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Abstract. SNCF Réseau introduces a novel multi-modal embedded monitoring system, addressing challenges
in railway infrastructure maintenance. The design incorporates visual, inertial, and sound sensors, enhancing
adaptability, improving overall detection precision, and could reduce operational costs. This study addresses
visual defects detection that can be integrated in a multi-modal monitoring system. The paper details the
system’s architecture, synchronisation methods, and decision fusion process to improve the precision of limited
mono-modal systems. A deep-learning visual based railway defects inspection was explored. Results show
that small CNN (Yolov8 nano) can achieve similar (Yolov8 XL) high precision (mAP@0.5 > 0.89) for a small
number of objects (9) while improving implementation capability on embedded systems.

1 Introduction

Recent ecological concerns have spurred a renewed inter-
est in railways due to their lower carbon footprint. How-
ever, disuse threatens the very existence of smaller, less
profitable lines, leading to their gradual disappearance.
This trend coincides with France’s goal of opening its rail-
way infrastructure to competition while facing a concern-
ing decline in its overall condition. Effective railway in-
frastructure maintenance needs comprehensive and metic-
ulous monitoring of all integrated components.

To navigate these challenges, one solution involves
optimising infrastructure maintenance and operational
costs [1]. In response, SNCF Réseau, the French Infras-
tructure Manager (IM), is developing a novel track moni-
toring system. This portable, cost-effective, and efficient
system offers a comprehensive solution, integrating vi-
sual inspections with advanced techniques for in-rail de-
fect detection and environmental perception and analysis.
Its seamless installation on various train types further en-
hances its practicality.

Existing infrastructure monitoring systems exhibit
limitations in their adaptability to diverse railway lines [2].
Some systems are well-suited under low-speed motion
conditions, while others demand a highly controlled en-
vironment [3]. Additionally, the most effective monitor-
ing systems often come with prohibitively high operational
and acquisition costs, rendering them impractical for de-
ployment on smaller rail lines [2].

This paper proposes a multi-modal system-based mon-
itoring design considering the automation of visual inspec-
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tion in railway infrastructure. Traditional monitoring sys-
tems relying on visual inspection often lack automation
processes[2], leading to the accumulation of large datasets
that pose challenges for analysis. Even with an initial pro-
cessing method, a significant number of false positives are
generated. Remarkably, less than 1% of the images pre-
sented to a human operator exhibit actual defects.

Although 38% of the lines carry 80% of the train traf-
fic, small lines constitute 29% of the French Railway Net-
work (RFN) [1]. Additionally, 20% of the smallest lines
account for only 1% of the overall traffic. The total an-
nual maintenance cost across all lines amounts to approx-
imately €2.7 billion [1]. The proposed system integrates
cutting-edge analysis techniques, such as neural networks,
data fusion, and decision models. This integration is ori-
ented to achieve a substantial economic gain through in-
novative monitoring processes, which will lead to a re-
duction in surveillance, acquisition, and operational main-
tenance costs. Consequently, it contributes to an over-
all decrease in infrastructure maintenance expenses. Us-
ing commercial trains for monitoring infrastructure sta-
tus, as opposed to employing expensive dedicated systems,
makes this new monitoring system particularly suitable for
secondary railway lines. Moreover, the system should be
independent from the train’s electrical circuit or drain as
little as possible as trains are not designed to provide en-
ergy to external systems. The isolation of such systems
explains the frugality and compactness requirements to be
met.

In summary, the main contributions of this work in-
clude:

e a comprehensive analysis of railway monitoring and
limitations on detecting defects infrastructure problems,

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
License 4.0 (https://creativecommons.org/licenses/by/4.0/).
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e a conceptual description and study of an embedded
system-based monitoring design, and

e a performance impact study of a deep-learning visual-
based railway defects inspection.

The remainder of this paper is structured as follows:
Section 2 discusses railway monitoring, followed by Sec-
tion 3 which explores embedded system-based monitor-
ing. Section 4 presents the visual defect detection part, and
finally, Section 5 concludes the paper with insights drawn
from the research.

