
HAL Id: hal-04837154
https://hal.science/hal-04837154v1

Submitted on 13 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Fully-Adaptive Dynamic Connectivity of Square
Intersection Graphs

Ivor van der Hoog, André Nusser, Eva Rotenberg, Frank Staals

To cite this version:
Ivor van der Hoog, André Nusser, Eva Rotenberg, Frank Staals. Fully-Adaptive Dynamic Connec-
tivity of Square Intersection Graphs. 49th International Symposium on Mathematical Foundations
of Computer Science (MFCS 2024), Aug 2024, Bratislava, Slovakia. �10.4230/LIPIcs.MFCS.2024.63�.
�hal-04837154�

https://hal.science/hal-04837154v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Fully-Adaptive Dynamic Connectivity of Square
Intersection Graphs
Ivor van der Hoog #

Technical University of Denmark, Lyngby, Denmark

André Nusser #

CNRS, Inria, I3S, Université Côte d’Azur, France

Eva Rotenberg #

Technical University of Denmark, Lyngby, Denmark

Frank Staals #

Utrecht University, The Netherlands

Abstract
A classical problem in computational geometry and graph algorithms is: given a dynamic set S of
geometric shapes in the plane, efficiently maintain the connectivity of the intersection graph of S.
Previous papers studied the setting where, before the updates, the data structure receives some
parameter P . Then, updates could insert and delete disks as long as at all times the disks have a
diameter that lies in a fixed range [1

P
, 1]. As a consequence of that prerequisite, the aspect ratio

ψ (i.e. the ratio between the largest and smallest diameter) of the disks would at all times satisfy
ψ ≤ P . The state-of-the-art for storing disks in a dynamic connectivity data structure is a data
structure that uses O(Pn) space and that has amortized O(P log4 n) expected amortized update
time. Connectivity queries between disks are supported in O(logn/ log logn) time.

In the dynamic setting, one wishes for a more flexible data structure in which disks of any
diameter may arrive and leave, independent of their diameter, changing the aspect ratio freely.
Ideally, the aspect ratio should merely be part of the analysis. We restrict our attention to axis-
aligned squares, and study fully-dynamic square intersection graph connectivity. Our result is
fully-adaptive to the aspect ratio, spending time proportional to the current aspect ratio ψ, as
opposed to some previously given maximum P . Our focus on squares allows us to simplify and
streamline the connectivity pipeline from previous work. When n is the number of squares and ψ is
the aspect ratio after insertion (or before deletion), our data structure answers connectivity queries in
O(logn/ log logn) time. We can update connectivity information in O(ψ log4 n+ log6 n) amortized
time. We also improve space usage from O(P · n logn) to O(n log3 n logψ) – while generalizing to a
fully-adaptive aspect ratio – which yields a space usage that is near-linear in n for any polynomially
bounded ψ.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms; Theory of
computation → Computational geometry

Keywords and phrases Computational geometry, planar geometry, data structures, geometric
intersection graphs, fully-dynamic algorithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2024.63

Funding Ivor van der Hoog: Received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement No 899987.
André Nusser : Supported by the French government through the France 2030 investment plan
managed by the National Research Agency (ANR), as part of the Initiative of Excellence of Université
Côte d’Azur under reference number ANR-15-IDEX-01.
Eva Rotenberg: Supported by the Independent Research Fund Denmark grant 2020-2023 (9131-
00044B) “Dynamic Network Analysis” and the Carlsberg Foundation Young Researcher Fellowship
CF21-0302 “Graph Algorithms with Geometric Applications”.

© Ivor van der Hoog, André Nusser, Eva Rotenberg, and Frank Staals;
licensed under Creative Commons License CC-BY 4.0

49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024).
Editors: Rastislav Královič and Antonín Kučera; Article No. 63; pp. 63:1–63:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:idjva@dtu.dk
https://orcid.org/0009-0006-2624-0231
mailto:andre.nusser@cnrs.fr
mailto:erot@dtu.dk
https://orcid.org/0000-0001-5853-7909
mailto:f.staals@uu.nl
https://doi.org/10.4230/LIPIcs.MFCS.2024.63
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

63:2 Fully-Adaptive Dynamic Connectivity of Square Intersection Graphs

1 Introduction

Geometric intersection graphs are one of the most well-studied geometrically-flavoured graph
classes: Their nodes are geometric shapes, and an edge between two such shapes exists if and
only if they intersect. This makes the description complexity of a geometric intersection graph
very compact; it is linear in the number of objects, while the underlying graph potentially
has a quadratic number of edges. In this work, we consider square intersection graphs in the
dynamic setting. Intersection graphs are one of the few examples of dynamic graphs where
fully-dynamic insertion and deletion of vertices is motivated and interesting. Since a vertex
can come or leave with Θ(n) edges, applying any existing edge-updatable dynamic graph
algorithm in a blackbox manner would lead to Ω(n) update time. Yet, the geometric nature
of these graphs often allows for sublinear or even polylogarithmic update times.

