N
N

N

HAL

open science

PHAUSTO: EMBEDDING THE FAUST COMPILER
IN THE PHARO WORLD

Domenico Cipriani, Alessandro Anatrini, Sebastian Jordan Montano

» To cite this version:

Domenico Cipriani, Alessandro Anatrini, Sebastian Jordan Montafio.
THE FAUST COMPILER IN THE PHARO WORLD. Proceedings of the International Faust Con-

ference, 2024. hal-04837510

HAL Id: hal-04837510
https://hal.science/hal-04837510v1
Submitted on 13 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

PHAUSTO: EMBEDDING

https://hal.science/hal-04837510v1
https://hal.archives-ouvertes.fr

Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

PHAUSTO: EMBEDDING THE FAUST COMPILER IN THE PHARO WORLD

Domenico Cipriani ™

Pharo Association - Lille, France
mspgate@gmail.com

Alessandro Anatrini

Hochschule fiir Musik und Theater (HfMT),
Hamburg - Germany
Conservatorio Statale di Musica J. Tomadini -

Sebastian Jordan Montario

Univ. Lille, Inria, CNRS, Centrale Lille,
UMR 9189 CRIStAL F-59000 Lille, France

sebastian. jordan@inria.fr

Udine, Italia
alessandro@anatrini.com

ABSTRACT

Phausto is a lightweight, open-source library for live-coding mu-
sic, enabling sound generation and Digital Signal Processing
(DSP) programming. Developed in the Pharo programming lan-
guage, it incorporates the Faust compiler for robust audio capa-
bilities, using Foreign Function Interface (FFI) calls for seamless
integration. Phausto connects with platform-specific audio layers
through PortAudio, offering a consistent API across operating sys-
tems. Designed for educational settings, it targets users interested
in DSP, musicians, and sound artists with limited technical skills.
Phausto addresses two main challenges: generating audio in Pharo
applications and providing an accessible environment for program-
ming digital musical instruments. It is easy to install and supports
the latest Pharo versions, with instructions available on its GitHub
repository.

1. INTRODUCTION

Phausto is a library for live-coding music. It enables sound gener-
ation and DSP (Digital Signal Processing) programming. Phausto
is free and open source, lightweight (only 10 MB including the
Faust libraries), and an accessible tool developed primarily to pro-
vide developers with a fast and easy way to integrate sound into
their programs and applications. Phausto is well-suited for educa-
tional use, particularly in environments that emphasize hands-on,
exploratory learning. It targets users interested in learning DSP
programming, musicians, and sound artists with limited computer
proficiency who want to learn about computer music.

Phausto is implemented in the Pharo programming language.
It has an embedded Faust [3] compiler for producing the sound.
We chose Faust because it offers incredible audio-programming
capabilities [2]. The interaction between Pharo and Faust is en-
abled through Foreign Function Interface (FFI) calls to a dynamic
library allowing seamless integration with Faust libraries and the
Box-API. Phausto also manages the connections to platform-
specific audio layers via PortAudio, a cross-platform audio library
that provides a consistent API for audio input and output across
different operating systems. From educational and artistic perspec-
tives, Phausto aims to serve as a functional alternative to Faust and
as an introductory tool for users needing more advanced DSP or
custom solutions.

Phausto is easy to install. It operates on the latest stable
version of Pharo, ensuring backward compatibility up to Pharo
10. Detailed installation instructions for Phausto can be found
in the Phausto GitHub repository: https://github.com/
lucretiomsp/phaustol

* This work was supported by the Pharo Association

The Phausto Library addresses two key challenges:

1. generating audio in Pharo applications;

2. providing an accessible environment for sound artists with
limited computer literacy to program digital musical instru-
ments (DMIs).

2. THE PHARO PROGRAMMING LANGUAGE

We chose Pharo as our implementation platform because it has
an easy-to-read-and-learn syntax with only seven reserved words.
Pharo [4] 5] is a pure object-oriented programming language that
is dynamically typed. Pharo is a modern implementation of
Smalltalk [6} [1] that started in 2008. It is multi-platform and has
a vibrant community worldwide, welcoming coders of all experi-
ence levels.

Its simple syntax makes Pharo resemble a pidgin languageﬂ
[7]. Pharo is also an integrated development environment (IDE)
that offers a live coding environment where programmers can
modify their code during execution. At the same time, GUI wid-
gets can be opened or easily created and used in real-time devel-
opment.

