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Abstract. Both regional climate models (RCMs) and remote
sensing (RS) data are essential tools in understanding the re-
sponse of polar regions to climate change. RCMs can sim-
ulate how certain climate variables, such as surface melt,
runoff and snowfall, are likely to change in response to differ-
ent climate scenarios but are subject to biases and errors. RS
data can assist in reducing and quantifying model uncertain-
ties by providing indirect observations of the modeled vari-
ables on the present climate. In this work, we improve on an
existing scheme to assimilate RS wet snow occurrence data
with the “Modèle Atmosphérique Régional” (MAR) RCM
and investigate the sensitivity of the RCM to the parameters
of the scheme. The assimilation is performed by nudging the
MAR snowpack temperature to match the presence of liquid
water observed by satellites. The sensitivity of the assimila-
tion method is tested by modifying parameters such as the
depth to which the MAR snowpack is warmed or cooled,
the quantity of water required to qualify a MAR pixel as
“wet” (0.1 % or 0.2 % of the snowpack mass being water),
and assimilating different RS datasets. Data assimilation is
carried out on the Antarctic Peninsula for the 2019–2021 pe-
riod. The results show an increase in meltwater production
(+ 66.7 % on average, or +95 Gt), along with a small de-
crease in surface mass balance (SMB) (−4.5 % on average,
or−20 Gt) for the 2019–2020 melt season after assimilation.

The model is sensitive to the tested parameters, albeit with
varying orders of magnitude. The prescribed warming depth
has a larger impact on the resulting surface melt production
than the liquid water content (LWC) threshold due to strong
refreezing occurring within the top layers of the snowpack.
The values tested for the LWC threshold are lower than the
LWC for typical melt days (approximately 1.2 %) and im-
pact results mainly at the beginning and end of the melting
period. The assimilation method will allow for the estimation
of uncertainty in MAR meltwater production and will enable
the identification of potential issues in modeling near-surface
snowpack processes, paving the way for more accurate sim-
ulations of snow processes in model projections.

1 Introduction

More than two-thirds of Earth’s fresh water is held in the po-
lar ice sheets (Church et al., 2013), with the majority of it
trapped as land ice at the south pole, forming the Antarctic
Ice Sheet (AIS). According to Fretwell et al. (2013), if all
AIS ice were to melt, the global mean sea level would rise
by 56 m. Currently, the AIS is primarily losing mass due to
grounded ice flowing into the ocean. There, the ice is lost
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mainly through a combination of basal melting and calving
(The IMBIE Team, 2018; Rignot et al., 2019; Adusumilli
et al., 2020).

However, the surface melt production on the ice sheet is
also important for several reasons. Even moderate surface
melt over the ice shelves, the floating boundaries of the ice
sheet, is thought to weaken the shelf structure and to cause
ponding and hydrofracturing, leading to substantial mass loss
(Scambos et al., 2003; Lai et al., 2020). Additionally, surface
melting is becoming a growing concern as it may increase
greatly with climate change (Trusel et al., 2015; Bell et al.,
2018; Gilbert and Kittel, 2021). Ice shelves exert a buttress-
ing effect on the upstream ice flow, regulating the amount of
ice that reaches the surrounding ocean. As they thin or col-
lapse, this buttressing effect is reduced (Favier and Pattyn,
2015; Paolo et al., 2015), and AIS ice flow velocity and mass
loss are increased.

Climate models are currently one of the most useful tools
in studying polar climate evolution. Some of them also in-
clude the possibility of modeling the evolution of the snow-
pack. A notable example is MAR (for “Modèle Atmo-
sphérique Régional” in French), a regional climate model
(RCM) specially developed to monitor the polar climate and
the surface mass balance of both ice sheets.

Proper surface melt modeling is required to study condi-
tions leading to ice shelf destabilization, as hydrofracturing
is impacted by the melting-to-snowfall ratio and the capac-
ity of the snowpack to retain and refreeze meltwater (Donat-
Magnin et al., 2021; Gilbert and Kittel, 2021). Additionally,
accurate modeling of surface melt is necessary to study the
evolution of the snowpack during strong melt events. Study-
ing the ability of the snowpack to retain liquid water is crucial
because under higher melt conditions the Antarctic snow-
pack could saturate and stop absorbing surface meltwater in
the future, as has been modeled to occur over the Greenland
Ice Sheet (Noël et al., 2017).

Despite their ability to capture snowpack melt at a high
level of detail, RCMs still have some limitations. Because of
uncertainty in forcing or limitations in physical assumptions,
the models may contain significant uncertainties. These un-
certainties can be mitigated by employing external data that
are not already incorporated into the model to improve its ac-
curacy at specific points in space and/or time. This technique
is known as “data assimilation” and is commonly applied in
numerous fields where observations can be integrated into a
model (Evensen, 2009; Navari et al., 2018).

The assimilation of data into the model is a crucial step
in quantifying the uncertainties associated with the model
output without assimilation. The assimilation process helps
to identify areas and periods where the simulations are not
consistent with the observations. This can help us to better
understand the underlying physical processes and their inter-
actions. Accordingly, data assimilation provides a powerful
tool for improving the reliability of models. In our case, it is

Figure 1. The Antarctic Peninsula and three ice shelves examined
in this study. The ice shelves are denoted by color outlines. Larsen C
is outlined in purple, George VI in green and Wilkins in red. Blue
crosses indicate the position of the weather stations used for the
model’s evaluation (Sect. 3). The red square around the Antarctic
Peninsula corresponds to the MAR spatial extent.

an essential step in the process of model refinement, leading
to improved predictions from future scenarios.

The highly uneven topography of a region is challenging
for RCMs, which typically operate at a resolution on the
order of 10 km. Phenomena depending on very local con-
ditions, such as melt induced by the Foehn effect, can oc-
cur at smaller spatial scales than the spatial resolution of
RCMs and thus may not be captured by the model (Datta
et al., 2019; Chuter et al., 2022; Wille et al., 2022). However,
high-resolution satellites can document localized or extreme
events that may be missed by RCM simulations.

In this paper, we assimilate satellite-derived binary wet-
snow masks (wet or non-wet) over the Antarctic Penin-
sula (AP) in West Antarctica into the MAR model for two
melt seasons (2019–2020 and 2020–2021). Three major ice
shelves are located on the AP: Larsen C, George VI and
Wilkins (Fig. 1). The ice shelves experience the highest
amount of surface melt compared to the other part of the
AIS, and their surface hydrological processes are also com-
plex and poorly understood (Barrand et al., 2013; Datta et al.,
2018; Johnson et al., 2020). Presently, assimilating remotely
sensed products in RCMs is a promising method of quantify-
ing surface meltwater production in Antarctica. The scarcity
of field observations and the complexity of surface hydrology
(Bell et al., 2018) make it difficult to evaluate and constrain
models otherwise.
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The assimilation algorithm performed in this paper is de-
rived from the framework described in Kittel et al. (2022)
where the MAR near-surface snowpack is warmed or cooled
to best match satellite-derived wet-snow masks. In this study,
sensitivity experiments have been performed by varying the
depth to which the snowpack temperature is changed (called
the assimilation depth hereafter), the minimum liquid water
content (LWC) threshold used to classify the modeled snow-
pack state as “wet”, and the wet-snow satellite product to test
the sensitivity of the model to the assimilation.

The satellite data, the model, and the assimilation method
are presented in Sect. 2. The validation of the model is de-
scribed in Sect. 3. The results of the data assimilation sensi-
tivity tests are discussed in Sect. 4. Finally, general conclu-
sions and discussion on assimilation of remote sensing data
into the MAR model are included in Sect. 5.

2 Methods and data

2.1 Satellite data

Depending on the region of interest, the length of the simula-
tion or the spatial resolution, the use of one specific satellite
dataset over another for assimilation can be useful. However,
depending on the sensor type and acquisition times, the de-
rived wet-snow occurrence can differ between satellites and
sensors (Husman et al., 2022). Some sensors operate at a
coarser resolution and provide information with higher un-
certainty in areas with complex topography, but can provide
long time series of daily images using wet snow detection al-
gorithms that have proven to be efficient (Zwally and Fiegles,
1994; Colosio et al., 2021). Other sensors have a better spa-
tial resolution but may have a lower revisit time. The choice
of the satellite dataset can thus influence the results of the
assimilated model.