2 Railway monitoring

Railway monitoring non-destructive methods are various
but few can be exploited without meticulous configuration
and on flexible support[3]. Moreover, very few studies in
railways are made on combining multiple sensors to have
a complete monitoring system[4] or embedding detection
systems[3] on various trains contrary to dedicated moni-
toring non-passenger trains[2]. Naturally, combining mul-
tiple sensors would lead to a very versatile main sensor
coupled with more precise detection to compensate for its
flaws [4]. The most versatile sensor is a camera[5]. Stud-
ies on object detection often start with a primary focus on
its accuracy and later comes its computing cost and em-
bedded limitations [4][6][7].

Missing fastener

o, T

Defective braid

Surface defect

Fishplate rupture Rail ruture
Figure 1. Defect types examples, SNCF Réseau. From left to
right, defects such as ruptures, missing fasteners and bolts, sur-
face defect examples, and a context element.

Deeper studies should be made about the reliability of
these systems integrating existing inspection systems. Be-
sides, embedding these computing-heavy systems means
that good precision often comes with large hardware ar-
chitectures and energy consumption [4][7]. Installing this
(flexible embedded) system on commercial trains will al-
low us to reduce main-line maintenance costs and enable
more time slots for them. Improvements to this system
will, over time, enable its installation on high-speed line
(HSL) trains.

Artificial intelligence (AI) facilitates the automated
and autonomous analysis of defects in railway infras-
tructure [8], eliminating the need for pre-defined defect
models. This approach offers several advantages, includ-
ing scalability, robustness, and reliability, making it well-
suited to the economic constraints of railway operations
[9].

In France, heavily trafficked rail lines exhibit an annual
increase in track defects. These defects manifest in various

types, shapes, and sizes [10]. Notably, once defined, they
may display recognisable patterns, as illustrated in Fig. 1,
with some exceptions for surface defects that may vary in
severity [11]. These patterns can be identified and adapted
to with the use of Convolutionnal Neural Networks (CNN)
that use filters as pattern recognition, emulating human
vision[12].

3 Embedded Multi-modal Monitoring
System

The concept underlying the proposed monitoring system
involves employing a primary polyvalent sensor, in this
case, a camera, designed to ideally detect multiple types
of defects. However, the efficacy of the camera-based de-
tection algorithm may be compromised even if the camera
captures the defect due to a lack of physicality. Indeed,
leaves or grease marks due to their imprint may lead the
system to detect surface defects as illustrated in Fig. 1.
Historically, researchers have drawn inspiration from na-
ture to enhance the performance of their systems [12].
Consequently, the augmentation of extrasensory organs [3]
in our system is proposed to enhance the functional spec-
trum of its defect recognition capabilities, denoted as a
multi-modal system. In addition to cameras, the inclusion
of inertial sensors [13] and microphones aims to augment
the information available to the system. This augmenta-
tion facilitates the ability to either eliminate false detec-
tions, such as stains or incorporate physical contextual at-
tributes into the system, for instance, sensing wheel mo-
tion.

The first functional block in the implementation con-
cerns the visual-based defect detection module (Fig. 2).
This block provides versatile and informative data, simi-
lar to the eyes in a biological system. The multimodality
of the systems is defined by its multiple sensors synchro-
nised and framed using odometric information to ensure
data processing coherence and matching frames during
data fusion.

3.1 Camera

This module aims to minimise the occurrence of false neg-
atives (missed detection) in railway defect identification,
thereby mitigating the risk of overlooking critical features
on the tracks and enhancing overall data reliability.

3.1.1 Technical specification

The requirements for the cameras include their acquisi-
tion capacity and a few geometric considerations, as listed
hereafter:

e Length of the smallest defect to be detected: 2 mm
e Minimum projected pixel: 1 mm (Shannon criteria)
e Minimum field-of-view: 300 mm

e Maximum scanning speed: 160 km/h, 44,445 mm/s

e Working distance from rails (y.qm, Fig. 3): ~ 60 cm
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Figure 2. Embedded multi-modal monitoring system architecture. Sensors (orange), synchronization (red), data processing blocks
(green), and data fusion stages (blue) aggregate information to improve precision. Final results are sent to IM and relevant trains.