3. INSIDE PHAUSTO

The communication between Faust and Pharo depends on three
technologies: the Faust dynamic engine, Pharo’s unified Foreign
Function Interface (uFFI) , and Faust Box API. Figure|[I] provides
an overview of the Phausto’s architecture. In the following section
we will discuss the implementations detail of Phausto. These im-
plementation details require an advanced understanding of Pharo
and Faust, which is only relevant within the context of this paper.
The final user of Phausto does not need to know about the details
of how Unit Generators are initialised and converted to PhBox. To
combine Unit Generators and create DSP, users only need to know
how to set their instance variables and how they can be patched
together. All this information is contained in the class comments.
This concept of abstraction is fundamental within the object ori-
ented paradigm.

'In computing, a "pidgin language" refers to a programming language
with a simplified syntax and minimalistic design, akin to a pidgin language
in linguistics. Just as a pidgin language simplifies communication between
speakers of different native languages, a pidgin programming language
simplifies code writing and reading by reducing complexity and remov-
ing extraneous features. This approach aims to make the language easier
to learn and use.

https://association.pharo.org
mailto:mspgate@gmail.com
https://www.hfmt-hamburg.de/
mailto:alessandro@anatrini.com
mailto:sebastian.jordan@inria.fr
https://github.com/lucretiomsp/phausto
https://github.com/lucretiomsp/phausto

Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

create a Box from
Phausto Objects BOX creates a DSP from a Box

API —¢

DYNAMIC ENGINE

the FAUST generated
prorgam computes
samples for the
underlying audio layer

—_

creates DSP
from a String
—_—

[LIBFAUST |

Unit Generators are
implemented
in the FAUST libraries
FAUST LIBRARIES
(stdfaust.lib)

fills blocks of
audio bufffers PLATFORM

PORTAUDIO SPECIFIC

Figure 1: A simplified diagram illustrating Phausto’s framework architecture. The dynamic engine libraries use libfaust and the Faust
libraries to transform into DSP programs the strings of code or the combinations of boxes written inside Pharo. The computed samples
feeds the PortAudio stream that is finally rendered into sound by the platform specific audio driver.

3.1. The Dynamic Engine

The dynamic engine is a Faust DSP architecture developed by
Stéphane Letz E] Its C API details how to create Faust objects,
initialize them with a sample rate and a buffer size and start and
stop their operation. This dynamic engine can be packaged with
an interpreter backend and a basic WaveReader for reading audio
files, instead of the default LLVM compiler backend. To meet our
design goals, we opted for the interpreter backend and the Wa-
veReader due to their lack of external dependencies. Addition-
ally, we selected PortAudio for its cross-platform compatibility.
While we acknowledge that the interpreter backend is slower com-
pared to the LLVM compiler, we do not anticipate this will impact
Phausto’s target audience.

New DSP objects can be instantiated from a string containing
a Faust program using the following function:

dsp* createDsp(const charx name_app, const
charx dsp_content, int argc, const charx
argv([], const charx target, int
opt_level);

This function is called sending the create: aString mes-
sage to the DSP class. It can be considered the easiest way for a
Faust programmer to create DSP in Phausto and it was our first
choice to test the functioning of our framework.

Alternatively, we can create a DSP object from a box or a
combination of boxe This approach is more flexible because
it allows the user define the connections between boxes in Phausto

2https://github.com/grame—cncm/faust/
blob/master-dev/architecture/faust/dsp/
faust-dynamic-engine.h

JA Box is an intermediate representation of a Faust primitive, or of a
DSP. Boxes expression can be created and combined though a C/C++ .
Boxes enable precise and granular manipulation of DSPs (Digital Signal
Processing units) through our higher-level Phausto API, allowing for de-
tailed tuning and adjustment of their operational parameters in Pharo code.

code, taking advantage of Pharo syntax highlighting. The follow-
ing C function is called when the asDsp message is sent to a
PhBox]

dspx createDspFromBoxes (const charx
name_app, Box box, int argc, const charx
argv[], const charx target, int
opt_level);

Both methods return a pointer to the created DSP objects on suc-
cess, or a null pointer on a failure; if a failure occurs, a call to:

{const char* getLastError();

returns the error.