A classical problem in dynamic graph algorithms is dynamic connectivity. In this problem,
we want to maintain a data structure under edge or node insertions and deletions that allows
for fast queries that return whether a given pair of vertices is connected. Connectivity was
one of the first problems to be studied in the dynamic setting dating back to the 80s [11, 25],
and has received ample attention ever since. Dynamic connectivity in general graphs has
been studied in many settings; randomised or deterministic, amortised or worst-case [11, 13,
29, 18, 24], and the partially dynamic incremental or decremental settings [26, 27, 28, 1].
Due to its fundamental nature, and its many applications, dynamic connectivity has also
received much attention for simpler graph classes. Examples of such graph classes include
trees [25, 3], planar graphs [10, 21], and graphs of bounded genus [9, 15].

Naturally, the dynamic connectivity problem also drew attention for the class of geometric
intersection graphs. This setting is particularly interesting as a single node insertion can
drastically change the number of connected components, as it can introduce a linear number
of new edges. On the other hand, the geometric structure can be exploited in the data
structures. The first result for geometric connectivity in geometric intersection graphs with
update and query time independent of the object diameters is by Chan et al. [7] who presents
a dynamic (Euclidean) disk intersection data structure with an update time of O(n20/21+ε)
and a query time of O(n1/7+ε). This has recently been improved to O(n7/8) amortized
update time with constant query time [6]. As progress seemed difficult in this setting, the
setting in which the disks in the data structure have restricted diameters was considered.
For a fixed diameter range, where there is some value P given in advance and diameters
have to be contained in an interval [1

P , 1], Kaplan et al. [17] showed that there is a data
structure with expected amortized O(P 2 log10 n) update time, query time O(logn/ log logn),
using O(nP logn) space. Recently, Kaplan et al. [16] improved this to O(P log7 n) expected
amortized update time with the same update time and O(nP) space.

From disks to squares. While the above works are stated for Euclidean disks, we note that
the approach in [16] can be combined with [30] to obtain a data structure that works for
the simpler setting of connectivity between axis-aligned squares. The obtained update time
is amortized O(P log4 n). Disk intersection graphs are often motivated by communication
networks where the disks are interpreted as some sort of transmission diameter. This is an
idealization of a complicated physical process and actual ad-hoc communication networks do
not correspond to perfectly circular disks [20]. Thus, it is reasonable to switch to a different
metric for computational reasons while maintaining the core idea of the underlying problem.
Recently, similar progress was made for computing a single-source shortest path tree in an
intersection graph by assuming square regions instead of disks [19].

I. van der Hoog, A. Nusser, E. Rotenberg, and F. Staals 63:3

Table 1 Complexities are asymptotic. All update times are amortized. The query time for
all approaches is O(logn/ log logn). λs(n) denotes the maximum length of a Davenport-Schinzel
sequence of order s on n symbols.

Object Aspect ratio Update time Space Ref.

disks fixed [1
P
, 1] P · log7 n · λ6(logn) exp. nP [16]

disks fixed [1
P
, 1] P · log4 exp. nP [16]+[22]

squares fixed [1
P
, 1] P · log4 n nP [16]+[30]

squares adaptive ψ ψ log4 n+ log6 n n log3 n logψ Thm 10

We study the dynamic connectivity problem where the input S is a set of (axis-aligned)
squares, while being fully adaptive to their aspect ratio. We let ψ denote the adaptive aspect
ratio. Formally, if S is the input before an update and S′ is the input after an update
we define ψ = max{ maxσ∈S |σ|

minσ′∈S |σ′| ,
maxσ∈S′ |σ|
minσ′∈S′ |σ′|}. Our date structure maintains connectivity

between squares with O(ψ log4 n+ log6 n) update time, O(logn/ log logn) query time, and
using O(n log3 n logψ) space, see Table 1 for a comparison. our approach only requires
near-linear space while maintaining near-linear update time and polylogarithmic query time.

Implications of adaptivity and our reduced space usage. To understand the implications
of the adaptivity of our new solution, consider the scenario where the set of squares starts
with a square A with diameter 1 and B with diameter 1

n . Now, suppose the sequence of
updates first removes B, then inserts a sequence of n squares of diameter 1, and finally
reinserts B. Previous work [16] would require as input the interval [1

n , 1] and the promise
that all updates only insert squares in this interval. The space usage and the total update
time of [16] is quadratic. In our case, since for almost all updates, the aspect ratio is constant.
Moreover, the space usage and total update time is near-linear.

