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A STUDY OF COMMON NOISE IN MEAN FIELD GAMES

CHARLES BERTUCCI, CHARLES MEYNARD

Abstract. This paper is concerned with the study of mean field games master equation involving an additional
variable modelling common noise. We address cases in which the dynamics of this variable can depend on the state
of the game, which requires in general additional monotonicity assumptions on the coefficients. We explore the link
between such a common noise and more traditional ones, as well as the links between different monotone regimes
for the master equation.
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1. Introduction

1.1. General introduction. This article is concerned with the study of mean field games (MFG) master equations
with a source of common randomness affecting all players. Master equations which are non-linear partial differential
equations (PDEs) on the space of probability measures, are usually satisfied by the value function of MFGs. The
existence of such a value over arbitrary long intervals of time is in general not clear, as solutions may blow-up in
finite time. However, it appears as a natural tool to study MFG, namely in the presence of so-called common noise,
whether it be exogenous as in [17] or coming from a major player as in [18, 29]. The source of noise we consider in
this article belongs to neither of those two categories: we investigate situations in which the dynamics of players is
affected by an endogenous noise process, which is to say that the dynamic of common noise is affected by the state
of the game. We believe it to be natural in many applications [6, 11]. This noise process can model environmental
factors or even an index followed by all players.

The existence of a solution to the master equation is intrinsically linked to uniqueness properties of equilibria to
the MFG, the very concept of value being undefined otherwise. Uniqueness almost always arises from monotonicity
conditions. We investigate the wellposedness of master equations with endogenous common noise under two different
types of monotonicity which are most frequently studied: flat monotonicity and displacement monotonicity.

Mean field games were introduced by Lasry and Lions in [30, 31]. First through a coupled forward backward
system of PDEs and then with the master equation for games with common noise [31]. The existence of smooth
solutions to this equation was obtained in [10] under what we call flat monotonicity in this paper (and is often
referred to as the Lasry-Lions monotone regime). In a series of paper [23, 34, 36] wellposedness of the master
equation was also obtained with purely probabilistic arguments under different monotonicity assumptions the author
called displacement monotonicity. Other regime of wellposedness have been identified, most notably the potential
regime [19] in which the master equation can be integrated into a HJB equation. Uniqueness can also be recovered
under different monotonicity conditions [24] that we do not study here. There has also been a great deal of interest
in the definition of weak solutions to MFG. Whether it be at the level of the MFG system [12, 35] or directly on
the master equation [4, 5, 8, 14], the wellposedness of smooth solutions imposing very strong restrictions on the
behavior of the data with respect to the measure argument. In this article, we shall use the concept of Lipschitz
solution introduced in [8].

Concerning MFG with common noise, we refer the reader to [17, 31]. A usual modelling of common noise is to
linearly impact the state of all players by a random shift. This gives rise to the presence of a second order infinite
dimensional term in the master equation [10]. The common noise we here model does not raise such difficulty, as
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it acts on the dynamics of players through a finite dimensional parameter. Such modelling has seen some interest
in the literature [4] especially in applications of MFG to real world phenomenon [6, 11]. In [7], monotonicity
conditions were given for the wellposedness of the corresponding problem in finite state space MFG. More recently,
some wellposedness results were given in [39] for situations in which the noise and control of players are decoupled.

Let us finally comment on one main problem in MFG theory that is closely related to the wellposedness of the
master equation but that we do not treat in this article: the convergence of the corresponding N−players game to
the MFG system [10]. A possible motivation for studying MFG is the definition of approximate controls for game
with a finite (but large) number of players [28].

1.2. Setting and motivation of our study. To introduce the equation we study in this paper, we start by
presenting a MFG. In MFGs, a continuum of players plays a differential games during which they interact with
each others through their distribution. Given a probability flow (mt)t∈[0,T ] for the distribution of players, the noise
process (θt)t≥0, observed by all players, evolves according to a stochastic differential equation, and a single player
of state (Xt)t≥0 choose their control (αt)t∈[0,T ] in such a way that it solves the following optimal control problem

sup
α

E

[
U0(Xα

T ,mT ) −
∫ T

0
L(Xα

s , θt, αs,ms)ds
]
,

dXα
t = −h(Xα

t , θt, αt,mt)dt+
√

2σxdWt +
√

2βdBc
t ,

dθt = −b(θt,mt)dt+
√

2σθdB
θ
t ,

(1.1)

for some coefficients U0, L, h, b and (Ws)s≥0 a Brownian motion independent of (Bc
s, B

θ
s )s≥0. The process (Bc

s, B
θ
s )s≥0

is a Brownian motion shared among all players and is the source of common noise associated to the filtration
Ft = σ

(
(Bc

s, B
θ
s )s≤t

)
. The Brownian motion (Bc

s)s≥0 is associated to a standard modelling of common randomness
in MFG that acts by translating the state of all players with the same shift, see [17, 31]. In what follows, we refer
to this type of noise as additive common noise. In contrast, (Wt)t≥0 correspond to the noise that is unique to each
player. All players are affected by different Brownian motions independent of each other, this individual noise is
usually called idiosyncratic noise. The main novelty of this paper is the source of noise (Bθ

s )s≥0 and the associated
stochastic process (θs)s≥0, common to all players and whose randomness has a direct effect on the coefficients of
the game.

A mean field equilibrium, whenever it exists, is characterized by a control (α∗
t )t∈[0,T ], optimal for (1.1) such that

mt = L
(
Xα∗

t |Ft

)
.

The former being equivalent to writing that players are indeed distributed along mt for each realization of the
common noise. Due to the presence of common noise, expressing this equilibrium in terms of a forward-backward
system is depreciated, and we focus rather on the master equation

(1.2)



−∂tU +H(x, θ,m,∇xU(t, x, θ,m)) + b(θ,m) · ∇θU − σθ∆θU

−(σx + β)
∫

divy[DmU ](t, x, θ,m, y)m(dy) − (σx + β)∆xU

+
∫
DmU(t, x, θ,m, y) ·DpH(y, θ,m,∇xU(t, y, θ,m))m(dy)

−2β
∫

divx[DmU ](t, x,m, y)]m(dy) − β

∫
Tr
[
D2

mmU(t, x,m, y, y′)
]
m(dy)m(dy′) = 0,

for (t, x, θ,m) ∈ (0, T ) × Rd × Rn × P(Rd),
U(T, x,m) = U0(x, θ,m) for (x, θ,m) ∈ Rd × Rn × P(Rd).

The solution U of this equation is the value function of the game, the derivation of this equation from the control
problem is done explicitly in [3, 31]. The hamiltonian

H(x, θ,m, p) = inf
α

{L(x, θ, α,m) + h(x, θ, α,m) · p}

comes from the optimization problem each player solves against the crowd of others players. The term DmU refers to
the derivative of U with respect to the measure argument (more precise statements will be made on this notion later
on). The presence of terms involving this derivative reflects the evolution of the distribution of players throughout
the game. Finally, U(t, x, θ,m) is the value of the game for a player in state x whenever the time elapsed since the
beginning of the game is t, the distribution of all players is m and the realization of the exterior stochastic process is
θ. Whenever U does not depend on θ we get back the typical master equation associated to a mean field game, see
for instance [10]. Let us comment a bit more on modelling concerns behind this variable θ. In various applications,
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we believe it is natural for the drift b of such process to depend on the distribution and choices of players. This
justifies that b may depend on ∇xU and be of the form

b(θ,m) = b̃(θ,m,∇xU(t, ·, θ,m))

as this noise process is affected by the general direction (or control) of players. Moreover, the difficulty raised by
the presence of additive common noise and by the common noise process θ are orthogonal, which is why we start
by studying the wellposedness of the following master equation

(1.3)


−∂tU +H(x, θ,m,∇xU(t, x, θ,m)) + b(θ,m,∇xU(t, ·, θ,m)) · ∇θU − σx∆xU − σθ∆θU

−σx

∫
divy[DmU ](t, x, θ,m, y)m(dy) +

∫
DmU(t, x, θ,m, y) ·DpH(y, θ,m,∇xU)m(dy) = 0,

for (t, x, θ,m) ∈ (0, T ) × Rd × Rn × P(Rd),
U(T, x,m) = U0(x, θ,m) for (x, θ,m) ∈ Rd × Rn × P(Rd).

and extend our results to the situation β ̸= 0 at the end. Whenever b depends on θ only, we will see that the general
theory of MFG adapts quite well. However, as soon as b depends on the measure argument or on the value function,
classical arguments fail and the theory must be adapted. Indeed, without further assumptions on the coefficients
singularities may appear in finite time as observed in [7].

1.3. Organization of the paper. In each Section of this article, our analysis relies on the concept of Lipschitz
solutions to the master equation [8] that we recall in Section 2. In Section 3 we tackle the wellposedness of
(1.3) in the Lasry-Lions monotone regime. By adapting arguments from [10] we show the existence of a solution for
measure belonging to P1(Rd). In contrast, in Section 4 we consider the existence of solutions in the space P2(Rd) by
expending on Lions’s Hilbertian approach [31]. We highlight the equivalence between this method and displacement
monotonicity. Let us also mention that the analysis is carried in a slightly more general setting to account not
just for (1.3) but also for equations stemming from mean field forward backward differential equations (FBSDE)
[15] and some extended MFG [33]. Finally, in Section 5 we tackle the original problem of (1.2). Our treatment
of additive common noise appears quite general and practical to handle the second order term coming from such
modelling.

1.4. Notation.
- Consider (d, q) ∈ N × R, d, q ≥ 1, and let P(Rd) be the set of (Borel) probability measures on Rd, we use

the usual notation

Pq(Rd) =
{
µ ∈ P(Rd),

∫
Rd

|x|qµ(dx) < +∞
}
,

for the set of all probability measures with a finite q−th moment.
- For two measures µ, ν ∈ P(Rd) we define Γ(µ, ν) to be the set of all probability measures γ ∈ P(R2d)

satisfying
γ(A× Rd) = µ(A) γ(Rd ×A) = ν(A),

for all Borel set A on Rd.
- The Wasserstein q−distance between two measures belonging to Pq(Rd) is defined as

Wq(µ, ν) =
(

inf
γ∈Γ(µ,ν)

∫
R2d

|x− y|qγ(dx, dy)
) 1

q

.

In what follows Pq(Rd) is always endowed with the associated Wasserstein distance, (Pq,Wq) being a
complete metric space. Let us also remind that for W1 there is the following dual representation

W1(µ, ν) = sup
φ,∥φ∥Lip≤1

(∫
Rd

φ(x)µ(dx) −
∫
Rd

φ(x)ν(dx)
)
,

for ∥φ∥Lip the usual Lipschitz semi-norm

∥φ∥Lip = sup
(x,y)
x ̸=y

|φ(x) − φ(y)|
|x− y|

.

- We say that a function U : Pq(Rd) → Rd is Lipschitz if

∃C ≥ 0, ∀(µ, ν) ∈
(
Pq(Rd)

)2
, |U(µ) − U(ν)| ≤ CWq(µ, ν).
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In which case we use the notation ∥U∥Lip(Wq) for its Lipschitz semi-norm:

∥U∥Lip(Wq) = sup
µ,ν∈Pq(Td)

µ̸=ν

|U(µ) − U(ν)|
Wq(µ, ν) .

- For a measure m ∈ P(Rd), and 1 ≤ i ≤ d, we use the notation πim for the marginal of m over its first i
variables and π−i for its marginal over the last i variables. Which is to say that for any borel subset A of
Ri

πim(A) = m(A× Rd−i) π−im(A) = m(Rd−i ×A).
- Consider (Ω,F ,P) a probability space,

- for q ≥ 0 we define

Lq(Ω,Rd) =
{
X : Ω → Rd, E[|X|q] < +∞

}
.

- Whenever a random variable X : Ω → Rd is distributed along µ ∈ P(Rd) we use equivalently the
notations L(X) = µ or X ∼ µ.

- If another probability measure Q is defined on (Ω,F), the expectation under Q of a random variable
X : Ω → Rd is noted EQ [X].

- Md×n(R) is the set of all matrices of size d×n with reals coefficients, with the notation Mn(R) ≡ Mn×n(R).
Sn(R) is the subset of symmetric matrices of size n.

- Bd refers to the block matrix

Bd =
(
Id Id

Id Id

)
,

with Id the identity matrix of size d.
- Cb(Rd,Rk) is the set of all continuous bounded functions from Rd to Rk.
- For f : R+ ×Rd ×Rn ×P(Rd) → Rd and a function b : Rn ×Rd ×C(Rd,Rd) → Rd we use either the notations

(t, θ,m) 7→ b(θ,m, f(t, ·, θ,m)) or (t, θ,m) 7→ b[f ](t, θ,m) to say b depends functionally on y 7→ f(t, y, θ,m)
for a given (t, θ,m) ∈ R+ × Rn × P(Rd).

- We say that U : P(Rd) → R is derivable at m if there exists a continuous map ψ : Rd → R such that

∀ν ∈ P(Rd) lim
ε→0

U(m+ ε(ν −m)) − U(m)
ε

=
∫
Rd

ψ(x)(ν −m)(dx).

In this case we define the derivative of U at m, ∇mU(m) to be one such ψ such that∫
Rd

∇mU(m)(y)m(dy) = 0.

Whenever ∇mU(m) is differentiable, we define the Wasserstein derivative

DmU(m, y) = ∇y∇mU(m)(y).

Derivatives of higher order on the space of measures can be defined by induction.
- U is said to belong to C1,k

(
P(Rd)

)
whenever for all m ∈ P(Rd), ∇mU(m) : Rd → R is Ck and the mapping{

P(Rd) → Ck(Rd,R)
m 7→ (y 7→ ∇mU(m)(y))

is continuous for the topology of narrow convergence.
- Finally, for a measure µ and a measurable function f , we use the notation f#µ for the pushforward of µ by
f . In particular, for θ ∈ Rd (idRd + θ)#µ is defined as the pushforward of µ by the map x 7→ x+ θ.

1.5. Preliminaries. In this article we work on a standard probability space (Ω,A,P) featuring a collection of
Brownian motions. We start with a reminder on the behaviour of functions of measure at points of minimum

Proposition 1.1. Consider U ∈ C1,1 (P(Rd)
)

and suppose that there exists m0 ∈ P(Rd) such that

U(m0) = inf
µ∈P(Rd)

U(µ).

Then

∀ϕ ∈ Cb(Rd,Rd)
∫
Rd

DmU(m0, y) · ϕ(y)m0(dy) = 0.
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If furthermore U ∈ C1,2 (P(Rd)
)

then

∀ϕ ∈ Cb(Rd,Rd)
∫
Rd

ϕ(y) ·DyDmU(m0, y) · ϕ(y)m0(dy) ≥ 0.

A more general result is proved in [4] Proposition 1.1. This proposition justifies a definition of viscosity solution
we will introduce later for a particular equation. Throughout this article we also use a simple adaptation of Lemma
2.3 of [36]

Proposition 1.2. Let f :
{

P2(Rd) × R2d −→ R
(µ, x, y) 7→ f(µ, x, y) be a continuous function, symmetric in (x, y), such that for all

µ ∈ P2(Rd) x ∈ Rd and X,Y ∈ L2(Ω,Rd) both with law µ:

E[f(µ,X, Y )] ≥ 0 and f(µ, x, x) = 0.

Then the inequality holds pointwise:

∀µ ∈ P2(Rd) (x, y) ∈ R2d f(µ, x, y) ≥ 0.

It suffices to notice that the proof they gave can be carried out under slightly more general assumptions.
Finally, we remind this singular Grönwall’s Lemma of which a proof can be found in [40].

Lemma 1.3. Let (us)s∈[0,t] be a positive bounded function such that for some p ∈ [0, 1)

∀l ≤ t ul ≤ C +
∫ l

0

1
(l − s)p

usds.

Then there exist a constant Ct depending on C and t only such that

∀s ≤ t us ≤ Cte
Cts.

2. Notion of solution and monotonicity

In this article, to show the existence of solutions to (1.3) for arbitrary time horizon T , we will work as follows:
we first show that there exists a solution until an eventual blow-up time Tc, then we show that this solution does
not blow-up in finite time, thus implying global existence. Local in time existence is obtained by means of Lipschitz
solutions [8, 9], which is the notion of solution to the master equation we will be using throughout this article. We
remind the key ideas and main properties of such solutions thereafter. To prove that solutions do not blow up later
on, we will require some monotonicity assumptions on the data. We will show that wellposedness holds under two
different regimes of monotonicit that we remind at the end of this section.

2.1. Lipschitz solutions.

2.1.1. A first look.
Consider a solution U to the master equation

(2.1)


∂tU +H(x, θ,m,∇xU(t, x, θ,m)) + b[∇xU ](t, θ,m) · ∇θU − σx∆xU − σθ∆θU

−σx

∫
divy[DmU ](t, x, θ,m, y)m(dy) +

∫
DmU(t, x, θ,m, y) ·DpH(y, θ,m,∇xU)m(dy),

for (t, x, θ,m) ∈ (0, T ) × Rd × Rn × Pq(Rd),
U(0, x,m) = U0(x, θ,m) for (x, θ,m) ∈ Rd × Rn × Pq(Rd),

in which time has been reversed for convenience. Should ∇xU be known and Lipschitz, U can, at least formally,
be seen as satisfying a linear equation with Lipschitz coefficients. U is then easily defined by integrating through
the characteristics. This is the main idea behind Lipschitz solutions: Lipschitz regularity of ∇xU is sufficient to
be able to define solutions to the master equation. The interest of such solutions is twofold. First, we will see
that uniqueness always hold in this class of solutions. Second, since we do not ask for (2.1) to hold pointwise but
define instead solutions by integrating through non-linear characteristics, for solutions to be well-defined locally in
time we do not need as much regularity on the data. In particular, no differentiability with respect to the measure
argument is required. We refer the interested reader to [8] as we present the main theory concisely thereafter.
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2.1.2. Definition and basic properties. Since we are interested in the regularity of ∇xU , a key idea in Lipschitz
solutions is to work directly on W = ∇xU by deriving (2.1) with respect to x. We expect W to be a solution of

(2.2)


∂tW +DpH(x, θ,m,W ) · ∇xW + b[W ](t, θ,m) · ∇θW − σx∆xW − σθ∆θW

+
∫
Rd

DpH(y,θ,m,W ) ·DmW (t,x,θ,m)(y)m(dy) − σx

∫
Rd

divy(DmW (t,x,θ,m)(y))m(dy)

= −DxH(x, θ,m,W ) in (0, T ) × Rd × Rn × Pq(Rd),
W (0, x, θ,m) = ∇xU0(x, θ,m) for (x, θ,m) ∈ Rd × Rn × Pq(Rd).

