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Abstract

Clustering the nodes of a graph is a cornerstone of graph analysis and has been
extensively studied. However, some popular methods are not suitable for very
large graphs: e.g., spectral clustering requires the computation of the spectral
decomposition of the Laplacian matrix, which is not applicable for large graphs
with a large number of communities. This work introduces PASCO, an overlay
that accelerates clustering algorithms. Our method consists of three steps: 1- We
compute several independent small graphs representing the input graph by apply-
ing an efficient and structure-preserving coarsening algorithm. 2- A clustering
algorithm is run in parallel onto each small graph and provides several partitions
of the initial graph. 3- These partitions are aligned and combined with an opti-
mal transport method to output the final partition. The PASCO framework is
based on two key contributions: a novel global algorithm structure designed to
enable parallelization and a fast, empirically validated graph coarsening algorithm
that preserves structural properties. We demonstrate the strong performance of
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PASCO in terms of computational efficiency, structural preservation, and output
partition quality, evaluated on both synthetic and real-world graph datasets.

Keywords: Graph Analysis, Community Detection, Large-Scale Networks, Graph
Coarsening, Optimal Transport

1 Introduction

Graphs are a fundamental tool to model modern data sets as they become increasingly
complex. Graphs allow one to represent complex systems of interacting entities, and
applications are found in almost all domains of science. A pillar of graph analysis is
the problem of community detection where one wants to partition the nodes of a graph
so that nodes with similar connectivity patterns are clustered [1]. This problem arises
in various domains, such as social sciences and genomics [2]. This task has already
been extensively studied both theoretically and practically. However, these algorithms
are often unsuited for large-scale community detection problems where the number of
nodes N and communities k can become prohibitive.

Several avenues have been explored to solve these scaling issues. Most follow this
general scheme: first, reduce the size of the input graph, then cluster the reduced
graph, and finally export the partition of the reduced data to the original data. There
are two dominant ways to reduce input data size: sampling or coarsening.

The present article proposes a new coarsening-based algorithmic overlay to reduce
the overall clustering procedure computation time. We focus on undirected networks
and develop a versatile framework that can be used with any chosen clustering method.
The method consists of three main parts and two novel contributions are proposed.
First, the coarsening phase computes several simpler and smaller representations of
the input graph. We derive a new fast and empirically structure-preserving algorithm
based on random edge contractions. The algorithm is executed multiple times in par-
allel to generate several simplified representations of the input graph. Then, in the
clustering part, any user-specified clustering algorithm adapted to weighted undirected
graphs can be run in parallel on these simple graphs. Finally, after lifting the par-
titions of the coarsened graphs to partitions of the input graph, we process to the
fusion part. Using an optimal-transport-based method, we combine these partitions
to produce a better and final partition of the input graph.

1.1 Contributions

• We propose PASCO, a new three-step coarsening-based framework to speed up
graph clustering algorithms. Innovation comes from the structure of the algorithm
that computes many differently coarsened graphs before clustering them indepen-
dently (see Figure 1). It is a flexible design and serves as a computational overlay
that can be applied to any clustering algorithm.
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• We design a new fast and efficient random coarsening algorithm as the foundation of
the above method. Our approach is opposed to classical coarsening-based clustering
approaches that rely on convoluted, and often costly, coarsening mechanisms.

• We extensively evaluate PASCO and its components. The coarsening and fusion
steps are first analyzed to confirm the preservation of the structure and the increase
in partition quality. Then, the entire PASCO pipeline is tested on synthetic and
real graph data. The results show speedups for computationally heavy cluster-
ing methods, while maintaining or even improving quality on complex real-world
networks.

1.2 Related Works

Clustering the nodes of a graph has attracted a lot of attention: spectral methods
[3], information-theoretic approaches [4], model-based approaches [5], and the popular
maximization of modularity [6]. We refer the reader to [1] for reviews on community
detection methods. However, all of these methods do not always scale well. Hence,
various works have been proposed to speed up clustering computations. Some of these
approaches are detailed now.

General fast approaches to clustering: Substantial work has been devoted to
accelerating spectral clustering, where the efforts essentially focus on faster solving of
the spectral decomposition, e.g., using the Nyström method [7] or the power method
[8]. In [9], the authors tackle the high computational cost of spectral clustering by
approximating the spectral embedding using an efficient graph filtering of random
signals and accelerating the k-means part using a sub-sampling strategy. Another way
to accelerate clustering is to reduce the number of edges in the graph before computing
the clustering. To do so, several sparsification techniques have been proposed, either
by sampling and removing random edges [10] or using effective resistance [11]. The
review [12] provides an overview of acceleration techniques in the case of spectral
clustering. Other fast approaches construct a bipartite graph between the initial set
of nodes and a new and smaller set of nodes and recover the community structure of
the input graph from this bipartite graph [13, 14].

Coarsening approaches: Most coarsening approaches [15–17] rely on an itera-
tive multilevel edge-contraction-based coarsening algorithm. That is, several coarsened
graphs of decreasing sizes are computed iteratively. At each coarsening level, several
edges are selected and collapsed to put their end vertices into the same hypernode.
Then, some clustering algorithm is run on the smallest coarsened graph before lift-
ing the result iteratively back to the next larger set of nodes. At each level, existing
approaches exploit mainly one coarsening process. Therefore, at each lifting step, the
partition is refined by evaluating the gain (w.r.t. a certain cost) to obtain a satisfying
final partition. There is typically a trade-off between the degree of graph simplifica-
tion used to accelerate clustering and the resources required to recover an accurate
partition. Our new coarsening algorithm is designed to prioritize efficiency in this
trade-off: the quality of the partition will be ensured by its insertion into our three-step
framework and, in particular, the fusion of clusters obtained from multiple coarsened
graphs.
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Clustering ensemble: Clustering ensemble combines multiple results of cluster-
ing the same graph to form a more robust consensus, improving stability and reliability
by aggregating diverse partitions from different off-the-shelf algorithms or parame-
ter settings. PASCO can be framed within the clustering ensemble framework, as
we obtain several partitions of the initial graph (by random coarsening, clustering,
and lifting) and combine them to output a final partition. Although both approaches
involve merging multiple partitions, the philosophy is different from the usual clus-
tering ensemble techniques: we first aim to accelerate clustering and not especially
enhance the final clustering quality in terms of stability and robustness. Overall, clus-
tering ensemble methods can be divided into two main categories [18]. The first one
is based on consensus functions where the output clustering is the one optimizing a
notion of agreement of the given partitions [19], while the second constructs a co-
association matrix that characterizes the similarity between the data items based on
the partitions [20].

1.3 Outline of the paper and notations

The general framework of PASCO is introduced in Section 2. Its key phases are then
further explained. The coarsening is detailed in Section 3 while alignment and fusion
are presented in Section 4. The experimental results are shown in Section 5.

For any integer n ≥ 1, we denote by 1n the vector of Rn with all entries equal to
1. The set of integers ranging from 1 to n is denoted by [[n]]. We will use exponents
G(ℓ), 1 ≤ ℓ ≤ c to denote sequences of c coarsened graphs, while the indices r in
Gr, 1 ≤ r ≤ R denote the output of R independent instances of the randomized
coarsening algorithm.

2 The PASCO approach for clustering

Our approach aims to speed up clustering computations by applying a given clustering
algorithm to several reduced versions of the initial graph and then combining the
results to output the final clustering.

Given some initial graph G = (V,E) with vertex set V and edge set E, the random
coarsening algorithm is run R times to obtain the coarsened graphs G1, · · · , GR. A
clustering algorithm is then applied to each of these graphs. The resulting partitions
of the nodes of G1, · · · , GR are lifted up to partitions of the nodes of G and then
combined to retrieve as much information as possible and output a final clustering. See
Figure 1 for a schematic illustration of our approach. Below, we provide an overview
of each part of the pipeline (coarsening, clustering, alignment, and fusion). The reader
can refer to the next sections for more details.
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Input graph Output
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Fig. 1: PASCO pipeline. Coarsening: Apply a coarsening algorithm to compute sev-
eral small graphs. Clustering & Lifting: Apply (in parallel) an off-the-shelf clustering
algorithm on each of the coarsened graphs and lift each partition to a partition of the
input graph. Fusion: Combine the partitions to output the final partition.

Coarsening: We propose a new randomized coarsening algorithm that takes
into account the structure of the initial graph. This algorithm adopts a multilevel
approach where we create the sequence of incrementally coarsened graphs G =
G(0), . . . , G(l), . . . , G(c) = G, starting from the initial graph G of size N . Each graph
G(ℓ+1) is obtained by coarsening G(ℓ) to reduce the number of nodes from n(ℓ) to
n(ℓ+1), such that n(ℓ) > n(ℓ+1). The number of coarsening steps c is the one required
to reach the small target size n. Each iterative coarsening (from G(ℓ) to G(ℓ+1)) is
based on an edge-contraction approach. Our strategy is to sample edges (according
to a given rule) and contract them by putting the two end-vertices into the same
“hypernode”, as shown in Figure 2. We repeat this procedure until the target size (n)
of the coarsened graph is reached or no edge is available (according to our sampling
rule). Remark that coarsening generates small weighted graphs with self-loops. The
challenge of this approach is to find a relevant sampling rule so that the coarsening
algorithm is both fast and as information-preserving as possible. In Section 3, we pro-
vide all the details for this coarsening step, including details on the sampling rule, its
positioning with respect to the state of the art, and the properties of the coarsening.