3.2. Pharo Unified Foreign Function Interface (UFFI)

A Foreign Function Interface (FFI) is a programming mechanism
that enables the use of functions and data structures written and
compiled in a different language [8]. Typically these “foreign”
resources are shared libraries, such as .d11, .so, and .dylib
files on Windows, Linux, and macOS respectively.

The Pharo uFFI API framework allows us to use implementa-
tions written in faust-dynamic—engine.h, in libfaust
—c.hand in libfaust-box~-c.h. We have implemented all
functions from faust-dynamic—-engine.h as FFi calls in
Pharo. Below is an example of the FFI call used to create a DSP
from boxes:

4The PhBox class is a subclass of Pharo FFIOpaqueOject that is
essentially a pointer to a Faust box.

https://github.com/grame-cncm/faust/blob/master-dev/architecture/faust/dsp/faust-dynamic-engine.h
https://github.com/grame-cncm/faust/blob/master-dev/architecture/faust/dsp/faust-dynamic-engine.h
https://github.com/grame-cncm/faust/blob/master-dev/architecture/faust/dsp/faust-dynamic-engine.h

Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

PhaustoDynamicEngine >> #createDspFromBoxes
aFaustBox

~ self ffiCall:

#(DSP » createDspFromBoxes #(const
char x ’'MyApp’, #PhBox x aFaustBox,
int 0, void « 0, const char » ’ 7,
int -1))

3.3. The Box API

The Faust Box API serves as an intermediate public entry point in
the Semantic PhaseE] of Faust’s compilation process. It facilitates
the programmatic construction of a box expression, which is sub-
sequently used to instantiate a DSP object. Boxes can be created
by invoking a specific function defined in 1ibfaust-box-c.h.
For example, to create a Checkbox:

Box CboxCheckbox (const char * label);
Or from a string containing a Faust program:

Box CDSPToBoxes (const charx name_app, const
charx dsp_content, int argc, const char
+ argv[], intx inputs, int outputs,
charx error_msqg);

In Phausto, we have created a subclass of
FFILibrary named BoxAPI to handle all the bindings to
libfaust-box—-c.h. The BoxAPI provides the interface to
the Faust Box API, which, in turn, enables us to define a custom
API for constructing DSP objects. This design allows Pharo users
to develop their own DSP without needing to understand or use
Faust syntax directly.

Currently 45 functions from the Faust Box-API have been im-
plemented as Pharo methods. This includes the five binary com-
position operations, most of the C-equivalent primitives, the Wire
and the Cut boxes, as well as all UI primitives. The following ex-
ample demonstrates the Pharo implementation of the FFI call to
the CboxHS1ider function:

BoxAPI >> #boxHslider: aLabel init: initBox
min: minBox max: maxBox step: stepBox

self createLibContext.

self ffiCall:

#(#PhBox * CboxHSlider #(const char =
aLabel , #PhBox * initBox, #PhBox =*
minBox , #PhBox * maxBox , #PhBox
stepBox))

All functions from libfaust-box—-c.h are implemented
in Pharo as methods (FFI calls) within the BoxAPT class, and are
available to use by instances of the PhBox class (see next subsec-
tion). Each method in the BoxAPT class first invokes
createLibContext method to ensure that a global compila-
tion context exists; if not, createLibContext will create one.
This compilation context will be automatically destroyed when the
asDsp message is sent to a Phausto Box.

5The Semantic Phase is the initial step in the Faust compilation chain
and consists of multiple stages. It takes Faust code as input and produces
a list of signals in Normal Form as output. This list of signals in Normal
Form is then passed to the Code Generation Phase, which compiles it into
imperative code (C++, LLVM IR, WebAssembly, etc.

3.3.1. Integrating Unit Generators with Phausto

The concept of Unit Generators was first introduced by Max Math-
ews and Johan E. Miller for the Music III program in 1960 [9].
These components serve as the foundational building blocks of
signal processing algorithms. Essentially, Unit Generators are sub-
routines that generate an output signal and may also process an in-
put signal. Each Unit Generator is designed to perform a specific
task, such as producing sound waves, applying filters, or control-
ling audio parameters. They function as modular elements within
a synthesis framework.