We employed three satellite datasets (Table 1) to create
the binary (dry/wet) snow masks to be assimilated. The three
datasets are derived from sensors operating in the microwave
spectrum (at GHz frequencies). Among them, AMSR2 is
a “passive sensor”, which records Earth’s natural radiation,
while the other two are classified as “active” since they ac-
tively emit electromagnetic pulses to illuminate the area cov-
ered by the satellite. Microwave sensors are commonly used
to map snow cover, sea ice, or wet snow extent over ice sheets
(Parkinson, 2001; Colosio et al., 2021). The presence of liq-
uid water in the snowpack induces a change in its emissivity
and absorptivity. This change leads to a change in the satel-
lite measurements: the backscattering coefficient σ0 for ac-
tive sensors and the brightness temperature for passive sen-
sors (Zwally and Fiegles, 1994; Johnson et al., 2022; Picard
et al., 2022). In this study, the presence of wet snow detected
by satellites is interpreted as the presence of liquid water un-
derneath or at the surface of the snowpack. Using microwave
data also brings other advantages, such as atmospheric trans-

parency and acquisitions during both day and night. How-
ever, the lower spatial resolution of passive microwave sen-
sors (generally 10 to 50 km) compared with active sensors
(10 m–5 km) is problematic in identifying small-scale melt-
ing (Datta et al., 2018). Finally, with pixels of ∼ 100 km2

(e.g., for AMSR2; see Table 1), a majority of the pixels cover
regions with sub-pixel variations in land cover or surface
height (Johnson et al., 2020).

2.1.1 Advanced Microwave Scanning Radiometer 2
(AMSR2)

The first dataset employed in this study is from the Advanced
Microwave Scanning Radiometer 2 (AMSR2) aboard the
Global Change Observation Mission – Water “SHIZUKU”
(GCOM-W1) retrieved from the Japan Aerospace Explo-
ration Agency (JAXA) G-Portal (JAXA, 2021). Thanks to
a sun-synchronous orbit at an altitude of 700 km and a large
swath, AMSR2 obtains low-resolution daily observations of
the polar regions. We used the level-3 products containing
the daily mean brightness temperature at a horizontal polar-
ization in the 18.7 GHz channel, resampled at a 10 km resolu-
tion. The 18.7 GHz channel is used as it is slightly more sen-
sitive to liquid water content than the other frequencies (Pi-
card et al., 2022). Ascending (south to north) and descending
(north to south) satellite paths were processed separately, as
they happen in the morning and in the evening, respectively.
The separate processing allows for the creation of two daily
wet-snow masks from one instrument. Wet-snow detection
with AMSR2 is based on a change in the snowpack physical
properties (Zwally and Fiegles, 1994). A dry snowpack has
a lower emissivity (ε) than a wet snowpack (Mätzler, 1987).
For the passive microwave sensors, this increased emissivity
is observed through augmentation of brightness temperature
(Johnson et al., 2020).

The wet-snow retrieval technique applied for this study is
a statistical approach developed by Fahnestock et al. (2002)
and modified by Johnson et al. (2020). The wet-snow detec-
tion is performed through a K-means clustering algorithm.
The algorithm is applied to the annual time series of bright-
ness temperature. Wet snow is assumed when the time series
shows a binomial distribution using the criteria and thresh-
olds defined in Johnson et al. (2020) (Fig. 2).

To ensure coherency between remote sensing products and
our climate model, the wet-snow masks are interpolated onto
the MAR grid. This involves overlaying the grids and assign-
ing the wet or dry state for each MAR pixel based on the
most prevalent surface condition observed in the satellite pix-
els encompassed within the MAR pixel. This interpolation is
made with the assumption that deformation and variations in
the area caused by the spatial projection are negligible be-
tween a pixel and its neighbors.

https://doi.org/10.5194/tc-17-4267-2023 The Cryosphere, 17, 4267–4288, 2023
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Table 1. Technical specifications of the remote sensing datasets employed for the assimilation. Datasets are referred to by the name in bold
characters in the paper.

Platform Sensor Sensor type Pixel size Frequency (GHz) Revisit time (days) Reference

Sentinel-1 (S1) C-SAR Active 10–40 m 5.405 6 ESA (2023)
MetOp ASCAT Active 4.45 km 5.255 1 EUMETSAT (2023)
GCOM-W1 AMSR2 Passive 10 km 18.7 2 JAXA (2021)

Figure 2. Detection of wet snow in an AMSR2 image over the Antarctic Peninsula. (a) Brightness temperature (K) on 9 June 2019. (b) Bright-
ness temperature (K) on 16 February 2020. (c) Pixels considered to contain wet snow after applying the wet-snow detection algorithm. The
increase in brightness temperature between (a) and (b) is attributed to the presence of liquid water in the snowpack.

2.1.2 Sentinel-1 (S1)

One of the active sensor datasets is retrieved from the
Sentinel-1 (S1) satellite constellation from the European
Space Agency’s (ESA) Copernicus space program. Starting
with the launch of S1-A in 2014, the Sentinel-1 constellation
gives access to data combining high spatial resolution and
low revisit time covering most of the globe. With the syn-
thetic aperture radar (SAR) technology, S1 products reach a
spatial resolution on the order of tens of meters with a re-
peat pass of 6 d. By combining different orbital paths, it is
possible to reduce the time between two observations of the

same location to 2–3 d over the Antarctic Peninsula. Work-
ing in the C band (5.405 GHz), it is possible to detect the
presence of liquid water in the snowpack in Sentinel-1 im-
ages by identifying changes in the backscattering coefficient
σ0 through time (Johnson et al., 2020). With the increase in
liquid water in the snowpack, comes a change in absorptiv-
ity and scattering mechanism (Nagler and Rott, 2000). These
phenomena both lead to a decrease in σ0 (Moreira et al.,
2013). As this coefficient changes little in Antarctica as long
as the snowpack is dry, it is assumed that a significant change
in backscattering is likely caused by the presence of water in
the snowpack.

The Cryosphere, 17, 4267–4288, 2023 https://doi.org/10.5194/tc-17-4267-2023
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As for the passive sensors, several algorithms have been
proposed to detect water in the snow with SAR and active
sensors in general. Depending on the polarization, the fre-
quency and the nature of the snowpack, the threshold ap-
plied to the backscattering values is variable (Koskinen et al.,
1997; Nagler et al., 2016). For a C-band radar, a 3 dB de-
crease in σ0 has been employed as a threshold by Nagler and
Rott (2000) and Johnson et al. (2020). In the present arti-
cle, we used a −2.66 dB threshold after normalization of the
images to their winter mean as the threshold to classify the
snowpack as dry or wet. This threshold has been proposed
by Liang et al. (2021) and was found to be effective for the
Antarctic ice sheet.

To minimize the time between two Sentinel-1 acquisitions,
all available images overlapping the study region were pro-
cessed. To handle the large amount of data, image process-
ing was carried out on Google Earth Engine (GEE, Gore-
lick et al., 2017). The S1 dataset available on GEE is already
preprocessed following the implementation of the Sentinel-1
Toolbox from ESA (GEE, 2022; ESA, 2022). These process-
ing operations include an update of the orbit metadata, re-
moval of the low-intensity noise on the scene edges, a reduc-
tion in the discontinuities between sub-swaths, a radiometric
calibration and a terrain correction using the ASTER digi-
tal elevation model. The choice has been made to resample
S1 images from the original 10–40 m resolution to a 1 km
resolution using mean values before detecting wet snow as
data is ultimately interpolated onto the 7.5 km MAR grid.
Before resampling, a 3× 3 refined Lee speckle low-pass fil-
ter developed by Mullissa et al. (2021) was applied to the im-
ages in addition to a radiometric terrain flattening using the
1 arcmin global ETOPO1 DEM (Amante and Eakins, 2009).
Pixels with values lower than −28 dB were removed from
the dataset.

After resampling, the images are normalized to their aus-
tral winter mean. The winter mean is the average value of
σ0 for each pixel, calculated using observations from June
to October. To deal with changes in volumetric scattering re-
lated to the acquisition geometry, only the acquisitions from
the same orbit overlapping by more than 95 % are taken into
account to calculate the winter mean. Consequently, differ-
ences between the acquisitions are independent of the topog-
raphy and the local context. The liquid water in the snowpack
is then detected in the image by applying a −2.66 dB thresh-
old (Fig. 3), following Liang et al. (2021).

To create daily wet-snow masks, Sentinel-1 images col-
lected on the same day were combined. In the case where
three or more images overlap, the snow state is selected by a
majority filter, and the acquisition time is defined as the mean
time between the selected acquisitions. In the case where
there are only two images that contradict each other, a non-
wet status is assumed. The acquisition time selected is the
acquisition time of the non-wet image.