The proper definition of a solution W to this equation, with Lipschitz regularity only, is then done through a fixed
point. Consider a linear version of (2.2)

(2.3)


∂tV +A(t, x, θ,m) · ∇xV +B(t, θ,m) · ∇θV − σx∆xV − σθ∆θV

+
∫
Rd

A(t, y, θ,m) ·DmV (t, x, θ,m)(y)m(dy) − σx

∫
Rd

divy(DmV (t, x, θ,m)(y))m(dy)

= E(t, x, θ,m) in (0, T ) × Rd × Rn × Pq(Rd),
V (0, x, θ,m) = V0(x, θ,m) for (x, θ,m) ∈ Rd × Rn × Pq(Rd),

for 4 vector fields (A,B,E, V0) : (0, T ) ×Rd ×Rn × Pq(Rd) −→ (Rd)3 ×Rn. A solution of this linear system is given
by integrating along the characteristics for all t < T

(2.4)

V (t, x, θ, µ) = E
[
V0(Xt, θt,mt) +

∫ t

0
E(t− s,Xs, θs,ms)ds

∣∣∣∣X0 = x, θ0 = θ,m0 = µ

]
,

dXs = −A(t− s,Xs, θs,ms)ds+
√

2σxdBs,

dθs = −B(t− s, θs,ms)ds+
√

2σθdB
θ
s ,

dms = (−div (A(t− s, x, θs,ms)ms) + σx∆xms) ds,

for (Bs, B
θ
s )s≥0 a d + n dimensional Brownian motion. As soon as (x, θ, µ) 7→ (A,B)(s, x, θ, µ) is Lipschitz (with

respect to the Wq distance for the measure argument) uniformly in s ∈ (0, T ), this system of a coupled SDE and
SPDE (Xs, θs,ms)s∈[0,t] is well-defined (see [16]). If (V0, E) is also Lipschitz, then it is easy to see that the function
V given by this formula is in fact Lipschitz itself. Consider now the functional ψ that to a Lipschitz (A,B,E, V0)
associate this function V, i.e.

ψ(T,A,B,E, V0) =
{

(0, T ) × Rd × Rn × Pq(Rd) −→ Rd,
(t, x, θ, µ) 7→ V (t, x, θ, µ),

where V is given by (2.4). The definition of a Lipschitz solution to (2.2) is given by a fixed point of this operator.

Definition 2.1. Let T > 0, W : [0, T ) × Rd × Rn × Pq(Rd) → Rd is said to be a Lipschitz solution of (2.2) if :
- W is Lipschitz in (x, θ, µ) uniformly in t ∈ [0, α] for all α in [0, T ).
- for all t < T :

W = ψ(t,DpH(·,W ), b[W ],−DxH(·,W ),∇xU0).

Following what we just saw on (2.3), such a definition makes sense provided (DpH,DxH,∇xU0, b) are at least
Lipschitz in some sense. We shall work under the following assumptions

Hypothesis 2.2. ∃C > 0 ∀(x, y) ∈ (Rd)2, (θ, θ′) ∈ (Rn)2, (µ, ν) ∈ (Pq(Rd))2, (p, q) ∈ (Rd)2,

- |∇xU0(x, θ, µ) − ∇xU0(y, θ′, ν)| ≤ C (|x− y| + |θ − θ′| + Wq(µ, ν)) .
- |DpH(x, θ, µ, p) −DpH(y, θ′, ν, q)| ≤ C (|x− y| + |θ − θ′| + |p− q| + Wq(µ, ν)) .
- |DxH(x, θ, µ, p) −DxH(y, θ′, ν, q)| ≤ C (|x− y| + |θ − θ′| + |p− q| + Wq(µ, ν)) .
- For any two continuous Lipschitz bounded f, g : Rd → Rd

|b(θ, µ, f(·)) − b(θ′, ν, g(·))| ≤ C (|θ − θ′| + (1 + ∥f∥Lip + ∥g∥Lip)Wq(µ, ν) + ∥f − g∥∞) .

It is necessary to assume the functional dependency of b is Lipschitz in the ∥ · ∥∞ norm, the norm for which the
fixed point definition of Lipschitz solutions is carried out. Letting the Lipschitz constant of b in Wq depend on the
Lipschitz constant of its functionnal argument allows to consider functions of the form

b[f ](µ) =
∫
f(x)µ(dx)

which are natural in practice.

Theorem 2.3. Under Hypothesis 2.2 the following hold:
- There is always an existence time T > 0 such that there is a unique solution of (2.2) in the sense of

Definition 2.1 on [0, T ).
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- There exist Tc > 0 and a maximal solution W defined on [0, Tc[ such that for all Lipschitz solutions V
defined on [0, T ): T ≤ Tc and W |[0,T ) ≡ V .

- If Tc < ∞ then lim
t→Tc

∥W (t, ·)∥Lip = +∞.

This is both a uniqueness and existence result. Uniqueness is a consequence of the Lipschitz regularity of
solutions, formally there can be at most one sufficiently smooth solution. This theorem is slightly different from
predating existence results on Lipschitz solution. The function W is here Lipschitz for the Wq distance, while in
[8], the authors considered Lipschitz solutions with respect to W1. The extension is very straightforward, the only
real difference being that we now need the following estimate for the distance between measures in Wq.

Lemma 2.4. let q ≥ 1 and consider (µi
t)t≥0 weak solution to

∂tµ
i
t = −div

(
ci(t, x)µi

t

)
+ σx∆µi

t in (0, T ) × Rd, µi
0 = µ0 ∈ Pq(Rd),

for i ∈ {1, 2} and two drifts c1, c2:[0, T ) × ×Rd → Rd Lipschitz in x uniformly in t ∈ [0, T ). Then there exist C
depending only on ∥c1∥Lip ∧ ∥c2∥Lip and T such that

∀t < T Wq(µ1
t , µ

2
t ) ≤ C

(∫ t

0
∥c1(s, ·) − c2(s, ·)∥q

∞ds

) 1
q

.

Proof. This well-known result can be obtained by taking (Xi
t)t≥0 solution to

dXi
t = ci(t,Xi

t)dt+
√

2σxdWt Xi
0 = X0 ∈ Lq(Ω,Rd),

for (Wt)t≥0 a Brownian motion and L(X0) = µ0 and applying Grönwall’s Lemma to the quantity
t 7→ E

[
|X1

t −X2
t |q
]
.

□

Before we explain how W relates to the solution of the master equation, let us present the following property
that will be used extensively throughout this paper

Lemma 2.5. Let W be a Lipschitz solution to equation (2.2) on [0, T ) for some T > 0. Then, for all s < t < T ,
(x, θ, µ) ∈ Rd × Rn × Pq(Rd), W satisfy the following dynamic programming principle

(2.5)

W (t, x, θ, µ) = E
[
W (s,Xt−s, θt−s,mt−s) −

∫ t−s

0
DxH(Xu, θu,mu,W (t− u,Xu, θu,mu))du

]
,

dXs = −DpH(Xs, θs,ms,W (t− s,Xs, θs,ms))ds+
√

2σxdBs X0 = x,

dθs = −b[W ](t− s, θs,ms)ds+
√

2σθdB
θ
s θ0 = θ,

dms = (−div (DpH(x, θs,ms,W (t− s, x, θs,ms))ms) + σx∆xms) ds m0 = µ,

Proof. By definition of a Lipschitz solution

W (t, x, θ, µ) = E
[
∇xU0(Xt, θt,mt) −

∫ t

0
DxH(Xs, θs,ms,W (t− s,Xs, θs,ms))ds

]
.

Let us first remark that (Xt, θt,mt)t≥0 satisfies the flow property. This is a natural consequence of the uniqueness
of solutions. As a consequence, letting (Fu)u≥0 be the completed filtration associated to (Bu, B

θ
u)u≥0, for any s ≤ t,

it holds that

E
[
W0(Xt, θt,mt) −

∫ t

t−s

DxH(Xu, θu,mu,W (t− u,Xu, θu,mu))du
∣∣∣∣Ft−s

]
= W (s,Xt−s, θt−s,mt−s) a.s.

This is obtained by first applying the flow property and then the definition of a Lipschitz solution. The dynamic
programming principle then follows by taking the expectation on both sides. □

So long as a Lipschitz solution W to (2.2) exists, we define the solution of the original problem (2.1) by integrating
along the characteristics of the equation with ∇xU replaced with W . Which is to say U is defined through

U(t, x, θ,m) = E
[
U0(x+

√
2σxBt, θt,mt) −

∫ t

0
H̃(t− s, x+

√
2σxBt, θs,ms)ds

]
,

dθs = −b[W ](t− s, θs,ms) +
√

2σθdB
θ
s θ0 = θ,(2.6)

dms = (−div (DpH(x, θs,W (t− s, x, θs,ms),ms)ms) + σx∆xms) ds m0 = m,

for (Bs, B
θ
s )s≥0 a Brownian motion and with the notation

H̃(t, x, θ,m) = H(x, θ,W (t, x, θ,m),m).
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Formally we expect that W = ∇xU . At this point, it is not totally clear that this is indeed the case. Proving
this result is the object of the following Lemma, legitimating the function U defined by (2.6) as the value function,
solution of the master equation.

Lemma 2.6. Assume Hypothesis 2.2 holds, and let U be defined through (2.6) for a Lipschitz solution W of (2.2)
defined on [0, Tc). Then U is C1 in x and the following equality holds

∀t < Tc ∇xU(t, x, θ,m) = W (t, x, θ,m) in Rd × Rn × Pq(Rd).

Proof. We start by treating the case σx > 0 and (x, p) 7→ (∇xU0(x, θ,m), DxH(x, θ,m, p), DpH(x, θ,m, p)) is C1

uniformly in the other variables, we will extend the result to the general case at the end.

Step 1: under those condition U is C1 in x
We are going to show that under those conditions s 7→ (x 7→ W (s, x, ·)) belongs to C0([0, t], C1(Rd,R)) for any

t < Tc. Indeed, it suffices to notice that the fixed point definition of Lipschitz solution can be carried out in the
Banach space

C1
x := {f : [0, t] × Rd × Rn × Pq(Rd) → Rd ∥f∥Lip < +∞, f is C1 in x},

endowed with the norm ∥ · ∥C1
x

f 7→ sup
(s,x,θ,µ)∈[0,t]×Rd×Rn×Pq(Rd)

|f(s, x, θ, µ)|
1 + |x| + |θ| + Wq(µ, δ0Rd

) + ∥f∥Lip.

Let ψ be defined as in Definition 2.1 and consider

ϕ : V → ψ(DpH(·, V ), b(·, V ),−DxH(·, V ),∇xU0).

We claim that ϕ sends C1
x into itself. Let V ∈ C1

x, the fact that ϕ(V ) is Lipschitz has already been proven in
[8]. Now observe that in (2.4) (θs,ms)s≥0 do not depend on (Xs)s≥0. In light of the assumed regularity in x
of our coefficient, we may derive the whole equation with respect to the initial condition x0 of (Xs)s≥0 showing
that ∇xϕ(V ) is indeed continuous (the wellposedness of the tangent process being trivial since the coefficients are
Lipschitz C1). The fixed point existence proof for Lipschitz solution is then done for the ∥ · ∥∞ as in [8].

Step 2: equality of ∇xU and W
We start by fixing t < Tc. As long as W stays Lipschitz, classic estimates on the moments of (Xs, θs)s∈[0,t]

given by (2.5) with respect to initial conditions hold. In (2.6), (θs,ms)s∈[0,t] do not depend on (Bs)s≥0, hence the
expectations can be computed separately. In particular this allows to see that U depends on x through a convolution
with the heat kernel allowing to define its derivative through

(2.7) ∇xU(t, x, θ,m) = E
[
∇xU0(x+

√
2σxBt, θt,mt) −

∫ t

0
H̃(t− s, x+

√
2σxBs, θs,ms) Bs√

2σxs
ds

]
.

From its definition as a Lipschitz solution, W is given by

W (t, x, θ,m) = E
[
∇xU0(Xt, θt,mt) −

∫ t

0
DxH(Xs, θs,ms,W (t− s,Xs, θs,ms))ds

]
,

dXs = −DpH(Xs, θs,ms,W (t− s,Xs, θs,ms))ds+
√

2σxdBs X0 = x,

and (Ms)s∈[0,t] defined by

Mu = W (t− u,Xu, θu,mu) −
∫ u

0
DxH(Xs, θs,W (t− s,Xs, θs,ms),ms)ds

is consequently a martingale with respect to the natural filtration F of the Brownian motion (Bs, B
θ
s )s≥0. Let

us now define Yu = 1√
2σx

∫ u

0 DpH(Xs, θs,W (t − s,Xs, θs,ms),ms)dBs and the associated stochastic exponential
E(Yu) = Zu. Since coefficients are Lipschitz, Novikov’s condition is satisfied (see [27] Corollary 5.16), and so the
martingale exponential (Zs)s∈[0,t] is a true martingale. By Girsanov theorem (Zs)s∈[0,t] define a new probability Q
under which (M̃s)s∈[0,t] defined as

M̃s = Ms − ⟨M,Y ⟩s

is a martingale and (B̃s)s∈[0,t] is a Brownian motion with

B̃u = Bu − 1√
2σx

∫ u

0
DpH(Xs, θs,W (t− s,Xs, θs,ms),ms)ds.
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Because the integral of a measurable function always has bounded variation, the covariation of M and Y is given
by the covariation between Y and (W (t− s,Xs, θs,ms))s∈[0,t]. It is then a consequence of [22] Proposition 3.8 that
we have

⟨M,Y ⟩u =
∫ u

0
DpH(Xs, θs,W (t− s,Xs, θs,ms),ms) ·DxW (t− s,Xs, θs,ms)ds.

Using the fact that M̃0 = M0 = W (t, x, θ,m), we get that

W (t, x, θ,m) = EQ
[
∇xU0(Xt, θt,mt) −

∫ t

0
(DxH +DpH ·DxW )(t− s,Xs, θs,ms)ds

]
.

Remark now that (Xs)s∈[0,t] is given by
Xs = x+

√
2σxB̃u.

By an integration by part against the heat kernel, we see that W and ∇xU are given by the same formula, which
ends to show by uniqueness of Lipschitz solution that we have indeed

∇xU ≡ W.

Step 3: extension to general Lipschitz data
We now still assume that σx > 0, but remove the smoothness assumption on (∇xU0, DxH,DpH). In this case,

we introduce a C1 regularization in (x, p) only (which can be done with any smooth compactly supported kernel)
(∇xU

ε
0 , DxH

ε, DpH
ε) that converges locally uniformly to (∇xU0, DxH,DpH) and consider the associated sequence

of Lipschitz solution W ε. By the above proof, we have W ε = ∇xU
ε for any ε > 0. Since we can find an existence

time which depends only on the Lipschitz constant of the data for Lipschitz solution, there exists T > 0 such that
for any ε, W ε is defined at least on [0, T ) with a C1

x norm independent of ε. By Arzelà–Ascoli theorem, Uε converges
locally uniformly toward a C1 function in x along a subsequence. By stability of Lipschitz solutions, its gradient is
a Lipschitz solution of (2.2) on [0, T ). Since such a solution is unique, (Uε)ε>0 has a limit, and the whole sequence
converges locally uniformly to this element. Assume now that T < Tc, for Tc the maximal time of existence for
Lipschitz solutions to (2.2) This implies that there exists a constant C such that for any η > 0

∥∇xU(T − η, ·)∥Lip ≤ C.

by considering a Lipschitz solution with initial condition
W0 = ∇xU0(T − η, ·),

we can extend the C1 function U beyond T by repeating the above procedure. This bootstrapping argument allows
us to extend this solution up until Tc which guarantees that

∀t < Tc ∇xU(t, ·) = W (t, ·).
Whenever σx = 0 the idea is the same, but we furthermore consider a sequence of Lipschitz solutions with σε

x = ε. □

2.2. Monotonicity in mean field games. In MFG, uniqueness of solutions appears as a key element to ob-
tain existence and regularity of solutions to the master equation. In this paragraph we present two notions of
monotonicity under which long time uniqueness of solutions is known.

a) Flat monotonicity

Definition 2.7. A function U : Rd × P(Rd) → R is said to be flat monotone or just monotone if it is monotone
seen as a function of measure only (ie U : P(Rd) →

(
Rd → R

)
), which translates to

∀(µ, ν) ∈
(
P(Rd)

)2 ⟨U(·, µ) − U(·, ν), µ− ν⟩ ≥ 0,
where the bracket here design the duality product, which is to say for all continuous bounded function f

⟨f, µ⟩ =
∫
Rd

f(x)µ(dx).

This notion of monotonicity is what leads to the so called Lasry-Lions monotone regime. Uniqueness and
wellposedness were obtained in this regime for the MFG system [30, 31] and directly at the level of the master
equation [31, 10] for games with common noise. We extend this setting to (1.3) in section 3.

b) L2 monotonicity
In contrast, we now introduce L2−monotonicity a concept closely related to displacement monotonicity [36, 23]

and to Lions’ Hilbertian lifting
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Definition 2.8. A function U : Rd × P2(Rd) → Rd is L2−monotone if

∀(X,Y ) ∈
(
L2(Ω,Rd)

)2 E[(U(X,L(X)) − U(Y,L(Y ))) · (X − Y )] ≥ 0.

Consider Lions’ lift of U on the space of random variables Û defined by

Û :
{
L2(Ω,Rd) → L2(Ω,Rd),
X 7→ U(X,L(X)).