The ability to use this system on commercial trains re-
quires a scanning speed equivalent to the train’s maximum
speed. The working distance is both chosen according to
the rail vehicle coupler’s height and the minimum pro-
jected pixel size that impacts the lens. Finally, the cam-
era is chosen according to the maximum scanning speed
that can be matched by the camera’s frequency. For this
task, 4 cameras have been placed, one on each side of the
2 rails. It will enable us to see webs and their elements,
running surfaces, and fasteners. Their positioning can be
visualised in Fig. 3. To ensure optimal image quality, lin-
ear cameras were chosen [6], which exhibit less lighting
complexity at high speeds and no vertical distortion, given
that the images are recomposed from a single or few lines.

Team

R

E {Yeam

—————— Camera FOV Yeam

. To be
——— Observable regions needed Zeam determined
hye, Web height conditioning Qeam

camera placement
Figure 3. Future cameras positioning to capture details needed
for detection. Regions of interest are identified with green lines.

3.1.2 Exposure

Such a high scanning speed needs meticulous attention to
lighting. Firstly, the exposure should be as short as possi-
ble to prevent stretching. The movement during exposure
time should be less than half of the projected pixel size,
which is less than 500 wm, resulting in an exposure time of
10 ps. Two options are available: either optimising power
consumption by utilising stroboscopic light synchronised
with camera acquisition or simplifying the process with
constant lighting. Illuminating the scanned surface helps
mitigate the impact of varying histograms (e.g., tunnels,
high exposure to sun, night...), thereby reducing complex-
ity in the CNN architecture when aiming to enhance per-
formance. Once again, the goal of the system is to balance
every element to maximise detection while reducing com-
puting requirements and power consumption then tuning
correctly the overall system is the key.

Thus, the first experiments will use a continuous light for

its convenience with a long term goal of reducing power
consumption with stroboscopic light.

3.2 Synchronisation

The synchronisation component of the system (Fig. 2)
serves a dual purpose. It controls the camera to trigger
every millimeter and synchronises other sensors with the
camera acquisition, allowing the system to associate tem-
poral windows with the images processed during CNN de-
tection.

3.2.1 Odometry

Measuring the train speed is crucial for both labeling data
and defects with the current location and facilitating the
synchronisation of camera acquisition, ensuring a line ac-
quisition is triggered every millimeter of forward move-
ment. However, utilising an encoder on the train’s wheel
presents challenges due to standard Counts Per Revolu-
tion (CPR), making it difficult to achieve one count per
millimeter (see Fig. 4) requiring signal interpolation in-
between. The installation on a train could also necessitate
safety regulation studies.

Wheelslipage may lead to failure triggering the cam-
era. To address this issue, a precise solution involves sen-
sor fusion, incorporating data from sources like encoders,
GPS, and train speed information. Employing a Kalman
filter enhances accuracy, and the gathered information can
also be utilised for repetitive pattern recognition in ac-
celerometry.

Encoder synchronised to camera eases the trigger

N

to camera requi

Trigger

1 pixel/mm

Encoder trigger i
Trigger‘ ‘ L ‘ .

Z‘ZZZ‘ZZZ‘ZZZ Z‘ZZZ‘ t

* Trigger to be interpolated from speed to
. trigger the camera line acquisition

‘ Encoder signal
Figure 4. Encoder should fit the desired trigger distance spacing.

A lesser encoder precision leads to a gap in movement informa-
tion and needs to be filled with an interpolated trigger.

3.2.2 Triggers

Using the speed evolution, we can interpolate the motion
and activate the camera line acquisition (Fig. 4). This sig-
nal allows us to segment frames from each sensor, facilitat-
ing the correlation of information for data fusion (Fig. 5).
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Since accelerometers are motion-dependent, the system
must travel ATicks = degn-ace. On the other hand, the
microphones are travel-time-dependent, with Az = Gaceomic
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Figure 5. Data space-framing ensuring data fusion coherence. A
delay appears between sensors and can be managed with encoder
triggers and a small delay.

3.3 Processing

At this stage, using neural networks is beneficial since they
help reduce the need for detecting specific features, allow-
ing for a broader range of defects to be identified [6].