2.1.3 Advanced Scatterometer (ASCAT)

The third sensor we are using for this study is the C-
band “Advanced Scatterometer” (ASCAT) aboard the MetOp
satellites from the space segment of the EUMETSAT Po-
lar System. ASCAT data are retrieved from the EUMETSAT
data service portal (EUMETSAT, 2023). After resolution en-
hancement (Lindsley and Long, 2016), the product provides
a backscattering coefficient σ0 at 4.45 km resolution by ac-
cumulating images over ∼ 2 d periods. In Antarctica, only
morning passes are selected for this study. The detection of
wet snow is performed using a simple thresholding tech-
nique (Ashcraft and Long, 2006), similar to the one used for
Sentinel-1 images. The winter-mean backscattering coeffi-
cient is first calculated for each pixel and year from the obser-
vations from June–August. Then every measurement lower
than this mean by 3 dB is considered wet snow. Similarly to
AMSR2 daily products, the Sentinel-1 and ASCAT daily wet
and dry images are interpolated onto the MAR grid.

In the end, from the three satellite datasets, four binary
masks have been created. One from Sentinel-1, one from AS-
CAT and two from AMSR2, obtained by separating the as-
cending (evening) and the descending (morning) passes.

2.2 The regional climate model

For this study, we employed the MAR v3.12 RCM. MAR
is a polar-oriented regional climate model mostly used to
study both the Greenland (Delhasse et al., 2020; Fettweis
et al., 2021) and Antarctic ice sheets (Glaude et al., 2020;
Kittel et al., 2021). Its atmospheric dynamics are based on a
hydrostatic approximation of primitive equations originally
described in Gallée and Schayes (1994) and the radiative
transfer scheme is adapted from Morcrette (2002). The trans-
fer of mass and energy between the atmospheric part of the
model and the soil is handled by the Soil Ice Snow Vegeta-
tion Atmospheric Transfer module (SISVAT, Ridder and Gal-
lée, 1998), from which snow and snow and ice albedo sub-
modules are based on the CROCUS snow model (Brun et al.,
1992). The model has been parameterized to resolve the top
20 m of the snowpack, divided into 30 layers of time-varying
thickness. MAR is configured with a decreasing vertical res-
olution of the snow layers from the top to the bottom. The
maximum thickness of near-surface layers is on the centime-
ter scale, while below the first meter the maximum thickness
is on the order of 1 m. The maximum layer thicknesses for
the top four snow layers are 2, 5, 10, and 30 cm, respectively.
Each layer has a maximum liquid water content (LWC) of
5 % of its air content beyond which the water freely perco-
lates to deeper layers or runs off above impermeable layers
(bare ice or ice lenses) (Coléou and Lesaffre, 1998).

Version 3.12 of MAR includes recent improvements in the
snowpack temperature and the water mass conservation in
the soil as described in Lambin et al. (2022). MAR was run
at a 7.5 km resolution over the Antarctic Peninsula with a 40 s
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Figure 3. Detection of wet snow in a Sentinel-1 image over the Antarctic Peninsula. (a) Backscattering coefficient σ0 (dB) on 9 June 2019.
(b) Backscattering coefficient σ0 (dB) on 23 March 2020. (c) Normalized backscattering coefficient of 23 March 2020 relative to the winter
mean. (d) Pixels considered to be wet snow after thresholding the normalized image. The decrease in backscatter between (a) and (b) is
attributed to the presence of liquid water in the snowpack.

time step and with the spatial extent of the simulations cor-
responding to the extent of Fig. 1. It was forced at its lateral
boundaries and over the ocean (sea surface temperature and
sea ice cover) by the 6-hourly ERA5 reanalysis (Hersbach
et al., 2020) between March 2017 and May 2021. The snow-
pack was initialized in March 2017 with a previous MAR
simulation (Kittel et al., 2021). The blowing snow module of
MAR is not used in this study, and snow drift is therefore not
represented in the simulation.

2.3 Data assimilation

The satellite sensors are sensitive to the presence of liquid
water into the snowpack rather than the physical process of
melt. The aim of the data assimilation is therefore to guide
or constrain the snowpack LWC of the model by nudging its
temperature to induce melt or refreeze to match the observed
surface state (Fig. 4).

The assimilation routine involves comparing, pixel by
pixel, the modeled and the satellite wet-snow masks. The

satellite wet-snow mask pixel is used for the assimilation if
the indicated acquisition time is separated by less than 1.5 h
from the time in MAR (1.5 h before and after the MAR time).
The 3 h window enables the model to adapt its behavior but
with limited short-term impact. As up to three satellite prod-
ucts are assimilated at the same time, three separate cases
have been developed depending on the number of assimilated
masks. Each case is called according to the number of acqui-
sitions that are taken into account. However, a daily cycle in
brightness temperature and thus in wet snow can exist over
Antarctica (Picard and Fily, 2006). To take this into account,
if there are three satellite observations available for a pixel
for a single day, an observation of dry snow between two
wet-snow observations is considered a false negative. Conse-
quently, the corresponding dry-snow pixel is excluded for the
day. For computational reasons, the assimilation routine is
called at each MAR time step only during the melting season,
between October and April. Outside of this time frame, no as-
similation is performed due to computational constraints and
the likely prevalence of shorter-duration melting events dur-
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ing winter. These events are commonly related to Foehn ef-
fects near the grounding line (Kuipers Munneke et al., 2018)
where the effectiveness of passive sensors decreases.

The first case of assimilation represents the situation where
a single acquisition is available for a time step (case A in
Fig. 4). It is the most frequent case applied (between 90 %
and 95 % of the occurrence depending on the year). This
case is inspired by the assimilation performed in Kittel et al.
(2022). For the 3 h centered on the observation, at each MAR
time step the quantity of liquid water modeled within the
pixel is compared to the satellite-based wet-snow condition
for the same pixel. If the modeled LWC of the snowpack is
under a certain threshold (α) while the satellite mask indi-
cates wet snow, the snow layers up to a certain depth (1z)
are heated by 0.15 ◦C if the snow layers are colder than 0 ◦C.
In the opposite case, if the LWC is above the threshold α, but
no wet snow is observed by satellites, the snowpack is cooled
by the same amount of 0.15 ◦C. The process is applied at each
MAR time step for which the conditions apply. However, two
conditions prevent changes in the MAR snowpack tempera-
ture. The first is that if the snow density is above 830 kgm−3,
the layer is considered to be ice and the model does not per-
mit liquid water to accumulate within ice. The temperature
in this case remains unchanged as the LWC threshold should
never be reached. The second condition is the temperature of
the snow layers above the depth 1z. If their mean tempera-
ture is below −7.5 ◦C, the MAR snowpack is too cold to be
able to produce meltwater through warming, and the satel-
lite observation is ignored. This operation is repeated at each
time step for which MAR and observations disagree until the
α threshold is reached or the observation is out of the time
range. The choices for thresholds α and 1z are discussed in
the two following sections, i.e., Sect. 2.3.1 and 2.3.2.

The second assimilation case (case B in Fig. 4) occurs
when there are only two satellite observations within the
3 h window centered on the MAR time. If the two satellite-
derived observations agree, MAR is adjusted according to the
observed snow state as in case A but with a depth1z equiva-
lent to the mean values of the thresholds that would have been
used for the individual satellite-derived masks. If the two ob-
servations indicate different snow states, a different process-
ing is applied if the acquisitions are close to each other in
time (within an hour) or not. For two inconsistent observa-
tions spread by more than 1 h, the assimilated snow state is
the snow state from the closest image to the MAR time fol-
lowing the first case (case A). For two close contradictory
observations, nothing is assimilated as they are considered
both equally likely to be correct or incorrect. Valuable infor-
mation may be lost in this case. For instance, the difference
in penetration depth can cause a deeper-penetrating signal to
observe liquid water (Fig. 5). However, as we have no addi-
tional information on the depth at which the water may be
present, in this case the model is run as if there was no ob-
servation available.

The third case is when all three observations are available
within the same 3 h time window (case C in Fig. 4). As for
the second case, if the three observations agree with the same
wet or non-wet snow status, they are considered as one and
case A is called. Again, the depth 1z used is equivalent to
the mean values of the thresholds that would have been used
separately. If a single observation is different from the other
two, the two closest observations to the MAR time are ana-
lyzed, applying case B described above. For our configura-
tion of sensors, this third case is only encountered a couple
of times (less than 1 % of all occurrences) while assimilating
wet-snow masks of AMSR2 (ascending orbit), ASCAT and
Sentinel-1.