Clustering: The clustering phase consists in finding a partition of the hypern-
odes for each of the R coarsened graphs G1, · · · , GR (see Figure 1). Interestingly, we
can operate independently on each graph and compute in parallel these partitions to
accelerate computation. Our pipeline is designed so that any clustering algorithm can
be used as long as it handles undirected weighted graphs. However, we only focus
on algorithms that generate non-overlapping partitions. We point out that our fusion
part will be able to cope with partitions with different numbers of clusters. Therefore,
PASCO can be used with clustering algorithms that automatically choose the num-
ber of communities. At this stage, we obtain a partition of the hypernodes for each
coarsened graph Gr. These partitions are then lifted to partitions of the nodes of the
initial graph: each initial node inherits the class of the hypernode to which it belongs.

Alignment and Fusion: The final step of PASCO is to combine the various
partitions lifted to the original graph into a single output partition. This is inspired
by methods of ensemble clustering. To do so, we propose to achieve consensus among
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Fig. 2: Illustration of one coarsening iteration (Algorithm 2). (a) The original graph;
(b) The first three pairs of sampled nodes (in blue) and their corresponding edges (in
red): first, ui is sampled uniformly at random among the unvisited nodes, then vi is
sampled among the neighbors of ui (no restriction on vi). (c) The sampled edges at the
end of the sampling phase; each set of vertices connected by sampled edges is circled
and yields a hypernode. (d) The coarsened graph. Squares represent hypernodes and
edge weights are given and represented by edge thickness (note the presence of self-
loops).

multiple partitions by leveraging optimal transport (OT) [21]. We first briefly define
the partition matrices that are used to encode partitions.
Definition 1 (Partition matrix). A matrix P ∈ {0, 1}N×k is a partition matrix if it is
column-stochastic P1k = 1N . The fact that Pij = 1 indicates that node i is attributed
to cluster j. We denote by PN,k the set of partition matrices.

Let P1, · · · , PR be the partition matrices representing the R partitions of the initial
graph such that Pr ∈ PN,kr

with kr being the number of clusters in the r-th partition.
There are several challenges that need to be tackled in order to obtain a consensus
partition from (Pr)r∈[[R]]. First, these partitions may not have the same number of clus-
ters as some clustering algorithms infer the number of clusters. Second, the partitions
may not be consistent with each other, and even if they are, it is necessary to identify
the unknown correspondences between their clusters1. To overcome these challenges,
a core idea from the literature is to find a reference partition P ∈ PN,k which is the
“closest” to all the partitions P1, · · · , PR. Optimal Transport (OT) provides tools to
align probability distributions according to a “least-effort” principle. It can be used
to measure a notion of similarity between partitions. Given a fixed prescribed number
of clusters k, we solve the OT barycenter problem

min
P∈PN,k

1

R

R∑
i=r

W2
2(µPr , µP ) , (1)

where µP , µPr are discrete probability distributions associated to P , Pr, W
2
2 is the

squared Wasserstein distance and PN,k is the set of partition matrices (Definition 1). In

1For example, permuting the columns yields different representations of the same partition.
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practice, to solve this barycenter problem, the algorithm starts from an initial reference
P , and then alternates between realigning the partitions to this reference (alignment
step), and updating this reference (fusion step) until convergence. We provide all the
details about this alignment and fusion step in Section 4.

3 Coarsening in PASCO: contributions

This section details the implementation of a coarsening-based clustering method,
reviews classical coarsening approaches, highlights PASCO’s design for enhanced
speed, and conjectures a phase transition in stochastic block model parameters when
PASCO yields good performance.

3.1 General principles of coarsening methods

Let us present the general principles that are shared by classical coarsening methods.
Coarsening is encoded through coarsening tables, which are arrays indicating to which
hypernode each node is associated, as formalized in this definition.
Definition 2 (Coarsening Table). For a graph G = (V,E) with vertex set V =
{u1, . . . , uN}, coarsened into a graph G = (V,E) with V = {u′

1, . . . , u
′
n}, the coars-

ening table is the vector h ∈ [[n]]
N
, such that node ui ∈ V is associated to hypernode

u′
hi
∈ V . We can also encode this table h into a coarsening matrix H ∈ {0, 1}N×n,

where Hi,j = 1 if and only if node ui is associated to hypernode u′
j.

We recall that coarsening is usually done by constructing a sequence of incremen-
tally coarsened graphs G = G(0), . . . , G(c) = G starting from a graph size N down to
the target size n. The target size is defined by n = ⌊N/ρ⌋, where ρ is called the com-
pression factor and is a hyper-parameter of the coarsening method. This main scheme
is detailed in Algorithm 1, where h is the coarsening table from the initial graph G to
the current most coarsened graph G(ℓ). When one coarsening step is performed (step
8), the coarsening table h(ℓ), from G(ℓ) to G(ℓ+1), is obtained. Hypernodes are then
relabeled so that h(ℓ) takes consecutive integer values starting at 1. Then, the next
coarsened graph G(ℓ+1), or rather its adjacency/weight matrix A(ℓ+1), can be com-
puted using the adjacency matrix A(ℓ) of graph G(ℓ) and the coarsening matrix H(ℓ)

encoding h(ℓ) according to A(ℓ+1) = H(ℓ)⊤A(ℓ)H(ℓ). Then h is updated coordinate-wise

using by hi ← h
(ℓ)
hi

, ∀i ∈ [[N ]].
The diversity in graph coarsening methods arises from various sampling strategies

for selecting collapsing edges. In [15], edges are contracted by randomly selecting an
unvisited node and an unvisited neighbor. The heavy-edge heuristic introduced in [22]
prioritizes edges with the heaviest weights, aiming to group similar nodes into the
same hypernode. This approach has been extended with tailored weights to optimize
specific objectives, such as Graclus [16] for cut optimization and [17] for preserving
spectral properties.

After coarsening the initial graph G(0) into G(c), a clustering algorithm is run
to obtain a partition P (c) of the nodes of G(c). This clustering information is then
transferred from the coarsened graph to the initial graph using a so-called lifting step.
A simple way to lift a partition P (ℓ) of G(ℓ) to a partition of G(ℓ−1) is to state that
each node in G(ℓ−1) inherits the cluster of the hypernode of G(ℓ) to which they belong.
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Mathematically, this translates to the matrix product P (ℓ−1) = H(ℓ−1)P (ℓ), where
H(ℓ−1) is the coarsening matrix from G(ℓ−1) to G(ℓ). However, for classical coarsening
approaches, this simple lifting method does not provide good quality clustering as the
coarsening loses too much information and extra refining steps are necessary.

Overall, existing approaches often focus on complex, computationally intensive
coarsening steps. Additionally, by exploiting only one coarsening process, they are
bound to make use of computationally costly refinement steps in the lifting proce-
dure to recover a satisfying partition. In the next section, we will see how PASCO
differentiates itself from these existing works by resorting to simpler (and thus faster)
coarsening and lifting steps. Partitions of good quality will be recovered, not by com-
plexifying the procedure, but by using several coarsening processes in parallel and
combining the resulting partitions (see Section 4).

3.2 Coarsening in PASCO

The coarsening approach in PASCO is similar to some existing methods in the sense
that it is an iterative and multi-level edge-contraction-based coarsening method. Start-
ing from the initial graph G of size N , we aim to coarsen it to a smaller graph of target
size n = ⌊N/ρ⌋, (ρ being the compressive factor) following Algorithm 1. The innova-
tion for PASCO comes from the way each iterative coarsening (from G(ℓ) to G(ℓ+1))
is performed (step 8 in Algorithm 1). More precisely, as it is an edge-contraction-
based approach, we introduce a new simple but efficient edge sampling mechanism,
detailed in Algorithm 2. In this approach, we propose to sample uniformly at random
an unvisited vertex u of G(ℓ), and sample one of its neighbors v (potentially already
visited) uniformly at random (steps 5 and 6 of Algorithm 2). The edge (u, v) is used
for contraction; that is, u and v are sent to the same hypernode (step 7), and then
both vertices u and v are set as visited (step 8).

Computational efficiency: First, the algorithm aims at minimizing the number
of intermediate coarsening steps c by creating hypernodes that contain as many nodes
as possible at each step. In [15], the authors proposed to sample u and v from the
set of unvisited nodes, restricting the hypernodes to contain at most two nodes. As a
consequence, the coarsening step quickly runs out of available edges to collapse and a
new intermediate coarsened graph must be computed. To avoid this issue and create
bigger hypernodes, we relax the restriction about unvisited nodes: we only require that
u is unvisited and we put no restriction on v. Moreover, the sampling of collapsing
edges by first taking a node uniformly at random is very efficient, as it can be done
in O(1). In contrast, strategies to sample node u according to some non-uniform
probability (e.g., a probability proportional to the node degree) are more costly, as
they require to compute the cumulative sum of probabilities which is in O(n(ℓ)), if n(ℓ)

is the number of nodes. Finally, we remove the refining steps when lifting the partition
back to the input graph, as this will be taken care of in the next step with alignment
and fusion of the different partitions obtained. In Appendix C, we detail other simple
edge sampling rules that we investigated here but were unsatisfactory for the present
work. However, it provides insight into the choices that led to our method.
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3.3 Structure preserving properties of the coarsening

This section examines the properties and limitations of PASCO’s coarsening on
random graphs with community structures. To preserve community information,
hypernodes must primarily consist of nodes from the same community, which requires
collapsing intra-community edges. We analyze the conditions under which PASCO
coarsening favors such edges, focusing on graphs generated by the Symmetric
Stochastic Block Model (SSBM) defined below.
Definition 3 (Symmetric Stochastic Block Model). The SSBM is a random graph
model with N nodes divided into k equal-sized communities. Each edge is present with
probability pin if inside a community or pout if between communities, independently
of all other edges. As in [9], we parametrize the model by N , k, the expected degree
dN = d logN and the intra-to-inter-community probability ratio2 α = pout/pin. We
refer to this model by SSBM(N, k, d, α).