3.3.1 Pre-processing

Focused on the railroad track and its surroundings, our sys-
tem aims to enhance efficiency. Strategies such as trim-
ming edges and exploring techniques like image resizing,
down-scaling, and histogram equalisation offer potential
for more effective data processing. These approaches ef-
ficiently handle processing loads, improve accuracy, and
address changes in lighting conditions.

3.3.2 Frequency analysis

As previously mentioned, some objects may be misinter-
preted by image detection. To mitigate this, acceleromet-
ric and sound[14] data complement the detection, aiding
in discriminating surface defects and providing additional
information on defect types. These sensors also facilitate
wheel defect detection by analysing repetitive elements,
distinguished from standard railway joints with fixed spac-
ing (e.g., 12, 18, or 32 meters). The system incorporates a
dedicated component for repetitive object detection, con-
tributing to decision fusion.

3.3.3 Diagnostic Bond Graph (DBG)

To add a verification process to our system, we used
a model based Fault Detection and Isolation of the
rail/wheel contact and the impact of the entire body on ac-
celeration. For this task, Bond Graph theory - well suited
for mechatronic systems - is used here not only for mod-
eling but also for systematic generation of residuals (as
fault indicators) for robust alarm generation and fault iso-
lation based on fault signature matrix reasoning. The BG
model is used in derivative causality while initial condi-
tions in real systems are not known[15] (Fig. 6). When
the real system encounters a specific defect and classifies
it, the DBG model is activated to compare the modeled re-
sponse and the real accelerometric response from the train.
This comparison results in a residual signal which, when
combined with a machine-learning classifying method, ef-
fectively confirms or denies the presence of the detected
defect. To improve the system’s recall, the DBG should
also be capable of detecting an abnormal situation from
sensor data alone.

I
DBG Model
— ]

Accelerometer position >[I
on real system
imw‘

Figure 6. Decision expert - Diagnostic ML-Bond Graph. Ac-
celerometry input is compared to modeled detected defect lead-
ing to residual signal classified by ML.

3.4 Fusion

le
Residual signal

54g AM ML
—
!

To integrate each component of the system, it is impera-
tive to consider parameters derived from various process-
ing stages. For instance, image processing yields a confi-
dence score based on Intersection over Union (IoU), while
frequency analysis provides a correlation value relative to
established defect signatures. The augmentation of infor-
mation contributes to the enhancement of the detection
system. A coherent temporal alignment of these diverse
inputs allows for the effective detection of defects.

3.4.1 Data fusion

Data fusion [16] serves as a means to enhance the initial
processing chain. Specifically, defects detectable solely
through visual means may not be ameliorated by addi-
tional sensors. However, as illustrated in Table 3 and
Fig. 7, the most challenging detection concerns surface
defects. Interestingly, surface defects can be discerned
at the rail/wheel contact point, influencing accelerometers
and microphones. Certain scenarios may also be prone to
misinterpretation, such as the conflation of joints with rail
rupture.

Surface Defect  ——> No defect )
( Braid
Rail rupture }—){ Joint ]
Fishplate
[ Fishplate rupture J
[ Balast level ]—»( Defective Fastener }—»[ Not visible ]
[ Railclamp >  MissingBolt No defect )

Figure 7. Data fusion discrimination by adding more informa-
tion to the camera processing incorrect detection.

3.4.2 Decision fusion

The absence of a human operator in an automated detec-
tion system emphasises a significant reliance on data and
algorithmic precision and integrity [17]. Prior to report-
ing detections to the central application, it is imperative
to diversify detection methods, even if they provide min-
imal information such as warnings. Aggregating multiple
detection sources, even with individually low confidence
scores, enhances the overall precision and confidence rate.
However, challenges arise due to uncertainties in process-
ing times within the chain, potentially resulting in waiting
queues and limiting frames per second (FPS). Determining
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the optimal timing for activating data fusion or decision fu-
sion in the event of missing processing is a critical consid-
eration. One approach is to allocate a maximum waiting
time, shared between data and decision fusion (Fig. 8). A
more improved method involves statistical analysis, com-
bining probabilities, and maximising waiting time based
on mean and median processing times of each algorithm
to optimise detection precision effectively.

