards, T. L., England,
M. H., Foppert, A., Jamieson, S. S., Jones, R. S., King, M. A.,
Lenaerts, J. T., et al.: Response of the East Antarctic Ice Sheet to
past and future climate change, Nature, 608, 275–286, 2022.

Tedesco, M. and Monaghan, A. J.: An updated Antarctic melt
record through 2009 and its linkages to high-latitude and
tropical climate variability, Geophys. Res. Lett., 36, L18502,
https://doi.org/10.1029/2009GL039186, 2009.

Tetzner, D., Thomas, E., and Allen, C.: A validation of ERA5 re-
analysis data in the Southern Antarctic Peninsula–Ellsworth land
region, and its implications for ice core studies, Geosciences, 9,
289, https://doi.org/10.3390/geosciences9070289, 2019.

Torinesi, O., Fily, M., and Genthon, C.: Variability and trends of the
summer melt period of Antarctic ice margins since 1980 from
microwave sensors, J. Climate, 16, 1047–1060, 2003.

Trusel, L., Frey, K. E., and Das, S. B.: Antarctic sur-
face melting dynamics: Enhanced perspectives from radar
scatterometer data, J. Geophys. Res.-Earth, 117, F02023,
https://doi.org/10.1029/2011JF002126, 2012.

Trusel, L. D., Frey, K. E., Das, S. B., Munneke, P. K., and Van
Den Broeke, M. R.: Satellite-based estimates of Antarctic surface
meltwater fluxes, Geophys. Res. Lett., 40, 6148–6153, 2013.

Trusel, L. D., Frey, K. E., Das, S. B., Karnauskas, K. B., Munneke,
P. K., Van Meijgaard, E., and Van Den Broeke, M. R.: Diver-
gent trajectories of Antarctic surface melt under two twenty-first-
century climate scenarios, Nat. Geosci., 8, 927–932, 2015.

Turton, J. V., Kirchgaessner, A., Ross, A. N., King, J. C., and
Kuipers Munneke, P.: The influence of föhn winds on annual and
seasonal surface melt on the Larsen C Ice Shelf, Antarctica, The
Cryosphere, 14, 4165–4180, https://doi.org/10.5194/tc-14-4165-
2020, 2020.

van den Broeke, M., Bus, C., Ettema, J., and Smeets, P.:
Temperature thresholds for degree-day modelling of Green-
land ice sheet melt rates, Geophys. Res. Lett., 37, L18501,
https://doi.org/10.1029/2010GL044123, 2010.

van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard,
E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts,
J. T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer,
C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters,
B., Wuite, J., and van den Broeke, M. R.: Modelling the climate
and surface mass balance of polar ice sheets using RACMO2 –
Part 2: Antarctica (1979–2016), The Cryosphere, 12, 1479–1498,
https://doi.org/10.5194/tc-12-1479-2018, 2018.

van Wessem, J. M., van de Berg, W. J., and van den
Broeke, M. R.: Data set: Monthly averaged RACMO2.3p2
variables (1979–2022); Antarctica, Zenodo [data set],
https://doi.org/10.5281/zenodo.7845736, 2023.

Wake, L. and Marshall, S.: Assessment of current methods of
positive degree-day calculation using in situ observations from
glaciated regions, J. Glaciol., 61, 329–344, 2015.

Wille, J. D., Favier, V., Dufour, A., Gorodetskaya, I. V., Turner, J.,
Agosta, C., and Codron, F.: West Antarctic surface melt triggered
by atmospheric rivers, Nat. Geosci., 12, 911–916, 2019.

Wilton, D. J., Jowett, A., Hanna, E., Bigg, G. R., Van Den Broeke,
M. R., Fettweis, X., and Huybrechts, P.: High resolution (1 km)
positive degree-day modelling of Greenland ice sheet surface
mass balance, 1870–2012 using reanalysis data, J. Glaciol., 63,
176–193, 2017.

Winkelmann, R., Martin, M. A., Haseloff, M., Albrecht, T., Bueler,
E., Khroulev, C., and Levermann, A.: The Potsdam Parallel
Ice Sheet Model (PISM-PIK) – Part 1: Model description, The
Cryosphere, 5, 715–726, https://doi.org/10.5194/tc-5-715-2011,
2011.

Zheng, Y., Golledge, N. R., and Gossart, A.: Data set: Statistically
parameterizing and evaluating a positive degree-day model to es-
timate surface melt in Antarctica from 1979 to 2022 (Version
1), Zenodo [data set], https://doi.org/10.5281/zenodo.7131459,
2023.

Zhu, J., Xie, A., Qin, X., Wang, Y., Xu, B., and Wang,
Y.: An assessment of ERA5 reanalysis for antarc-
tic near-surface air temperature, Atmosphere, 12, 217,
https://doi.org/10.3390/atmos12020217, 2021.

Zwally, H. J. and Fiegles, S.: Extent and duration of Antarctic sur-
face melting, J. Glaciol., 40, 463–475, 1994.

Zwally, H. J., Giovinetto, M. B., Beckley, M. A., and Saba, J. L.:
Antarctic and Greenland Drainage Systems, GSFC Cryospheric
Sciences Laboratory, http://icesat4.gsfc.nasa.gov/cryo_data/ant_
grn_drainage_systems.php (last access: 30 August 2023), 2012.

The Cryosphere, 17, 3667–3694, 2023 https://doi.org/10.5194/tc-17-3667-2023

https://doi.org/10.1029/2021GL092449
https://doi.org/10.1029/2009GL039186
https://doi.org/10.3390/geosciences9070289
https://doi.org/10.1029/2011JF002126
https://doi.org/10.5194/tc-14-4165-2020
https://doi.org/10.5194/tc-14-4165-2020
https://doi.org/10.1029/2010GL044123
https://doi.org/10.5194/tc-12-1479-2018
https://doi.org/10.5281/zenodo.7845736
https://doi.org/10.5194/tc-5-715-2011
https://doi.org/10.5281/zenodo.7131459
https://doi.org/10.3390/atmos12020217
http://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php
http://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php

	Abstract
	Introduction
	Data
	Reanalysis data
	Satellite data
	Regional climate model SEB output
	Interpolation and research domain

	Methods
	PDD model
	Model parameterization
	Threshold temperature T0
	Degree-day factor, DDF

	Model evaluation
	Goodness-of-fit testing
	K-fold cross-validation
	Sensitivity experiments


	Results and discussion
	Optimal PDD parameters
	Model evaluation
	Goodness-of-fit
	Temporal dependency of the dist-PDD parameters
	Sensitivity experiments and implementation in future predictions

	Limitations of the PDD model

	Conclusions
	Appendix A: Satellite data
	Appendix B: Temperature–melt relationship
	Appendix C: Spatially uniform PDD model
	Appendix D: PDD model evaluation
	Appendix E: 1982/1983 event
	Appendix F: 3-fold CV T0 Member 1
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