Consider an input graph drawn from an SSBM with k communities, an edge prob-
ability inside communities of pin, and an edge probability between communities of
pout. In PASCO, edges to collapse are obtained by first drawing some node u and tak-
ing a random neighbor. In expectation, u has npin/k neighbors from its community
and n(k−1)pout/k neighbors from other communities. So when pin > (k−1)pout, v is
more likely to be from the same community as u. More generally, under this condition,
we expect the coarsening procedure of PASCO to collapse more inside-community
edges than between-community edges. Therefore, we conjecture that PASCO con-
serves the community structure of a graph drawn from a SSBM(N, k, d, α) as long as
α = pout/pin < 1/(k − 1). While, at this stage, this reasoning is a conjecture and is
not supported by rigorous arguments, experiments are providing empirical evidence
that this phase transition correlates with PASCO’s performance as described in our
experiments in Section 5.1 and Section 5.3.

4 Alignment and fusion

The last step of PASCO is to align and combine the partitions obtained from var-
ious coarsened graphs. We advocate the use of an OT-based approach to align the
partitions, as initially proposed in [23]. The key idea is to define a notion of distance
between partitions by using the Wasserstein distance W2. Precisely, one can repre-
sent a partition matrices P ∈ PN,k as a discrete probability distribution. Writing
P = (p1, · · · , pk) where pj is the j-th column of P , the j-th cluster can be represented
by the vector pj ∈ {0, 1}N . The discrete probability distribution in RN associated to

P is then given by µP = 1
k

∑k
j=1 δpj where δ is the Dirac mass.

For two partitions P ∈ PN,k, P ∈ PN,k, we can compare them by comparing their
associated probability measures µP , µP through the Wasserstein distance

W2
2(µP , µP ) = min

Q∈Qot(k,k)

k,k∑
i,j=1

∥pi − pj∥22Qi,j . (2)

2The use of α asa parameter will later be relevant for our experiments as we then keep the density fixed
and vary the difficulty level α to recevover the blocks.
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In Equation (2) the setQot(k, k) ⊆ Rk×k
+ denotes the collection of all coupling matrices,

i.e. matrices Q ∈ Rk×k
+ that satisfy the marginal constraints: Q1k = 1

k1k and Q⊤1k =
1
k
1k. Intuitively, the element Qi,j ∈ [0, 1] represents the amount of probability mass

shifted from the i-th cluster of P to the j-th cluster of P . This coupling can be used
to align the clusters of the two partitions: in the special case where k = k, an optimal
solution is given by the permutation that best realigns the clusters [21]. We point out
that solving (2) is done through a linear program that can be computed with standard
solvers [24] with a worst-case complexity O(K3(logK)2) where K = max{k, k}. We
rely on this distance to achieve a consensus among the different partitions by solving
an OT barycenter problem: we fix a number of desired clusters k and look for the
partition matrix P ∈ PN,k that minimizes (1).

As described in [25], this barycenter problem can be tackled by alternating between
solving R problems of OT and updating the reference P . As described in Lemma 4, the
reference update can be obtained in closed-form by a simple majority vote as follows.

∀i ∈ [[N ]], [P ]ij ←

1 j ∈ argmax
p∈[[k]]

[
∑R

r=1 PrQr]ip

0 otherwise
, (3)

where Q1, · · · , QR are the optimal coupling matrices obtained in the previous step
when solving the individual OT problems between the previous reference partition and
the P1, · · · , PR. The algorithm for alignment and fusion is sketched in Algorithm 3.
This OT-based alignment + fusion algorithm requires a choice for the target number
of clusters k and an initial reference P . We use the following heuristic in practice: If all
the kr are equal, we choose k = k1 and initialize the reference partition with P = P1,
otherwise we choose k as the kr closest to the median number of clusters across the
partitions in the dataset median(k1, · · · , kR), and we initialize P as the corresponding
partition.

Complexity analysis: Let K = max{k, k1, · · · , kR} then the algorithm runs in
O(niterR(NK2 + K3 log(K)2)) where niter is the number of iterations required for
P to converge. Overall, the algorithm scales linearly in N and has roughly a cubic
complexity w.r.t. the number of clusters, which is often small compared to the number
of nodes. In practice, we also observe that niter is small (on the order of 10).

Other alignment+ fusion methods: As an alternative to the described OT
approach, we also investigated the so-called linear-regression-based and the many-to-
one methods [26], as well as a slightly different variant of OT based on quadratic-
penalized OT [27]. These methods also solve a barycenter problem but for other notions
of distance between partitions. In practice, we find that the standard OT-based method
performs better for our application (see Section 5 and especially Figures 4 and E3).
The presentation of these alternative methods is deferred to Section B.

5 Experiments

We conducted experiments to evaluate PASCO. Section 5.1 shows that the coarsening
step preserves well graph spectral properties. Section 5.2 examines the alignment and
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Fig. 3: We represent the RSA (the smaller, the better) of various coarsening schemes
(including PASCO) as a function of the compression rate (the higher, the coarser the
obtained graph). Shaded areas represent 0.2 upper- and lower-quantiles.

fusion phases. Finally, Section 5.3 and Section 5.4 evaluate PASCO on SSBM and real
graphs. See Section E.1 for details about computing resources. The code for PASCO
and the experiments is available at https://github.com/elasalle/PASCO.

5.1 Coarsening: conservation of graph spectral properties

We evaluate the coarsening phase using Loukas’s framework [17], which analyzes coars-
ening techniques based on the spectral properties of the graph Laplacian. Loukas
introduced the Restricted Spectral Approximation (RSA) to quantify how well the pro-
jection matrix Π = HH+ approximates the identity on Uk, the subspace spanned by
the k eigenvectors of L associated to the smallest eigenvalues. RSA is defined as the
smallest ε such that ∥x− Πx∥L ≤ ε∥x∥L for all x ∈ Uk. Here, L is the combinatorial
Laplacian, H is the binary coarsening matrix, and H+ is its pseudo-inverse.

Experimental setting: In these experiments, we compare our method to pre-
viously existing methods in terms of RSA and computational time. Figure 3 shows
the results for our proposed method (PASCO) as well as previously existing meth-
ods, namely, the local variation method based on edges proposed by Loukas [17]
(variation edges) and the heavy edge collapsing method (heavy edge) [22, 28]). We
display the RSA values with respect to the compression ratio 1− ρ−1. Recall that ρ is
the compression factor defining how much the initial graph is coarsened (n = ⌊N/ρ⌋).
Assuming that N/ρ is an integer, the compression ratio corresponds to the ratio
(N−n)/N = 1−ρ−1. Figure 3 corresponds to real graphs that were used in the experi-
ments of [17] (see Table E2 for some characteristics of these graphs). For graphs drawn
under the SSBM, results are deferred to Figure E1. Also, in Figure E2, we provide the
computational times of each coarsening method.

Results: While variation edges and to some extent heavy edge generally yield
the best RSA at small compression rates, we emphasize that PASCO was not specif-
ically tailored to preserve such spectral properties unlike variation edges which is
designed to optimize the RSA. Moreover, we are rather interested in high compression
rates, as significant clustering computation time gains are to be expected. In this high
compression regime, despite the fact that variation edges was tailored to optimize
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the RSA, PASCO is still competitive, especially on real graphs where it outperforms
both variation edges and heavy edge. Moreover, PASCO proves to be much faster
than both other methods: by more than a factor 10 for heavy edge and around a fac-
tor 100 for variation edges (see Figure E2). These experiments demonstrate that,
although the coarsening step of PASCO is primarily designed for computational effi-
ciency, it also preserves the structures of the initial graph as effectively as, or sometimes
even better than, traditional coarsening methods. They also demonstrate that PASCO
is much faster than the other coarsening algorithms tested, as expected.

5.2 Effectiveness of the alignment/fusion phase

To demonstrate the alignment+fusion procedure, we now consider a synthetic dataset
generated from a two-dimensional Gaussian Mixture Model (GMM) with three clus-
ters. The clusters consist of 500, 400 and 200 points, respectively. Each cluster is
sampled from isotropic Gaussian distributions with a standard deviation of 0.25 and
centers located at (0, 1), (1, 0), and (0, 0). The resulting dataset is shown in the left
panel of Figure 4.

We generate 15 different partitions of the dataset with the goal of recovering the
true partition corresponding to the original GMM clusters. The partitions are con-
structed as follows: first, we randomly select a number of clusters k, drawn uniformly
between 3 and 10. Then, we designate k centroids: the first three are randomly selected
from each of the true GMM clusters (so that we have at least one starting centroid
in each true cluster), while the remaining centroids are uniformly sampled from the
remaining points. Each point in the dataset is assigned to the nearest centroid, thereby
forming a partition. Forcing each true cluster to be initially represented by at least
one centroid ensures that the resulting partition is related to the true partition. See
two examples of these generated partitions in Figure 4.