2.3.1 Choice of water content threshold (α)

Estimating the quantity of liquid water in the snowpack with
a single satellite acquisition is challenging. Despite numer-
ous research studies, knowledge on the subject remains lim-
ited (Trusel et al., 2013; Fricker et al., 2021). However, as de-
scribed in Picard et al. (2022), it is possible to find a typical
LWC for which the satellite signal significantly changes and
can be detected as melting or wet snow. Picard et al. (2022)
demonstrates the capability of detecting small amounts of
water using the radio frequencies employed in this study.
Only 0.11 and 0.05 kgm−2 of liquid water is necessary at
6 and 19 GHz, respectively, if the water is uniformly spread
over the pixel. This quantity can be higher for heteroge-
neous pixels containing dry or wet patches. For this study,
the choice has been made to use the same threshold regard-
less of the sensor frequency. AMSR2 acquires data at higher
frequencies and is theoretically more sensitive, but it has
a coarser resolution than the two active sensors. Its pixels
tend to be more heterogeneous, suggesting a compensation
with regard to liquid water quantity. Two different thresholds
are tested to study the sensitivity of the model. Both have
been shown to significantly change the snowpack brightness
temperature in the literature. Tedesco et al. (2007) proposed
a LWC threshold of 0.2 %, while Picard et al. (2022) pro-
posed a threshold of 0.1 % of the snowpack mass. They have
both been tested in Kittel et al. (2022) where the choice be-
tween the two was found not to significantly influence the
melt quantity produced by the MAR model. The sensitivity
of the microwave sensors is high enough that the quantities
of liquid water that can be detected are much smaller than
that produced during a typical melting day (1.2± 0.6 % as
modeled by MAR over the studied zone in the top meter of
snow). Currently, there is no means of identifying the best-
fitting threshold for this study.

2.3.2 Choice of assimilation depth threshold (1z)

Microwaves have penetration capabilities directly related to
their wavelength (Elachi and van Zyl, 2006). As a conse-
quence, the C band from Sentinel-1 and ASCAT has a dif-
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Figure 4. Flowchart of the assimilation algorithm. The number of satellite images available around the MAR time step determines the
subprocess that is called in the routine. The following three subprocesses are defined: case A, case B and case C. They represent the
availability of 1, 2, and 3 wet-snow masks for assimilation, respectively. Cases B and C are funneled to case A so that no contradictory
information is passed into MAR.

ferent penetration depth than Ku band from AMSR2. In ad-
dition, the water content strongly influences the penetration
depth, as water at the top of the snowpack can prevent deeper
penetration (Fig. 5). In this experiment, we set different pen-
etration depths for each remote-sensing product to test its in-
fluence. Using AMSR2 (Ku band), we consider an assimi-
lation depth 1z = 0.1, 0.2 and 0.4 m successively below the
surface. Below this depth, the electromagnetic wave should
not have a noticeable influence (Picard et al., 2022). For
Sentinel-1 and ASCAT (C band), the depth thresholds1z are
set to 0.5, 1, and 1.5 m, as the signal is expected to penetrate
deeper into the snowpack.

2.3.3 Experiments conducted

An ensemble of 24 MAR simulations is presented here. Only
the reference MAR simulation, MARref, is performed with-
out assimilation. The others are referred to as “assimila-
tions” hereafter. Their naming convention is “As” followed
by “A” and the value of the α threshold in the subscript (in
%), the remote sensing (RS) datasets assimilated, and their
corresponding 1z threshold value in the subscript (in m).

“S1” refers to the S1 dataset, “AMA” to AMSR2 ascending,
“AMD” to AMSR2 descending, and “AS” to ASCAT. The
assimilations were started in January 2019 and have been ini-
tialized from the simulation without assimilation (which be-
gins in 2017). For each assimilation, the satellite wet-snow
masks are assimilated into the model, with different parame-
ters for the α threshold and C-band and Ku-band 1z thresh-
olds (Table 2). The reference assimilation (Assimref) is per-
formed using Sentinel-1 and AMSR2, with both their as-
cending and descending orbits, and with assimilation depth
thresholds 1z = 1 and 0.2 m, respectively. In addition, the
liquid water content threshold α is set at 0.1 %. The thresh-
olds used to perform Assimref correspond to values given in
the literature (Elachi and van Zyl, 2006; Picard et al., 2022).
The other assimilated simulations have been performed with
a combination of three satellite products chosen between
Sentinel-1, AMSR2 ascending, AMSR2 descending and AS-
CAT and with a combination of the assimilation parame-
ters. The assimilations have been performed for the periods
June 2019 to May 2020 and June 2020 to May 2021. The
present document focuses on the 2019–2020 melt season,
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Figure 5. Illustration of the penetration depth of the microwave sensors according to their wavelength and the depth of the wet snow layer.
(a) Penetration depth in a dry snowpack. The signal of the sensor with the lower frequency (5 GHz, in red) penetrates deeper than the signal
of the higher-frequency sensor (19 GHz, in green). (b) Penetration depth with a layer of liquid water deep in the snowpack. The microwave
sensor with deeper penetration can detect water presence, but the other cannot. (c) Penetration depth with liquid water at the top of the
snowpack. Both satellites can observe the presence of liquid water.

while figures for the 2020–2021 season are available in the
Supplement.

3 Evaluation

Because the integrated physics within RCMs is either par-
tially resolved or contains uncertainties, it is first required
to evaluate model outputs against in situ measurements. The
evaluation is performed in order to quantify how close the
model is to reality and to determine if the model is inclined
to reproduce the observations. Since our focus is on assessing
the model sensitivity through assimilation, we exclusively
evaluate MAR without assimilation. It is worth noting that
the values derived from the assimilations may diverge from
the observations due to the assimilation algorithm sensitivity
rather than the model physics.

The outputs of the model simulation without assimila-
tion are evaluated by comparing with in situ observations.
The daily observations are provided by automatic weather
stations (AWSs) spread across the AIS. Here, nine AWS
datasets available in the study area (blue crosses displayed
in Fig. 1) have been gathered to calculate statistics for the
model vs. the observations as done in Kittel (2021) and Mot-
tram et al. (2021). The statistics employed for the evaluation
are the mean bias (MB), root-mean-square error (RMSE),
centered root-mean-square error (CRMSE) and correlation
coefficient (r) (Table 3). The statistics are listed for the 2016–
2021 period for the near-surface pressure, temperature, wind
speed, relative humidity and modeled energy balance com-
ponents, including shortwave downward radiation (SWD),
shortwave upward radiation (SWU), longwave downward ra-
diation (LWD) and longwave upward radiation (LWU).

Small biases can occur in the comparison as a result of
the elevation difference between the in situ observations and

the model. The AWS observations are point measurements,
whereas the model provides information over a 7.5×7.5 km2

pixel. Thus, the mean elevation of the MAR pixel in which
the AWS falls is not the same as the AWS true elevation.
This difference is particularly noticeable for the near-surface
pressure, which is directly linked to the elevation. Nonethe-
less, a high correlation (r > 0.98) reflects the ability of MAR
to simulate the observed temporal variability.

In general, the winter season is slightly better represented
by MAR with higher correlations and lower mean bias than
the summer season. A weaker correlation is observed in sum-
mer for longwave downward radiation (r = 0.65). This dif-
ference is compensated for by an overestimation of short-
wave downward solar radiation in summer. MAR does not
assimilate observed temperature profiles or coastal tempera-
tures but is forced at its lateral boundaries and at the sea sur-
face every 6 h with temperature, specific humidity, wind and
sea surface temperature. Thus, modeled clouds are strongly
influenced by the internal model climate and microphysics
(Delhasse et al., 2020). Moreover, the radiative scheme im-
plemented in MAR is the scheme employed by the ERA-40
reanalysis. This scheme has been updated in the ERA-5 re-
analysis (Hersbach et al., 2020) but not in MAR. MAR also
tends to underestimate the liquid water path during summer
when compared to Cloudsat and CALIPSO estimates de-
scribed in Van Tricht et al. (2016). This underestimation is
partially responsible for the LWD bias in summer.

In addition, Jakobs et al. (2020) provide melt estimates
from the AWS that can be compared to the surface melt pro-
duction of the four closest MAR pixels to the AWS (Fig. 6).
MAR tends to overestimate some extremes in meltwater pro-
duction but also tends to underestimate melt during low-melt
seasons. There are also differences in the length of the melt
season, with MAR sometimes overestimating and sometimes
underestimating the duration of the season. Although the dif-
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Table 2. The different simulations performed in this study, including data assimilation parameters. When not specified, both ascending and
descending paths of AMSR2 are assimilated. Simulations marked with an asterisk and those with assimilation of only one sensor are not
taken into account in the calculation of the ensemble average.