2 Problem statement and technical overview

Let S ⊂ R2 be a set of axis-aligned squares. The intersection graph G[S] is the graph with
vertex set S and with an edge between squares σ, σ′ ∈ S whenever they intersect. We say that
two squares σ, σ′ are connected if there exists a path between their corresponding vertices in
G[S]. The set S is a fully dynamic set subject to (adversarial) insertions and deletions of
squares. We wish to maintain S in a data structure supporting connectivity queries between
squares in S. We denote the diameter of square σ ∈ S by |σ|. We consider three settings
with different restrictions on the square diameters in S:

The fixed diameter range setting. Here, the input specifies some P and each σ ∈ S has a
diameter in [1

P , 1] for some fixed P .
The bounded aspect ratio setting. Here, the input specifies some P and at all times, for
all σ, σ′ ∈ S we have |σ|

|σ′| ≤ P .
The adaptive aspect ratio ψ setting in which arbitrary insertions and deletions may occur.
Let S be the set of squares before an update and S′ be the set of squares after an update.
We define ψ = max{ maxσ∈S |σ|

minσ′∈S |σ′| ,
maxσ∈S′ |σ|
minσ′∈S′ |σ′|} the aspect ratio relevant for the update.

We measure the algorithmic complexity in n := |S| and ψ, where n is the present size of the
dynamic set S. At all times, we maintain some minimal axis-aligned square F that contains
S, and the coordinates of F are powers of 2.

MFCS 2024

63:4 Fully-Adaptive Dynamic Connectivity of Square Intersection Graphs

Results. The data structure of Kaplan et al. [16], when adapted to axis-aligned squares
by applying Range Trees [30], can store a dynamic set of axis-aligned squares as follows:
The input specifies some value P and all squares have fixed diameter range with ratio P .
Their solution uses O(nP) space and supports updates to S in O(P log4 n) amortized time
(Table 1). They answer connectivity queries in O(logn/ log logn) worst-case time.

There are several reasons why [17] uses O(nP) space and why their update bound cannot
depend on the adaptive ψ instead of P (which we discuss further down). We present an
adaption of their work that relies on the fact that S is a set of axis-aligned squares. Under
this assumption, we adapt their data structure to work for adaptive ψ. We improve the
space usage to near linear in n and logψ. In full generality, we also improve the performance:
allowing for update times proportional to the density around the update σ. More concretely,
we parameterize the runtime by the size of two sets C(σ) and P(σ). Intuitively, these sets
contain squares in σ or squares around σ. These sets have size at most O(min{ψ, n}).

Our result is a technical contribution, that examines and refines the data structure in [16]
in the special case where S is a set of axis-aligned squares. To detail our contribution, we now
present a technical overview, where we reference several concepts whose formal definitions
are presented in their respective sections. The core component is a quadtree that stores S.

The existing pipeline. We can describe the data structure of [16] (adapted to squares) on
a high-level: They construct a quadtree H(S) in which quadtree cells may store squares in
S. For any quadtree cell C, we denote by π(C) the set of squares stored in C. A crucial
definition is the concept of a perimeter. For a square σ, its perimeter P∗(σ, P) is intuitively
a ring of Θ(P) quadtree cells of size at least 1

4P that are sufficiently close to the boundary of
σ. Using this concept, their data structure is a pipeline of five components (Fig 1):
1. The set S gets stored in a compressed quadtree H(S), such that for every σ ∈ S, the

quadtree contains P∗(σ, P).1 This quadtree has Θ(P ·n) cells. For each σ ∈ S, its storing
cell is the maximal quadtree cell contained in σ.

2. They store all (maximal) quadtree cells contained in some σ ∈ S in a special ancestor
data structure. We leave out the details of this structure, as we show that it suffices to
use the well-studied marked-ancestor data structure by Alstrup, and Husfeldt, Rauhe [2].

3. For each square σ ∈ S with storing cell Cσ, for each quadtree cell C2 ∈ P∗(σ, P), they store
a square intersection data structure (a range tree). This data structure stores the squares
R ⊂ π(Cσ) that have C2 in their perimeter (i.e. R = {γ ∈ π(Cσ) | C2 ∈ P∗(σ, P)}).

4. For each square σ with storing cell Cσ, for each quadtree cell C2 ∈ P∗(σ, P), they store
a maximal bichromatic matching (MBM) in the graph G[R ∪B] with B = π(C2) with
R = {γ ∈ π(Cσ) | C2 ∈ P∗(σ, P)}.

5. They store a proxy graph over the quadtree in the dynamic connectivity data structure
by Holm, Lichtenberg, and Thorup (HLT) [14]. This graph contains an edge between
two cells C1, C2 if and only if their maximal bichromatic matching is not empty.