The L2−monotonicity of U is equivalent to the monotonicity of Û in the classical sense on the Hilbert space
(L2(Ω,Rd), ⟨·, ·⟩|L2), with the canonical inner product

⟨·, ·⟩|L2 :
{
L2(Ω,Rd) × L2(Ω,Rd) → R,
(X,Y ) 7→ E[X · Y ] ,

hence the name. Let us remark that L2−monotonicity is a strong property that also implies monotonicity in a more
traditional sense

Lemma 2.9. Let U : Rd × P2(Rd) → Rd be a continuous L2−monotone function then ∀µ ∈ P2(Rd), x 7→ U(x, µ)
is monotone in the classical sense, which is to say

∀(x, y) ∈ (Rd)2 (U(x, µ) − U(y, µ)) · (x− y) ≥ 0.

This is a simple consequence of Proposition 1.2. Wellposedness of the master equation with L2−monotone data
was obtained in [31] for MFG without idiosyncratic noise with the Hilbertian approach. Wellposedness was also
obtained for more general MFG under displacement monotonicity [36, 23].

Definition 2.10. A function F : Rd × P2(Rd) → R is displacement monotone if and only if its gradient in the
space variable ∇xF is well defined and L2−monotone.

The reason we introduce the concept of L2−monotonicity is that in Section 4, in which we extend those ideas to
the context of (1.3), we do not need to make the assumption that our data are gradients, our method of proof being
heavily inspired by the Hilbertian formulation of MFG. In fact, one goal of Section 4 is to show that the Hilbertian
approach and the displacement monotone setting are one and the same in that they yield the same regularity theory,
something which is not always made clear in the literature.

3. Wellposedness in the flat monotone regime

For simplicity’s sake, we place ourselves on the d dimensional flat torus Td, but the results we obtain extend easily
to the whole space if growth conditions are imposed at infinity. In this setting we work with the W1 Wasserstein
distance and wellposedness of the master equation (1.3) will be obtained in P(Td). Throughout most of this section
we will also assume that b does not depend on ∇xU , however the problem remains just as challenging as the main
difficulty comes from the coupled evolution of the noise and distribution of players. The master equation we now
consider is

(3.1)


∂tU +H(x, θ,m,∇xU) + b(θ,m) · ∇θU − σx∆xU − σθ∆θU

−σx

∫
divy[DmU ](t, x, θ,m, y)m(dy) +

∫
DmU ·DpHdm,

for (t, x, θ,m) ∈ (0, T ) × Td × Rn × P(Td),
U(0, x, θ,m) = U0(x, θ,m) for (x, θ,m) ∈ Td × Rn × P(Td).

We make the following assumption throughout this section

Hypothesis 3.1. (x, θ,m, p) 7→ H(x, θ,m, p) is continuous on Td ×Rn × P(Td) ×Rd, ∇xU0, DxH,DpH exists and

∃C > 0 ∀(x, y) ∈ (Td)2, (θ, θ̃) ∈ (Rn)2, (µ, ν) ∈ (P(Td))2, (u, v) ∈ (Rd)2,

- |∇xU0(x, θ, µ) − ∇xU0(y, θ̃, ν)| ≤ C
(
|x− y| + |θ − θ̃| + W1(µ, ν)

)
.

- |DxH(x, θ, µ, u) −DxH(y, θ̃, ν, v)| ≤ C
(
|x− y| + |θ − θ̃| + |u− v| + W1(µ, ν)

)
.

- |DpH(x, θ, µ, u) −DpH(y, θ̃, ν, v)| ≤ C
(
|x− y| + |θ − θ̃| + |u− v| + W1(µ, ν)

)
.

- |b(θ, µ) − b(θ̃, ν)| ≤ C
(
|θ − θ̃| + W1(µ, ν)

)
.

Those are only analogous of Hypothesis 2.2 for the W1 Wasserstein distance. Following Section 2, under Hy-
pothesis 3.1 there always exists a W1 Lipschitz solution to (3.1) on sufficiently small time intervals. Throughout
this section, we will also use the assumption

Hypothesis 3.2. There exists a constant C such that ∀(x, θ, µ, p) ∈ Td × Rn × P(Td) × Rd,
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- |∇xU0(x, θ, µ)| ≤ C,
- |DxH(x, θ, µ, p)| + |DpH(x, θ, µ, p)| ≤ C(1 + |p|),
- σx > 0

In optimal control this is a somewhat usual assumption that is equivalent to saying the Hamiltonian (x, θ, µ, p) 7→
H(x, θ, µ, p) is Lipschitz in (x, p) locally in p and has at most quadratic growth in this last variable and that the
noise is non degenerate. Obviously the part on the initial condition implies that the terminal cost of the optimal
control problem solved by an individual player is Lipschitz in x. Under those conditions the parabolic regularity
stemming from the idiosyncratic noise gives the following a priori estimate

Lemma 3.3. Under Hypothesis 3.1 and Hypothesis 3.2, for any T ≥ 0 there exists a constant CT such that for any
Lipschitz solution W to 2.2 on [0, Tc)

sup
t≤T ∧Tc

∥DxW (t, ·)∥∞ ≤ CT ,

holds

Proof. We begin by remarking that under Hypothesis 3.2, W stays bounded over time. Indeed, using the represen-
tation formula (2.5) combined with the linear growth of DxH in p yields:

∥W (t, ·)∥∞ ≤ ∥W0∥∞ + C

∫ t

0
(1 + ∥W (t− s, ·)∥∞ds.

From there on, an application of Grönwall’s Lemma allows us to conclude to

∥W (t, ·)∥∞ ≤ (∥W0∥∞ + Ct)eCt

for some C depending on H. The key point is that with this bound on W we may make use of the fact that H is
locally Lipschitz in (x, p). Indeed, fix T > 0 and let t ≤ T , using the notation

H̃(t, x, θ,m) = H(x, θ,W (t, x, θ,m)),

we get from (2.7):

|W (t, x, θ,m)−W (t, y, θ,m)|≤∥∇xU0∥Lip|x−y|

+ E
[∣∣∣∣∫ t

0
(H̃(t−s, x+

√
2σxBs, θs,ms)−H̃(t−s, y+

√
2σxBs, θs,ms)) Bs√

2σxs
ds

∣∣∣∣] .
Consequently, there exists a constant C depending on H,T, σx, b, U0 such that

|W (t, x, θ,m) −W (t, y, θ,m)|
|x− y|

≤ ∥∇xU0∥Lip + C

(
1 +

∫ t

0

1√
s

∥DxW (t− s, ·)∥∞ds

)
.

Taking the supremum over x ̸= y combined with a simple change of variable yields

∥DxW (t, ·)∥∞ ≤ C + ∥∇xU0∥Lip + C

∫ t

0

1√
t− s

∥DxW (s, ·)∥∞ds.

We may conclude by using Lemma 1.3 to the existence of a constant CT such that

∀t ≤ T ∥DxW (t, ·)∥∞ ≤ CT .

□

In MFG, it is classical that parabolic regularity yields estimates [10]. Essentially, Lemma 3.3 guarantees that
under Hypothesis 3.2 the Lipschitz norm of W with respect to the state variable x stays bounded over time. Since
Lipschitz solutions are well defined so long as their Lipschitz norm do not blow up, this ensure any explosive behavior
will not come from x as soon as σx > 0. Under this assumption, we can focus on showing that W stays Lipschitz
with respect to the measure and noise argument, which are more problematic.

Remark 3.4. While the presence of non-degenerate idiosyncratic noise (ie σx > 0), is a reasonable and practical
assumption, it is not a necessary assumption. If we assume this noise to be degenerate, estimates on the space
variable can be recovered under different structural conditions on the Hamiltonian [38, 13]. To account for such
possible extensions, all intermediary lemmas in Section 3.1 are proved without the assumption that σx > 0.

3.1. Long time existence of Lipschitz solution.
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3.1.1. Autonomous noise process.
In this section, we consider the case of an autonomous noise process,

b : θ 7→ b(θ).
Because in such situation the noise evolves independently of the other variables and can essentially be seen as a
randomization of coefficients, we expect that previous existence theorems for smooth solutions [10] could be adapted
to this setting by studying the associated MFG system. We take another approach, though the method of proof is
still heavily based on an argument of propagation of monotonicity for solutions of the master equation presented in
[31, 10]. We carry out a proof directly at the level of the master equation, using the notion of Lipschitz solutions.
This will be insightful for more general b that we shall consider later on. To make the analysis easier we also make
the following assumption

Hypothesis 3.5.
H(x, θ,m, p) = H̄(x, θ, p) − f(x, θ,m).

Furthermore, H̄ is α−convex in p for some αH > 0 and U0, f are flat monotone, which is to say that

∀θ ∈ Rn, (µ, ν) ∈
(
P(Td)

)2 ⟨g(·, θ, µ) − g(·, θ, ν), µ− ν⟩ ≥ 0,
for g = U0 or g = f .

As is already well-known, the Hamiltonian being separated in the gradient and measure argument is not a
necessary condition, some more technical examples of sufficient conditions were given in Pierre Louis Lions’s Lectures
at Collège de France. It is however a convenient setting to prove the following lemma, which consists in an adaptation
of Theorem 4.3 (or alternatively Proposition 3.2 for a version without common noise) of [10] to Lipschitz solutions.

Lemma 3.6. Under Hypotheses 3.1 and 3.5, if b depends on θ only and U is a Lipschitz solution of (3.1) on [0, Tc),
the following inequality holds

∀t < Tc (θ, µ, ν) ∈ Rn ×
(
P(Td)

)2
,

⟨U(t, ·, θ, µ) − U(t, ·, θ, ν), µ− ν⟩ ≥ αHE
[∫ t

0

∫
Td

|∇xU(t− s, x, θs, µs)−∇xU(t− s, x, θs, νs)|2 (µs+νs)(dx)ds
]
.

with  dθs = b(θs)ds+
√

2σθdB
θ
s θs=0 = θ,

dµs = (−div (F (x, θs, µs,W (t− s, x, θs, µs))) + σx∆xµs) ds µs=0 = µ,
dνs = (−div (F (x, θs, νs,W (t− s, x, θs, νs))) + σx∆xνs) ds νs=0 = ν,

Proof. We start by assuming σx > 0. Let us recall that U is given by the Feynman-Kac representation (2.6), and
that (Mµ

s )s∈[0,t] given by

Mµ
s = U(t− s,Xs, θs, µs) −

∫ s

0
H(Xu, θu,W (t− u,Xu, θu, µu), µu)du,

dθs = b(θs)ds+
√

2σθdB
θ
s ,

dµs = (−div (F (x, θs, µs,W (t− s, x, θs, µs))) + σx∆xµs) ds
Xs = x+

√
2σxBs,

with µs|s=0 = µ, is a martingale. Of course, it follows that (Mµ
s −Mν

s )s∈[0,t] is also a martingale. Let us now define
the change of probability dP

dQ associated to the martingale exponential E(Y ) for the process

Y µ
s = − 1√

2σx

∫ s

0
DpH(t− u,Xu, θu, µu)dBu.

Following a proof similar to the one of Lemma 2.6, we have
U(t, x, θ, µ) − U(t, x, θ, ν) = EQ [U0(Xt, θt, µt) − U0(Xt, θt, νt)](3.2)

+ EQ
[∫ t

0
(Hν

s −Hµ
s +DpH

µ
s · (∇xU

µ
s − ∇xU

ν
s )) ds

]
with the notation Hµ

s = H(t − s,Xs, θs,∇xU
µ
s ) and ∇xU

µ
s = ∇xU(t − s,Xs, θs, µs). Let us also remark that the

dynamic of (µs, νs, θs)s∈[0,t] does not change under Q and that

Xs = x−
∫ s

0
DpH̃(t− u,Xu, θu, µu)du+

√
2σxB̃s
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for (B̃s)s≥0 a Brownian motion under Q. We now make the following observation: for any continuous bounded
function g and s ∈ [0, t], one has ∫

EQ [g(Xx
s )]µ(dx) = E

[∫
g(x)µs(dx)

]
.

This is a natural consequence of almost sure pathwise uniqueness for (µs)s∈[0,t] [10]. Integrating with respect to µ
on both sides of (3.2) yields

⟨U(t, ·, θ, µ) − U(t, ·, θ, ν), µ⟩ = E [⟨U0(·, θt, µt) − U0(·, θt, νt), µt⟩]

+ E
[∫ t

0

∫
Td

Θ(t− s, ·, θs, µs, νs)µs(dx)ds
]
.

for
Θ(t, x, θ, µ, ν) = H̃(t, x, θ, µ) − H̃(t, x, θ, ν) +DpH̃(t, x, θ, µ) · (∇xU(t, x, θ, µ) − ∇xU(t, x, θ, ν)).

A similar computation on ν, using

Y ν
s = − 1√

2σx

∫ s

0
DpH̃(t− u,Xu, θu, νu)dBu

combined with our assumptions on H (namely the monotonicity of f and the strong convexity of H̄) and U0 finally
gives:

⟨U(t, ·, θ, µ) − U(t, ·, θ, ν), µ− ν⟩ ≥ αHE
[∫ t

0

∫
Td

|∇xU(t− s, x, θs, µs)−∇xU(t− s, x, θs, νs)|2 (µs+νs)(dx)ds
]
.

Whenever the idiosyncratic noise is degenerate this result is proven by considering a converging sequence of Lipschitz
solution with σx = ε, as we did in Lemma 2.6. □

This inequality is the key element that allows us to get Lipschitz estimate in W1 by the very method presented
in [10] Theorem 4.3.

Theorem 3.7. Assume Hypothesis 3.1, 3.2 and 3.5 hold, and further assume that b is a function of θ only. Then
there exists a unique Lipschitz solution to equation (3.1) on [0,+∞).

Proof. Local existence follows from Hypothesis 3.1. Lemma 3.3 gives us an estimate on the Lipschitz norm of W in
x. Because the parameter θ is associated to an autonomous drift, an estimate on the Lipschitz norm of W in θ is
obtained by mean of Grönwall’s Lemma, so long as W is Lipschitz in the other variables. It only remains to show
that the inequality from Lemma 3.6 is sufficient to bound the Lipschitz norm of W in W1.

Let us first remark that thanks to the dual representation of the Wasserstein 1 distance:

⟨U(t, ·, θ, µ) − U(t, ·, θ, ν), µ− ν⟩ ≤ ∥∇xU(t, ·, θ, µ) − ∇xU(t, ·, θ, ν)∥∞W1(µ, ν).

Fix t < Tc and consider the solution to
dXµ

s = F (Xµ
s , θs, µs,∇xU(t− s,Xµ

s , θs, µs)) +
√

2σxdBs Xµ
s |s=0 = X0 ∼ µ,

µs = L(Xµ
s |(θu)u≤s),

dθs = b(θs)ds+
√

2σθdB
θ
s θ0 = θ.

Similarly we define (Xν
s )s∈[0,t] with an initial condition

Xν
s |s=0 = Y0 ∼ ν,

X0, Y0 being chosen such that the optimal coupling between µ and ν is realized in W1. Letting s ≤ t, we get

E[|Xµ
s −Xν

s |] ≤ W1(µ, ν) + C

∫ s

0
E[|Xµ

u −Xν
u |] du

+ CE
[∫ t

0

∫
Td

|∇xU(t− u, x, θu, µu) − ∇xU(t− u, x, θu, νu)|µu(dx)du
]
,

where the constant C depends on H, t, ∥∇xU∥Lip(x) only. By Lemma 3.6 and an application of Grönwall’s Lemma
we conclude to

∀s ≤ t E[W1(µs, νs)] ≤ C
(

W1(µ, ν) +
√

∥∇xU(t, ·, θ, µ) − ∇xU(t, ·, θ, ν)∥∞W1(µ, ν)
)
eCs.

Thanks to this inequality, we may now estimate ∥∇xU(t, ·, µ) − ∇xU(t, ·, ν)∥∞. Using the representation formula
(2.7) we get the following inequality:
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|∇xU(t, x, θ, µ) − ∇xU(t, x, θ, ν)| ≤CE
[
W1(µt, νt) +

∫ t

0
W1(µs, νs)

]
+ C

∫ t

0

1√
s
E[∥∇xU(t− s, ·, µs) − ∇xU(t− s, ·, νs)∥∞] ds,

for a constant C depending on ∥∇xU0∥Lip, f, H̃, U0. Applying Lemma 1.3 to
s → E[∥∇xU(s, ·, µt−s) − ∇xU(s, ·, νt−s)∥∞]

yields
∥∇xU(t, ·, µ) − ∇xU(t, ·, ν)∥∞ ≤ C

(
W1(µ, ν) +

√
∥∇xU(t, ·, µ) − ∇xU(t, ·, ν)∥∞W1(µ, ν)

)
,

for a constant C depending both on t and the data of the problem. This yields the required Lipschitz estimate on
∇xU = W in W1.

Because, we have estimates on the Lipschitz semi-norm of W in all variables for any time t < ∞ we may then
conclude to the existence of the Lipschitz solution on any time interval. Indeed, if Tc < ∞ held, then necessarily

lim
t→Tc

∥W∥Lip = +∞,

which is absurd in light of the above proof. □

3.1.2. Toward more general noise models.
We now turn to more general choices of a function b, namely allowing it to depend on the measure argument.

For such models estimates presented in the above section fail in general [7]. Let us explain the strategy of proof in
this more convoluted case. The key point is that even when perturbed by this noise process, monotonicity should
still have a regularizing effect on the equation. The goal is still to get estimates on the equation by looking at the
quantity

(t, µ, ν) 7→ ⟨U(t, ·, θ, µ) − U(t, ·, θ, ν), µ− ν⟩.
However since the evolution of θ now depends on the measure argument, we cannot treat it as an independent
perturbation as in the previous section. In fact since the evolution of the noise process and the distribution of
players now depend on each other, it appears necessary to rather consider

(t, µ, ν, θ, θ̃) → ⟨U(t, ·, θ, µ) − U(t, ·, θ̃, ν), µ− ν⟩.
Obviously we don’t expect this quantity to stay positive for θ ̸= θ̃. A naive way to solve this problem is to add a
quadratic form in θ acting as a way to recover non-negativity (or as a penalization in some sense) by considering
instead

(t, µ, ν, θ, θ̃) → 1
2(θ − θ̃) ·A(θ − θ̃) + ⟨U(t, ·, θ, µ) − U(t, ·, θ̃, ν), µ− ν⟩,

for some matrix A ≥ 0. We explain in a later section how this idea can be generalized to more general penalization.
Here we focus on a simple case in which we assume that H̄ does not depend on θ.