Name α (%) Ku-band 1z (m) C-band 1z (m) Sensors

Assimref 0.1 0.2 1 AMSR2+S1
AsA01S105AMA02AMD02 0.1 0.2 0.5 AMSR2+S1
AsA01S115AMA02AMD02 0.1 0.2 1.5 AMSR2+S1
AsA02S110AMA02AMD02 0.2 0.2 1 AMSR2+S1
AsA02S105AMA02AMD02 0.2 0.2 0.5 AMSR2+S1
AsA02S115AMA02AMD02 0.2 0.2 1.5 AMSR2+S1
AsA01S110AMA01AMD01 0.1 0.1 1 AMSR2+S1
AsA01S105AMA01AMD01 0.1 0.1 0.5 AMSR2+S1
AsA01S115AMA01AMD01 0.1 0.1 1.5 AMSR2+S1
AsA02S110AMA01AMD01∗ 0.2 0.1 1 AMSR2+S1
AsA02S105AMA01AMD01∗ 0.2 0.1 0.5 AMSR2+S1
AsA02S115AMA01AMD01∗ 0.2 0.1 1.5 AMSR2+S1
AsA01S110AMA04AMD04 0.1 0.4 1 AMSR2+S1
AsA01S105AMA04AMD04 0.1 0.4 0.5 AMSR2+S1
AsA01S115AMA04AMD04 0.1 0.4 1.5 AMSR2+S1
AsA02S110AMA04AMD04 0.2 0.4 1 AMSR2+S1
AsA02S105AMA04AMD04 0.2 0.4 0.5 AMSR2+S1
AsA02S115AMA04AMD04 0.2 0.4 1.5 AMSR2+S1
AsA01S110AMA02AS02 0.1 0.2 1 AMSR2 (asc.)+S1+ASCAT
AsA01AMA02 0.1 0.2 / AMSR2 (asc.)
AsA01AMD02 0.1 0.2 / AMSR2 (desc.)
AsA01S110 0.1 / 1 S1
AsA01AS10 0.1 / 1 ASCAT
MARref / / / None

Table 3. Mean bias (MB), root-mean-square error (RMSE), centered root-mean-square error (CRMSE), and correlation between MAR and
daily observations over the Antarctic Peninsula. A negative value implies a lower MAR estimate compared to the observation. Statistics are
given for the near-surface pressure, temperature, wind speed, relative humidity, shortwave downward radiation (SWD), shortwave upward
radiation (SWU), longwave downward radiation (LWD), and longwave upward radiation (LWU) radiation annually and for the summer
(DJF) and winter (JJA) seasons and are calculated for the 2016–2021 period. During winter, incoming solar radiation is absent, and therefore
shortwave solar radiation estimates (SWD and SWU) are not provided. Locations of the weather stations used for the daily observations are
marked by blue crosses in Fig. 1.

Annual Summer Winter

MB RMSE CRMSE Correlation MB RMSE CRMSE Correlation MB RMSE CRMSE Correlation

Near-surface pressure (hPa) −5.44 14.57 1.25 0.99 −5.69 13.18 0.87 0.99 −6.13 16.09 1.42 0.99
Temperature (◦C) −0.32 3.32 2.81 0.93 −1.13 2.36 1.68 0.76 0.3 3.63 3.11 0.92
Wind speed (m s−1) −0.39 2.58 2.28 0.79 −0.43 2.22 1.85 0.7 −0.35 2.92 2.57 0.78
Relative humidity (%) 3.2 8.73 8.13 0.72 6.88 9.32 6.29 0.75 2.87 9.1 8.64 0.79
SWD (Wm−2) 13.87 36.23 33.46 0.97 41.58 59.21 42.15 0.79 / / / /
SWU (Wm−2) −0.2 24.04 24.04 0.97 14.38 35.81 32.8 0.78 / / / /
LWD (Wm−2) −14.75 26.15 21.59 0.76 −26.56 32.51 18.75 0.65 −7.12 21.08 19.85 0.81
LWU (Wm−2) 3.4 14.2 13.79 0.93 −0.52 9.2 9.19 0.76 2.83 17.12 16.88 0.9

ference in altitude between the AWS and MAR pixels may
explain some of the differences between the two datasets,
these discrepancies also highlight the importance of nudging
MAR to better reproduce the remote sensing observations of
the snowpack state.

4 Results

Table 4 provides a comprehensive summary of the results ob-
tained from the 24 MAR simulations. The summary includes
the number of melt days (i.e., the number of days where melt
is occurring over at least 10 % of the ice sheet and ice shelves
of the study area), surface melt (ME), runoff (RU), refreezing
(RZ) and the surface mass balance (SMB). This table offers a
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Figure 6. Comparison of surface meltwater production (mmWEd−1) as modeled by MARref (in red) and estimated surface meltwater
production from AWS stations (a) 14, (b) 15, (c) 17 and (d) 18 (in blue) as described in Jakobs et al. (2020).

concise overview of the simulation results. We analyzed the
evolution of several variables in order to assess the sensitiv-
ity of the MAR model to the assimilation, including ME, RU,
SMB, snowpack density (ρ) and liquid water content (LWC)
(Table 5).The first three variables (ME, RU and SMB) are
provided for the entire snowpack profile, while ρ and LWC
are provided for the first meter. The average value of the
variables across all assimilations, Assim, is compared to the
model simulation without assimilation (MARref). Three sim-
ulations have been discarded to calculate Assim because of
an unrealistic freeze–thaw cycle induced by the assimilation.
These simulations are marked with an asterisk in Tables 2
and 4. So as not to incorporate bias from a single wet-snow
mask, simulations assimilating only one wet-snow mask are
also omitted in the calculation of Assim.

On average, the wet-snow extent provided by the wet-
snow masks is larger than the extent modeled by MARref on
the Antarctic Peninsula. This difference impacts the meltwa-
ter production in the model. Regardless of the parameteri-
zation used for the assimilation, the surface meltwater pro-
duction is increased compared to MARref (Table 5), leading
to a cumulative meltwater production increase of 66.7 % for
Assim over the year.

Meltwater that is produced within the snowpack will even-
tually either refreeze or run off, depending on the saturation
level and thermal condition of the snowpack. The snowpack
can saturate, either from excess meltwater production or from
densification. If the MAR snowpack LWC exceeds 5 % of the
firn air content (the irreducible water saturation), the excess
water starts to percolate to deeper layers and run off. The evo-
lution of runoff is thus directly related to the evolution of melt
and the snowpack saturation level (Fig. 7). Therefore, the rel-
ative increase in surface melt for Assim relative to MARref
(67.7 %) is similar to the relative increase in runoff (63.8 %),
but their absolute increase in Gtyr−1 is different (+95 and
+21 Gtyr−1, respectively).

The difference between the increase in meltwater produc-
tion and the increase in runoff corresponds to an increase in
refreezing, with a similar percentage change over the entire
domain. This suggests that the snowpack can still absorb liq-
uid water and convert it into refrozen ice in our simulations
unless it reaches its maximum LWC. However, as discussed
further below, the strongest increase in runoff occurs together
with firn air content depletion over the ice shelves. In this
case refreezing is large enough to substantially deplete the
firn air content, leaving less storage space for liquid water in
the perennial snowpack (Banwell et al., 2021).
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Table 4. Summary of the results of the different experiments conducted for the study. The number of melt days, cumulated surface meltwater,
runoff, refreeze and surface mass balance over the 2019–2020 melt season are provided for each experiment for the entire MAR spatial extent,
excluding ocean areas.

Simulation Number of ME RU RZ SMB
melt days (Gtyr−1) (Gtyr−1) (Gtyr−1) (Gtyr−1)

Assimref 121 214 56 182 427
AsA01S105AMA02AMD02 123 214 55 181 429
AsA01S115AMA02AMD02 121 213 55 180 429
AsA02S110AMA02AMD02 129 297 59 256 425
AsA02S105AMA02AMD02 129 299 58 258 426
AsA02S115AMA02AMD02 126 298 60 256 424
AsA01S110AMA01AMD01 122 293 56 257 428
AsA01S105AMA01AMD01 123 289 48 258 436
AsA01S115AMA01AMD01 121 288 51 255 432
AsA02S110AMA01AMD01∗ 130 604 186 430 298
AsA02S105AMA01AMD01∗ 131 626 203 433 280
AsA02S115AMA01AMD01∗ 126 581 177 418 307
AsA01S110AMA04AMD04 120 184 45 161 438
AsA01S105AMA04AMD04 123 186 47 163 437
AsA01S115AMA04AMD04 120 183 45 161 439
AsA02S110AMA04AMD04 127 214 53 184 431
AsA02S105AMA04AMD04 129 221 56 187 427
AsA02S115AMA04AMD04 126 213 52 183 431
AsA01S110AMA02AS02 122 191 47 167 436
AsA01AMA02 121 177 48 153 436
AsA01AMD02 120 143 39 128 445
AsA01S110 119 148 39 131 444
AsA01AS10 121 155 41 137 442
MARref 123 142 32 132 451

Table 5. Difference (in Gtyr−1 and %) in surface meltwater production (ME), runoff (RU), refreezing (RZ), surface mass balance (SMB),
snowpack liquid water content (LWC) and snowpack density (ρ) between MARref and the mean value of the assimilations (Assim) for
2019–2020 for the entire MAR spatial extent (including grounded ice and ice shelves). Variables are accumulated annually and over summer
(November through April) except for snowpack density and the liquid water content, which are averaged over the periods. LWC and ρ are
the average within the first meter of the snowpack, while the other variables are the total for the entire snowpack.