They subsequently support connectivity queries for a query (σ, ρ) as follows. Given σ, obtain
a pointer to its storing cell Cσ. Using their ancestor data structure, they obtain the largest
ancestor Ca that is contained in a square σ∗ ∈ S. Let C∗ be its storing cell. Doing the same
procedure for ρ gives a cell R∗. They show that (σ, ρ) are connected in G[S] if and only if
(C∗, R∗) are connected in the proxy graph; which they test in O(logn/ log logn) time.

1 Whilst originally their approach is a forest of quadtrees, we note that since each root of the forest is
disjoint, the whole solution can be stored as a quadtree.

I. van der Hoog, A. Nusser, E. Rotenberg, and F. Staals 63:5

Why the space usage is high, and update times are not adaptive. For every σ ∈ S,
this pipeline creates a set of Θ(P) quadtree cells with sizes in [1

4P , 1] which we denote by
P∗(σ, P). For each quadtree cell C2 ∈ P∗(σ, P), σ gets stored in a square intersection data
structure, even if the quadtree cell C2 is empty and/or has no other squares nearby. This
approach makes it require a lot of space. Moreover, this approach fails when the aspect ratio
becomes adaptive: suppose that S has n− 1 squares with diameter 1

P and one unit square.
We replace the unit square with a square of diameter 1

P 2 . The aspect ratio remains bounded
by P . However (after rescaling the plane by a factor 1

P) the quadtree no longer contains for
every σ ∈ S the set P∗(σ, P) as (after rescaling the plane) it only contains quadtree cells of
size 1. Reconstructing these requires Ω(Pn) time.

Our adaption. We improve this pipeline in several ways based on a few key insights: First,
we revisit the definition of perimeter ; presenting a new definition P(σ) which intuitively
contains only cells in P∗(σ, ψ) that store at least one square. Since we only store data
structures on cells that store at least one square, we save space and allow ψ to become
fully adaptive. This introduces a new challenge, as we need to work with significantly fewer
precomputed inormation. Concretely, we do the following (Figure 2):
1. We define a new type of quadtree T (S) that uses only O(n logψ) quadtree cells.
2. We replace their custom ancestor data structure by the well-studied Marked Ancestor

T ree (MAT), simplifying the data structure.
3. For squares metric we create a new data structure that has deterministic guarantees and

that avoids storing many copies.
4. For each square σ ∈ S with storing cell Cσ, for each quadtree cell C2 in our new perimeter
P(σ), we store a Maximal Bichromatic Matching (MBM∗) in a graph G[R ∪B]. Using
our new definition of perimeter, we define R← {γ ∈ π(Cσ) | C2 ∈ P(σ)} and B ← π(C2).
We present a new algorithm to maintain this Maximal Bichromatic Matching.

5. Finally, we use HLT [14] on a proxy graph with an edge for every non empty MBM∗.

We go through our data structures one by one in the order indicated in Figure 2.

3 Storing disks in quadtrees

Recall that F is a (dynamic) square bounding box of S. By construction, the side length of
F is 2ω for some integer ω. We define the square F to be a quadtree cell and we recursively
define quadtree cells to be any square obtained by splitting a cell into four equally sized
closed squares. A quadtree T on F is any hierarchical decomposition obtained by recursively
splitting cells. This hierarchical decomposition has a natural representation as a tree: the
root is the cell F and every cell has either 0 or 4 children depending on whether it was split.
We denote by F the (infinite) set of cells that are obtained by recursively splitting all cells,
starting from F . We say that a cell C ∈ F is at level ℓ whenever its side length is 2ℓ. We
treat any quadtree T as a set of cells, i.e., T ⊂ F.

1
MBM(C1, C2)

∀C1, ∀C2 ∈ P(π(C1), P) maintain:store in: ∀ nonempty MBM , insert edge in

Ancestor DS
Special

MBM(C1, C2) HLTS

mark cells in: stores copy of:

2

4

3

5
H(S)

Lower envelope of π(C1)

Figure 1 The five-component pipeline by Kaplan et al. where the arrows indicate dependencies.

MFCS 2024

63:6 Fully-Adaptive Dynamic Connectivity of Square Intersection Graphs

∀C1, ∀C2 ∈ P(π(C1)) maintain: ∀ nonempty MBM∗, insert edge in

MAT

HLTS MBM∗(C1, C2)

mark cells in: stores pointer to:

2 3

4 51

store in:

T (S)

Lower envelope of π(C1)

Figure 2 Our five-component pipeline where the arrows indicate dependencies.

Löffler, Simons, and Strash [23] use quadtrees to store arbitrary squares (or disks). Let F
be fixed and σ be some square with center s. The unique storing cell Cσ ∈ F is a largest cell
in F that contains the center s and that itself is contained in σ (if s lies at the intersection of
multiple largest contained cells, we define the bottom left cell to be Cσ). Löffler, Simons and
Strash subsequently say that Cσ stores σ. For a cell C ∈ F, we denote by π(C) all square of
S stored in C. We will define five different cell sets to define our quadtree storing S.