The effectiveness of the proposed alignment and fusion method (Algorithm 3) is
evaluated by comparing several alignment techniques: lin-reg, many-to-one, and
the proposed ot to recover the true partition. For each case, we consider a randomly
initialized reference with k = 3, such that each point is assigned to a cluster chosen
uniformly at random. As a baseline, we compare with a K-means clustering with K =
3. We emphasize that the K-means algorithm benefits from the spatial coordinates of
the data points, whereas the alignment+fusion methods operate solely on the different
partitions P1, · · · , PR, and ignore the positions. The experiment is repeated five times,
and the average Adjusted Mutual Information (AMI) [29] (see Section E.4 for the
definition) between the inferred and true partitions is plotted as a function of the
number of partitions R on the right panel of Figure 4. The results indicate that the OT
methods achieve performance comparable toK-means (high AMI, with small variance)
when R ≥ 10, while lin-reg and many-to-one have high variance and struggle to
retrieve the true partition for any value of R. This can be explained by the fact that
the partitions are quite unbalanced and thus more suited for the coupling constraints.
Finally, a partition recovered using the ot method is shown in the fourth panel of
Figure 4, illustrating that it is nearly a perfect permutation of the true partition.
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Fig. 4: Experience with a toy dataset drawn from a 2D GMM (left). Colors indicate
clusters. One partition (out of 15) is depicted, as well as the recovered partition using
the alignment+fusion procedure based on ot. The right panel presents the average
AMI between the true partition and the fused partitions obtained by ot, many-to-one,
and lin-reg. Shaded areas represent 0.2 upper- and lower-quantiles over the 100 runs
of the alignment+fusion algorithms.

5.3 Synthetic graph experiment and parameter analysis.

We explore the performance of PASCO (coupled with spectral clustering to cluster
the coarsened graphs) on an initial graph generated using the symmetric stochastic
block model.

Quality of the output partition: To study the influence of the hyperparameters
of PASCO, we conduct an experiment on synthetic graph data from the Symmetric
Stochastic Block Model SSBM(N, k, d, α), see Definition 3. We take N = 104 and
k = 20 and set pin and pout such that the average degree is dN = d log(N) with
d = 3/2. We vary the fraction α = pout/pin from 0 (excluded) to αsup = 4

3
1

k−1 . This
range includes both the phase transition threshold of PASCO, of value 1/(k − 1) (as
conjectured in Section 3.3) and the threshold of exact recovery for spectral clustering,
i.e., αc = (d−

√
d)/(d+ (k − 1)

√
d).

For each set of SSBM parameters, we draw 10 graphs, ensuring their connect-
edness with rejection sampling. For each graph, we compute the performance of
PASCO with spectral clustering measured by the AMI. We study the influence of
each parameter: the compression factor ρ (such that n = ⌊N/ρ⌋), the number of
coarsened graphs R, and the method used for alignment align method. Each param-
eter varies as follows, while the others are kept constant to a default value (written
here in bold): ρ ∈ {1, 3, 5,10, 15, 20}, R ∈ {1, 3, 5,10, 15, 20}, align method ∈
{lin reg, many to one, ot}. Performance is averaged over the 10 realizations and
displayed in Figure 5.

The compression factor ρ determines how small the coarsened graphs are. Hence,
the larger ρ, the harder it is to retrieve the communities of the input graphs (see
Figure 5a). Moreover, it is even more difficult to recover the communities when they are
not much denser than the rest of the graph (large α). However, better performance is
achieved with more coarsened graphs (bigger R); see Figure 5b. The rise in AMI with R
confirms that the alignment and fusion process is effectively able to combine the noisy
information contained in each clustering. We also observe a change in the behavior of
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Fig. 5: Parameters influence on PASCO. The AMI score is average over the 10 runs
and shaded areas represent 0.2 upper- and lower-quantiles. Dashed lines correspond
to the PASCO threshold.
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Fig. 6: Influence of ρ and R on PASCO computational time, letting R = ρ. The
number of communities varies in {20, 100, 1000}. Timings are averaged over 10 runs
and shaded areas represent 0.2 upper- and lower-quantiles.

PASCO after the conjectured threshold (α > 1/(k − 1), vertical dashed line). In the
Appendix, Figure E3 indicates that all alignment methods perform similarly, excepted
when close to PASCO’s conjectured phase transition as then ot outperforms the other
methods.

Study of the computational time: In this experiment, we study the gains in
computational time due to PASCO (coupled with spectral clustering (SC) to cluster
the coarsened graphs), compared to plain SC. As highlighted in the previous exper-
iment, larger compression factors ρ should be compensated by larger numbers of
coarsened graphs R to ensure good partition quality. In the following, we arbitrarily
decide to fix the number of coarsened graphs equal to the compression factor, i.e.,
R = ρ and study the impact of ρ on computational time. The results are presented in
Figures 6. The SSBM parameters are set to N = 105, d = 3/2, and α = 1/(2(k − 1))
and k varies in {20, 100, 1000}. For each set of SSBM parameters, we draw 10 graphs,
ensuring their connectedness thanks to rejection sampling. For each graph, we compute
the computational time of PASCO for values of ρ in {3, 5, 10, 15}.
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Figure 6a shows that using ρ = R > 1 accelerates the overall computation com-
pared to plain SC, which corresponds to ρ = R = 1. For this experiment, an empirical
optimum is found around ρ = R = 5. The overall speedup is greater when the num-
ber of communities k is larger. Indeed, in this case, the spectral decomposition in SC
is really computationally demanding, and performing it on smaller coarsened graphs
leads to a significant improvement in the computational time. Moreover, even for large
ρ, the coarsening and fusion part still amount to only a small proportion of the com-
putational effort, as illustrated in Figure 6b. Figure E4 attests that the significant
speedup of Figure 6a does not come at the cost of poor quality of the output partitions.

5.4 Real graphs experiment

To further validate the ability of PASCO to improve the performance of clustering
algorithms, we conduct experiments on real datasets. We consider three large graphs
(arxiv, mag, and products) come from Open Graph Benchmark [30]. The experiments
are run on the largest connected component of each graph. Their characteristics are in
Table E2. Some datasets have features associated with the nodes, but they are ignored
in these experiments as the study is limited to non-attributed graph clustering. Only
the structure of the graphs is used to compute clustering.

Clustering Algorithms: We below list the clustering algorithms that we use
within the PASCO pipeline, and we provide details on the graph characteristics they
try to optimize. The Spectral Clustering algorithm (SC) exploits eigenvectors of the
Laplacian matrix. It minimizes a notion of generalized normalized cut (gnCut) [31].
A modified version of SC was proposed by [9] to accelerate and reduce memory print
and is called Compressive Spectral Clustering (CSC). The classical Louvain method
[6] and its modern variant Leiden [32] are both modularity maximization methods.
We recall that modularity measures the partition quality by comparing inside/outside
community densities [33]. Finally, we also include clustering algorithms that use the
Minimization of Description Length (MDL) to either maximize the likelihood of the
stochastic block model [5], or the compression of the graph into clusters as per the
infomap method [4]. These algorithms rely on the Description Length (DL) [34] that
quantifies the amount of information required to describe the parameters of an SBM
adjusted to the observed graph. In Section E.4, we recall the definition of the scores
mentioned above: gnCut, modularity, DL, as well as the AMI.

Experimental setting:We evaluate PASCO’s impact on computational time and
partition quality by comparing clustering methods with and without PASCO. Graphs
are clustered using SC, CSC, Louvain, Leiden, MDL, and Infomap, then re-clustered
by applying PASCO combined with the same clustering algorithms. Except for CSC,
which we re-implemented in Python due to it being only available in Matlab, standard
implementations were used. The compression factor ρ is fixed at 10, and coarsen-
ing repetitions R vary in {1, 3, 5, 10, 15}. Partition quality is assessed using AMI for
agreement with ground truth and intrinsic scores like modularity, gnCut, and DL. For
these scores, the relative difference (sest− strue)/strue is reported, where sest and strue
are the scores of the, respectively, estimated and ground-truth partitions. We also
compute the total computational time for each method and report the ratio between
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PASCO running time and the one of the standalone clustering method. See the para-
graph below for some precision on how computational time is measured. The results
are in Figure 7. To guide the reader, we extract first a simpler example in Figure E5.
For completeness, as we present relative measures for both computational time and
clustering quality, we provide the numerical results in the tables in Section E.5.

Measuring Computational time: To measure computational time, we record
the duration from start to finish. Since PASCO relies on parallelization, we run
each clustering method on a single core, whether used alone or with PASCO. This
ensures that PASCO’s parallelization does not conflict with that of the clustering
methods, allowing us to evaluate PASCO’s speedup effect. Consequently, clustering
methods optimized with parallelization will have diminished performance, so compar-
isons between algorithms based on computational time are not meaningful. However,
we can effectively analyze PASCO’s impact on individual clustering methods. Extend-
ing PASCO to support parallelized clustering across multiple cores or machines is
beyond the scope of this article.

Results: The experiments show that PASCO improves runtime or clustering qual-
ity for most clustering methods and graphs under study, sometimes achieving both.
With SC, CSC, or Infomap, PASCO significantly reduces runtime in most cases, often
by a factor of 10 or more. For Leiden, runtime improvements are smaller and mostly
seen with fewer coarsening repetitions (R < 5). With MDL, the effect is lighter and
more data-dependent. No runtime improvement is observed with Louvain, as its fast
clustering is offset by the additional time for PASCO’s coarsening and fusion steps.

PASCO achieves a similar quality in clustering as the methods it uses. This is a
notable result, given that it was initially designed for reducing computational costs and
this property on the preservation of partition quality is only supported by heuristics.
For AMI, which compares partitions to ground truth, PASCO improves results for SC
and CSC, while other methods show no significant change. Modularity and Description
Length scores tend to be more “regularized” again, with values closer to ground truth
scores. The gnCut criterion is generally preserved, except for one case (MDL on mag).
This preservation may be linked to the ability of the coarsening step to preserve
spectral properties (Section 5.1), although further theoretical study would be needed
to better understand the reason behind that.