As a functional language, Faust does not use any hierarchi-
cal organisation of Unit Generators, which is possible in object-
oriented languages like Pharo, ChucK or SuperCollider through
inheritance and abstraction. At the same time, Faust provides hun-
dreds of DSP functions for synthesis and audio processing within
the Faust Libraries, which yield the same output of our Unit Gen-
erators. The UnitGenerator class is a subclass of the PhBox
class. Instances of the PhBox class are FFIOpaqueObjects, which
correspond to pointers to Faust Boxes. UnitGenerators exists only
in the Pharo environment and become PhBoxes when they receive
the asBox message. To understand this mechanism, consider a
simplified implementation of the LFOTriPos class, correspond-
ing to Faust’s os.1f_trianglepos. First, let’s look at its ini-
tialise method:

LFOTriPos >> #initialize

faustCode := ’import ("stdfaust.lib");
process = os.lf_squarewavepos;’
freq := PhHSlider new
label: self label , 'Freq’
init: 440
min: 1
max: 2000

step: 0.001.

amount := PhHSlider new
label: self label , ’Amount’
init: 1
min: O
max: 28000
step: 1.
offset := PhHSlider new
label: self label , "Offset’
init: O
min: 0O
max: 800
step: 0.01.

Next, the asBox method converts the UnitGenerator into an
instance of its superclass, PhBox. :

Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

LFOTriPos >> #asBox
| intermediateBox finalBox |

BoxAPI uniquelnstance createLibContext.
intermediateBox := BoxAPI
uniqueInstance
boxFromString: self faustCode
inputs: self inputs
outputs: self outputs
buffer: self errorBuffer.
finalBox := freq asBox connectTo:
intermediateBox.
finalBox % self amount asBox + self
offset asBox

A

This final steps is fundamental as it enables the creation of a DSP
object from a combination of boxes. Instances of the PhBox class
serve as our entry point into the Faust compilation chain of the
backend interpreter.

The Phausto API converts the majority of Faust libraries
into Unit Generators. This design choice aligns with the object-
oriented principle of inheritance while preventing the bloat of
a single class with hundreds of methodsE] The organisation of
these units into subclasses and their interconnection capabilities
are heavily inspired by the design principles of the ChucK pro-
gramming language [10]. Indeed, in ChucK, there is no distinc-
tion between Unit Generators that operate at audio rate and those
operating at control rate [[11].

All Phausto Unit Generators are provided with initialised in-
stance variables for the parameters specified in the corresponding
Faust function. When possible (i.e. the argument is neither a con-
stant value nor another function) they are initialised to a Faust
hslider or button primitive, enabling both the parameter con-
trol and the on-the-fly creation of UI elements for the given pa-
rameter. If the Unit Generator’s label has not been changed via the
label: message, all Ul elements use the class name as prefix.
For example the PulseOsc has two controls: ' PulseOscFreq
" for its frequency and ' PulseOscDuty’ for its duty cycle.

4. SYNTAX IN A NUTSHELL

To create a DSP in Phausto, simply send the asDsp message to a
Unit Generator or a combination of them. The stereo message
converts it into a stereo DSP. Next, the DSP must be initialised
and started to produce sound. A slider can be opened in the Pharo
window to control a parameter of the DSP, and finally, the sound
can be stopped.

sgr := SquareOsc new.
dsp := sgr stereo asDsp.
dsp init.

dsp start.

dsp openSliderFor: ’SquareOscFreq’.
dsp stop.

SIntegrating over 200 methods directly into the DSP class would have
been impractical. Instead, we organised these methods into Unit Gen-
erators, which enhances modularity and readability. Similarly, the Faust
programming language efficiently manages large numbers of functions by
structuring them within environments.

At need, we can combine UnitGenerators by assign them to in-
stance variables, and we can change the value of a parameter with
the keyword message setValue: parameter::

pulse := PulseOsc new duty: LFOTriPos new.

dsp := pulse stereo asDsp.

dsp init.

dsp start.

dsp setValue: (Random new
nextIntegerBetween: 50 and: 800)
parameter: ’'PulseOscFreq’

dsp stop.

The binary operator => from the ChucK programming lan-
guage was adopted to simplify the connection between UnitGen-
erators. This approach abstracts the connections while adhering to
the principles of modular synthesis patching.For example a simple
synth could look like this:

synth := SawOsc new => ADSREnv new =>
Resonlp new => SatRev new;

Due to the double dispatch mechanism in the Phausto imple-
mentation of the => message, its meaning depends on the argu-
ment provided. If the argument is an envelope, it performs signal
multiplication; if it is a filter or a reverb, it connects the input(s) of
a Unit Generator or a combination of them.