Hypothesis 3.8.
H(x, θ, p,m) = H̄(x, p) − f(x, θ,m),

for a function H̄ αH−convex in p. Furthermore, there exists a symmetric matrix A ∈ Mm(R) such that

∀(θ, θ̃) ∈ R2m, (µ, ν) ∈
(
P(Td)

)2

1
2(θ − θ̃) ·A(θ − θ̃) + ⟨U0(·, θ, µ) − U0(·, θ̃, ν), µ− ν⟩ ≥ 0,(3.3)

⟨f(·, θ, µ) − f(·, θ̃, ν), µ− ν⟩ + (b(θ, µ) − b(θ̃, ν)) ·A(θ − θ̃) ≥ 0.(3.4)

Remark 3.9. If U0 is strongly monotone, it is always possible to find a matrix A = cIn such that (3.3) holds. The
second part (3.4) is a joint monotonicity assumptions on (f,Ab) in P(Td) × Rn. It is a much stronger assumption,
which in most cases we expect is not going to be fulfilled unless either f or b is strongly monotone.

Example 3.10. Consider this simple model in dimension 1: Letting θ represent the selling price of a product and
x the production of a firm. We fix

b(θ, µ) = rθ − α

∫
yµ(dy).

The term rθ models inflation while the price of the good decrease in function of the average production of each
company. For one single firm we set

f(x, θ, µ) = xθ − c(x).
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Thus the reward of a firm depends only on its choice of production x and the price of goods θ, the cost of production
for a given quantity x being c(x). Then for A = 1

α , (3.4) is verified for the couple (f,Ab).

We can now show an equivalent to Lemma 3.6 in this new setting.

Lemma 3.11. Under Hypotheses 3.1 and 3.8, if U is a Lipschitz solution of (3.1) on [0, Tc) as defined in (2.6),
then

∀t < Tc (θ, θ̃, µ, ν) ∈ (Rn)2 ×
(
P(Td)

)2
,

1
2(θ − θ̃) ·A(θ − θ̃) + ⟨U(t, ·, θ, µ) − U(t, ·, θ̃, ν), µ− ν⟩

≥ αHE
[∫ t

0

∫
Td

∣∣∇xU(t− s, x, θs, µs) − ∇xU(t− s, x, θ̃s, νs)
∣∣2 (µs + νs)(dx)ds

]
.(3.5)

with 
dθs = b(θs, µs)ds+

√
2σθdB

θ
s θs=0 = θ,

dθ̃s = b(θ̃s, νs)ds+
√

2σθdB
θ
s θs=0 = θ̃,

dµs = (−div (F (x, θs, µs,W (t− s, x, θs, µs))) + σx∆xµs) ds µs=0 = µ,

dνs =
(
−div

(
F (x, θ̃s, νs,W (t− s, x, θ̃s, νs))

)
+ σx∆xνs

)
ds νs=0 = ν,

Proof. As in Lemma 3.6, it is sufficient to carry out the proof for σx > 0. Fix t < Tc and consider{
dθs = b(θs, µs)ds+ σθdB

θ
s θ0 = θ

dµs = (−div(F (x, θs, µs,∇xU(t− s, ·, θs, µs)) + σx∆xµs)ds µ0 = µ

and let (θ̃s, νs)s∈[0,t] be defined for the same Brownian motion (Bθ
s )s≥0 but with initial condition (θ̃, ν). Observe

the dynamic of those 4 processes stays the same under the change of probability associated to the martingale
exponential of the stochastic process

Y θ,µ
s = − 1√

2σx

∫ s

0
DpH̃(t− u,Xu, θu, µu)dBu,

whenever (Bs)s≥0 is a Brownian motion independent of (Bθ
s )s≥0. The change of probability is then carried out as

in Lemma 3.6, the difference being the change of probability introduced now depends on the couples (θ, µ), (θ̃, ν).
Using this change of probability on the representation formula (2.6) and remarking (θ, θ̃) satisfy

1
2(θ − θ̃) ·A(θ − θ̃) = 1

2(θt − θ̃t) ·A(θt − θ̃t) +
∫ t

0
(b(θs, µs) − b(θ̃s, νs)) ·A(θs − θ̃s)ds,

yields using Hypothesis 3.8
1
2(θ − θ̃) ·A(θ − θ̃) + ⟨U(t, ·, θ, µ) − U(t, ·, θ̃, ν), µ− ν⟩

≥ αHE
[∫ t

0

∫
Td

∣∣∇xU(t− s, x, θs, µs) − ∇xU(t− s, x, θ̃s, νs)
∣∣2 (µs + νs)(dx)ds

]
.

□

A first remark is that for θ = θ̃ we recover the same inequality we had in Lemma 3.6. However, this inequality
is much stronger as it will also help us control the Lipschitz norm of ∇xU with respect to θ.

Theorem 3.12. Assume Hypotheses 3.1, 3.2, and 3.8 hold. Then there exists a unique Lipschitz solution to equation
(3.1) on [0,+∞)

Proof. First, we prove a stability estimate with respect to initial conditions on the system
XX0,θ

s = X0 −
∫ s

0
DpH(XX0,θ

u , θX0,θ
u , µX0,θ

u ,∇xU(t− u,XX0,θ
u , θX0,θ

u , µX0,θ
u )) +

√
2σxdBs,

θX0,θ
s = θ −

∫ s

0
b(θX0,θ

u , µX0,θ
u )du+

√
2σθB

θ
s ,

µX0,θ
u = L(Xu|(θl)l≤u).

The sketch of proof is similar to Theorem 3.7 but we now estimate

h(s) : s 7→ E
[
|XX0,θ

s −XY0,θ̃
s | + |θX0,θ̃

s − θY0,θ̃
s |

]
,
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instead of fixing θ. Let X0 and Y0 respectively be distributed along µ and ν and such that the optimal coupling in
W1 is realized. Hypothesis 3.1 implies that

∀s ≤ t h(s) ≤ h(0) + C

∫ s

0

(
h(u) + E

[∫
Td

|∇xU(t− u, x, θX0,θ
s ) − ∇xU(t− u, x, θY0,θ̃

s )|µX0,θ
u (dx)

])
,

for a constant C depending on H, b and ∥∇xU∥Lip(x) which we know is bounded thanks to Lemma 3.3. We now
apply Grönwall’s Lemma to s 7→ h(s) and then use Lemma 3.11 to deduce that

∀s ≤ t E
[
W1(µX0,θ

s , νY0,θ̃
s ) + |θX0,θ

s − θY0,θ̃|
]

≤ C(W1(µ, ν) + |θ − θ̃| +
√

∥∇xU(t, ·, θ, µ) − ∇xU(t, ·, θ̃, ν)∥∞W1(µ, ν),

for a constant C depending on H, b, αH and ∥∇xU∥Lip(x). We finally come back to the representation formula (2.7),
which yields by combining the above inequality with Lemma 1.3

∃C > 0 ∥∇xU(t, ·, θ, µ) − ∇xU(t, ·, θ̃, ν)∥∞ ≤ C(W1(µ, ν) + |θ − θ̃|).

Having estimates on the Lipschitz norm of ∇xU(t, ·) in all variables for any t ≥ 0, we conclude to the existence of
a Lipschitz solution on [0,+∞). □

Remark 3.13. Some extensions to this result are possible. In particular, it is possible for b to depend on ∇xU
provided this dependency is such that

|b(θ, µ,∇xU(t, ·, θ, µ)) − b(θ̃, ν,∇xU(t, ·, θ̃, ν))|(3.6)
≤ C(|θ − θ̃| + W1(µ, ν) + ⟨|∇xU(t, ·, θ, µ) − ∇xU(t, ·, θ̃, ν)|, µ+ ν⟩).

So that the nonlinear term in ∇xU coming from b can be controlled by the convexity of H. It is also possible to take
a function H̄ depending on θ provided this dependency can be absorbed by the monotonicity of b. Those extensions
are straightforward by adapting slightly the above proof and changing appropriately equation 3.4 in Hypothesis 3.8
which then becomes an interplay between H̄, f and b.

4. Wellposedness under L2−monotonicity

In this section, we are interested in the existence of solutions to the master equation (1.3) in Rd ×Rn ×P2(Rd). In
the previous section, we worked directly at the level of the value function U to show the wellposedness of solutions.
Following Section 2, it is sufficient to show the Lipschitz solution W of (2.3) do not blow up on the interval [0, T ].
The approach we take in this section is to present wellposedness results at the level of W which is more natural in
an L2 monotone setting. Indeed, we consider instead this non-linear system of transport equations

(4.1)


∂tW + F (x, θ,m,W ) · ∇xW + b[W ](t, θ,m) · ∇θW − σx∆xW − σθ∆θW

+
∫
Rd

F (y, θ,m,W ) ·DmW (t, x, θ,m)(y)m(dy) − σx

∫
Rd

divy(DmW (t, x, θ,m)(y))m(dy)

= G(x, θ,m,W ) in (0, T ) × Rd × Rn × P2(Rd),
W (0, x, θ,m) = W0(x, θ,m) for (x, θ,m) ∈ Rd × Rn × P2(Rd).

We insist on the fact that W is a vector function taking values in Rd and (4.1) is indeed a system of non linear
PDEs. Recall that for (F,G,W0) = (∇pH,−∇xH,∇xU0), (4.1) is obtained from (1.3) by taking the gradient in x
of the equation, in which case W = ∇xU for U the solution of the master equation. Let us first remark that the
adaptation of the notion of Lipschitz solution to (4.1) is not a problem, a solution being defined as a fixed point of
the associated linear transport problem.

We consider general data (F,G,W0) instead of taking them as gradient (which correspond to the situation of a
MFG) for the following reason: Equation (4.1) also corresponds to the equation satisfied by the decoupling field
of a general mean field forward backward stochastic differential equation (FBSDE) [2, 15]. As a consequence, the
results we give in this section are also valid for mean field forward-backward stochastic differential equations and
some extended MFGs [33]. As in the previous section, we start with the case of an autonomous noise process.

4.1. Autonomous noise process.
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4.1.1. Propagation of monotonicity. We consider the following equation

(4.2)


∂tW + F (x, θ,m,W ) · ∇xW + b(θ) · ∇θW − σx∆xW − σθ∆θW

+
∫
Rd

F (y, θ,m,W ) ·DmW (t, x, θ,m)(y)m(dy) − σx

∫
Rd

divy(DmW (t, x, θ,m)(y))m(dy)

= G(x, θ,m,W ) in (0, T ) × Rd × Rn × P2(Rd),
W (0, x, θ,m) = W0(x, θ,m) for (x, θ,m) ∈ Rd × Rn × P2(Rd).

Even though the problem becomes simpler whenever the noise process (θt)t≥0 is autonomous, (4.2) is still a system
of nonlinear transport equation on the space of measure. It is classic that such a system is usually well-posed only
up until a finite blow-up time without some assumptions on the coefficients. The following assumption

Hypothesis 4.1. The drift b is Lipschitz and F,G,W0 are Lipschitz on Rd × Rn × P2(Rd) for the W2 distance.

is in force throughout this section. Short time existence of Lipschitz solutions to (4.2) follows naturally from
Theorem 2.3. In his course at Collège de France [31], P.-L. Lions, showed through the Hilbertian approach that in
the absence of noise (i.e. without θ and for σx = 0), L2−monotonicity of the data has a regularizing effect on the
equation (4.2). In this section we are going to show that such considerations still hold in this setting. Following
the works [7, 31] we expect that a good starting point to obtain some regularity on the solution of (4.2) is to take
a look at the auxiliary function

(4.3) Z(t, γ, θ) =
∫
R2d

(W (t, x, θ, µ) −W (t, y, θ, ν)) · (x− y)γ(dx, dy)

for any γ ∈ Γ(µ, ν), (µ, ν) ∈
(
P(Rd)

)2. One may remark that if we lift W on the space L2(Ω,Rd), then
Z(t,L (X,Y ) , θ) = ⟨W (t,X, θ) −W (t, Y, θ), X − Y ⟩L2 ,

for any (X,Y ) ∈
(
L2(Ω,Rd)

)2. As such, the non-negativity of Z is equivalent to the L2−monotonicity of W . The
key difference with the Hilbertian approach is that we place ourselves directly at the level of probability measures,
which allows us to work with a more subtle notion of derivative. Let us first prove a uniqueness result for equation
(4.2) which we believe will help the reader understanding why looking at this function in indeed a good idea. We
start with a maximum principle for smooth functions on the space of probability measures. Since we are on an
unbounded space, we will need to impose growth conditions at infinity.

Definition 4.2. A function f : P2(Rd) → Rd has polynomial growth if there exists a constant C > 0 and an integer
q ≥ 0 such that

∀µ ∈ P2(Rd) |f(µ)| ≤ C

(
1 +

(∫
Rd

|x|2µ(dx)
) q

2
)
.

In particular for q = 1 (resp. q = 2), f is said to have linear (resp. quadratic) growth at infinity.

Lemma 4.3. Let f : [0, T ] × Rn × P2(R2d) → R2d, b : [0, T ] × Rn × P2(R2d) → Rn be continuous functions with
linear growth. Suppose there exist Z, a smooth function with quadratic growth at infinity, satisfying

∂tZ + b(θ,m) · ∇θZ − σθ∆θZ

+
∫
R2d

f(u, θ,m) ·DγZ(t,m, θ, u)m(du) − σx

∫
R2d

Tr (BdDu [DmZ] (t,m, θ, u))m(du) ≥ 0,

for (t,m, θ) ∈ (0, T ) × P2(R2d) × Rn.

with Z|t=0 ≥ 0. Then
∀t < T,∀(θ,m) ∈ Rn × P2(R2d) Z(t, θ,m) ≥ 0.

Proof. For m ∈ P3(Rd), we define

E3(m) =
(∫

R2d

|x|3m(dx)
) 1

3

.

Let β : s 7→ αeλβs with α > 0, and consider t ≤ T . We claim that

Zα : (s,m, θ) → Z(s,m, θ) + β(s)
(
1 + E3

3(m) + |θ|3
)

+ α

t− s

reach a point of minimum in [0, t) × P2(R2d) × Rn. Indeed, since Z has at most quadratic growth, There exists a
constant C such that the infimum of Zα is reached on the set

{(s, θ,m) ∈ [0, t− 1
C

] × P2(R2d) × Rn, E3(m), |θ| ≤ C}.
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By Markov inequality a subset of P2(Rd) bounded for the pseudo-norm E3(·) is tight and is, as a consequence,
compact for the topology of narrow convergence by Prokhorov’s Theorem. Since probability measures belonging
to this set also have a uniformly integrable second moment (due to the bound on the third moment) this is a
compact set for the W2 topology (see [1]). As Z is continuous for this topology and m 7→

∫
|z|3m(dz) is lower

semi-continuous with respect to narrow convergence, Zα is a lower semi-continuous function for the W2 topology
reaching its infimum in a compact. As a consequence, a minimum (s∗,m∗, θ∗) is achieved in this set.

Let us now fix α > 0 and assume by contradiction that there exists a point (s,m, θ) such that Zα(s,m, θ) < 0
holds. By assumptions on Z|t=0 this means the minimum is not reached for s∗ = 0. Optimality conditions imply
by evaluating the equation satisfied by Zα at this point of minimum that

0 ≥ α

(t− s∗)2 + β′(s∗)
(
1 + E3

3(m∗) + |θ∗|3
)

+ b(θ∗,m∗) · 3β(s∗)θ∗|θ∗| − σpβ(s∗)(n+ 1)|θ∗|

+ 3β(s∗)
∫
f(u, θ∗,m∗) · u|u|m∗(du) − σx

∫
3β(s∗)

(2d+ 1)|u| + 2
∑
i≤d

uiun+i

|u|

m∗(du).

By the linear growth of f, b, there exists a constant c depending on n, d, b, f, σx, σp such that

0 ≥ α

(t− s∗)2 + (β′(s∗) − cβ(s∗))(1 + |θ∗|3 + E3
3(m∗)).

Choosing λβ > c, we get a contradiction, hence
inf

[0,t]×P2(R2d)×Rn
Zα ≥ 0.

Letting α tends to 0 ends the proof since the inequality holds for any t < T . □

We may now proceed to prove a uniqueness result based on this maximum principle under the following assump-
tion

Hypothesis 4.4. ∀(θ,X, Y, U, V ) ∈ Rn ×
(
L2(Ω,Rd)

)4,

E[(W0(X, θ,L(X) −W0(Y, θ,L(Y ))) · (X − Y )] ≥ 0,
E[F (X, θ,L(X), U) − F (Y, θ,L(Y ), V ) · (U − V ) + (G(X, θ,L(X), U) −G(Y, θ,L(Y ), V )) · (X − Y )] ≥ 0,

The assumption onW0 is exactly L2−monotonicity, while the condition imposed on (G,F ) is a joint L2−monotonicity
in (x,W ).

Proposition 4.5. Under Hypotheses 4.1 and 4.4, a smooth solution to (4.2) is L2-monotone

Proof. Let us define

∀γ ∈ P2(R2d) Z(t, γ, θ) =
∫
R2d

(W (t, u, θ, πdγ) −W (t, v, θ, π−dγ)) · (x− y)⟩γ(du, dv).

Let us first take a look at the derivative of y 7→ DγZ(t, γ, θ, y), DyDγZ, for a fixed (t, γ, θ). Letting y = (y1, y2) ∈(
Rd
)2, taken at this point, it is a block matrix of the form

DyDγZ(t, γ, p, y) =
(

M11 M12
(M12)T M22

)
,

M11 = D2
xW

y1 · (y1 − y2) + (DxW
y1 + (DxW

y1)T +
∫
Dy1DmW

1(t, u, µ, θ, y1) · (u− v)γ(du, dv),

M12 = −DxW
y2 − (DxW

y1)T
,

M22 = D2
xW

y2 · (y2 − y1) + (DxW
y2 + (DxW

y2)T −
∫
Dy2DmW

2(t, u, ν, θ, y2) · (u− v)γ(du, dv),
W y1 = W (t, y1, µ, θ),
W y2 = W (t, y2, ν, θ),
πdγ = µ π−dγ = ν.