6 Conclusion

We introduce PASCO, a novel approach to accelerate graph clustering algorithms
through a coarsening-based strategy. PASCO provides a full pipeline for that, which
can be used for a variety of clustering methods. This innovative PASCO approach
is built around three main steps: reducing the graph via a fast and empirically
structure-preserving random coarsening process, running clustering algorithms in par-
allel on the coarsened graphs, and combining the resulting partitions using an optimal
transport-based fusion technique. The experimental results reported in the present
article demonstrate the efficiency of PASCO in significantly reducing computational
time while maintaining, or even enhancing, the quality of the resulting partitions,
as shown on both synthetic and real-world graph datasets. As PASCO is a modular
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Fig. 7: Results of the real graphs experiment. Rows correspond to clustering methods,
while columns correspond to clustering quality measures. On y-axes, we represent the
computational time relative to the one of the standalone method. On the x-axis we
display either the AMI with the true partition or the relative quality score difference.
This experiment is performed with different graphs (colors) and for different numbers
of repetitions of the coarsening R (transparency). The reduction factor is ρ = 10.
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framework, it can be seamlessly integrated with various clustering algorithms, making
it a versatile tool to tackle large-scale graph clustering challenges.
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Appendix A Pseudo-codes

Algorithm 1 Coarsening algorithm: global

1: Input: Adjacency matrix A of graph G of size N .
2: Compression facor ρ.
3: Target graph size n = ⌊N/ρ⌋.
4: A(0) ← A
5: h← (1, . . . , |A|)
6: ℓ← 0
7: while A(ℓ) has more than n nodes do
8: Coarsen A(ℓ) to obtain h(ℓ) and A(ℓ+1) with Algorithm 2
9: Update h given h(ℓ)

10: ℓ← ℓ+ 1
11: end while
12: return A(ℓ), h

Algorithm 2 Coarsening algorithm: one level

1: Input: Current adjacency matrix A(ℓ), target graph size n.
2: Va ← {1, . . . , n(ℓ)} // Initialize the set of available nodes.
3: h(ℓ)← (1, . . . , n(ℓ)) // Initialize the coarsening table.
4: while Va ̸= ∅ do // while there are available nodes
5: Choose u a node in Va uniformly at random
6: Choose v a neighbor of u uniformly at random

7: h
(ℓ)
u ← h

(ℓ)
v // Put u and v into the same hypernode

8: Va = Va\{u, v} // Remove u and v from the available nodes
9: If target size is reached do break

10: end while
11: Relabel h(ℓ) and compute A(ℓ+1)

12: return A(ℓ+1), h(ℓ).
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Algorithm 3 Alignment & Fusion algorithm

Partitions P1, · · · , PR, number of clusters k and initial reference P .
while P has not converged do

for r ∈ [[R]] do // Alignment step
Find Qr so that PrQr is aligned on P (i.e., solve the OT problem (2) in

Section 4)
end for
Update P using majority vote on (PrQr)r∈[[R]], as in (3) in Section 4. // Fusion

step
end while
return P ∈ {0, 1}N×k

Appendix B Finding consensus between partitions

In this section we describe the different approaches that we investigated for aligning
different partitions into a reference partition. We recall that the problem reformulates
as finding the partition P that best agrees with all (Pr) with r ∈ [[R]]. Methods from
the clustering ensemble literature already propose to solve such a problem. Mathemat-
ically, they amount to find a Frechet mean of the partitions (Pr) for various notions
of divergence D between partitions

P ∈ argmin
P∈PN,k

1

R

R∑
i=1

D(Pr, P ) . (B1)

Depending on the choice of divergence D, we can obtain different consensus methods,
as detailed below.

Linear regression and many-to-one

These two methods are based on a similar notion of divergence between partitions.
Given two partitions P ∈ PN,k, P ∈ PN,k, it is defined as

D(P, P ) = min
Q∈Q(k,k)

∥PQ− P∥2F (B2)

Depending on the choice for the set Q(k, k) we get different methods:

• When we simply set Q(k, k) = Qlin-reg(k, k) = Rk×k, the optimal matrix Q is given
by (see Lemma 2)

Qlin-reg = (P⊤P )−1P⊤P = diag(P⊤1N )−1P⊤P , (B3)

where diag(P⊤1N )−1 corresponds to the diagonal matrix containing the inverse of
the cluster sizes. This realignment is proposed in [26]. Even though it allows to
compute the divergenceD(P, P ), this matrix yields a “re-aligned partition” PQlin-reg
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which is only a “soft-partition”, with elements in [0, 1]. We refer to this solution as
lin-reg.

• If one wants to obtain a true partition (with elements in {0, 1}), a solution is to
restrict the matrix in Q(k, k) to send each cluster of P to at most one cluster of P .

For that we define Qmany-to-one(k, k) = {Q ∈ {0, 1}k×k, Q1k = 1k}. The solution

of (B2) with Qmany-to-one(k, k) is given (see Lemma 3) by row-bin(Qlin-reg), where
row-bin is the operator that returns a binary matrix of same shape, where each row
contains only zeros except at the position of the maximum in the corresponding row
of the input matrix. We refer to this solution as many-to-one.

OT-based method

To prevent empty clusters in the realigned partition, we also consider Q(k, k) =
Qot(k, k) in (B2). With these constraints, the alignment problem becomes an OT prob-
lem which can be related to a specific quadratic regularized OT problem [27] which
admits efficient convex solvers, as detailed in the following lemma (proof can be found
in Section D).
Lemma 1. Let P ∈ PN,k and D = diag(P⊤1N ). Then problem (B2) with Q(k, k) =
Qot(k, k) is equivalent to the problem

min
Q∈Qot(k,k)

∥D 1
2Q∥2F − 2⟨C,Q⟩ , (B4)

where C = P⊤P . Assuming no empty cluster in the partition P , the solution of
Equation (B4) is unique and can be solved by considering the dual problem

max
µ∈Rk, ν∈Rk

1

k

∑
i

µi +
1

k

∑
j

νj −
1

4
∥D− 1

2 [µ⊕ ν + 2C]+∥2F , (B5)

where µ ⊕ ν := (µi + νj)ij and for any matrix A, [A]+ := (max{Aij , 0})ij. More

precisely, the optimal solution Q⋆ of Equation (B4) can be written as Q⋆ = 1
2D

−1[µ⋆⊕
ν⋆ + 2C]+ where (µ⋆, ν⋆) is the optimal solution of Equation (B5).

Building upon this result we can solve Equation (B4) by tackling the dual
Equation (B5) which is a convex unconstrained problem of two variables (maximiza-
tion of a concave function). This expression allow us to use any convex solver, and, as
suggested in [27], we rely on L-BFGS [35] that we find particularly effective in practice.
We call this alignment procedure quad-ot which has roughly a O(NK2) complexity.
Remark 1. The only difference between Equation (B4) and standard quadratic OT
problem of the form minQ⟨M,Q⟩+ γ

2 ∥Q∥2F is that in our case the regularization term

is ∥D1/2Q∥2F . This is equivalent to consider a Mahalanobis type regularization instead
of a ℓ22 one.

Solving for the barycenter

To solve the barycenter problem in (B1) with a distance of the form of (B2), we
alternate between finding the alignment matrices Qr as explained above and updating
the reference P as in (3). This corresponds to an alternating minimization algorithm,
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where we alternate between (i) realigning the R partitions on the reference and (ii)
updating the reference. The reference update is based on Lemma 4 which states that
finding the closest partition matrix to a set a (realigned) matrices is given by the
majority-vote update, see Eq. (3).

Appendix C Other edge sampling rules

In this section, we present edge sampling rules that we came up with while trying
to design an fast coarsening procedure. They were not satisfying but we choose to
present them here and explain their drawbacks, as we believe it is informative to
better understand the coarsening algorithm we propose in the end. To the best of our
knowledge, these strategies were not considered systematically in previous works to
coarsen graphs.

Uniform edge sampling

This approach might be the most natural one. It consists in choosing edges uniformly
at random in the graph and collapsing them. Doing so favors edges incident to high
degree nodes, resulting after collapsing to an even higher degree hypernode. This
amplification phenomenon yields an unbalanced final coarsened graph that contains
one huge hypernode and all other hypernodes containing only a few nodes. This is
problematic as it would not express well the community structure of the initial graph.

Uniform edge sampling with marked neighboring edges

This approach fixes the above issue. To avoid collapsing onto almost always the same
hypernode, when an edge (i, j) is collapsed, we mark the edges incident to nodes i and
j, and we sample edges uniformly at random among unmarked edges. This solves the
issue of unbalancedness. However, the algorithm quickly runs out of unmarked edges
and forces the early computation of the next current coarsened graph. While this can
be done with sparse matrix products between the adjacency matrix and the matrix
encoding the composition of the hypernodes, it remains costly and should be avoided
as much as possible.

Uniform edge sampling with marked visited nodes

Here, we want to relax the limit imposed by the previous approach with marked edges.
First, recall that sampling an edge uniformly at random is equivalent to sampling
a node i with a probability proportional to its degree and sampling a neighbor j
uniformly, see e.g., [36, Section 6.14]. So instead of discarding edge (i, j) whenever
either i or j has been used in a previous collapse, a natural relaxation is to reject
the edge (i, j) only when i has been previously involved in a collapse, irrespective of
whether j was involved or not in such a collapse. Simulations showed that when using
this sampling strategy (in step 6 of Algorithm 2) to generate coarsening tables hℓ, the
hypernodes size distribution was similar to the one with the edge marking strategy,
but resulted in much less intermediate coarsened graph reconstructions.
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Uniform node sampling with marked visited nodes

A final improvement to speedup the sampling procedure is to sample the first node i
uniformly at random among non-visited nodes instead of according to its degree (the
second node j being still draw uniformly among the neighbors of i). Computationally,
this avoids updating the degrees after each collapse and further speeds up the coarsen-
ing procedure. The impact of sampling uniformly instead of according to the degrees
stays limited thanks to the friendship paradox. This results in Algorithm 2.