Annual Summer

MARref Assimref Assim Range % difference MARref Assimref Assim Range % difference

ME (Gt yr−1) 142 214 237 183–299 66.7 140 212 235 180–296 67.1
RU (Gtyr−1) 32 56 53 45–60 63.8 32 56 53 45–60 64.5
RZ (Gtyr−1) 132 182 206 161–258 55.7 128 176 201 157–253 56.5
SMB (Gtyr−1) 451 427 431 424–439 −4.5 253 229 233 226–240 −8.2
LWC1 m (gkg−1) 19 17 18 14–24 −6.4 33 29 31 24–40 −6
ρ1 m (kgm−3) 407 422 421 418–424 3.6 425 445 445 440–449 4.6

As can be seen in Fig. 8, the data assimilation only has
a slight effect on the overall SMB. The SMB expression is
defined as the sum of the ablation terms (runoff, evaporation
and sublimation) and accumulation terms (snowfall and rain-
fall). The cumulative SMB for the 2019–2020 melt season is
only decreased by 4.5 % compared to the model without as-
similation. The general trend in SMB remains positive within

the study area. Only the ice shelves show negative SMB dur-
ing austral summer (Fig. 9).

The density and LWC of the snowpack are also impacted
by the assimilation. As can be seen in Table 6, densification
affects the LWC on the ice shelves where most of the surface
melt and refreezing occurs. With a denser snowpack, firn air
content is reduced, and there is less space for liquid water to
be absorbed. Therefore, despite the increase in surface melt
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Figure 7. Comparison between the cumulative surface meltwater
production (Gt) in green and the cumulative runoff (Gt) in orange
over the whole MAR domain (excluding ocean areas) for the 2019–
2020 melt season as modeled by MAR without assimilation and
with data assimilation. Shaded areas represent the range of the as-
similations. While the increase (in Gt) is larger for meltwater pro-
duction, the relative increase is similar for meltwater production and
runoff.

Figure 8. Cumulative surface mass balance (Gt) over the entire
MAR domain (excluding ocean areas) for the 2019–2020 melt sea-
son as modeled by MAR without assimilation (MARref in red), with
data assimilation (Assimmember in dashed lines) and as an averaged
value (Assim in blue). Shaded areas represent the range of the as-
similations. Despite the increase in surface melt production, the sur-
face mass balance does not significantly decrease.

production, the assimilation process eventually leads to a de-
crease in the amount of liquid water retained in the snow-
pack. This reduction occurs due to the assimilations’ impact
on water retention capabilities of the snowpack through in-
creased refreezing.

Figure 9. Cumulative SMB (mmWE) from 1 October 2019 to
28 February 2020 over the AP as modeled by Assimref. Larsen C
is outlined in purple, George VI in green and Wilkins in red. The
southern ice shelves and the northernmost coastlines are experienc-
ing a negative SMB in contrast with the rest of the AP. Larsen C is
divided into two regimes. Its northern part is experiencing a nega-
tive SMB, while the southern part is positive.

All three highlighted ice shelves (Larsen C, Wilkins and
George VI) experience an increase in surface melt, refreeze
and runoff as a result of the assimilation (Table 6). On the
Larsen C and Wilkins ice shelves, the percentage increase in
runoff strongly outweighs the percentage increase in surface
melt production. For Larsen C, the ice shelf experiencing in-
crease in melt in absolute and relative terms (+21 Gtyr−1,
i.e., +85.7 %), runoff triples (+6 Gtyr−1, i.e., +311.2 %).
However, over the year its liquid water content only slightly
increases (+1 %). It therefore appears that on ice shelves the
increase in refreezing is not strong enough to compensate for
the increase in melting. The depletion of firn air content leads
to a swift saturation of the snowpack, producing a surplus of
meltwater that results in a more pronounced decrease in SMB
compared to other regions of the Antarctic Peninsula.

Except for the LWC, which remains relatively small and
stable as it has been averaged over the season, the analyzed
variables (ME, RU, RZ, SMB and snowpack density) have
undergone noticeable variation as a result of the assimila-
tion, causing MARref variables to always be outside of range
of the assimilated simulations. The amplified surface melt
production leads to concurrent effects, including increased
runoff, reduced surface mass balance, and an increased oc-
currence of refreezing. This increase in runoff is attributed to
the increase in melt combined with the densification of the
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Table 6. Difference (in Gtyr−1 and %) in surface melt production (ME), runoff (RU), refreezing (RZ), surface mass balance (SMB), snow-
pack liquid water content (LWC) and snowpack density (ρ) between MARref and the mean value of the assimilations (Assim) over the three
highlighted ice shelves in 2019–2020 using the regions shown in Fig. 1. Variables are accumulated annually and over summer (November
through April), except for snowpack density and the liquid water content, which are averages over the specified periods. LWC and ρ are
given as the average of the snowpack first meter, while the other variables are totals for the entire modeled snowpack.

Annual Summer

Larsen C MARref Assimref Assim Range % difference MARref Assimref Assim Range % difference

ME (Gt yr−1) 23 38 44 31–58 85.7 23 38 43 30–57 87.6
RU (Gtyr−1) 2 7 8 4–10 311.2 2 7 8 4–10 311.6
RZ (Gtyr−1) 22 32 36 28–50 62.2 22 31 36 27–49 63.6
SMB (Gtyr−1) 24 19 18 15–21 −25.1 15 10 9 6–13 −38.9
LWC1 m (gkg−1) 3.6 3.5 3.6 3.1–4.6 1.5 6.1 6.0 6.2 5.2–7.8 1.1
ρ1 m (kgm−3) 463 508 509 495–519 9.8 500 549 552 536–564 10.3

Wilkins

ME (Gt yr−1) 9 13 14 10–19 48.4 9 12 14 10–19 48.2
RU (Gtyr−1) 2 5 4 2–7 185.6 2 5 4 2–7 185.6
RZ (Gtyr−1) 9 9 11 9–15 22.2 9 8 10 8–15 21
SMB (Gtyr−1) 6 2 3 0–5 −51.3 2 −2 −1 −4–1 −141.4
LWC1 m (gkg−1) 1.3 1.0 1.0 1.0–1.21 −21 2.2 1.7 1.7 1.6–2.0 −21.2
ρ1 m (kgm−3) 529 591 578 564–597 9.3 599 657 646 626–659 7.8

George VI

ME (Gt yr−1) 15 20 22 16–30 53.2 15 20 22 16–30 53.1
RU (Gtyr−1) 2 3 3 3–4 56.9 2 3 3 3–4 56.9
RZ (Gtyr−1) 14 18 20 15–27 45.8 14 18 20 15–27 45.2
SMB (Gtyr−1) 11 10 10 9–11 −10.3 5 3 3 2–4 −25
LWC1 m (gkg−1) 2.1 1.8 2.0 1.7–2.4 −4.1 3.6 3.2 3.5 2.9–4.1 −4.1
ρ1 m (kgm−3) 493 537 526 521–537 6.8 544 595 584 577–595 7.3

upper layers of the snowpack, reducing its capacity to absorb
meltwater.

In the end, the results illustrate that, on average, Assimref is
the assimilation that gives the closest results to Assim, mak-
ing it an appropriate candidate in the case of limited compu-
tational resources (allowing for 1 simulation instead of 24).
The parameters used in Assimref seem to be an appropriate
option given the results presented below regarding sensitivity
to the assimilation parameters.