Since the terms composing M12 and its transpose are the opposite of terms appearing in M11,M22, they obviously
cancel out in

Tr (BdDyDmZ(t, γ, p, y)) = (∆xW
y1 − ∆xW

y2) · (y1 − y2)

+
∫

(divy1(DmW
1)(t, u, µ, θ, y1) − divy2(DmW

2)(t, v, ν,m, θ, y2)) · (u− v)γ(du, dv).
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Expressing ∂tZ using the fact that W is a solutions of (4.2) and using the above equality, we get that Z is a solution
of

(4.4)



∂tZ + b(θ) · ∇θZ − σθ∆θZ

+
∫
R2d

(
Fu

F v

)
(u, v, θ, γ) ·DγZ(t, γ, θ, u, v)γ(du, dv)

−σx

∫
R2d

Tr
(
BdD(u,v) [DmZ] (t, γ, θ, u, v)

)
γ(du, dv)

=
∫
R2d

(Fu − F v) · (Wu −W v)γ(du, dv) +
∫
R2d

(Gu −Gv) · (u− v)γ(du, dv),

for (t, γ, θ) ∈ (0, T ) × P2(R2d) × Rn,

with Wu = W (t, u, θ, πdγ),W v = W (t, v, θ, π−dγ), Fu = F (u, θ, πdγ,W
u) and so on. By assumptions on W0, F,G

this leads to Zt=0 ≥ 0 and
∂tZ + b(θ) · ∇θZ − σθ∆θZ

+
∫
R2d

(
Fu

F v

)
·DγZ(t, γ, θ, u, v)γ(du, dv) − σx

∫
R2d

Tr
(
BdD(u,v) [DγZ] (t, γ, θ, u, v)

)
γ(du, dv) ≥ 0,

for (t, γ, θ) ∈ (0, T ) × P2(R2d) × Rn.

By Lemma 4.3, Z is non-negative, which implies that W is indeed L2−monotone. □

Remark 4.6. It is evident that this method of proof would still work if (G,F ) were to depend on L(W (t,X, θ,L(X)))
so long as the joint monotonicity condition is satisfied. This is also true for all results of wellposedness we present
in Section 4. Since this corresponds to some MFGs of control, it seems to be a possible interesting extension.

4.1.2. Existence of global Lipschitz solutions. The study of the auxiliary function Z gave us both a uniqueness
and a monotonicity result. Essentially, what we showed is that given a L2−monotone initial condition and some
assumptions on the data (F,G) the solution propagates monotonicity. However, monotonicity, usually only gives
a one-sided bound on the derivative. Since we are interested in getting Lipschitz estimates to show the long time
existence of Lipschitz solutions, we make stronger assumptions to get a bound from below.

Hypothesis 4.7. ∃α > 0 ∀(θ,X, Y, U, V ) ∈ Rn ×
(
L2(Ω,Rd)

)4,

(4.5) E[(W0(X, θ,L(X) −W0(Y, θ,L(Y ))) · (X − Y )] ≥ α∥W0(X, θ,L(X)) −W0(Y, θ,L(Y ))∥2
L2 ,

E[(F (X, θ,L(X), U) − F (Y, θ,L(Y ), V )) · (U − V ) + (G(X, θ,L(X), U) −G(Y, θ,L(Y ), V )) · (X − Y )]
≥ α min

λ∈[0,1]
∥G(X, θ,L(X), λU + (1 − λ)V ) −G(Y, θ,L(Y ), λU + (1 − λ)V )∥2

L2 .(4.6)

Remark 4.8. The last inequality may appear unusual, this is a way of translating the fact that the function
(X,U) 7→ (F (X,L(X), U), G(X,L(X), U)) is monotone, with a monotonicity in X that is not too degenerate. For
Lipschitz data (F,G), it is weaker than strong monotonicity for which the inequality would be

≥ α∥X − Y ∥2
L2 ,

as it allows for G to be degenerate monotone and bounded. We already made such remark in the case of finite state
space mean field game (see [7] Corollary 3.13) and extend it here to this setting.

Example 4.9. A simple example, satisfying the requirements of Hypothesis 4.7 is to take F (x, θ, µ, u) ≡ F̃ (u) for
any monotone function F̃ and

G(x) = x+ ∧ 1.
Such G is not strongly monotone but satisfy

∀(x, y) ∈ Rd (G(x) −G(y)) · (x− y) ≥ |G(x) −G(y)|2.

Under Hypothesis 4.7, we can show that the relation (4.5) propagates for any time. This will be done by mean
of another, closely related, auxiliary function

Zβ(t, γ, θ) =(4.7) ∫
R2d

(
(W (t, u, θ, πdγ) −W (t, v, θ, π−dγ)) · (u− v) − β(t)|W (t, u, θ, πdγ) −W (t, v, θ, π−dγ)|2

)
γ(du, dv),

for some smooth function of time β to be determined later on. While the key idea is still to apply the maximum
principle, we now work with Lipschitz solutions. As a consequence, it is necessary to adapt the arguments of
Proposition 4.5 to non-smooth functions.
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To that end, we use tools from the theory of viscosity solutions to show that Zβ satisfies a comparison principle
with 0. The developments thereafter are very much in the spirit of [7], though some arguments have to be adapted
to account for the fact that we are now considering an equation on the space of measure. First, we have to be
clear by what we mean by viscosity solutions. In utmost generality, the adaptation of the theory of viscosity
solutions to equations on the space of measure is a notoriously difficult problem. Since we are here interested
in comparison argument of (4.7) with a smooth function (namely the constant function equal to 0, to show non
negativity), comparison arguments are much simpler. The extension of viscosity solutions to our problem raises
few difficulties. Let (k, l) ∈ N2,Γ be a symmetric, positive semi-definite k × k matrix, H be a continuous mapping
from R+ × Rk × P2(Rl) × R × Rk → R and f a continuous bounded function from R+ × Rk × P2(Rl) × Rl → Rl.
Consider the following nonlinear partial differential equation

∂tU(t, θ, µ) + H(θ, µ,U(t, θ, µ),∇θU(t, θ, µ)) − Tr
(
ΓD2

θU(t, θ, µ)
)

+
∫
Rl

f(t, θ, µ, y) ·DmU(t, θ, µ, y)µ(dy) −
∫
Rl

Tr (BlDyDmU(t, θ, µ, y))µ(dy) = 0,(E)

for (t, θ, µ) in (0, T ) × Rk × P2(Rl).

We introduce the space of test function Htest: a smooth function φ : [0, T ] ×Rk × P2(Rl) is said to belong to Htest

if
- ∃C > 0, ∀µ ∈ P2(Rl) ∥φ(·, µ)∥C1,2 ≤ C
- ∀(t, θ, µ), y 7→ Dmφ(t, θ, µ, y), y 7→ DyDmφ(t, θ, µ, y) are continuous and

|Dmφ(t, θ, µ, y)| + |DyDmφ(t, θ, µ, y)| ≤ C(1 + |y|q−1),

with q = sup{p, µ ∈ Pp(Rl)}, uniformly in (t, µ, θ)

Definition 4.10. Let u : (0, T ) × Rk × P2(Rl) → R be a continuous function. We say that u is a viscosity
supersolution of (E) if for any function φ ∈ Htest such that a point of minimum (t∗, θ∗, µ∗) of u− φ is achieved in
(0, T ) × Rk × P2(Rl) the following holds

∂tφ(t∗, θ∗, µ∗) + H(t∗, θ∗, µ∗, u(t∗, θ∗, µ∗),∇qφ(t∗, θ∗, µ∗)) − Tr
(
ΓD2

qφ(t∗, θ∗, µ∗)
)

+
∫
Rl

f(t∗, θ∗, µ∗, x) ·Dmφ(t∗, θ∗, µ∗, x)µ∗(dx) −
∫
Rl

Tr (BlDxDmφ(t∗, θ∗, µ∗, x))µ∗(dx) ≥ 0.

One can readily check that as soon as Γ is indeed symmetric positive semi-definite(in which case degenerate ellipticity
holds) a classical supersolution of (E) is indeed a viscosity supersolution thanks to Proposition 1.1, thereby justifying
this definition. We may now state the following lemma

Lemma 4.11. Consider W a Lipschitz solution to (4.2) defined on [0, T ) for some T > 0, and let Zβ be defined as
in (4.7) for a C1 positive function of time β. Then, Zβ is a viscosity supersolution of

∂tZβ(t, θ, γ) + b(θ) · ∇θZβ − σθ∆θZβ

+
∫
R2d

(
Fu

F v

)
·DγZβ(t, θ, γ, u, v)γ(du, dv) − σx

∫
R2d

Tr
(
BD(u,v)DγZβ(t, θ, γ, u, v)

)
γ(du, dv)

=
∫
R2d

(Fu − F v) · (Wu −W v)γ(du, dv) +
∫
R2d

(Gu −Gv) · (u− v)γ(du, dv)(4.8)

−2β(t)
∫
R2d

(Gu −Gv) · (Wu −W v)γ(du, dv) − dβ

dt

∫
R2d

|Wu −W v|2γ(du, dv),

for (t, θ, γ) ∈ (0, T ) × Rn × P2(R2d).

with Wu = W (t, u, θ, πdγ),W v = W (t, v, θ, π−dγ), Fu = F (u, θ, πdγ,W
u) and so on.

Proof. Step 1: an inequality satisfied by Z
Fix (t, x0, y0, θ0, γ0) ∈ [0, T ) × (Rd)2 × (Rn)2 × P2(R2d), we are first going to take a look at

V (t, x0, y0, θ0,m0) = ⟨W (t, x0, θ0, πdm0) −W (t, y0, θ0, π−dm0), x0 − y0⟩.

Our goal here is to show Zβ satisfy a dynamic programming principle in the form of an inequality. For that we are
going to go all the way from V to Zβ while using the dynamic programming principle satisfied by W . Which is
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why we introduce the following SDE-SPDE system
dθs = −b(θs)ds+

√
2σθdB

θ
s θt=0 = θ0,

dXs = −F (Xs, θs, µs,W (t− s,Xs, θs, µs))ds+
√

2σxdBs Xt=0 = x0,
dYs = −F (Ys, θs, νs,W (t− s, Ys, θs, νs))ds+

√
2σxdBs Yt=0 = y0,

dγs = (−div
((

F (x, θs, µs,W (t− s, x, θs, µs))
F (y, θs, νs,W (t− s, y, θs, νs))

)
γs

)
+ σxTr

(
BD2

(x,y)γs

)
)ds γt=0 = γ0,

for (Bθ
s , Bs)s≥0 a d + n dimensional Brownian motion, with the notation µs = πdγs, νs = π−dγs. Since t < T ,

and W is Lipschitz at least up until T , the well-posedness of (γs)s∈[0,t] and hence of (Xs, Ys)s∈[0,t] is fairly simple
[16]. Throughout the proof we will be using the notation W x

s = W (t − s,Xs, θs, µs), F x
s = F (Xs, θs, µs,W

x
s ),

Gx
s = G(Xs, θs, µs,W

x
s ) and similarly W y

s = W (t− s, Ys, θs, νs) and so on. By the dynamic programming principle
satisfied by W , we know

V (t, x0, y0, θ0,m0) = E
[
⟨W x

s −W y
s , x− y⟩ +

∫ t−s

0
⟨Gx

u −Gy
u, x− y⟩du

]
.

Because (Xs)s∈[0,t] and (Ys)s∈[0,t] have been generated with the same set of Brownian motion the following holds

x− y = Xt−s − Yt−s +
∫ t−s

0
(F x

u − F y
u )du.

From which we get

V (t, x0, y0, θ0, γ0) = E[V (s,Xt−s, Yt−s, θt−s, γt−s)](4.9)

+ E
[∫ t−s

0
(⟨Gx

u −Gy
u, x− y⟩ + ⟨F x

u − F y
u ,W

x
s −W y

s ⟩) du
]
.

We are also going to need the following formula

(4.10) ∀s ∈ [0, t] |W (t, x0, θ0, µ0) −W (t, y0, θ0, ν0)|2 ≤ E

[∣∣∣∣W x
s −W y

s +
∫ t−s

0
(Gx

u −Gy
u)du

∣∣∣∣2
]
,

which is a consequence of Jensen inequality applied to (2.5). Let us now take β be a C1 positive function of time,
and consider

Λ(t, x0, y0, θ0, γ0) = V (t, x0, y0, θ0, γ0) − β(t)|W (t, x0, θ0, µ0) −W (t, y0, θ0, ν0)|2,
= V (t, x0, y0, θ0, γ0)︸ ︷︷ ︸

I

−β(s) |W (t, x0, θ0, µ0) −W (t, y0, θ0, ν0)|2︸ ︷︷ ︸
II

− (β(t) − β(s))|W (t, x0, θ0, µ0) −W (t, y0, θ0, ν0)|2.

Applying (4.9) to I and (4.10) to II leads to the following inequality:

Λ(t, x0, y0, θ0, γ0) ≥ E
[
Λ(s,Xt−s, Yt−s, θt−s, γt−s) +

∫ t−s

0
(⟨Gx

u −Gy
u, x− y⟩ + ⟨F x

u − F y
u ,W

x
s −W y

s ⟩) du
]

− β(s)E
[∣∣∣∣∫ t−s

0
(Gx

u −Gy
u)du

∣∣∣∣2 + 2
∫ t−s

0
⟨Gx

u −Gy
u,W

x
s −W y

s ⟩du

]
− (β(t) − β(s))|W (t, x0, θ0, µ0) −W (t, y0, θ0, ν0)|2.

We may finally take a look at our end goal

Zβ(t, γ0, θ0) =
∫
R2d

Λ(t, x0, y0, θ0, γ0)γ0(dx0, dy0).

For that, let us first remind that for any continuous function f, s < t letting Fθ
s = σ((θu)u≤s)

∀s ≤ t

∫
R2d

E
[
f
(

(X,Y )(x0,y0)
s

)]
γ0(dx0, dy0) =

∫
R2d

E
[
E
[
f
(

(X,Y )(x0,y0)
s

)
γ0(dx0, dy0)

∣∣∣Fθ
s

]]
,

= E[f(x, y)γs(dx, dy)] .
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which is a consequence of almost sure pathwise uniqueness to our SPDE [16]. With that in mind, it is easy to see
that ∫

R2d

E
[
Λ(s,Xx0

t−s, Y
y0

t−s, θt−s, γt−s)
]
γ0(dx0, dy0) = E

[∫
R2d

Λ(s, x, y, θt−s, γt−s)γt−s(dx, dy)
]
,

= E[Z(s, θt−s,mt−s)] .

Finally, we obtain the inequality satisfied by Z

Z(t, θ0, γ0) ≥ E
[
Z(s, θt−s, γt−s) +

∫
R2d

∫ t−s

0
(⟨Gx

u −Gy
u, x− y⟩ + ⟨F x

u − F y
u ,W

x
s −W y

s ⟩) γ0(dx, dy)
]
du

− β(s)
∫
R2d

E

[∣∣∣∣∫ t−s

0
(Gx

u −Gy
u)du

∣∣∣∣2 + 2
∫ t−s

0
⟨Gx

u −Gy
u,W

x
s −W y

s ⟩du

]
γ0(dx, dy)

− (β(t) − β(s))
∫
R2d

|W (t, x, θ0, µ0) −W (t, y, θ0, ν0)|2γ0(dx, dy).(4.11)

Step 2: viscosity supersolution
Let φ ∈ Htest and assume that there exists (t∗, θ∗, γ∗) such that

min(Z − φ) = Z(t∗, θ∗, γ∗) − φ(t∗, θ∗, γ∗).

By adding a constant to φ if necessary, we may assume without loss of generality that this minimum is equal to
0. Because we must have Z(s, θt−s, γt−s) ≥ φ(s, θt−s, γt−s) and the equality holds at (t∗, θ∗, γ∗), φ satisfies the
inequality (4.11) for any s ≤ t. Applying Lemma 5.15 of [10] to φ, and dividing by t − s we can take the limit
without much difficulty. Pointwise convergence holds thanks to the mean value theorem, and we may directly apply
the dominated convergence theorem as we have uniform bounds on φ, ∂tφ,∇θφ,D

2
θφ and the integral terms in

Dγφ,DyDγφ. □

Remark 4.12. Observe that the proof still works if we only assume a test function φ satisfy the assumptions we
put on test functions in Htest only in a neighbourhood of the point of minimum (t∗, θ∗, γ∗). Indeed, by introducing
an appropriate sequence of stopping time we can then bound φ, and since the convergence of γt∗−s to γ∗ holds in
the Wq topology for q = sup{p, γ∗ ∈ Pp(Rl)} we know that for t∗ − s sufficiently small (t∗ − s, θt∗−s, γt∗−s) belongs
to any neighbourhood (in Wq), letting the conclusion be unchanged. In particular, this justifies that we may take

φ : (s, θ, γ) 7→ −|θ|3 − E3
3(γ) − 1

t− s
,

as we did in the proof of Proposition 4.5.

With this technical lemma proven, we may use a comparison principle with 0 to show the following

Lemma 4.13. Under Hypothesis 4.1 and 4.7, if W is a Lipschitz solution to (4.2) on [0, T ) for some T > 0, then
there exists a strictly positive function of time β such that

∀t < T, (γ, θ) ∈ P2(R2d) × Rn Zβ(t, θ, γ) ≥ 0,

for Zβ defined as in (4.7).