Appendix D Relegated theoretical results

Lemma 2. Let P ∈ PN,k be a partition matrix (Definition 1), and assume that

∀i ∈ [[k]], [P⊤1N ]i ̸= 0. Then, for any integer k and any matrix P ∈ RN×k, with

Q(k, k) = Rk×k, Q⋆ = diag(P⊤1N )−1P⊤P is an optimal solution to problem (B2).

Proof. Denoting f(Q) = ∥PQ − P∥2F . Since P is a partiton matrix its columns have
pairwise disjoint support and we have P⊤P = diag(P⊤1N ) hence

f(Q) = ∥P∥2F−2⟨Q,P⊤P ⟩+tr(Q⊤P⊤PQ) = ∥P∥2F+∥ diag(P⊤1N )
1
2Q∥2F−2⟨Q,P⊤P ⟩ .

(D6)
The optimization problem is convex, setting the gradient of f to zero gives the solution.

Lemma 3. Let P ∈ PN,k be a partition matrix (Definition 1), P ∈ RN×k, and

Q(k, k) = {Q ∈ {0, 1}k×k : Q1k = 1k}. Then Q⋆ defined by

∀i ∈ [[k]], Q⋆
ij =

{
1 j ∈ argmaxp∈[[k]][P

⊤P ]ip

0 otherwise
, (D7)

is an optimal solution to problem (B2).
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Proof. Denoting f(Q) = ∥PQ − P∥2F and using that P is a partition matrix, that
Qij ∈ {0, 1} (hence Q2

ij = Qij) and Q1k = 1k we can rewrite f as

f(Q) = ∥P∥2F + ∥ diag(P⊤1N )
1
2Q∥2F − 2⟨Q,P⊤P ⟩

= ∥P∥2F +
∑
ij

[P⊤1N ]iQ
2
ij − 2⟨Q,P⊤P ⟩

= ∥P∥2F +

k∑
i=1

k∑
j=1

[P⊤1N ]iQij − 2⟨Q,P⊤P ⟩

= ∥P∥2F +

k∑
i=1

[P⊤1N ]i(

k∑
j=1

Qij)− 2⟨Q,P⊤P ⟩

= ∥P∥2F +

k∑
i=1

[P⊤1N ]i − 2⟨Q,P⊤P ⟩

= ∥P∥2F +N − 2⟨Q,P⊤P ⟩

(D8)

Denoting C = −P⊤P , a solution to problem (B2) can thus be found by solving

min
Q∈{0,1}k×k:Q1k=1k

⟨Q,C⟩ . (D9)

Now Equation (D9) is an optimization problem that decouples with respect to the
rows of Q, i.e. there are k independent problems per row of Q. For each row i ∈ [[k]], a
solution can be found by choosing any column index j such that j ∈ argminp∈[[k]] Cip

This condition is equivalent to find j such that j ∈ argmaxp∈[[k]][P
⊤P ]ip.

Lemma 4. Let P (1), · · · , P (R) where each P (r) ∈ RN×k. Then a solution to

min
P∈PN,k

1

R

R∑
r=1

∥P − P (r)∥2F . (D10)

is given by

∀i ∈ [[N ]], [P ]ij =

1 j ∈ argmax
p∈[[k]]

[
∑R

r=1 P
(r)]ip

0 otherwise
(D11)

Now let P (1), · · · , P (R) where each P (r) ∈ RN×kr and Q(1), · · · , Q(R) be coupling
matrices such that each Q(r) ∈ Qot(kr, k). Then a solution to

min
P∈PN,k

1

R

R∑
r=1

k,k∑
i,j=1

∥P (r)
:,i − P :,j∥22Q(r)

i,j . (D12)
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is given by

∀i ∈ [[N ]], [P ]ij =

1 j ∈ argmax
p∈[[k]]

[
∑R

r=1 P
(r)Q(r)]ip

0 otherwise
(D13)

Proof. For the first point, take P in the constraints. Since it is a partition matrix we

have ∥P∥2F =
∑

ij P
2

ij =
∑

ij P ij = 1⊤
NP1k = N . Thus problem (D10) is equivalent to

min
P∈PN,k

⟨P ,−
R∑

r=1

P (r)⟩ . (D14)

As detailed in the proof of Lemma 3 a solution can be found by choosing the index of
the column j such that j ∈ argminp∈[[k]][−

∑R
r=1 P

(r)]ip which concludes the proof for

the first point. For the second point, we use that P is a partition matrix and Q(r) are
coupling matrices so that

R∑
r=1

k,k∑
i,j=1

∥P (r)
:,i − P :,j∥22Q(r)

i,j =

R∑
r=1

k,k∑
i,j=1

(∥P (r)
:,i ∥22 − 2⟨P (r)

:,i , P :,j⟩+ ∥P :,j∥22)Q(r)
i,j

= cte− 2

R∑
r=1

k,k∑
i,j=1

⟨P (r)
:,i , P :,j⟩Q(r)

i,j +

R∑
r=1

k,k∑
i,j=1

∥P :,j∥22Q(r)
i,j

= cte− 2

R∑
r=1

⟨P , P (r)Q(r)⟩+
R∑

r=1

k∑
j=1

∥P :,j∥22
k∑

i=1

Q
(r)
i,j

= cte−−2
R∑

r=1

⟨P , P (r)Q(r)⟩+ R

k
∥P∥2F .

(D15)

Using that ∥P∥2F = N as previously proved, we get that the problem is equivalent to

min
P∈PN,k

⟨P ,−
R∑

r=1

P (r)Q(r)⟩ , (D16)

hence the result.

Lemma 1. Let P ∈ PN,k and D = diag(P⊤1N ). Then problem (B2) with Q(k, k) =
Qot(k, k) is equivalent to the problem

min
Q∈Qot(k,k)

∥D 1
2Q∥2F − 2⟨C,Q⟩ , (B4)
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where C = P⊤P . Assuming no empty cluster in the partition P , the solution of
Equation (B4) is unique and can be solved by considering the dual problem

max
µ∈Rk, ν∈Rk

1

k

∑
i

µi +
1

k

∑
j

νj −
1

4
∥D− 1

2 [µ⊕ ν + 2C]+∥2F , (B5)

where µ ⊕ ν := (µi + νj)ij and for any matrix A, [A]+ := (max{Aij , 0})ij. More

precisely, the optimal solution Q⋆ of Equation (B4) can be written as Q⋆ = 1
2D

−1[µ⋆⊕
ν⋆ + 2C]+ where (µ⋆, ν⋆) is the optimal solution of Equation (B5).

Proof. We will prove a slightly more general result by considering the problem

min
Q∈Qot(kr,k)

⟨M,Q⟩+ γ

2
∥L 1

2Q∥2F , (D17)

where M ∈ Rp×pref , γ > 0 and L is a symmetric positive definite matrix. We note
a = 1

k1k, b = 1
k
1k. We will then apply to M = −2C, γ = 2 and L = D which

is symmetric positive definite when there is no empty clusters (since in this case
∀i ∈ [[K]], Dii ̸= 0). Most of our calculus are adapted from [27]. First, since L is a
symmetric positive definite matrix, the problem Equation (D17) is a strongly convex
problem, thus it admits a unique solution.

To look at the dual of Equation (D17), we consider the Lagrangian

L(Q,µ, ν,Γ) = ⟨M,Q⟩+ γ

2
∥L 1

2Q∥2F + ⟨µ, a−Q1k⟩+ ⟨ν, b−Q⊤1k⟩ − ⟨Γ, Q⟩

= ⟨M,Q⟩+ γ

2
∥L 1

2Q∥2F − ⟨Q,µ1⊤
k
+ 1kν

⊤ + Γ⟩+ ⟨µ, a⟩+ ⟨ν, b⟩ ,
(D18)

where Γ is the variable accounting for the non-negativity constraints on Q. We have

∇QL(Q,µ, ν,Γ) = 0 ⇐⇒ M + γLQ− µ⊕ ν − Γ = 0 . (D19)

This is statisfied when Q = Q⋆ = 1
γL

−1(Γ + µ⊕ ν −M). Moreover,

⟨M,Q⋆⟩ − ⟨Q⋆, µ⊗ ν + Γ⟩ = −⟨Q⋆, µ⊗ ν + Γ−M⟩

= −⟨ 1
γ
L−1(Γ + µ⊕ ν −M), µ⊗ ν + Γ−M⟩

= − 1

γ
∥L− 1

2 (Γ + µ⊕ ν −M)∥2F .