Quadtree cell sets. We assume that we have some bounding box F (which induces the set
F) and some set of storing cells in F. We subsequently define two types of subsets of F:

definitions that originate from [16] and depend on some P ∈ R (blackboard font),
and new definitions depending on only the storing cells (calligraphic font).

Quadtree cells C,C ′ are neighboring whenever they are not descendants of one another and
intersect in their boundary. For any property, a quadtree cell C in F is maximal if there does
not exist an ancestor of C in F with the same property.
Let σ ∈ S have a storing cell Cσ. We define (Figure 3):
N (σ) ⊂ F as the cells of size |Cσ| neighboring Cσ or a neighbor of Cσ.
C∗(σ, P) ⊂ F as the maximal cells C ′ ∈ F with C ′ ⊂ σ and |C| ∈ [1

4P , 1].
C(σ) ⊂ F as the maximal cells C ′ ∈ F with C ′ ⊂ σ that contain at least one storing cell.
P∗(σ, P) ⊂ F as the perimeter of σ. These are all C ′ ∈ F contained in a cell in N (σ) with
|C ′| ∈ [1

4P , 1] with the additional property that there exists a square ρ ⊂ R2 where C ′

would be the storing cell of ρ if ρ ∈ S, and, ρ intersects the boundary of σ.
P(σ) ⊂ F as all storing cells with diameter at most |σ| that, when scaled around their
center by a factor 5, intersect the boundary σ. Note that these may be contained in σ.

For R ⊆ S, we define N (R) to be the union of all N (σ) with σ ∈ R. All other sets (e.g.,
P(R)) are defined analogously. Let ℓmin (resp. ℓmax) be the smallest (resp. largest) level
that contains any cell in any of the five sets. Per definition, ℓmax − ℓmin ∈ O(logψ).

▶ Lemma 1 (Lemma 4.2 in [16]). For any σ ∈ S, if regions are disks under an Lp metric
with a diameter in [1

4P , 1] then: |C∗(σ, P)| ∈ O(P) and |P∗(σ, P)| ∈ O(P).

Compressed quadtrees. Denote by X ⊂ F some set of cells. Denote by TX the minimal
quadtree over some bounding box F that contains all cells in X. The size of TX can be
arbitrarily large, even when |X| is constant. To reduce quadtree space complexity, a quadtree
may be compressed [12]. An α-compressed quadtree (for some variable α ≥ 1) is defined as
follows: let C be a quadtree cell in TX and Cα be the smallest descendant of C such that (1)
|C| ≥ 2α|Cα| and (2) all cells in X that are contained in C are also contained in Cα. Then
C has not 4 children, but only Cα as its child. Given some constant α, every quadtree has a
unique maximally compressed equivalent that has size linear in |X| [12]. Given the above
definitions, we want to mention two different quadtrees that store S:

[23] defines L(S) as the compressed quadtree storing N (S).
[16] defines H(S) as the compressed quadtree storing N (S), C∗(S) and P∗(S).

I. van der Hoog, A. Nusser, E. Rotenberg, and F. Staals 63:7

∈ P(π(C), 4)

Storing cell

C

∈ C(π(C), 4)

̸∈ P(π(C), 4)

∈ P(π(C))

Storing cell

∈ C(π(C))

̸∈ P(π(C))

(a) (b) (c)

C C

Figure 3 (a) We show for a square σ its storing cell in orange. We set P = ψ = 2 and show our
sets. Many cells in C∗(π(C), 8) are also in P∗(π(C), 8). (b) The minimal quadtree that contains a
set of storing cells. (c) Given the quadtree with storing cells, we illustrate our sets. Red cells are
storing cells that occur in neither C(π(C)) nor P(π(C)).

Our quadtree. We define our quadtree T (S) as the compressed quadtree storingN (S), where
cells in C(S) are uncompressed. Note that any quadtree that contains N (S), also contains the
cells in C(S). The key difference between L(S) and T (S) is that we decompress the cells in
C(S), adding them to memory (i.e., we treat these cells as storing cells in the quadtree). Since
these cells are uncompressed, this structure uses more space than the O(n) cells in N (S). If
we view quadtrees as a collection of (uncompressed) cells, then L(S) ⊂ T (S) ⊂ H(S). By
Lemma 1, Kaplan et al. [16] prove that |C∗(S, P)|, |P∗(S, P)| ∈ O(Pn). It would be easy to
show that |C(S)|, |P(S)| ∈ O(nψ). But through clever counting, we prove that storing T (S)
uses only O(n logψ) space instead (Theorem 4).

3.1 Space complexity of the quadtree
We upper bound the size of N (S) and C(S) (and thus the size of T (S)).

▶ Observation 2. There are O(n) cells in N (S).