Data Fusion (1)

p(t) DBG (4)

Vision (1) i

Decision Fusion (2)

Acceleromell’y (2Repetitive !
t+ Eements 3) t+ i
fps fps

Figure 8. Processing queue example (see Fig. 2 for inputs).

4 Visual-based defect detection

In this use-case, vision is the sensor capturing the most
sought-after objects. Its study and implementation offer
the possibility to have a first operational system. For that,
we chose the recent Yolov8 (You Only Look Once) con-
volutional neural network (CNN) for its prevalent use in
railway track monitoring [7] to process images from 3.A.
The first step is to validate its usability and quality to de-
tect either defects and context objects (Fig. 1, 7). The goal
is to use the smallest network but some under-represented
defects in the dataset may lead to imbalances.

4.1 Dataset

Two datasets have been used for training. They have
been manually collected, annotated, and post-training cor-
rected from images captured by a track monitoring vehi-
cle, which are the exclusive property of SNCF Réseau.
The annotation has been made by a railway expert but the
actual characterisation of a defect may vary from one ex-
pert to another, especially for the surface defects.

Our data is composed of two different views: topview
(TV) that is of 1504x1500 pixels (grayscale) and sideview
(SV) of 768x1508 pixels (rgb). The context dataset [C] is
composed of 1327 TV + 9585 SV training (Train.) im-
ages, 167 TV + 1296 SV validation (Val.) images and 173
TV + 1304 SV test images. The defects dataset [D] is
composed of 3456 TV + 5779 SV training, 282 TV + 414
SV validation images and 263 TV + 409 SV test (Test)
images.

Table 1. Defects original dataset [D]
Composition
Class | Train % Val | % | Test %
fastener | 8019 | 64.3 | 593 | 67.3 | 590 68.1
surface | 2949 | 23.6 | 195 | 22.1 | 183 21.1
nut 1502 | 12.1 | 93 | 10.6 | 93 10.8
Total 12470 | 87.7 | 881 | 6.2 | 866 6.1
Train. images: 9235, Val. images: 696, Test images: 672

The evaluation dataset is the combination of the two
datasets. Object distribution can be found in Tables 2 & 1.
This distribution has been made without any prior infor-
mation on potential training optimisation proportionally to
their appearance on the infrastructure. One possible im-
provement of the overall precision could be an equalisa-
tion of class proportion in the datasets.

Table 2. Context original dataset [C]

Composition

Class | Train % Val %o Test )
braid | 3786 | 15.9 | 522 | 16.5 | 524 15.7
clamp | 578 2.4 56 1.8 60 1.8
plate | 6045 | 255 | 795 | 252 | 872 26.2

seal 6661 | 28.1 | 868 | 27.6 | 935 28.1
weld | 2818 | 11.9 | 374 | 11.9 | 373 11.2
mark | 3828 | 16.2 | 533 17 563 17
Total | 23716 | 78.5 | 3148 | 10.5 | 3327 11

Train. images: 10912, Val. images: 1463, Test images: 1477
4.2 Results

To the best of our knowledge, the majority of the previous
studies focus on a main defect and its sub-type classifica-
tion. The focus has been put on surface defect classifi-
cation and missing fasteners attaining a very high detec-
tion rate for fasteners. Some studies used the early de-
velopment of CNN to track components via segmentation
[18]. Moreover, recent studies on CNN focused on im-
proving existing models and modifying their structures to
improve detection rate while not targeting embedded sys-
tems yet [19]. Our concern is about aggregating multiple
detections into one real-time embedded system, therefore
we analysed the ability to reduce architecture constraints
with dataset operations and multiple defect representation
strategies. A hypothesis was made on splitting a larger
model D+C combining defects and context into two sepa-
rated models D and C to observe the impact on precision.
To this end, two sizes of Yolov8 were trained, nano and
extra large with 3 cases: defects only (D), context only
(C), and their combination (D+C). Results of Table 3 and
Fig. 9 show that decreasing the number of objects into
two smaller models leads to improved detection precision
while showing that lower numbers of objects do not reach
extensively better results on large models. Exception to
be made for complex object detection such as surface de-
fects here. Surface defects’ broad range of representation
is impacted by the model’s sharpness that increases with
the model’s size. Plus, the way of labeling surface defects
misleads the model to combine multiple defects into one
detection. The detection part on rail ruptures could not
have been studied due to no available data. Yet, one can
consider that the ruptures can be wrongly classified with
rail seals. This problem can be tackled by fusing visual-
based defect inference results with context elements and
seals spatial repetitiveness.