(D20)

28



Thus

⟨M,Q⋆⟩ − ⟨Q⋆, µ⊗ ν + Γ⟩+ γ

2
∥L 1

2Q⋆∥2F = − 1

γ
∥L− 1

2 (Γ + µ⊕ ν −M)∥2F

+
γ

2
∥L 1

2 (
1

γ
L−1(Γ + µ⊕ ν −M))∥2F

= − 1

γ
∥L− 1

2 (Γ + µ⊕ ν −M)∥2F

+
1

2γ
∥L− 1

2 (Γ + µ⊕ ν −M)∥2F

= − 1

2γ
∥L− 1

2 (Γ + µ⊕ ν −M)∥2F

(D21)

Hence

L(Q⋆, µ, ν,Γ) = − 1

2γ
∥L− 1

2 (Γ + µ⊕ ν −M)∥2F + ⟨µ, a⟩+ ⟨ν, b⟩ . (D22)

Now we solve the problem over Γ that is we maximize the problem

max
Γ≥0

L(Q⋆, µ, ν,Γ) , (D23)

where ≥ 0 should be understood pointwise. This is equivalent to

min
Γ≥0
∥L− 1

2 (Γ−A)∥2F . (D24)

where A := M − µ⊕ ν. Writing L = U∆U⊤ where ∆ = diag(d1, · · · , dn) with di > 0,
Equation (D24) equivalently writes

min
Γ≥0
∥∆− 1

2Γ−∆− 1
2A∥2F . (D25)

With a change of variable Γ̃ = ∆−1/2Γ ≥ 0 this is equivalent to

min
Γ̃≥0
∥Γ̃−∆− 1

2A∥2F , (D26)

whose minimum is given by Γ̃ = [∆− 1
2A]+ = ∆− 1

2 [A]+ since ∆− 1
2 is a diagonal

matrix with positive entries. Thus the solution of (D24) is given by Γ = ∆1/2Γ̃ =
∆1/2[∆−1/2A]+ = [A]+. Also [A]+ −A = [−A]+. Thus

min
Γ≥0
∥L− 1

2 (Γ−A)∥2F = ∥L− 1
2 [−A]+∥2F = ∥L− 1

2 [µ⊕ ν −M ]+∥2F (D27)
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Hence the dual problem of Equation (D17) is given by maxµ,ν L(Q⋆, µ, ν, [−A]+) which
is

max
µ,ν
⟨µ, a⟩+ ⟨ν, b⟩ − 1

2γ
∥L− 1

2 (µ⊕ ν −M)+∥2F . (D28)

Applying this to M = −2C, γ = 2 and L = D concludes.

Appendix E Experiments details and extra results

E.1 Details about the implementation

The PASCO implementation relies on the POT library [24] for the fusion part. The
heaviest experiments were performed with the support of the Centre Blaise Pascal’s
IT test platform at ENS de Lyon (Lyon, France) that operates the SIDUS solution
[37]. We use an Intel Xeon Gold 5218 machine.

E.2 Details of the coarsening experiment.

Table E1 provide some characteristics of the real graphs used in Figure 3.

# nodes # edges avg degree assortativity avg clustering coef

Yeast 1.5k 1.9k 2 -0.21 0.07

Minnesota 2.6k 3.3k 2 -0.18 0.02

Airfoil 4.3k 12.3k 5 0.32 0.41

Table E1: Some characteristics of the real graphs used in Figure 3,
extracted from [38].

The RSA experiments in Section 5.1 tested the conservation of spectral properties
by coarsening algorithms, including PASCO. Figure E1 complete the initial figure
Figure 3 with SBM graphs. Graphs were drawn under the SSBM(1000, k, 2, α), for
(k = 10, α = 1/k), (k = 100, α = 1/k) and (k = 10, α = 1/(2k)). Below, in Figure E2,
we display computational times of the coarsening methods.
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Fig. E1: We represent the RSA (the smaller, the better) of various coarsening schemes
(including PASCO), as a function of the compression rate (the higher, the coarser the
obtained graph). Shaded areas represent 0.2 upper- and lower-quantiles.
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Fig. E2: We represent the computational time of various coarsening schemes (includ-
ing PASCO), as a function of the compression rate (the higher, the coarser the obtained
graph). Shaded areas represent 0.2 upper- and lower-quantiles over the 10 repetitions of
the experiment. Top row: we reproduce a part of the experiment of [17, Figure 2] with
the same real graphs and added PASCO. Bottom row: same experiment but with ran-
dom graphs drawn from SSBM(1000, k, 2, α) for (k = 10, α = 1/k), (k = 100, α = 1/k)
and (k = 10, α = 1/(2k)).
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E.3 Additional results on parameters influence

Here, we provide additional results on the experiments of Section 5.3. Figure E3 show
the performance of the various alignment methods for different difficulty levels in the
SSBM. Parameters are the same as in Figure 5.

In Figure 6, we showed the computational gains of using PASCO. As a sanity
check, in Figure E4 we show that the performance w.r.t. the quality of the output
partition are satisfying. Speed was not achieve at the cost of quality.
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Fig. E3: Influence of the alignment method in PASCO. The AMI score is average
over the 10 runs and shaded areas represent 0.2 upper- and lower-quantiles. Dashed
lines correspond to PASCO threshold
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Fig. E4: Quality of the partitions w.r.t. ρ and R, when R = ρ. The number of
communities vary in {20, 100, 1000}. AMI values are average over 10 runs and shaded
areas represent 0.2 upper- and lower-quantiles.
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E.4 Definition of the scores used to evaluate clustering quality

Definition 4 (Adjusted Mutual Information). The Adjusted Mutual Information
(AMI) between two partitions U = (U1, . . . , Uk) and V = (V1, . . . , Vk′) of the set of
node V of size N is given by

AMI(U, V ) =
MI(U, V )− E[MI(U, V )]

max(H(U), H(V ))− E[MI(U, V )]
, (E29)

where

MI(U, V ) =

k∑
i=1

k′∑
j=1

PUV (i, j) log
PUV (i, j)

PU (i)PV (j)
, (E30)

with PU (i) = |Ui|/N (similarly for PV (j)), PUV (i, j) = |Ui ∩ Vj |/N , and H(U) =
−∑

i PU (i) logPU (i) (similarly for H(V )). The expected mutual information (MI)
E[MI(U, V )] in (E29) is computed by assuming hyper-geometric distribution for U
and V , the parameters being estimated from the partitions. For the sake of conciseness
and simplicity, we refer the reader to [29] for the precise formula.
Definition 5 (Generalized Normalized Cut). Given a graph G represented by its
adjacency or weight matrix A, consider a partition (V1, . . . , Vk) of the vertex set V of
G. The generalized normalized cut of the partition is defined as

1

k

k∑
j=1

∑
u∈Vj ,v /∈Vj

Au,v∑
u∈Vj ,v∈V Au,v

. (E31)

Definition 6 (Modularity). Given a graph G represented by its adjacency or weight
matrix A, consider a partition (V1, . . . , Vk) of the vertex set V of G. Let du denote the
degree of node u and m the weight of all the edges. Then, the modularity is given by

1

2m

k∑
j=1

∑
u∈Vj ,v∈Vj

(
Au,v −

dudv
2m

)
. (E32)

Definition 7 (Description Length). Let G = (V,E) be a graph and consider the
partition (V1, . . . , Vk) of the vertex set V. We denote by ei,j the number of edges between
Vi and Vj. In mathematical terms, the description length is defined by dl = S + L,
where S is the entropy of the fitted stochastic block model and L is the information
required to describe the model. Their expressions are given by

S = |E| − 1

2

k∑
i,j=1

ei,j log

(
ei,j
|Vi| |Vj |

)

L = |E| · h
(
k(k + 1)

2 |E|

)
+ |V| log(k),

with h(x) = (1 + x) log(1 + x)− x log x.
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Fig. E5: An example to help read Figure 7. Each plot represents the performance
of PASCO associated with a given clustering method (here SC). Specific markers
(here a cross) represent the standalone clustering method’s performance, while disk
markers show PASCO’s. Color (here blue) indicate the dataset (here arxiv). Per-
formance is evaluated by computational time (y-axis, relative to standalone method,
hence specific markers at y = 1) and clustering quality (x-axis, measured by AMI
with the true partition or relative quality score difference; here, generalized normal-
ized cut). Disk transparency varies with the number of coarsened graphs R (see color
bar; R ∈ 1, 3, 5, 10, 15). The shaded area represents the convex hull of points associ-
ated to a dataset, ideally trending downward (speedup) and either rightward for AMI
or closer to zero for relative quality differences.

E.5 Real data experiments

Table E2 provides a few caracteristics of the real graphs used in Section 5.4.

Name # nodes # edges k αest 1/(k − 1)

arxiv 169, 343 2, 315, 598 40 0.044 0.026

mag 726, 664 10, 778, 888 349 0.031 0.0029

products 2, 385, 902 123, 612, 734 47 0.028 0.022

Table E2: Name, number of nodes, number of edges and
number of communities of the large real datasets used in
the experiments.