▶ Lemma 3. Let C be a storing cell. Denote by Z any cell, such that there could exist a σ
stored in Z where an ancestor of C lies in C(σ). There are at most O(logψ) such cells and
we can report them in O(logψ logn) time.

Proof. Let |C| = 2ℓ (i.e., C is at level ℓ). By definition, Z is in a level j ≥ ℓ. Fix a level j.
For any cell Z at level j, C(π(Z)) contains an ancestor of C only if a square in π(Z) intersects
(or contains) Cj (the ancestor of C at level j). As the diameter of squares in π(Z) is at most
a factor 5 larger than the diameter of Z, there are at most O(1) cells at level j that could
store a square ρ that intersects Cj (the neighbors of Cj , their neighbors and possibly their
neighbors). We can find these cells in O(logn) time by doing a point location in each cell for
the level j. The fact that per definition of ψ, all storing cells and all cells in C(S) lie in a
range of O(logψ) levels concludes the proof. ◀

▶ Theorem 4. At all times, the compressed quadtree T (S) uses O(n logψ) space.

Proof. Since T (S) is the quadtree that stores N (S) and C(S), and compressed quadtrees have
linear space in the number of uncompressed cells, Observation 2 and Lemmas 3 immediately
imply the theorem. ◀

MFCS 2024

63:8 Fully-Adaptive Dynamic Connectivity of Square Intersection Graphs

We additionally upper bound the size of two more quadtree cell types:

▶ Lemma 5. Let S be a set of squares with aspect ratio ψ. For all σ ∈ S with storing cell
Cσ there are at most O(ψ) cells in C(σ) and P(σ) and O(ψ2) cells in P(π(Cσ)).

Proof. Consider any set of squares S. We rescale the plane such that the diameter of squares
in S lies in [1

ψ , 1]. We apply Lemma 1 to conclude that |C(σ, ψ)|, |P(σ, ψ)| ∈ O(ψ). Note
that the smallest storing cell in T (S) then has size 1

4ψ . Having rescaled, C(σ) ⊆ C∗(σ, ϕ).
Suppose that after rescaling there is a cell C ∈ P(σ) that is not in P∗(σ, ψ). Then C,

scaled by a factor 5, intersects the boundary of σ. Yet if C ̸∈ P∗(σ, ψ) then C cannot store
any square ρ that intersects σ. Denote by C ′ a neighbor of C of size 2|C| that lies closer
to the center of σ. It must be that C ′ ∈ P∗(σ, ψ) (indeed, we can construct a square with
diameter 4|C| stored in C ′ that intersects σ). This way, each cell in P∗(σ, ψ) can get charged
by at most O(1) cells C ′ ∈ P(σ) where C ′ ̸∈ P∗(σ, ψ). Thus, |P(σ)| ∈ O(ψ). The upper
bound on |P(π(Cσ))| follows from the standard packing argument. ◀

▶ Lemma 6. Let C be a storing cell. Denote by Z any cell, such that there could exist a σ
stored in Z with C ∈ P(σ). We can report all O(logψ) such cells in O(logψ logn) time.

Proof. Let |C| = 2ℓ (i.e., C is at level ℓ in the quadtree). By definition, every quadtree cell
Z of the lemma statement is stored at a level j ≥ ℓ. Fix a level j ≥ ℓ and let Cj be the
ancestor of C at level j. If for any cell Z at level j, C ∈ P(π(Z)) then it must be that the
cells Z and Cj (when both are scaled around their center by a factor 5) intersect. There
are at most O(1) such cells Z at level j for which this can be true. We can find these cells
at level j in O(logn) time by performing O(1) point locations in the quadtree (querying a
neighborhood of 25× 25 around Cj). The fact that all cells in P(S) lie in a range of O(logψ)
levels concludes the proof. ◀

4 Maintaining and navigating quadtrees

A compressed quadtree TX that stores a set X of quadtree cells can be dynamically maintained
in O(log |X|) time per insertion and deletion [12]. Moreover, leaf location queries are
supported in O(log |X|) time, which take as input some point q ∈ R2 and output the leaf of
TX that contains q. By Theorem 4, |X| = O(n logψ) in our setting. Since we assume that
ψ ∈ O(nc), see Section 2, we can say that our insertion, deletion and point location operations
in the compressed quadtree take O(logn) time. Compressed quadtrees additionally support
level locations where for any query point q ∈ R2 and level ℓ, the output is the quadtree cell
at level ℓ that contains q; this can be used to dynamically maintain for all σ ∈ S the set
N (σ) in our quadtree in O(logn) time per update in S [5].