Proof. We first make the following observation: fixing (t, γ, θ), for any λ ∈ [0, 1]∫
R2d

(Gu −Gv) · (Wu −W v)γ(du, dv)

≤
∫
R2d

|G(u, πdγ, θ, λW
u + (1 − λ)W v) −G(v, πdγ, θ, λW

u + (1 − λ)W v)|2m(du, dv)

+(2∥G∥Lip + 1)
∫
R2d

|Wu −W v|2γ(du, dv),

with the notation Wu = W (t, u, θ, πdγ),W v = W (t, v, θ, π−dγ) that we remind. As a consequence, under Hypothesis
4.7, for any (t, γ, θ) ∈ [0, Tc) × P2(R2d) × Rn the following holds∫

R2d

(Fu − F v) · (Wu −W v)dγ +
∫
R2d

(Gu −Gv) · (u− v)γ(du, dv)

−2β(t)
∫
R2d

⟨Gu −Gv,Wu −W v⟩γ(du, dv) − dβ

dt

∫
R2d

|Wu −W v|2γ(du, dv)

≥ 0,
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for β(t) = β0e
−kt with (β0, k) chosen such that:

β0 ≤ α,
k ≥ 1 + 4∥G∥Lip.

For such a β, we recover using Lemma 4.11 that Zβ is a viscosity supersolution of
∂tZβ(t, θ,m) + b(θ) · ∇θZβ − σθ∆θZβ

+
∫
R2d

(
Fm1

Fm2

)
·DγZβ(t, θ,m, u, v)m(du, dv) − σx

∫
R2d

Tr
(
BD(u,v)DmZβ(t, θ,m, u, v)

)
m(du, dv)

≥ 0,
with

Zβ |t=0 ≥ 0.
Since W is Lipschitz, Zβ is a continuous function with at most quadratic growth. Fixing t < T and using the same
reasoning as in the proof of Lemma 4.3, this means the function

Zα : (s, θ, γ) → Zβ(s, θ, γ) + αeκs(1 + E3
3(γ) + |θ|3) + α

t− s
,

reaches a minimum (s∗, θ∗, γ∗) with s∗ < t, for any positive α, κ. Fixing α > 0, we now assume by contradiction
that there exists a point (s, θ, γ) with s < t such that Zα(s, θ, γ) < 0 . By assumption 4.7, this implies the minimum
of Zα is not reached for s∗ = 0. Using the viscosity property at this point of minimum, we find that there exists a
constant c depending on t and the linear growth of F,G, b,W such that

0 ≥ α

(t− s∗)2 + αeκs∗
(κ− c)(1 + |θ∗|3 + E3

3(γ∗)).

For κ > c we get a contradiction yielding
inf

[0,t)×Rn×P2(R2d)
Zα ≥ 0.

Since this is true for any α > 0 and t < T , the lemma is proved. □

It now remains to show that the non negativity of Zβ is a sufficiently strong property to get Lipschitz estimates
on the solution W . We first remark that this gives directly an estimate on the Lipschitz norm in the state variable
x.

Lemma 4.14. Let W : Rd × P2(Rd) → Rd be a continuous function such that for some β > 0 and for all
(X,Y ) ∈ (L2(Ω,Rd))2

(4.12) E[(W (X,L(X)) −W (Y,L(Y ))) · (X − Y )] ≥ βE
[
|W (X,L(X)) −W (Y,L(Y ))|2

]
,

then
- ∀(X,Y ) ∈ (L2(Ω,Rd))2 E

[
|W (X,L(X)) −W (Y,L(Y ))|2

]
≤ 1

β2 E
[
|X − Y |2

]
- ∥W (·)∥Lip(x) := sup

µ∈P2(Rd)
∥W (·, µ))∥Lip ≤ 1

β

Proof. The first part of the claim is just a direct consequence of applying Cauchy-Schwartz inequality in (L2(Ω,Rd), ⟨·, ·⟩|L2)
to (4.12). As for the second part, we define

f(µ, x, y) = (W (x, µ) −W (y, µ)) · (x− y) − β|W (x, µ) −W (y, µ)|2.
As a direct consequence of the above inequality, for any X,Y both of law µ

E[f(µ,X, Y )] ≥ 0.
Let us also observe that f is a continuous, symmetric function of (x, y) ∈ R2d such that

∀µ ∈ P(Rd) ∀x ∈ Rd f(µ, x, x) = 0.
We may now call upon Proposition 1.2 to conclude that

∀µ ∈ P(Rd), ∀(x, y) ∈ R2d f(µ, x, y) ≥ 0.
From the non-negativity of f and an application of Cauchy-Schwartz inequality we finally conclude that

∥W (·)∥Lip(x) := sup
µ∈P2(Rd)

∥W (·, θ, µ))∥Lip ≤ 1
β
.

□
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The non negativity of Zβ for a Lipschitz solution defined on [0, T ) is equivalent to ∀t < T, θ ∈ Rn, (X,Y ) ∈
(L2(Ω,Rd))2, X ∼ µ, Y ∼ ν

E[(W (t,X, θ, µ) −W (t, Y, θ, ν)) · (X − Y )] ≥ β(t)E
[
|W (t,X, θ, µ) −W (t, Y, θ, ν)|2

]
.

Fixing (t, θ), the above lemma can be applied to deduce an estimate on the Lipschitz norm of W in x. To show
that W is also Lipschitz in P2(Rd), the trick is to notice that the inequality implied by the first claim

(4.13) ∀(X,Y ) ∈ (L2(Ω,Rd))2 E
[
|W (t,X, θ,L(X)) −W (t, Y, θ,L(Y ))|2

]
≤ 1
β2(t)E

[
|X − Y |2

]
,

is sufficient to get a Lipschitz estimate in W2 for Lipschitz solutions.

Theorem 4.15. Under Hypothesis 4.1 and Hypothesis 4.7, there exists a unique Lipschitz solution to (4.2) on
[0,+∞).

Proof. Local existence of a Lipschitz solution on [0, Tc) for some Tc > 0 follows from Theorem 2.3. Thanks to
Lemma 4.13 and 4.14 we know there exists a function β of the form β(t) = β0e

−κt such that

∀t < Tc ∥W (t, ·)∥Lip(x) ≤ 1
β(t) ,

and (4.13) holds. We are now going to use this inequality to get a stability estimate with respect to initial conditions
for the following stochastic Fokker-Planck equation

s ≤ t < Tc,

{
dµµ0

s = (−div (F (x, θs,W (t− s, x, θs, µ
µ0
s )) + σx∆µµ0

s ) ds µ0 ∈ P2(Rd),
dθs = −b(θs)ds+

√
2σθdB

θ
s θ0 = θ ∈ Rn.

Since t < Tc, W is Lipschitz in both the space and the measure variable and so existence of a strong solution to
this system is not a problem. Consider two initial conditions µ0, ν0 ∈ P2(Rd) and let ρ0 ∈ Γ(µ0, ν0) be chosen as
an optimal coupling for W2. We define (ρs)s∈[0,t] by

dρs =
(

−div
((

F (x, θs, πdρs,W (t− s, x, θs, πdρs))
F (y, θs, π−dρs,W (t− s, y, θs, π−dρs))

)
ρs

)
+ σxTr

(
BD2

(x,y)ρs

))
ds.

By pathwise almost sure uniqueness [16], it holds that
∀s ≤ t πdρs = µµ0

s π−dρs = µν0
s a.s.

Let us now fix ω ∈ Ω up to a negligible set. Since ρ0 ∈ P2(R2d) so does ρs(ω) := ρω
s . Using the definition of a weak

solution combined with the dominated convergence theorem we get that for any s ≤ t∫
R2d

|x− y|2ρω
s (dx, dy) = W2

2 (µ0, ν0)

+
∫ s

0

∫
R2d

(F (x, θu, πdρ
ω
u ,W (t− u, x, θuπdρ

ω
u)) − F (y, θu, π−dρ

ω
u ,W (t− u, θu, π−dρ

ω
u)) · (x− y)ρω

u(dx, dy)du.

Using (4.13) we deduce that∫
R2d

|x− y|2ρω
s (dx, dy) ≤ W2

2 (µ0, ν0) + (1 + ∥F∥Lip + 1
β2(s) )

∫ s

0

∫
R2d

|x− y|2ρω
u(dx, dy)du.

Since this is true for almost every ω Grönwall’s Lemma allows us to conclude that there exists a constant C
∀s ≤ t W2(µµ0

s , µν0
s ) ≤ CW2(µ0, ν0) a.s

The strength of this estimate is that the constant C does not depend directly on the Lipschitz constant of W in W2
but rather on the Lipschitz constant of its lift

W̃ :
{
L2(Ω,Rd) → L2(Ω,Rd)
X 7→ W (t,X, θ,L(X))

on L2(Ω,Rd) which we know is bounded by 1
β(t) thanks to (4.13). As W is given by the representation formula

(2.5), thanks to the above estimates we deduce that

|W (t, x, θ, µ0) −W (t, x, θ, ν0)| ≤ C

(
1 + t+

∫ t

0
∥W (s, ·)∥Lip(W2)ds

)
W2(µ0, ν0),

for a constant C depending on ∥F∥Lip, ∥W0∥Lip, ∥G∥Lip and ∥W (t, ·)∥Lip(x). Dividing by W2(µ0, ν0) and taking the
supremum for µ0 ̸= ν0, we apply Grönwall’s Lemma to conclude that there exists another constant such that

∀s ≤ t ∥W (s, ·)∥Lip(W2) ≤ C.
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Let us remark that since (θs)s≥0 is an autonomous process with a Lipschitz driver, and F,G,W0 are also Lipschitz
in θ, a similar argument gives estimates on ∥W (t, ·)∥Lip(θ)

Conclusion

Now that we have estimates on the Lipschitz constant of W in Rd × Rn × P2(Rd), we may conclude to the
existence of a Lipschitz solution on any time interval. Let us assume by contradiction that Tc < T for some T > 0.
Then

lim
t→Tc

∥W (t, ·)∥Lip = +∞

must hold. However, we have a uniform estimate on the Lipschitz semi-norm of W in time that holds for any t < Tc

with a constant depending on T, ∥F∥Lip, ∥b∥Lip, ∥W0∥Lip, α only. Obviously, this contradicts the claim that Tc < T .
Because it is true for any T < ∞, we conclude to the existence of a Lipschitz solution on any time interval. □

4.2. Comparison with previous results on MFG master equations. As mentioned before, the above exis-
tence result applies to the MFG master equation (4.1) whenever F = DpH,G = −DxH and W0 = ∇xU0. However,
the hypotheses we made are different from the conditions found in the literature on displacement monotone mean
field games [36, 23, 34]. Forgetting the common noise θ, the usual assumptions are as follows

Hypothesis 4.16. ∀(X,Y, U, V ) ∈ Rn ×
(
L2(Ω,Rd)

)4,

E[(W0(X,L(X) −W0(Y,L(Y ))) · (X − Y )] ≥ 0,
E[F (X,L(X), U) − F (Y,L(Y ), V ) · (U − V ) + (G(X,L(X), U) −G(Y,L(Y ), V )) · (X − Y )] ≥ 0,

(4.14) ∃α > 0, ∀(x, p, q,m) ∈ R3d × P2(Rd) (F (x,m, p) − F (x,m, q)) · (p− q) ≥ α|p− q|2

Obviously, Hypothesis 4.7 and Hypothesis 4.16 are in dichotomy. This is mainly due to two differences, the
first one is that we did not assume that the functions (F,G,W0) were gradients, to account for mean field forward
backward differential equations. This has its importance as the following holds:

Lemma 4.17. Let x 7→ U(x) be a C1 function with a Lipschitz continuous gradient, the following two propositions
are equivalent

(i) ∀(x, y) ∈ (Rd)2

(∇U(x) − ∇U(y)) · (x− y) ≥ 0.
(ii) ∃α > 0, ∀(x, y) ∈ (Rd)2

(∇U(x) − ∇U(y)) · (x− y) ≥ α|∇xU(x) − ∇U(y)|2.

Proof. (ii) =⇒ (i) is self-evident. As for the other implication, since (i) implies that x 7→ U(x) is a convex function
with a Lipschitz gradient, it is a classic result from convex analysis [26] that

∀(x, y) ∈ (Rd)2 (∇U(x) − ∇U(y)) · (x− y) ≥ 1
L

|∇U(x) − ∇U(y)|2,

where L = ∥∇U∥Lip. □

The other point being that the strategy of proof is slightly different in [36, 23]. The strong joint L2−monotonicity
Hypothesis 4.7 gives us directly an estimate on the Lipschitz norm of W in W2 while in their approach it is obtained
by a weaker monotonicity assumption combined with strong convexity of the Hamiltonian in the non-linearity. A
reasonable question is whether we can present a long time existence result for Lipschitz solutions to (4.2) that
resolves to previous results given in the displacement monotone framework whenever (F,G,W0) are gradients.

Theorem 4.18. Under Hypothesis (4.4), if ∀(x, y, p, q, θ, µ) ∈ (Rd)4 × Rn × P2(Rd)
(4.15) F (x, θ, µ, p) − F (y, θ, µ, q)) · (p− q) + (G(x, θ, µ, p) −G(y, θ, µ, q)) · (x− y) ≥ αH |p− q|2,
Then there exists a unique Lipschitz solution to (4.2) on [0,+∞).

Proof. The fact that under (4.15) we can estimate the Lipschitz norm of W in x by coming back to the characteristics
of W is well known [31, 7]. Once the Lipschitz norm in x is bounded, an estimate in W2 follows from adapting
Proposition 3.4 of [34] to Lipschitz solutions. □

We now show that whenever (F,G) are gradients (4.15) holds under Hypothesis 4.16.
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Lemma 4.19. Let F,G be continuous functions such that ∀(x, y, p, q) ∈ (Rd)4

(4.16) (F (x, p) − F (y, q)) · (p− q) + (G(x, p) −G(y, q)) · (x− y) ≥ 0.

If there exists a function H : (Rd)2 → R such that F = DpH,G = −DxH and H is αH−strongly convex in p
uniformly in x, then ∀(x, y, p, q) ∈ (Rd)4

(F (x, p) − F (y, q)) · (p− q) + (G(x, p) −G(y, q)) · (x− y)
≥ αH |p− q|2.

Proof. We first assume that H is C2.

(F (x, p) − F (y, q)) · (p− q) + (G(x, p) −G(y, q)) · (x− y)

=
∫ 1

0

(
p− q
x− y

)
·
(

D2
pH D2

xpH
−D2

xpH −D2
xH

)
((1 − t)x+ ty, (1 − t)p+ tq) ·

(
p− q
x− y

)
dt,

=
∫ 1

0

(
p− q
x− y

)
·
(

D2
pH 0Md(R)

0Md(R) −D2
xH

)
((1 − t)x+ ty, (1 − t)p+ tq) ·

(
p− q
x− y

)
dt,

≥ αH |p− q|2

Whenever H is only C1, we consider a sequence Hε obtained by a monotonicity preserving regularization. This can
be done by convolution with a smooth, compactly supported, positive kernel of mass 1. Since Hε satisfies (4.16), is
αH−strongly convex in p and converges to H in C1, the result is obtained by taking the limit. □

Remark 4.20. In fact, this shows that assuming F,G are the gradient of an Hamiltonian is a very constraining
assumption. In general, it is not sufficient for G to be monotone in x and F in p to get joint monotonicity which is
much stronger. However, in the gradient case this becomes a sufficient assumption as the cross derivatives cancel
out.

Remark 4.21. It might appear surprising that under strong monotonicity in p, we can show the existence of solu-
tions under weaker assumptions on the monotonicity of W0. It was already observed in [31] that strong monotonicity
in p has a greater regularizing effect on the equation and allows starting from less regular initial data.

4.3. Noise depending on the distribution of players. We now turn back to the original problem of (4.1)
∂tW + F (x, θ,m,W ) · ∇xW + b[W ](t, θ,m) · ∇θW − σx∆xW − σθ∆θW

+
∫
Rd

F (y, θ,m,W ) ·DmW (t, x, θ,m)(y)m(dy) − σx

∫
Rd

divy(DmW (t, x, θ,m)(y))m(dy)

= G(x, θ,m,W ) in (0, T ) × Rd × Rn × P2(Rd),
W (0, x, θ,m) = W0(x, θ,m) for (x, θ,m) ∈ Rd × Rn × P2(Rd).

We now make a precise statement on the regularity of b with respect to its functionnal argument

Hypothesis 4.22. ∃C > 0 ∀(x, y) ∈ (Rd)2, (θ, θ̃) ∈ (Rn)2, (µ, ν) ∈ (P2(Rd))2, (u, v) ∈ (Rd)2,

- |W0(x, θ, µ) −W0(y, θ̃, ν)| ≤ C
(
|x− y| + |θ − θ̃| + W2(µ, ν)

)
.

- |F (x, θ, µ, u) − F (y, θ̃, ν, v)| + |G(x, θ, µ, u) −G(y, θ̃, ν, v)| ≤ C
(
|x− y| + |θ − θ̃| + |u− v| + W2(µ, ν)

)
.

- For any two continuous functions f, g : Rd → Rd and any coupling γ ∈ Γ(µ, ν)

|b(θ, µ, f(·)) − b(θ̃, ν, g(·))| ≤ C

(
|θ − θ̃| + W2(µ, ν) +

√∫
(Rd)2

|f(x) − g(y)|2γ(dx, dy)
)
.

Obviously, this restricts quite a bit how b may depend on W in general. From a probabilistic point of view, it is
natural to assume that the dependency of b on W be of the form

b(θ, µ,W (t, ·, θ, µ)) = b̃(θ, µ,W (t, ·, θ, µ)#µ).

If b̃ is Lipschitz for W2 in its last variable, then Hypothesis 4.22 holds. We do not require b to be of this form and
keep only this continuity assumption.

Example 4.23. Hypothesis 4.22 holds for coefficient b of the form

b(θ, µ,W (t, ·, θ, µ)) = b̃

(
θ, µ,

∫
Rd

h(y, θ, µ,W (t, y, θ, µ))µ(dy)
)
,
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whenever b̃ and h are Lipschitz functions in all variable. In particular, if we come back to the original problem this
allows to take a b that depends on the average control of the players

∫
Rd

∇pH(y, θ, µ,∇xU(t, y, θ, µ))µ(dy).