4.1 MAR sensitivity

4.1.1 Sensitivity to the assimilation depth threshold

The assimilation depth used for low-penetrating sensors in-
fluences MAR meltwater production by inducing firn air con-
tent depletion. Due to refreezing, the uppermost portion of
the snowpack becomes denser. The refreezing is accentuated
when using a shallow-depth threshold (for example, 10 cm
with AMSR2) as the top layers of the snowpack will contain
the majority of the liquid water. Consequently, the increase in
meltwater production needed to reach the α threshold (0.1 %
or 0.2 %) will be greater (because of the denser snowpack)
than for a deeper assimilation depth where less densification

occurs. Also, with firn air content depletion, two other phe-
nomena enhance melt production. First, the available energy
in the system is consumed by the melting process, prevent-
ing layers below 1 m from heating up and reducing the re-
lease of latent heat from the refreezing process. Therefore,
the deeper layers will tend to cool the snowpack, necessi-
tating more nudging. The second phenomena is that during
melt events the upper layers saturate with less water due to
the densification. The saturation results in increased runoff
and faster percolation of the water into deeper layers outside
of the assimilation depth range. If the model were to retain
liquid water in its top snow layers for a longer duration, it
would require less nudging to match the RS datasets. This
effect could be achieved by increasing the maximum liquid
water content of the snow layers. However, enhancing water
retention in the near-surface snowpack layers might lead to
increased refreezing and consequently densification depend-
ing on the snowpack temperature (Fettweis et al., 2011).

This phenomenon is illustrated in Fig. 10, where using
a 10 cm assimilation depth threshold for AMSR2 produces
more melt than the 20 and 40 cm thresholds for water content
thresholds of both 0.1 % and 0.2 %. The effect ends up being
so important that using a 10 cm assimilation depth and 0.2 %
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Figure 10. Cumulative surface melt production (Gt) over the entire
MAR domain for the 2019–2020 melt season as modeled by the
different assimilation experiments. The assimilations are grouped
by their α and Ku-band 1z thresholds. Shaded areas represent the
range of the assimilation of the groups. Groups of assimilations with
Ku-band 1z = 0.1 m produce more melt than the group of assimi-
lations with the same α but different 1z.

α threshold for AMSR2 can result in an intense refreezing
and firn air content depletion that leads to a strong increase
in runoff, reducing SMB for the Antarctic Peninsula. This
decrease in SMB is contrary to the generally observed trend
(Rignot et al., 2019; Chuter et al., 2022). Consequently, the
three simulations that use these parameters for the Ku-band
sensors have been discarded in the computation of the aver-
age melt for the assimilations.

In contrast, with Sentinel-1, the effect of choosing dif-
ferent 1z thresholds is less pronounced. As shown in Ta-
ble 4, assimilations that have all parameters in common ex-
cept the S1 assimilation depth threshold only vary slightly (a
few Gtyr−1) for all variables. Multiple reasons can explain
this comparatively lighter effect. S1 has a larger revisit time
compared to AMSR2 (a 6 d revisit time vs. daily images).
With fewer images, the assimilation depth for S1 is used
less frequently in the melt assimilation process within MAR.
In addition, as explained previously, the liquid water is kept
longer in these slightly deeper layers due to a higher reten-
tion capacity, and thus less melt is required to reach the water
content threshold. Overall, these results indicate that MAR
is more sensitive to a shallower assimilation depth threshold.
Most of the sensitivity is linked to refreeze and densification,
more likely to occur in the first centimeter of the snowpack.
The penetration depth for the C-band sensors is larger than
for Ku-band sensors, and using sensors with higher frequen-
cies increases the sensitivity to the choice of the thresholds.

Table 7. The melt season length (first to last melt day) and num-
ber of melt days modeled for MARref and the average for assimila-
tion simulations grouped by α value over the three highlighted ice
shelves in Fig. 1 for 2019–2020. A melt day over an ice shelf is a
day where more than 10 % of the ice shelf is experiencing melt.

Larsen C Melt season Number of melt
length (days) days modeled

MARref 143 90
α = 0.1 % 147 110
α = 0.2 % 152 119

Wilkins Melt season Number of melt
length (days) days modeled

MARref 292 127
α = 0.1 % 294 125
α = 0.2 % 298 129

George VI Melt season Number of melt
length (days) days modeled

MARref 120 120
α = 0.1 % 123 122
α = 0.2 % 157 134

4.1.2 Sensitivity to the water content threshold

Experiments with varying the liquid water content threshold
have a smaller impact compared to the assimilation depth ex-
periments. Varying liquid water content influences the num-
ber of melt days modeled, thus expanding the melt season
duration (Table 7) rather than the quantity of liquid water
produced by melting. The amount of liquid water required
to reach the water content thresholds α is small compared to
the modeled LWC of a typical melt day. In MARref, for the
2019–2020 melt season, the value reaches 1.2 % for a melt
day on average, above the 0.2 % threshold.

For this study, the number of melt days is defined as the
number of days of the melt season where 10 % of the ice
shelf experiences melt, while the melt season length corre-
sponds to the number of days between the first melt day after
the first of June and the last melt day before the last day of
May in the subsequent year. Thus, the melt season length
also encompasses possible colder periods where no melting
occurs.

The choice of liquid water content threshold also influ-
ences the average number of melt days on the studied ice
shelves (Fig. 11). A pixel is considered as melting for the
day if the daily averaged mass of liquid water within the first
meter of snow is greater than 0.1 % of the snowpack mass.
Therefore, using the 0.2 % threshold over 0.1 % will increase
the number of melt days.

By computing the mean value of the number of melt days
for each ice shelf pixel, it was found that Larsen C is the
most sensitive to the threshold chosen, with an increase of
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Figure 11. Distribution of the number of melt days for the 2019–
2020 melt season as modeled by MARref and the assimilations
grouped by the specified α threshold values for the three studied
ice shelves. Dashed lines represent the mean value of the distribu-
tion. On the three ice shelves, assimilations with α = 0.2 % produce
more melt days than MARref and the other assimilations. Assimi-
lations with α = 0.2 % exhibit an increase in the mean number of
melt days relative to MARref over the Larsen C ice shelf of 15 d, 8 d
on the Wilkins ice shelf and 9 d on the George VI ice shelf.

15 melt days compared to MARref. The other two ice shelves
exhibit comparatively smaller differences, with Wilkins and
George VI experiencing an increase of 8 and 9 melt days,
respectively (Fig. 11).

Examining assimilation simulations individually leads to a
similar conclusion. It is important to note that the simulations
that were discarded from the computation of Assim are as-
similations that had 0.2 % as the value for the threshold. With
a densified snowpack, reaching α = 0.2 % required more in-
tense melting producing unrealistic surface conditions.

4.1.3 Sensitivity to the RS dataset

In another set of sensitivity experiments, each of the four
wet-snow masks (AMSR2 desc., AMSR2 asc., ASCAT, S1)
has been assimilated individually into MAR to study its in-
fluence. Assimilating multiple datasets tends to smooth the
sensor characteristics as they are only processed to be used
where they provide consistent information. In this study, sev-
eral characteristics of the remote sensing data are examined,
including the acquisition time, the spatial resolution, and the
revisit time, and their impact is discussed below. First, an
earlier acquisition time can artificially lower the number of
melt days. Because of the daily cycle of the water quantity
in the snowpack, images taken earlier in the morning are less
likely to observe wet snow (Picard and Fily, 2006). Over the

Antarctic Peninsula, the descending orbit of AMSR2 there-
fore observes less wet snow than the ascending one. Using
satellites whose acquisition times are well distributed during
the day allows for observation of the daily melt–refreezing
cycle and reduces the possibility of excluding melt days.

Second, the spatial resolution influences the results of
the assimilation because of pixel heterogeneity. Sensors that
have a coarser resolution hide highly heterogeneous surface
dynamics, and it is possible that while only a fraction of
the region covered by one pixel is experiencing melting or
enough water is present in the snowpack, the entire pixel is
characterized as wet snow Picard et al. (2022). In steep re-
gions, e.g., near the grounding line, this phenomenon can
lead to the detection of wet snow in places where it is un-
likely to occur. In this study, the passive microwave sensor
AMSR2 has a coarser resolution than MAR and can trigger
the assimilation process in locations where it should not be
applied.

To study the influence of the spatial resolution, we
have performed a simulation assimilating ASCAT data
(AsA01S110AMA02AS02 in Table 2) instead of AMSR2 in
the descending orbit. The assimilation with ASCAT produces
a smaller number of melt days and surface melt production
on the Antarctic Peninsula for the studied period (191 Gtyr−1

for AsA01S110AMA02AS02 and 214 Gtyr−1 for Assimref).
While the assimilation depth is different between AMSR2
and ASCAT, the major influence comes from the spatial reso-
lution of the sensor (with ASCAT having a higher spatial res-
olution). The difference can be seen in the wet-snow masks
(Fig. 12). AMSR2 detects melt on Alexander Island, between
George VI and Wilkins ice shelves, whereas ASCAT with a
finer resolution and a different frequency does not. Even if
wet snow is observed for one of the AMSR2 masks, the dura-
tion of the increased MAR snowpack temperature is too short
to produce the water quantities necessary to be detected as
melt. This preservation of a cold snowpack persists through-
out the day.