We maintain L(S) in O(logn) time per update to S, while supporting point location
queries. We maintain in O(logn) time per update in S the values dmax and dmin that denote
the maximal and minimal diameter in S respectively. We apply 3 more data structures:

Marked Ancestor Trees (MAT). Alstrup, Husfeldt, and Rauhe [2] introduce marked-
ancestor trees. Let T be a dynamic tree. Each node in T is either marked or unmarked.
Given a node v ∈ T , the MAT supports changing the mark of v or updating T in O(log logn)
time. Additionally, given a node v ∈ T , one can find the lowest/highest marked node on the
path from v to the root in O(logn/ log logn) time. We augment our quadtree with a MAT.

I. van der Hoog, A. Nusser, E. Rotenberg, and F. Staals 63:9

Orthogonal range trees. Willard and Lueker [30] show a data structure to store a set of
n squares using O(n logn) space. Given a query rectangle ρ, it can report an input square
contained in ρ in O(log4 n) time, if such a square exists. Given a query square ρ it can report
the number of squares that contain ρ in O(log4 n) time. We implement the range tree using
general balanced trees [4], so that we can support updates in amortized O(log4 n) time.

Segment trees. Segment trees [8] store a set of n horizontal segments using O(n logn)
space, so that for a vertical query segment Q we obtain all k input segments that intersect Q
in O(log2 n+ k) time. The data structure can again be made dynamic, supporting updates
in O(log2 n) amortized time. For any σ, we store the horizontal sides of Cσ (scaled by a
factor 5) in such an orthogonal intersection data structure. Furthermore, we create a second
such a data structure storing all vertical sides.

▶ Theorem 7. Let S be a set of axis-aligned squares. We augment T (S) with an O(n logn)-
size data structure using O(n logn) space, supporting inserting/deleting a square σ in
O(|C(σ)| · log4 n+ log6 n) time, and

all cells in C(S) are marked in our marked-ancestor tree;
for any query square γ, we can obtain P(γ) in O(log2 n+ |P(γ)|) time.
for any query cell C, we obtain the set Z(C) := {Z | C ∈ P(π(Z))} in O(log5 n) time.

Proof. By Theorem 4, our quadtree requires O(n logψ) space. Using the standard operations
on compressed quadtrees, we can maintain N (S) in O(logn) time per update. What remains
for quadtree maintenance is to identify, decompress and mark all cells in C(S).

Maintaining C(S). Every cell C ∈ F has a counter that counts for how many σ ∈ S,
C ∈ C(σ). Whenever the counter is zero, we do not store it explicitly. Otherwise, C ∈ C(S)
and we need to make sure that C is decompressed and marked. For each update of a square
σ with storing cell Cσ, there are two types of counter updates:
1. updating counters of C ∈ C(σ), and
2. updating the counters of Cσ and its ancestors.
We start with the first case. Instead of increasing counters, we do something slightly stronger
as we can report all of C(σ). By definition, Cσ ∈ C(σ) and we add it to our output. We split
σ into eight rectangles that are bounded by σ and the boundary of Cσ, see Figure 4. We
process each rectangle separately. Consider such a rectangle R. We query our orthogonal
range tree to report a storing cell C1 in R in O(log4 n) time. Given C1, we walk in O(logψ)
time up the quadtree to find its largest ancestor C ′

1 that is still contained in σ. By definition,
C ′

1 ∈ C(σ) and we add it to our output. Subsequently, we partition R into nine rectangles
that are bounded by the boundaries of C ′

1 and recurse. For each cell in C(σ) we perform
eight orthogonal range queries. For each range query, we either conclude that the range
contains no cells in C(σ), or we identify at least one cell in C(σ). As we recurse on rectangles
that are bounded by cell boundaries and we explore all of R, we find all cells of C(σ) in
O(|C(σ)| · log2 n) time. As we find them, we may adjust their counters.

Now onto the second case, where we simply recompute all counters from scratch. There
are at most O(logψ) ancestors Cσ, C1, . . . Ck of Cσ that may be contained in a square in S.
For each of these, we recompute their counters from scratch. Fix an ancestor Ci with parent
Ci+1. By Lemma 3, there are at most O(logψ) cells Z such that Z could store a square γ
with Ci ∈ C(γ). We obtain all such Z in O(logψ logn) time and iterate over each of them.
For a fixed Z, we use the range tree to count how many γ ∈ π(Z) contain Ci in O(log4 n)
time. We then count how many γ ∈ π(Z) contain Ci+1. The difference between these counts
is the number of squares γ∗ ∈ π(Z) for which Ci ∈ C(γ∗). We compute and sum all these
numbers to recompute the count of Ci. It follows from the fact that O(logψ) ⊂ O(logn)
that we can maintain C(S) in O(|C(σ)| · log2 n+ log6 n) time.