4.1. Dynamic Control of DSPs with Pharo Processes

Once our DSPs have been created, initialised and started,
Pharo’s syntax enables us to create algorithmic compositions.
This is achieved by defining a process that repeatedly exe-
cutes a BlockClosure for a number of times. Within this
BlockClosure, time advancement is managed by sending the
wait message to an instance of the Delay class. The process is
then initiated by sending the fork message. This approach allows
forked processes to run concurrently.

djembe := Djembe new.

dsp := djembe stereo asDsp.
dsp init.

dsp start.

pos := 0.
[128 timesRepeat:

[dsp setValue: (Random new
nextIntegerBetween: 200 and: 900)
parameter: ’'DjembeFreq’.

dsp setValue: (pos \% 1) parameter: '

DjembeStrikePos’.

dsp trig: ’'DjembeGate’.

pos := pos + 0.1.

(Delay forSeconds: 0.2) wait]] fork.

5. THE TOOLKIT AND TURBOPHAUSTO

In Phausto, we have implemented two sets of classes to simplify
DSP programming and to provide musicians an ensemble of in-
struments effects for programming music on-the-fly without the
need to use external audio generators.

Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

5.1. The ToolKit

The ToolKit is a collection of synthesisers, effects and utilities in-
cluded in the Phausto package. The name ToolKit pays tribute to
Perry Cook’s and Gary Scavone’s Synthesis ToolKit [12]]. Within
the ToolKit, one can find utilities as an incrementer, an LFO that
outputs a pseudo random signal, a reader and a resetter for reading
sound files, and a basic SamplePlayer for playing back .wav files
in Pharo applications.

5.2. TurboPhausto

TurboPhausto is a collection of synthesisers and effects designed
to be the counterpart of SuperCollider’s SuperDirt engine, in-
tended for use with Coypu, the package that has been developed
over the past three years for programming music on-the-fly with
Pharo. Currently, 4 instruments and 2 effects are ready in Tur-
boPhausto:

e TpSampler- a monophonic multisample player, that looks
for all the sample in a specified folder (maximum 256 files);

* Fm20p - a monophonic FM synth with 2 operators;

e PsgPlus - a monophonic chirpy synth inspired by Sega
Master System Programmable Sound Generator (PSG);

e Chordy - a pseudo polyphonic virtual analog synth, in
which different chords can be selected with the mode:
message;

e DelayMonoFB - a smoothed mono delay with resonant
feedback and dry/wet control;

* GreyHoleDW - a mono version of Faust’s GreyHole reverb
with dry/wet control.

All TurboPhausto synthesisers come with an AR/ADSR enve-
lope and optionally with filters and effects on their output. All the
effects are provided with dry/wet control. Here is a brief example
of an extract of a live performance using Coypu and TurboPhausto:

"create, initialize the DSP"

dsp := (TpSampler new + PsgPlus new + Fm20p
new) stereo asDsp.

dsp init.

dsp start.

"initialize the Performance and assign the
DSP"

p := PerformanceRecorder uniquelnstance

p performer: PerformerPhaust new.

p freq: 143 bpm.

p activeDSP: dsp.

"assign TurboPhausto instruments to
Performance sequencers"

16 downbeats index: ’1’ to: #TpSample.

16 quavers notes: 38 41 45 50’ to: #
PsgPlus

16 rumba to: #Fm20p.

p playFor: 32 bars.

6. CONCLUSIONS AND FUTURE WORK

After a year of development, Phausto provides a comprehensive
solution for Pharo programmers to integrate sound synthesis into

their applications. It includes sample players, basic oscillators, en-
velopes, various physical models, resonant filters, reverbs, and de-
lays. The extensive array of Unit Generators features a streamlined
API for parameter manipulation, which has been well-received by
Pharo programmers. This was highlighted at the ESUG 2024 con-
ferenc%] in Lille, where Phausto earned 3rd place in the Innova-
tion Technology Awards. Additionally, TurboPhausto’s synthesiz-
ers and effects were showcased in a 30-minute live performance
titled Riding the MoofLod.