Here, we present the results of the experiments on real graph with tables. Bold
figures represent the best result for each criterion for a given clustering algorithm (SC,
CSC, louvain, leiden, MDL, infomap).
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Table E3: Results for the arxiv dataset.

methods time ↓ ami ↑ modularity ↑ gnCut ↓ dl ↓

ground truth 0.493 0.436 9.23e6

SC 7.42e1 0.19 0.26 0.819 9.58e6

SC+PASCO (t = 1) 4.46e0 0.294 0.353 0.81 9.46e6

SC+PASCO (t = 3) 1.02e1 0.289 0.321 0.779 9.49e6

SC+PASCO (t = 5) 1.16e1 0.31 0.353 0.839 9.43e6

SC+PASCO (t = 10) 1.87e1 0.311 0.354 0.883 9.43e6

SC+PASCO (t = 15) 3.06e1 0.31 0.34 0.893 9.44e6

CSC 2.71e2 0.129 0.361 0.4 9.60e6

CSC+PASCO (t = 1) 2.54e1 0.185 0.325 0.481 9.56e6

CSC+PASCO (t = 3) 3.06e1 0.192 0.299 0.477 9.58e6

CSC+PASCO (t = 5) 3.28e1 0.21 0.291 0.48 9.55e6

CSC+PASCO (t = 10) 5.29e1 0.255 0.303 0.546 9.45e6

CSC+PASCO (t = 15) 7.46e1 0.268 0.311 0.572 9.41e6

louvain 1.77e0 0.39 0.704 0.897 8.39e6

louvain+PASCO (t = 1) 1.14e0 0.349 0.581 0.881 9.05e6

louvain+PASCO (t = 3) 5.00e0 0.37 0.615 0.879 8.94e6

louvain+PASCO (t = 5) 6.76e0 0.391 0.637 0.913 8.88e6

louvain+PASCO (t = 10) 1.22e1 0.393 0.648 0.914 8.85e6

louvain+PASCO (t = 15) 1.79e1 0.405 0.655 0.918 8.82e6

leiden 1.38e1 0.409 0.713 0.909 8.38e6

leiden+PASCO (t = 1) 4.77e0 0.359 0.579 0.891 9.06e6

leiden+PASCO (t = 3) 1.28e1 0.391 0.619 0.885 8.95e6

leiden+PASCO (t = 5) 1.66e1 0.4 0.64 0.883 8.85e6

leiden+PASCO (t = 10) 2.86e1 0.408 0.654 0.892 8.81e6

leiden+PASCO (t = 15) 3.67e1 0.418 0.665 0.922 8.75e6

MDL 7.51e2 0.351 0.651 0.705 8.03e6

MDL+PASCO (t = 1) 3.82e2 0.322 0.396 0.438 8.93e6

MDL+PASCO (t = 3) 5.24e2 0.338 0.384 0.442 8.98e6

MDL+PASCO (t = 5) 4.78e2 0.351 0.429 0.45 8.79e6

MDL+PASCO (t = 10) 6.52e2 0.379 0.462 0.476 8.61e6

MDL+PASCO (t = 15) 8.09e2 0.387 0.496 0.506 8.52e6

infomap 3.14e1 0.376 0.696 0.775 8.06e6

infomap+PASCO (t = 1) 6.04e0 0.358 0.568 0.751 8.82e6

infomap+PASCO (t = 3) 1.09e1 0.382 0.582 0.766 8.80e6

infomap+PASCO (t = 5) 1.22e1 0.395 0.605 0.782 8.67e6

infomap+PASCO (t = 10) 2.32e1 0.415 0.628 0.799 8.57e6

infomap+PASCO (t = 15) 2.81e1 0.423 0.639 0.809 8.53e6
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Table E4: Results for the mag dataset.

methods time ↓ ami ↑ modularity ↑ gnCut ↓ dl ↓

ground truth 0.268 0.217 5.35e7

SC 2.18e3 0.325 0.727 0.64 4.92e7

SC+PASCO (t = 1) 2.90e2 0.367 0.672 0.665 4.80e7

SC+PASCO (t = 3) 3.60e2 0.377 0.713 0.608 4.70e7

SC+PASCO (t = 5) 4.17e2 0.393 0.749 0.652 4.63e7

SC+PASCO (t = 10) 7.32e2 0.403 0.782 0.709 4.59e7

SC+PASCO (t = 15) 8.90e2 0.406 0.791 0.757 4.56e7

CSC 4.92e3 0.145 0.438 0.411 5.14e7

CSC+PASCO (t = 1) 6.97e2 0.235 0.505 0.424 5.22e7

CSC+PASCO (t = 3) 7.81e2 0.24 0.532 0.401 5.24e7

CSC+PASCO (t = 5) 9.03e2 0.26 0.566 0.435 5.15e7

CSC+PASCO (t = 10) 1.38e3 0.3 0.609 0.514 5.04e7

CSC+PASCO (t = 15) 2.20e3 0.328 0.646 0.56 4.96e7

louvain 1.36e1 0.378 0.842 0.931 4.71e7

louvain+PASCO (t = 1) 8.47e0 0.331 0.748 0.904 5.03e7

louvain+PASCO (t = 3) 2.32e1 0.352 0.773 0.891 4.98e7

louvain+PASCO (t = 5) 3.31e1 0.358 0.797 0.824 4.92e7

louvain+PASCO (t = 10) 8.07e1 0.364 0.804 0.903 4.91e7

louvain+PASCO (t = 15) 6.98e1 0.366 0.815 0.871 4.89e7

leiden 9.06e1 0.379 0.851 0.934 4.66e7

leiden+PASCO (t = 1) 3.39e1 0.343 0.755 0.918 5.01e7

leiden+PASCO (t = 3) 6.74e1 0.36 0.78 0.918 4.95e7

leiden+PASCO (t = 5) 8.18e1 0.372 0.803 0.882 4.90e7

leiden+PASCO (t = 10) 1.36e2 0.377 0.816 0.932 4.87e7

leiden+PASCO (t = 15) 1.92e2 0.379 0.817 0.943 4.87e7

MDL 3.91e3 0.357 0.701 0.709 3.95e7

MDL+PASCO (t = 1) 3.32e3 0.349 0.446 0.45 4.53e7

MDL+PASCO (t = 3) 4.54e3 0.355 0.474 0.444 4.50e7

MDL+PASCO (t = 5) 4.11e3 0.369 0.521 0.475 4.37e7

MDL+PASCO (t = 10) 4.95e3 0.382 0.583 0.526 4.22e7

MDL+PASCO (t = 15) 7.24e3 0.386 0.619 0.547 4.17e7

infomap 2.24e2 0.365 0.764 0.784 4.02e7

infomap+PASCO (t = 1) 4.12e1 0.359 0.667 0.674 4.59e7

infomap+PASCO (t = 3) 1.22e2 0.372 0.719 0.704 4.56e7

infomap+PASCO (t = 5) 1.63e2 0.384 0.752 0.715 4.45e7

infomap+PASCO (t = 10) 2.83e2 0.395 0.773 0.742 4.38e7

infomap+PASCO (t = 15) 4.06e2 0.397 0.784 0.757 4.35e7
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Table E5: Results for the products dataset.

methods time ↓ ami ↑ modularity ↑ gnCut ↓ dl ↓

ground truth 0.728 0.464 5.28e8

SC 6.37e2 0.202 0.603 0.722 5.45e8

SC+PASCO (t = 1) 2.74e2 0.327 0.41 0.717 5.97e8

SC+PASCO (t = 3) 4.37e2 0.283 0.412 0.663 5.98e8

SC+PASCO (t = 5) 5.48e2 0.363 0.48 0.801 5.92e8

SC+PASCO (t = 10) 7.45e2 0.332 0.444 0.885 5.95e8

SC+PASCO (t = 15) 9.99e2 0.32 0.42 0.824 5.96e8

CSC 2.08e4 0.206 0.585 0.601 5.43e8

CSC+PASCO (t = 1) 3.32e3 0.275 0.584 0.569 5.49e8

CSC+PASCO (t = 3) 5.07e3 0.262 0.552 0.526 5.59e8

CSC+PASCO (t = 5) 5.26e3 0.302 0.561 0.555 5.57e8

CSC+PASCO (t = 10) 6.45e3 0.406 0.669 0.625 5.30e8

CSC+PASCO (t = 15) 7.54e3 0.436 0.715 0.718 5.24e8

louvain 9.33e1 0.523 0.873 0.955 4.62e8

louvain+PASCO (t = 1) 8.95e1 0.49 0.779 0.937 5.17e8

louvain+PASCO (t = 3) 2.75e2 0.515 0.815 0.896 5.06e8

louvain+PASCO (t = 5) 3.76e2 0.531 0.834 0.906 5.01e8

louvain+PASCO (t = 10) 6.24e2 0.537 0.85 0.929 4.98e8

louvain+PASCO (t = 15) 8.23e2 0.535 0.849 0.897 4.97e8

leiden 7.93e2 0.554 0.881 0.957 4.55e8

leiden+PASCO (t = 1) 3.61e2 0.494 0.786 0.941 5.14e8

leiden+PASCO (t = 3) 8.07e2 0.526 0.826 0.925 5.05e8

leiden+PASCO (t = 5) 9.63e2 0.538 0.845 0.944 5.00e8

leiden+PASCO (t = 10) 1.65e3 0.549 0.851 0.94 4.95e8

leiden+PASCO (t = 15) 2.26e3 0.547 0.858 0.949 4.96e8

MDL 5.27e4 0.494 0.859 0.887 4.56e8

MDL+PASCO (t = 1) 4.65e4 0.491 0.717 0.745 4.92e8

MDL+PASCO (t = 3) 5.93e4 0.516 0.743 0.761 4.86e8

MDL+PASCO (t = 5) 6.55e4 0.533 0.785 0.803 4.75e8

MDL+PASCO (t = 10) 8.03e4 0.551 0.808 0.799 4.70e8

MDL+PASCO (t = 15) 9.58e4 0.56 0.827 0.837 4.65e8

infomap 2.71e3 0.504 0.87 0.896 4.54e8

infomap+PASCO (t = 1) 4.78e2 0.495 0.765 0.797 4.89e8

infomap+PASCO (t = 3) 7.61e2 0.523 0.794 0.832 4.80e8

infomap+PASCO (t = 5) 9.93e2 0.533 0.812 0.834 4.73e8

infomap+PASCO (t = 10) 1.18e3 0.546 0.841 0.872 4.66e8

infomap+PASCO (t = 15) 1.50e3 0.553 0.85 0.882 4.64e8
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