Finally, the impact of revisit time is highlighted by study-
ing the wet-snow extent resulting from the assimilation of
only one sensor at a time (Fig. 13). The assimilated S1 wet-
snow mask does not cover the entire AP every day and thus
shows a smaller wet-snow extent than the other masks. As
a consequence, there are fewer instances in which the model
and the mask exhibit discrepancies regarding the snow status,
resulting in reduced application of the nudging technique.
Ultimately, the S1-only assimilation (AsA01S110 in Table 2)
has the closest wet-snow extent to MARref, despite the bias
in the raw data. The resilience of the model snowpack is
such that relying solely on a non-daily dataset with intermit-
tent nudging allows it to freely evolve with minimal external
forcing. Consequently, while the high spatial resolution of
Sentinel-1 provides valuable information, this advantage is
not sufficient enough to be used as the only dataset assimi-
lated. The S1 dataset needs to be used in conjunction with
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Figure 12. (a) Number of days with wet snow observed by AMSR2
ascending on the AP for the 2019–2020 melt season. (b) Number of
days with wet snow observed by ASCAT on the Antarctic Peninsula
for the 2019–2020 melt season. ASCAT observes more wet snow
than AMSR2 over the ice shelves but less melt on average at higher
altitudes and in areas of steep terrain.

other datasets to combine high spatial resolution with low
revisit time.

The resilience of the snowpack simulation also decreases
the feasibility of assimilating only one dataset using the algo-
rithm described in this paper. While the ASCAT-only assim-
ilation (AsA01AS10 in Table 2) tends to be closest to its wet-
snow mask during peaks of melt (end of November 2019,

Figure 13. Evolution of the wet-snow extent over the entire
MAR domain (including grounded ice and ice shelves) during
the 2019–2020 melt season as modeled by MARref, the assimila-
tion of S1 alone (AsA01S110), the assimilation of ASCAT alone
(AsA01AS10), and the wet-snow masks from S1 and ASCAT. The
S1 wet-snow mask has a lower extent as the AP is not covered en-
tirely every day by S1 images.

beginning of 2020) or strong refreeze (mid-March 2020), the
effects of nudging do not persist over long time periods and
necessitate changes in the model to match the observed wet-
snow mask.

Assimilating two datasets that entirely cover the study area
and a dataset that has a finer spatial resolution compared to
MAR serves as a means of mitigating the sensitivity of the
model to the chosen datasets. The constraints on the period
in which the model snowpack temperature can be changed
and the possibility of not assimilating data in case of a dis-
crepancy between the sensors also regulates the dependence
of the model on the observations. Future developments in the
technique should allow for the possibility of assimilating ad-
ditional datasets and weighting wet-snow masks according to
the relevance of their wet- or dry-snow status.

5 Discussion and conclusions

In this paper, we presented results regarding the assimila-
tion of wet-snow occurrence data estimated by spaceborne
microwave sensors into the regional climate model MAR
through adjustments in MAR near-surface temperature to
best match the satellite data. Sensitivity tests have been per-
formed to evaluate the effect of the data assimilation param-
eters on the model results.

We identified the assimilation depth (1z) to be the most
influential parameter when applied for shallow-penetration
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sensors. The influence on the quantity of water produced in
the snowpack partially comes from the liquid water content
threshold (α) calculation. The uppermost layer of the snow-
pack is considerably more dense than the underlying layers,
owing to the increase in refreezing caused by the exceed-
ing liquid meltwater produced as a result of the assimilation.
Heavier and denser layers require more liquid water to be
present to reach the required α threshold. In addition, the
densification causes firn air content depletion, leaving less
space for liquid water. The densified layer saturates faster,
and more runoff occurs. A threshold of 0.2 m for the Ku-
band sensors causes no extreme refreezing or melt and may
be considered a good candidate for assimilation depth thresh-
olds. For the C-band sensors, the three thresholds tested yield
similar results to one another, and the implementation of a
varying threshold should be considered to take into account
the depth at which the wet snow is observed. In contrast to
assimilation depth (1z), the maximum LWC threshold (α)
has a smaller impact on the model surface melt production
(in Gt). The choice of α = 0.2 % over α = 0.1 % mostly in-
creases the duration of the melting season, rather than the
amount of meltwater produced.

With constant snowfall (480 Gtyr−1) and an increase in
surface meltwater production (+95 Gtyr−1 or+66.7 %)), the
increase in runoff (+21 Gtyr−1 or+63.8 %)) associated with
assimilation translates into a decrease in SMB (−4.5 %)) for
the 2019–2020 melt season. Nonetheless, runoff values are
relatively small compared to the surface mass balance, ex-
plaining the small impact of assimilation on the SMB. The
general tendency of SMB remains positive in the study area.
Only the ice shelves show negative SMB during periods of
intense melting.

The choice of the dataset to be assimilated was also found
to influence the results of the model after data assimilation.
Each sensor has its particularities, and wet-snow masks may
differ between sensors. Several of these characteristics have
been pinpointed previously. The most important ones are the
signal frequency, the revisit time and the spatial resolution.

The frequency of the sensor impacts estimated meltwa-
ter production due to differences in sensitivity to liquid wa-
ter and the depth to which the signal penetrates. Because
it is difficult to provide accurate surface water depth esti-
mates (Fricker et al., 2021) and microwave signals can be
intercepted by the water in the snowpack, the vertical limit
necessary for the assimilation is not always clear. If there
is enough water in the near-surface layers, additional liquid
water within deeper layers cannot be observed. In the same
way, a thin layer of surface water can be interpreted as the
presence of water in the first meter of the snowpack when
the underlying layers are dry (Fig. 5). The assimilation depth
threshold 1z has been set to different values depending on
sensor wavelengths, but remains constant regardless of the
snowpack state. Introducing a density-varying LWC thresh-
old could decrease meltwater production in the assimilation
simulations. However, we encourage field observations of the

evolution of the LWC vertical profile; a required step needed
in introducing and validating the assimilation algorithm.

The revisit time of the satellites is influential as the model
freely evolves if the forcing is not performed every day. The
assimilation of only Sentinel-1 satellites (with a revisit time
of 6 d, translating into one image every 2–3 d over the study
area) produces results close to those of the model simulation
without data assimilation. Multiple datasets need to be assim-
ilated on the same day for the model to consistently change
its behavior. The resilience of the model results from the re-
freezing of the snowpack during nights and in winter months.
When taking into account a few melt seasons, at the begin-
ning of the melt season the model snowpack is more or less
similar to its state in the previous year.

Assimilating multiple datasets into MAR also brings chal-
lenges and considerations alongside the advantages. If some
missing information is fulfilled by another dataset, it adds
another layer of complexity to the algorithm or additional
uncertainties linked to the assimilation method used and its
thresholds. Datasets may not carry the same information and
may not be compatible for all the time steps. Here, none
of the datasets is considered to have better wet-snow detec-
tion than the other. A possible enhancement of the technique
would be to add weight to the masks in case of contradic-
tions between them. The weight could be constructed using
the confidence level of the wet-snow detection technique em-
ployed, the satellite spatial resolution, the topographic gradi-
ent from higher-resolution satellite pixels interpolated to the
MAR grid or the sensor sensitivity to liquid water.

The results highlight the importance and impact of utiliz-
ing data assimilation. While the assimilation does not induce
a complete change in the behavior of the model as surface
melt remains marginal to snowfall, the snowpack properties
tend to deviate from the model simulation performed with-
out assimilation, impacting the ability of the snowpack to re-
tain meltwater in the future. Here, satellite data have only
been assimilated for two melt seasons over a small area. The
study can be expanded in the future to cover a longer period,
a larger spatial extent, or the Greenland Ice Sheet, where sur-
face melt is the main driver of SMB variability (Slater et al.,
2021). Further attention should be given to ice shelves as
they are the most sensitive region of Antarctica and impor-
tant to the Antarctic ice sheet stability (Favier and Pattyn,
2015; Paolo et al., 2015; Sun et al., 2020).

Finally, The results obtained in this paper pinpoint the un-
certainties in the regional climate model over the Antarc-
tic Peninsula, where, without significant increases in simu-
lated melt area, the surface melt production significantly in-
creased. The assimilation of remotely sensed data into RCMs
is a promising way of reducing the biases and errors inher-
ent to climate models, given that there are currently no di-
rect large-scale measurement of meltwater content within the
Antarctic snowpack. This is also an easy way to provide ro-
bust uncertainties in model outputs for present climate. Us-
ing multiple RS datasets with spatial resolutions higher than
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the model resolution would also allow for improved model
corrections through better assessment of the snowpack water
content.
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