Remark 4.24. Results obtained in this section still hold if b depends on x so long as it is in a Lipschitz fashion.
We do not treat directly this case since this changes completely the interpretation of the noise process θ and such
situation does not correspond to any mean field game no matter the coefficients. Nevertheless, it is a natural
extension for mean field forward-backward systems.

4.3.1. Existence of solutions. Just as the finite dimensional counterpart of this equation, some results were already
given on the associated mean field forward backward stochastic differential equation under G−monotonicity [2, 37]
whenever σx = 0. However, we here also treat situations in which σx > 0, which raises some issues and does not allow
us to use directly those results. We give new existence results for this equation, in dichotomy with G-monotonicity,
in particular those results may be of interest for mean field forward backward stochastic differential equations
outside mean field games theory. They consist in an extension to nonlinear systems of transport equations on the
space of measures of a method we first developed in [7] for nonlinear systems of transport equations. Whenever b
depends on m (whether it be directly or through W ), the evolution of the distribution of players is coupled with
the noise process and its dynamic cannot be considered independently. This raise the question of what kind of
monotonicity is natural in this case. If the solution W of (4.1) were to take value in Rn+d instead of Rd, then at
least formally by rewriting the equation in function a new state variable x̃ = (x, θ) we expect to fall back in the
case of (4.2) that we treated. For mean field games we know that this is not true, however it is always possible to
find a function (t, x, θ, µ) 7→ V (t, x, θ, µ) ∈ Rn satisfying

(4.17)


∂tV + F (x, θ,m,W ) · ∇xV + b[W ](t, θ,m) · ∇θV − σx∆xV − σθ∆θV

+
∫
Rd

F (y, θ,m,W ) ·DmV (t, x, θ,m)(y)m(dy) − σx

∫
Rd

divy(DmV (t, x, θ,m)(y))m(dy)

= GV (x, θ,m,W, V ) in (0, T ) × Rd × Rn × P2(Rd),
V (0, x, θ,m) = V0(x, θ,m) for (x, θ,m) ∈ Rd × Rn × P2(Rd),

for some coefficients (V0, GV ), so as to complete in Rd+n the equation satisfied by W in Rd. The remaining question
is to know under which condition does there exist a V satisfying (4.17) and such that the couple (W,V ) is jointly
L2−monotone in the sense that ∀(X,Y ) ∈ (L2(Ω,Rd))2, (θ, θ̃) ∈ (Rn)2

E
[
(W (t,X, θ,L(X)) −W (t, Y, θ̃,L(Y ))) · (X − Y ) + (V (t,X, θ,L(X)) − V (t, Y, θ̃,L(Y ))) · (θ − θ̃)

]
≥ 0.

Whenever such V can be constructed, we expect some regularity can be obtained on solutions by working as we
did in the autonomous case but on the couple (W,V ) instead of just W . This gives a different interpretation to the
completion argument we presented in the previous section. We first focus on the simplest possible choice of such
function V ≡ Ap for some positive matrix A, as we did in section 3. Expending on the idea we presented on the
autonomous case, we define

ZA
β (t, γ, θ, θ̃) =

1
2(θ − θ̃) ·A · (θ − θ̃) +

∫
R2d

(
(W (t, u, θ, πdγ) −W (t, v, θ̃, π−dγ)) · (u− v)

)
γ(du, dv)

−β(t)
∫
R2d

|W (t, u, θ, πdγ) −W (t, v, θ̃, π−dγ)|2γ(du, dv)(4.18)

We observe that this new function also satisfy an equation in the viscosity sense.
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Lemma 4.25. Consider W a Lipschitz solution on [0, T ) for some T > 0 and let ZA
β be defined as in (4.18) for

some A ∈ Sn(R) and a C1 function of time β. Then ZA
β is a viscosity supersolution of

∂tZ
A
β (t, θ, θ̃,m) + bθ · ∇θZ

A
β + bθ̃ · ∇θ̃Z

A
β − σθTr

(
BnD

2
(θ,θ̃)Z

A
β

)
+
∫
R2d

(
Fu

F v

)
·DmZ

A
β (t, θ, θ̃,m, u, v)m(du, dv) − σx

∫
R2d

Tr
(
BdD(u,v)DmZ

A
β (t, θ, θ̃,m, u, v)

)
m(du, dv)

=
∫
R2d

(Fu − F v) · (Wu −W v)m(du, dv) +
∫
R2d

(Gu −Gv) · (u− v)m(du, dv)(4.19)

+A(bθ − bθ̃) · (θ − θ̃)

−2β(t)
∫
R2d

(Gu −Gv) · (Wu −W v)m(du, dv) − dβ

dt

∫
R2d

|Wu −W v|2m(du, dv)

for (t, θ, θ̃,m) ∈ (0, T ) × R2m × P2(R2d).

with Wu = W (t, u, θ, πdm), W v = W (t, v, θ̃, π−dm), Fu = F (u, θ, πdm,W
u), Gv = G(v, θ̃, π−dm,W

v), bθ =
b[W ](t, θ, πdm) and so on.

Proof. Because the proof is very similar to the one of Lemma 4.11, we focus on the new part only, the rest following
from previously introduced arguments. For t < T , we define

dθs = −b[W ](t− s, θs, µs)ds+
√

2σθdB
θ
s θt=0 = θ0,

dθ̃s = −b[W ](t− s, θ̃s, νs)ds+
√

2σθdB
θ
s θ̃t=0 = θ̃0,

dXs = −F (Xs, θs, µs,W (t− s,Xs, θs, µs))ds+
√

2σxdBs Xt=0 = x0,

dYs = −F (Ys, θ̃s, νs,W (t− s, Ys, θ̃s, νs))ds+
√

2σxdBs Yt=0 = y0,

dms = (−div
((

F (x, θs, µs,W (t− s, x, θs, µs))
F (y, θ̃s, νs,W (t− s, y, θ̃s, νs))

)
ms

)
+ σxTr

(
BD2

(x,y)ms

)
)ds mt=0 = m0.

We still use the same notation W x
s = W (t − s, θs, Xs, µs), however now W y

s = W (t − s, θ̃s, Ys, νs) and bx
s =

b(θs, µs,W (t− s, ·, θs, µs)) even though it does not depend on x. We have to introduce a doubling of variable in θ
as we did in the measure variable to account for the fact that b is not autonomous anymore. By Ito’s lemma, for
any s ≤ t

1
2(θ0 − θ̃0) ·A · (θ0 − θ̃0) = 1

2(θt−s − θ̃t−s) ·A · (θt−s − θ̃t−s) +
∫ t−s

0
A(bx

u − by
u) · (θu − θ̃u)du,

as (θs)s≤t,(θ̃s)s≤t have been generated with the same Brownian motion. In this way, we treated the new term
associated to A. There is no particular difficulty in extended the computations of Lemma 4.11 to the two others
terms involving W . When integrating with respect to m0 there is no further difficulty as (θs, θ̃s)s∈[0,t] does not
depend on the initial conditions (x0, y0) of (Xs, Ys)s∈[0,t]. □

To propagate the non-negativity of ZA
β , we are going to need some monotonicity assumptions not just on (G,F )

but rather on (G,F,Ab). At least formally, if we can find a A for which furthermore ZA
β |t=0 ≥ 0, then we expect

that the long time existence of a Lipschitz solution can be proved. This is exactly the monotonicity we ask in the
following Hypothesis,

Hypothesis 4.26. There exists A ∈ Sn(R) and an α > 0, such that for any (θ, θ̃,X, Y ) ∈ (Rn)2 × (L2(Ω,Rd))4

and f, g ∈ Cb(Rd,Rd)

E
[

1
2(θ − θ̃) ·A · (θ − θ̃) +

(
W0(X, θ,L(X) −W0(Y, θ̃,L(Y ))

)
· (X − Y )

]
≥ α

(
∥W0(X, θ,L(X)) −W0(Y, θ̃,L(Y ))∥2

L2

)
,(4.20)

E
[
(F (X, θ,L(X), f(X)) − F (Y, θ̃,L(Y ), g(Y )) · (f(X) − g(Y ))

]
+E
[
(G(X, θ,L(X), f(X)) −G(Y, θ̃,L(Y ), g(Y ))) · (X − Y )

]
(4.21)

+(b(θ,L(X), f(·)) − b(θ̃,L(Y ), g(·)) ·A · (θ − θ̃)
≥ α min

t∈[0,1]
∥G(X, θ,L(X), tf(X) + (1 − t)g(Y ) −G(Y, θ̃,L(Y ), tf(X) + (1 − t)g(Y ))∥2

L2 .
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Remark 4.27. The second part of this assumption is stated slightly differently than its counterpart in Hypothesis
4.7. Essentially, it is still the same idea, except we now require the random variables corresponding to the non-
linearity to be functions of X and Y to account for the functional dependency of b. As in Hypothesis 3.8 this
joint monotonicity assumption is in general not going to be satisfied unless each of the coefficients is in some sense
strongly monotone.

Example 4.28. Let
G(x, θ, µ, p) = G̃(x, θ),

for a function G̃ such that 1
2
(
DxG̃+DxG̃

T
)

≥ αGId and
F (x, θ, µ, p) = αF p,

for some αF > 0 (which correspond to a Hamiltonian with a purely quadratic non-linearity). Take
b(θ, µ, f(·) = b̃(θ, f#µ),

for a function b̃ satisfying 1
2 (Dθb+Dθb

T ) ≥ αbIn and Lipschitz in W2 in the second variable. If

(4.22) 4αGαF (αb)2 > ∥DθG∥2
∞∥b∥2

Lip(W2),

then there exists an a > 0 and a matrix A = aIn such that (4.21) holds.

Indeed, we are looking for a constant a > 0 such that the matrix αG − ε 0 − 1
2 ∥DθG∥∞

0 αF − a
2 ∥b∥Lip(W2)

− 1
2 ∥DθG∥∞ − a

2 ∥b∥Lip(W2) aαb − ε

 ≥ 0,

for some ε > 0. For such a to exists, a sufficient condition is to ask for both matrix(
αG − 1

2 ∥DθG∥∞
− 1

2 ∥DθG∥∞
1
2aαb

)
,

(
αF − a

2 ∥b∥Lip(W2)
− a

2 ∥b∥Lip(W2)
1
2aαb

)
,

to be definite positive. This is true as soon as
2αFαb

∥b∥2
Lip(W2)

> a >
∥DθG∥2

∞
2αGαb

.

Let us insist on the fact that this not a smallness assumption on b. Replacing b with ηb for some η << 1 yields the
same condition (4.22) as η cancels out in this equation.

Lemma 4.29. Let W be a Lipschitz solution to (4.1) on [0, T ). Under Hypothesis 4.22, if there exists A ∈ Sn(R)
such that Hypothesis 4.26 holds then there exists a strictly positive function of time β : [0, T ) → R+∗ such that

∀t < T, (θ, θ̃, γ) ∈ (Rn)2 × P2(R2d) ZA
β (t, θ, θ̃, γ) ≥ 0,

for ZA
β as defined in (4.18).

Proof. Observe that we still have for any λ ∈ [0, 1]∫
R2d

⟨Gu −Gv,Wu −W v⟩m(du, dv)

≤ 1
2

∫
R2d

|G(u, πdm, θ, λW
u + (1 − λ)W v) −G(v, π−d, θ̃, λW

u + (1 − λ)W v)|2m(du, dv)

+(2∥G∥Lip + 1
2)
∫
R2d

|Wu −W v|2m(du, dv).

As a consequence, under Hypothesis 4.26, for β(t) = β0e
−γt with β0 sufficiently small and γ sufficiently big, ZA

β is
a viscosity supersolution of

∂tZ
A
β (t, θ, θ̃,m) + bu · ∇θZ

A
β + bv · ∇θ̃Z

A
β − σθTr

(
BmD

2
(θ,θ̃)Z

A
β

)
+
∫
R2d

(
Fu

F v

)
·DmZ

A
β (t, θ, θ̃,m, u, v)m(du, dv) − σx

∫
R2d

Tr
(
BdD(u,v)DmZ

A
β (t, θ, θ̃,m, u, v)

)
m(du, dv) ≥ 0,

satisfying ZA
β |t=0 ≥ 0 on (0, T ). By a comparison principle with 0 as conducted in Lemma 4.13, we deduce that

∀t < T ∀(θ, θ̃,m) ∈ R2m × P2(R2d) ZA
β (t, θ, θ̃,m) ≥ 0.

□
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It now remains to show that this monotonicity estimate is sufficient to get Lipschitz estimates on solutions of
(4.1).

Theorem 4.30. Under Hypothesis 4.22 and Hypothesis 4.26 there exists a unique Lipschitz solution W to (4.1) on
[0,+∞).

Proof. Local existence of a Lipschitz solution W on a time interval [0, Tc) is a direct consequence of Hypothesis
4.22. We now show that W does not blow up in finite time.
Step 1: Lipschitz estimate in L2

From Lemma 4.29, we now that there exists a function β : R+ → R+∗ such that ZA
β is positive for any t < Tc. For

θ = θ̃ this gives that for any t < Tc, (θ,X, Y ) ∈ Rn × (L2(Ω,Rd))2

E[(W (t,X, θ,L(X)) −W (t, Y, θ,L(Y ))) · (X − Y )] ≥ β(t)∥W (t,X, θ,L(X)) −W (t, Y, θ,L(Y ))∥L2 .

By Lemma 4.14, this implies that

∥W (t, ·)∥Lip(x) ≤ 1
β(t) .

It only remains to get a Lipschitz estimate in the noise variable θ and the measure argument. Let us first introduce
an alternate Lipschitz semi-norm in L2, for a function L2(Ω,Rd) × Rn ∋ (X, θ) 7→ U(X, θ) we denote

∥U∥Lip(L2) := sup
(X,Y,θ,θ̃)

∥U(X, θ) − U(Y, θ̃)∥L2

|θ − θ̃| + ∥X − Y ∥L2
.

We also denote
∥U∥Lip(L2),x := sup

(X,Y,θ)

∥U(X, θ) − U(Y, θ)∥L2

∥X − Y ∥L2
,

and similarly we define ∥U∥Lip(L2),θ by

∥U∥Lip(L2),θ = sup
(X,θ,θ̃)

∥U(X, θ) − U(X, θ̃)∥L2

|θ − θ̃|

We are now going to show that W is Lipschitz with respect to this L2 norm1. Remember that the non negativity
of ZA

β is equivalent to

∀(t,X, Y, θ, θ̃) ∈ (0, Tc) × L2(Ω,R2d) × R2m(4.23)
1
2(θ − θ̃) ·A · (θ − θ̃) + E

[(
W (t,X, θ,L(X) −W (t, Y, θ̃,L(Y ))

)
· (X − Y )

]
≥ β(t)∥W (t,X, θ,L(X)) −W (t, Y, θ̃,L(Y ))∥2

L2 .

Taking this expression for θ = θ̃ and X = Y gives

∥W (t, ·)∥Lip(L2),θ, ∥W (t, ·)∥Lip(L2),x ≤ 1 + ∥A∥
β(t) .

Step 2: Lipschitz estimate in Rn × P2(Rd)
It is a priori not trivial that the Lipschitz estimates in L2 we just got translates into Lipschitz estimates for the
norms of interest. To get estimates for the Euclidean and Wasserstein distance we proceed as we did in Theorem
4.15: by proving that this L2 Lipschitz norm is sufficient to get Lipschitz continuity in W2 with respect to initial
condition for the following SDE-SPDE system{

dµµ0,θ
s =

(
−div

(
F (x, θs, µ

µ0,θ
s ,W (t− s, x, θs, µ

µ0,θ
s ))

)
+ σx∆xµ

µ0,θ
s

)
ds µ0 ∈ P2(Rd),

dθµ0,θ
s = −b[W ](t− s, θµ0,θ

s , µµ0,θ
s )ds+

√
2σxdB

θ
s θ0 = θ ∈ Rn.

There is no difficulty in extending the previous result by looking at the quantity

E
[
W2

2 (µµ0,θ0 , µν0,θ̃0) + |θµ0,θ0
s − θ̃ν0,θ̃0

s |2
]
,

1Since this is the semi-norm of the lift of W , (X, θ) 7→ W (t, X, θ, L(X)), it is weaker than the usual Lipschitz semi-norm. See for
exemple

W (X, θ, L(X)) =
X − E[X]

1 +
√

E[(X − E[X])2]
θ,

seen as a fonction (x, θ, µ) 7→ U(x, θ, µ) this function is only locally Lipschitz but ∥W ∥Lip(L2),θ = 1
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and applying Grönwall’s Lemma. It is however important to remark that this is where the dynamics we imposed
on b in Hypothesis 4.22 comes into play. Indeed, this proof only works because

|b[W ](t− s, θX0,θ0
s , µX0,θ0

s ) − b[W ](t− s, θY0,θ̃0
s , µY0,θ̃0

s )|

≤ C
(

|θX0,θ0 − θY0,θ̃0 | + ∥XX0,θ0 −XY0,θ̃0∥L2 + ∥W (t− s,XX0,θ0 , θX0,θ0) −W (t− s,XY0,θ̃0 , θY0,θ̃0)∥L2

)
.

Once the Lipschitz continuity of this system with respect to initial conditions is established, an estimate on
∥W∥Lip(W2) and ∥W∥Lip,θ is simply given by Grönwall’s Lemma.
Step 3: Conclusion
Since we now have Lipschitz estimates on W on any time interval, we get by a proof by contradiction that Tc = +∞
must hold. As a consequence, there is indeed existence of a unique Lipschitz solution on [0,+∞).

□

4.3.2. Extensions and applications. We now come back on a possible application of those results outside of mean
field games: the solvability of forward-backward mean field systems. Whenever W is smooth the fact that it is
a decoupling field for one such system is a direct consequence of Ito’s lemma. We claim that it is still true for
Lipschitz solutions. In particular, the existence of a Lipschitz solution to (4.1) gives an existence result for the
associated FBSDE

Lemma 4.31. Suppose there exists a Lipschitz solution W to (4.1) on [0, T ] and that b is of the form

b(θ,L(X), f(·)) = b̃(θ,L(X, f(X))).