Metrics used in this paper are Average Precision (eq. 1
AP in %) and timings (in ms) according to models’ Float-
ing Point operations (FLOPs) volume (in Gigas).

TP

Recall = ————
TP+ FN

P
Precision = ———,
TP+ FP

With TP being the True Positives, FP the False Positives
and FN the False Negatives.
R! N
AP(@R) = f P(r)dr, mAP = 1 ZAP,» (D
RO N &

With P as precision and r as recall, AP summarizes
the PR curve at a specific model selectivity (recall) while
capturing its significance.
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Table 3. Yolov8 mAP@0.5 for all classes, using Intel Xeon 5218 CPU and Nvidia Tesla T4 GPU. The first 3 objects are defects, the
last 6 are context (D: Defect, C: Context, D+C: Combined). Input size: max 640x640 pixels. Grayscale transformation added to assess
hardware simplification.

AP@0.5 (%) mAP Inference (ms)
Model fastener | surface | nut | braid | clamp | fishplate | seal | weld | mark | All | preprocess + infer + post | FLOPs (G)
Y8n D 98.2 67.8 94.6 - - - - - - 86.8 1.9 +6.3+0.7
Y8n D Gray 97.9 65.7 92.2 - - - - - - 85.5 1.9 +6.3+0.7
Y8n C - - - 97.8 | 988 99.2 86.7 | 958 | 939 | 954 20+6.3+09 8.1
Y8n C Gray - - - 97.6 | 98.7 99.2 882 | 959 | 93.7 | 95.6 20+6.3+0.9
Y8n D+C 86.9 57.8 313 | 91.7 | 63.0 93.2 81.5] 919 | 89.6 | 763 20+6.3+0.8
Y8x D 97.5 705 | 924 - - - - - - 86.8 1.9+42.0+0.7
Y8x C - - - 97.7 | 99.5 99.3 87.6 | 96.6 | 94.6 | 959 1.9+39.1+1.0 2574
Y8x D+C 89.1 57.2 336 | 912 | 623 94.4 81.8 | 92.7 | 885 | 76.8 1.9+39.6+0.9

Precision-Recall Curve

-”-—_——:'F-T.T..—..-..- -
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0.00 : : : : |
0.0 0.2 0.4 0.6 0.8 1.0
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Figure 9. PR Curve for C, D and C+D Yolov8-nano models

5 Conclusions

In this paper, we have studied the architecture of a vision-
based detection system for multi-modal monitoring. We
proposed splitting an extra-large Yolov8 model (D+C) into
two nano models, leading to a later fusion layer that com-
bines the results of each smaller model. This demon-
strates that we can reduce the requirements of the archi-
tecture while lowering inference times without sacrificing
precision performance. Results involving a visual deep-
learning-based railway inspection were presented and an-
alyzed.

As a future perspective, our approach involves splitting
a larger model into smaller, more manageable sub-models.
This offers several advantages: it balances processing de-
mands across multiple hardware units, improves detection
precision by enabling optimal fusion techniques, and al-
lows for post-inference fusion using specific rules. Addi-
tionally, this method reduces the impact of hardware fail-
ures by redistributing disabled processes to other function-
ing targets, ensuring greater system resilience.

To this end, a hardware-software codesign methodol-
ogy is required to develop a dedicated embedded system
for real-time railway structure monitoring. The system
envisioned in our study enables direct savings on infras-
tructure maintenance and personnel, while also providing
socio-economic gains by preventing incidents. The pricing
of embedded systems is based on the costs of competing
solutions and the economic benefits they offer. Addition-
ally, by using low-cost, off-the-shelf components, we ex-
pect achieving lower selling prices compared to existing
systems.
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