In the coming months, the primary goal will be to port all func-
tions from the Faust libraries and the Box-API. Subsequently, the
focus will shift to MIDI and polyphonic support, which may ne-
cessitate the implementation of a MIDI handler using PortMIDI,
an open-source library for which FFI bindings are already avail-
able in the Pharo-Sound package. Additionally, classes and meth-
ods will be provided to export DSPs into different architectures
directly from Phausto and to display their signal flow along with a
default GUI. Finally, an exhaustive and robust ensemble of instru-
ments and effects for TurboPhausto will be designed and imple-
mented.

7. ACKNOWLEDGMENTS

Thanks to Stéphane Letz for the never ending advice on Faust
and its ecosystem, and to Yann Orlarey for being enthusiast about
Phausto. Thanks Stéphane Ducasse, Guillermo Polito, Esteban
Lorenzano, Nahuel Palumbo, for their invaluable support, push
and assistance throughout the development of Phausto. Thanks
to the Pharo Association for the support.

8. REFERENCES

[1] Alan C. Kay, “The early history of smalltalk,” ACM Sigplan
Notices, vol. 28, no. 3, pp. 69-95, 1993.

[2] Giorgio C. Buttazzo, Hard Real-Time Computing Sys-
tems. Predictable Scheduling Algorithms and Applications,
Springer, Berlin, Germany, 2011.

[3] Stéphane Letz, Yann Orlarey, and Dominique Fober, “An
overview of the faust developer ecosystem,” in Proceed-
ings of International Faust Conference (IFC18), Mainz, Ger-
many, July 2018.

[4] Stéphane Ducasse, Gordana Rakic, Sebastijan Kaplar,
Quentin Ducasse Originally written by A. Black, S. Ducasse,
O. Nierstrasz, D. Pollet with D. Cassou, and M. Denker,
Pharo 9 by Example, Book on Demand — Keepers of the
lighthouse, 2022.

[5] Stéphane Ducasse, Pharo with Style, Creative
Commons, 2022, http://books.pharo.org/
booklet-WithStyle/pdf/WithStyle.pdfl

[6] Adele Goldberg and David Robson, Smalltalk-80: the lan-
guage and its implementation, Addison-Wesley Longman
Publishing Co., Inc., 1983.

[7] Trudcill P. Dell Hymes, “Pidginization and creolization of
languages,” Journal of Linguistics, vol. 9, no. 1, pp. 193—
195, 1971.

7ESUG stands for European Smalltalk User Group.

http://books.pharo.org/booklet-WithStyle/pdf/WithStyle.pdf
http://books.pharo.org/booklet-WithStyle/pdf/WithStyle.pdf

Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

[8] Guillermo Polito, Stéphane Ducasse, Pablo Tesone,
and Ted Brunzie, Unified FFI - Calling Foreign
Functions from Pharo, Creative Commons, 2020,
http://books.pharo.org/booklet—-uffi/
pdf/2020-02-12-uFFI-V1.0.1.

[9] Julius O. Smith III, “Viewpoints on the history of digital syn-
thesis,” in Proceedings of the International Computer Music
Conference (ICMC91), Montréal, Canada, October 1991.

[10] Ge Wang and Perry R. Cook, “Chuck: A concurrent, on-
the-fly, audio programming language,” in Proceedings of the
International Computer Music Conference (ICMCO03), Sin-
gapore, September 2003.

[11] Ge Wang, The ChucK Audio Programming Language. "A
Strongly-timed and On-the-fly Environ/mentality", Ph.D. the-
sis, Princeton University, 2008.

[12] Perry R. Cook and Gary P. Scavone, “The synthesis toolkit
(stk),” in Proceedings of the International Computer Music
Conference (ICMC99), Beijing, China, October 1999.

http://books.pharo.org/booklet-uffi/pdf/2020-02-12-uFFI-V1.0.1
http://books.pharo.org/booklet-uffi/pdf/2020-02-12-uFFI-V1.0.1

	1 Introduction
	2 The Pharo Programming Language
	3 Inside Phausto
	3.1 The Dynamic Engine
	3.2 Pharo Unified Foreign Function Interface (UFFI)
	3.3 The Box API
	3.3.1 Integrating Unit Generators with Phausto

	4 Syntax in a Nutshell
	4.1 Dynamic Control of DSPs with Pharo Processes

	5 The Toolkit and TurboPhausto
	5.1 The ToolKit
	5.2 TurboPhausto

	6 Conclusions and Future Work
	7 Acknowledgments
	8 References