We define 
Xt = x0 −

∫ t

0
F (Xs, θs,L(Xs|(θu)u≤s),W (T − s,Xs, θs,L(Xs|(θu)u≤s)))ds+

√
2σxBt,

θt = θ0 −
∫ t

0
b(θs,L(Xs|(θu)u≤s),W (T − s, ·, θs,L(Xs|(θu)u≤s)))ds+

√
2σθB

θ
t ,

for (Bs, B
θ
s )s≥0 a Brownian motion on Rd+n, (x0, θ0) ∈ Rd+n. Letting Wt = W (T − t,Xt, θt) and F be the

natural filtration associated to (Bs, B
θ
s )s≥0, there exists a square integrable F-predictable process (Zs)s∈[0,T ] such

that ∀t ∈ [0, T ]

(4.24)



Xt = x0 −
∫ t

0
F (Xs, θs,L(Xs|(θu)u≤s),Ws)ds+

√
2σxBt,

θt = θ0 −
∫ t

0
b̃(θs,L(Xs,Ws)|(θu)u≤s)ds+

√
2σθB

θ
t ,

Wt = W0(XT , θT ,L(XT |(θu)u≤T )) +
∫ T

t

G(Xs, θs,L(Xs|(θu)u≤s),Ws)ds−
∫ T

t

Zs · d(Bs, B
θ
s ),

Proof. Since W is Lipschitz on [0, T ], (Xs, θs)s∈[0,T ] is well-defined (see [18]). Let us also recall that following the
proof of Proposition 2.5 the stochastic process (Ms)s∈[0,T ] defined by

Mt = W (T − t,Xt, θt,L(Xt|(θu)u≤t)) +
∫ t

0
G(Xs, θs,L(Xs|(θu)u≤s),W (t− s,Xs, θs,L(Xs|(θu)u≤s)))ds,

is a F−martingale. Grönwall’s Lemma yields estimates on the second moments of (Xs, θs)s∈[0,T ] and so (Ms)s∈[0,T ]
is a square integrable martingale. By the martingale representation theorem, there exists (Zs)s∈[0,T ], a square
integrable, predictable, F−adapted process such that

∀t ≤ T Mt = M0 +
∫ t

0
Zs · d(Bs,Ws).

Using the equality

MT = Mt +
∫ T

t

Zsd(Bs,Ws),

for this process (Zs)s∈[0,T ], we get exactly

Wt = W0(XT , θT ,L(XT |(θu)u≤T )) +
∫ T

t

G(Xs, θs,L(Xs|(θu)u≤s),Ws)ds−
∫ T

t

Zsd(Bs,Ws),

which ends the proof. □
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Remark 4.32. Local solvability of forward-backward stochastic systems with Lipschitz coefficients is already well
known, Lipschitz solutions appear as another way to prove this result by showing directly the existence of a Lipschitz
decoupling field. In the particular case of mean field games, the stochastic forward backward differential system
(4.24) corresponds to the optimality conditions given by Pontryagin maximum principle.

Many extensions and adaptations of Theorem 4.30 are also possible. In particular, strong monotonicity in the
state variable in (4.21) can always be traded for strong monotonicity in W as in [31, 7, 23]. We focus rather on the
choice of a function V to complete (4.1). In the above section, we explored the most simple case of a linear function
of θ. We now present how this idea can be extended to more general functions, leading to different monotonicity
conditions. A simple general choice is to take

V (t, x, θ, µ) = Aθθ +AWW (t, x, θ, µ) +Axx,

for some matrix (Ax, AW ) ∈ (Md×n(R))2
, Aθ ∈ Mn(R). In which case V satisfy (4.17) (in the sense of Lipschitz

solution) for
GV ≡ AxF +AWG+Aθb.

Since both GV and V are explicit, Hypothesis 4.7 can be checked easily for the couple (W,V ). A notable extension
being the situation

V = AWW,

which corresponds, up to rescaling of W by a d × d matrix M (which is always possible as the general form of
the equation is conserved by this linear shift), to G−monotonicity for mean field forward backward differential
equations [37, 2].

Remark 4.33. Different choice of functions V are also possible in the results we presented in Section 3. The proof
can be adapted to consider a more general function V : R+ ×Rn × P1(Td) → Rn instead of θ 7→ Aθ for V Lipschitz
solution to

∂tV (t,m, θ) + b · ∇θV − σθ∆θV

+
∫
Td

∇pH ·DmV m(dy) − σx

∫
Td

divy (DmV )m(dy) = R(θ,m, ψ, U),

provided a monotonicity estimate à la (3.3) is satisfied for (U0, V ) and (b, R,H, f).

5. Presence of additive common noise

In this section we make the link between common noise through a noise process impacting the coefficients of the
game as presented in the master equation (1.3) and the more usual additive common noise that has already been
widely studied. In particular, this will help us show how every result presented in this paper extend to the presence
of a Brownian additive common noise (Bc

t )t≥0 even when it is correlated with the Brownian motion driving the
noise process (Bθ

t )t≥0.

5.1. From additive common noise to noise as an additional variable. Consider the following master equation
associated to a mean field game with common noise

(5.1)



−∂tU − (σx + β)∆xU +H(x,m,DxU)
−(σx + β)

∫
divy[DmU ](t, x,m, y)]m(dy) +

∫
DmU ·DpHdm

−2β
∫

divx[DmU ](t, x,m, y)]m(dy) − β

∫
Tr
[
D2

mmU(t, x,m, y, y′)
]
m(dy)m(dy′)

for (t, x,m) ∈ (0, T ) × Rd × P(Rd),
with U(T, x,m) = U0(x,m),

Due to the presence of additive common noise, a second order term in the measure argument appears in the
equation. Strong assumptions on the data are usually necessary to be able to define a solution to the problem twice
differentiable in the measure argument [10]. However, we claim that by adding another variable to the equation it
is possible to rewrite this equation without second order derivatives in the measure argument. For that, let us first
come back to the game representation of a mean field game associated to (5.1). Given the distribution of players
at all times (µt)t∈[0,T ], each player solves the following optimal control problem

sup
α

E

[
U0(Xα

T , µT ) −
∫ T

0
L(Xα

s , αs, µs)ds
]
,

dXα
t = −h(Xα

t , αt, µt)dt+
√

2σxdWt +
√

2βdBc
t ,
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for (Ws)s≥0 a Brownian motion independent of (Bc
s)s≥0. By analogy with the previous sections let us define

θt =
√

2βBc
t .

Introducing Y α
t = Xα

t − θt, for any control α we observe that
dY α

t = −h(Y α
t + θt, αt, µt)dt+

√
2σxdWt,

dθt =
√

2βdBc
t .

This simple computation allows to rewrite the optimal control problem in function of the controlled process (Yt)t∈[0,T ]
and the noise process (θt)t∈[0,T ]. By definition of (θt)t∈[0,T ] it is progressively measurable with respect to the filtration
associated to the common noise, as such for any control α

L
(
Xα

t |(Bc
s)s∈[0,t]

)
= (idRd + θt)#L

(
Y α

t |(Bc
s)s∈[0,t]

)
.

Using the characterisation of the mean field equilibrium, this heuristic hints at the idea of studying
V (t, y, θ,m) = U(t, y + θ, (idRd + θ)#m).

Indeed, we observe that if U is a smooth solution of (5.1) then V solves

(5.2)


−∂tV − σx∆yV − β∆θV +H(y + θ, (idRd + θ)#m,DyV )

−σx

∫
divz[DmV ](t, y, θ,m, z)]m(dz) +

∫
DmV (t, y, θ,m, z) ·DpH(z + θ, (idRd + θ)#m,∇yV )m(dz)

for (t, y, θ,m) ∈ (0, T ) × Rd × Rd × P(Rd),
with V (T, y, θ,m) = U0(y + θ, (idRd + θ)#m),

which is exactly an equation of the same form as (1.3), with the new hamiltonian

H̃(y, θ,m, p) = H(y + θ, (idRd + θ)#m, p).

Remark 5.1. Observe that monotone functions are left monotone through this transformation. Indeed, assume
that U : Rd × P1(Rd) → R is flat monotone, then for any (µ, ν) ∈

(
P1(Rd)

)2

⟨U(· + θ, (idRd + θ)#µ) − U(· + θ, (idRd + θ)#ν), µ− ν⟩
=⟨U(·, (idRd + θ)#µ) − U(·, (idRd + θ)#ν), (idRd + θ)#µ− (idRd + θ)#ν⟩ ≥ 0.

A simple calculation shows that this is also true for L2−monotone functions. This is not the first time transfor-
mations of this kind are used in mean field games, in fact this has become a somewhat classic argument in the
study of the stochastic forward backward mean field game system, see [10]) in which it was observed that a similar
transformation leads to a system with a forward stochastic (Fokker–Planck) equation with finite variation.

We believe such a transformation is particularly suited for the study of weak solutions to the master equation,
in particular those based on comparison argument as in [4] or this work, as this bypass the need to tackle second
order derivatives on the space of measures. Even for smooth solution, it is relevant. Indeed, assuming that

θ 7→ f((idRd + θ)#m),
is a C2 function is weaker than the existence of a second derivative in the measure argument, in this way we may
define solutions of mean field games that are smooth in the sense that (5.2) is satisfied without needing the existence
of a smooth second derivative in the measure argument. For a solution U that is in fact smooth in the measure
argument

∆θU(t, x+ θ, (idRd + θ)#m)|θ=0

= ∆xU(t, y,m) +
∫
Rd

Tr
[
D2

mmU
]

(t, x,m, y, y′)m(dy)m(dy′) + 2
∫
Rd

divx [DmU ] (t, x,m, y)m(dy).

Obviously if all derivatives are smooth then ∆θU is well-defined, the observation we are here making is just that
for it to be well-defined we do not need to be able to make sense of each of the integrated term on their own.

Example 5.2. Consider the average distance between two players

U(m) =
∫
R2d

|y − y′|m(dy)m(dy′).

For measures in P1(Rd), U is well-defined and continuous (it is even Lipschitz in W2). However, it does not admit
a continuous Wasserstein derivative y 7→ DmU(m, y) at every point (for example for m = δx for some x ∈ Rd),
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and much less a continuous second order derivative with respect to measures. Nevertheless, θ 7→ U((idRd + θ)#m)
belongs to C∞ and

∆θU((idRd + θ)#m)|θ=0 ≡ 0.

5.2. Application to Lipschitz solutions. Let us now detail how to adapt this idea to Lipschitz solutions. Firstly,
let us mention that Lipschitz solutions are easily adapted to the presence of additive common noise. We refer to the
original paper [8] for the presentation of such results in details. In the context of the nonlinear transport equation

(5.3)



∂tW + F (x,m,W ) · ∇xW − (σx + β)∆xW

+
∫
Rd

F (y,m,W ) ·DmW (t, x,m)(y)m(dy) − σx

∫
Rd

divy(DmW (t, x,m)(y))m(dy)

−2β
∫

divx[DmW ](t, x,m, y)]m(dy) − β

∫
Tr
[
D2

mmW (t, x,m, y, y′)
]
m(dy)m(dy′)

= G(x,m,W ) in (0, T ) × Rd × Pq(Rd),
W (0, x,m) = W0(x,m) for (x,m) ∈ Rd × Pq(Rd).

the representation formula for Lipschitz solution becomes

W (t, x, µ) = E
[
W0(Xt,mt) +

∫ t

0
G(Xs,ms,W (t− s,Xs,ms))ds

]
,

dXs = −F (Xs,ms,W (t− s,Xs,ms))ds+
√

2σxdBs +
√

2βdBc
s X0 = x,(5.4)

dms = (−div (F (x,ms,W (t− s, x,ms))ms) + (σx + β)∆xms) ds− div
(√

2βmsdB
c
s

)
m0 = µ,

for two independent Brownian motions (Bs)s≥0 and (Bc
s)s≥0. We make the heuristic presented above rigorous

directly at the level of the nonlinear transport equation (5.3) which includes (5.1) as a particular case.

Lemma 5.3. Let W be a Lipschitz solution of
∂tW − σx∆xW − β∆θW + F (x+ θ, (idRd + θ)#m,W ) · ∇xW

−σx

∫
divy[DmW ](t, x, θ,m, y)]m(dy) +

∫
DmW (t, x, θ,m, y) · F (y + θ, (idRd + θ)#m,W )m(dy)

= G(x+ θ, (idRd + θ)#m,W ) in (0, T ) × Rd × Rd × Pq(Rd),
with W (0, x, θ,m) = W0(x+ θ, (idRd + θ)#m),

on [0, T ), then
- ∀(t, x,m) ∈ [0, T ) × Rd × Pq(Rd),

θ 7→ W (t, x− θ, θ, (idRd − θ)#m)
is a constant function.

- Wc : (t, x,m) 7→ W (t, x, 0,m) is a Lipschitz solution of (5.3) on [0, T ).

Proof. The first claim is quite straightforward to prove, as it is just a simple matter of rewriting the system satisfied
by (Xs, θs,ms)s∈[0,t]. Indeed, for any (t, θ, y, µ),

W (t, y − θ, θ, (idRd − p)#µ) = E[W0(Xt + θt, (idRd + θt)#mt)]

+E
[∫ t

0
G(Xs + θs, (idRd + θs)#ms,Ws)ds

]
,

dXs = −F (Xs + θs, (idRd + θs)#ms,Ws)ds+
√

2σxdBs X0 = y − θ,

dθs =
√

2βdBθ
s θ0 = θ,

dms = (−div (F (x+ θs, (idRd + θs)#ms,W (t− s, x, θs,ms))ms) + σx∆xms) ds m0 = (idRd − θ)#µ,
Ws = W (t− s,Xs, θs,ms).

By rewriting this system in function of (Xs + θ)s≥0 and (ms#(idRd + θ))s≥0 we get
W (t, y − θ, θ, (idRd − θ)#µ) = E[W0(Xt + θt, (idRd + θt)#mt)]

+E
[∫ t

0
G(Xs + θs, (idRd + θs)#ms,Ws)ds

]
,

dXs = −DpH(Xs + θs, (idRd + θs)#ms,Ws)ds+
√

2σxdBs X0 = y,

dθs =
√

2βdBθ
s θ0 = 0,

dms = (−div (DpH(x+ θs, (idRd + θs)#ms,W (t− s, x− θ, θs + θ, (idRd − θ)#ms))ms) + σx∆xms) ds,
m0 = µ Ws = W (t− s,Xs − θ, θs + θ, (idRd − θ)#ms).
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Fixing θ, let us observe that both (t, y, θ̄,m) 7→ W (t, y − θ, θ̄+ θ, (idRd − θ)#m) and (t, y, θ̄,m) 7→ W (t, y, θ̄,m) are
fixed points of this equation. By uniqueness of the fixed point for Lipschitz solution, we necessarily have

∀t < T, (y,m) ∈ Rd × Pq(Rd), W (t, y, 0,m) = W (t, y − θ, θ, (idRd − θ)#m).
In particular, this implies that for any t < T , (y, θ,m)

W (t, y, θ,m) = W (t, y + θ, 0, (idRd + θ)#m).
A result that we may apply directly to rewrite

W (t, y, 0, µ) = E
[
W0(Xt, (idRd + θt)#mt) +

∫ t

0
G(Xs, (idRd + θs)#ms,Ws)ds

]
,

dXs = −F (Xs, (idRd + θs)#ms,Ws)ds+
√

2σxdBs +
√

2βdBθ
s X0 = y,

dθs =
√

2βdBθ
s θ0 = 0,

dms = (−div (F (x+ θs, (idRd + θs)#ms,W (t− s, x+ θs, 0, (idRd + θs)#ms))ms) + σx∆xms) ds,
m0 = µ Ws = W (t− s,Xs, 0, (idRd + θs)#ms).

Since it is classical in MFG [10, 8] that under this definition, m̃s = (idRd + θs)#ms is a solution of

dm̃s = (−div (DpH(x, m̃s,W (ft− s, x, m̃s))ms) + (σx + β)∆xms) ds− div
(√

2βmsdB
θ
s

)
m̃0 = µ,

we conclude by uniqueness of Lipschitz solution that
(t, x,m) → W (t, x, 0,m)

is indeed a Lipschitz solution of (5.3). □

We now explain how this Lemma can be used to show the addition of additive common noise in (1.3) is non-
consequential.

Corollary 5.4. Under the same Hypothesis as in Theorem 4.30 there exists a unique Lipschitz solution to the
equation 

∂tW + F (x, θ,m,W ) · ∇xW + b(θ,m,W (t, ·, θ,m)) · ∇θW − (σx + β)∆xW − σθ∆θW

+
∫
Rd

F (y, θ,m,W ) ·DmW (t, x, θ,m)(y)m(dy) − σx

∫
Rd

divy(DmW (t, x, θ,m)(y))m(dy)

−2β
∫

divx[DmW ](t, x, θ,m, y)]m(dy) − β

∫
Tr
[
D2

mmW (t, x, θ,m, y, y′)
]
m(dy)m(dy′)

= G(x, θ,m,W ) in (0, T ) × Rd × Rm × P2(Rd),
W (0, x, θ,m) = W0(x, θ,m) for (x, θ,m) ∈ Rd × Rm × P2(Rd).

for any T > 0.

Proof. Rather than working directly on the Lipschitz solution to this equation we may consider an equation with
additional variables and without any additive common noise using Lemma 5.3. The variable coming from common
noise (say θβ) is treated like an autonomous noise process as in Section 4.1 and a doubling of variable (θ,θ̃) is
made in the variable associated to the noise process b only. From there on, there is no difficulty in extending the
arguments of section 4.3. □

Obviously, this is also true for all other long time existence results presented in this paper, in particular Theorem
3.12.

Remark 5.5. This stays true even when the Brownian motion associated to the common noise (Bc
s)s≥0 is correlated

with the common noise from the noise process (Bθ
s )s≥0. Indeed, the only change in this case is that there is now a

cross derivatives term
−Tr

(
ΓD2

(θβ ,θ,θ̃)W
)
,

with a matrix Γ of the form  Γβ Γcross Γcross

Γcross Γθ Γθ

Γcross Γθ Γθ

 ≥ 0.

At a point of minimum this term with cross derivatives has a sign, and so there is no further difficulty in applying
the maximum principle.
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