MFCS 2024

63:10 Fully-Adaptive Dynamic Connectivity of Square Intersection Graphs

Querying for P(γ). We show how to obtain for any query squares γ the set P(γ) in
O(log2 n+ |P(γ)|) time. For each storing cell C, we consider the cell C∗ that is C scaled by
a factor 5 around its center. We store each of the boundary segments of C∗ in our Segment
Tree. There is exactly one storing cell per square in S, so maintaining the Segment Tree
intersection data structure takes O(log2 n) time per update and uses O(n logn) space. For
any query square γ, we have C ∈ P(γ) if and only if one of the boundary segments of γ
intersects one of the boundary segments of C∗. Thus, we can immediately use the intersection
data structure to compute P(γ) in O(log2 n+ |P(γ)|) time, as each cell in P(γ) is reported
at most a constant number of times.

Querying for Z(C). Denote by Z any cell, such that there could exist a γ stored in Z

with C ∈ P(γ). By Lemma 6, we can report all at O(logψ) such cells in O(logψ logn) time.
For every such Z, we conceptually rotate the plane such that Z lies above C. Let C∗ be the
cell C increased by a factor 5 around its center. Any square ρ in π(Z) intersects C∗ in its
boundary if and only if one of two conditions hold: ρ contains the top left endpoint of C∗ but
not the bottom left endpoint, or ρ contains the top right endpoint of C∗ but not the bottom
right endpoint. We select the top right endpoint of C∗ and we count how many squares in
π(Z) contain the top right endpoint in O(log4 n) time. We do the same for the bottom right
endpoint. If the counts differ, there is at least one square in π(Z) that intersects C∗ in its
boundary and thus C ∈ P(π(Z)). Doing this for all O(logψ) levels takes O(log5 n) time. ◀

3

Cσ

2 3

4
567

8Cσ

(a) (b) R

1

7 6 5

4

21

8

C1

C′
1

Figure 4 (a) Given a storing cell Cσ, we partition σ into nine rectangles (one being Cσ). (b) For
each rectangle R, we do a range query to find a storing cell C1 (if it exists). For the largest ancestor
C′

1 ⊂ σ of C1, we partition R into nine rectangles once again and recurse.

5 Specific square intersection data structures

In this section we develop a solution for the following data structure problem: Let R be a
set of m squares. Let R1, . . . , Rk, be k subsets of R that we refer to as conflict sets and let
ℓ ≤ k be the maximum number of conflict sets that any square from R appears in. We want
to store R and all the conflict sets R1, . . . , Rk in a data structure that has size near linear in
m and z =

∑
i |Ri|, and support the following operations in the following time:

Insert(ρ), (O(l · log3 m) time): Insert a square ρ into R.
Delete(ρ), (O(l · log3 m) time): Delete a square ρ from R and every Ri that it occurs in.
Insert(ρ,Ri), (O(log3 m) time): Insert a square ρ in the conflict set Ri. If Ri = ∅, create

a new conflict set.
Delete(ρ,Ri), (O(log3 m) time): Delete a square ρ from the conflict set Ri.
Query(σ,Ri, C), (O(log3 m) time): Given a query σ whose center lies below all centers

of all squares in R, and a horizontal line segment C below σ, return (if it exists) a square
ρ ∈ R that intersects σ, but is not in the conflict set Ri, and that does not contain C.

I. van der Hoog, A. Nusser, E. Rotenberg, and F. Staals 63:11

In Section 6 we solve this problem as follows: we map every square ρ = [ℓρ, rρ]×[bρ, tρ] ∈ R
to a point pρ = (bρ, ℓρ, rρ) in R3, and store these points in a 3D-range tree T augmented for
range counting queries [8]. Hence, every third-level subtree Tν stores the number of points
mν in Tν . Furthermore, for each such subtree, and each conflict set Ri, consider the subset
of points stored in the leaves of Tν for which the corresponding square appears in Ri. If this
set is non-empty then node ν also stores the size mν,i = |{pρ | pρ ∈ Tν ∧ ρ ∈ Ri}| of this set.
Furthermore, we maintain a bipartite graph between the squares in R and the conflict sets
Ri, so that given a square ρ ∈ R we can find the ℓ conflict sets it appears in in O(ℓ) time. We
implement all trees using general balanced trees [4] so that we can perform updates efficiently.
A 3D-range tree uses O(m log2 m) space. Each square in the multiset

⋃
iRi contributes to

O(log3 m) nodes of T , and hence the entire structure uses at most O((m+ z) log3 m) space
(Lemma 8). In Section 7 we use this structure for connectivity queries.

6 Square intersection data structure

Let R be a set of m squares. Let R1, . . . , Rk, be k subsets of R that we refer to as conflict
sets and let ℓ ≤ k be the maximum number of conflict sets that any square from R appears
in. We want to store R and all the conflict sets R1, . . . , Rk in a data structure that has size
near linear in m and z =

∑
i |Ri|, and support the following operations:

Insert(ρ): Insert a square ρ into R.
Delete(ρ): Delete a square ρ from R and every Ri that it occurs in.
Insert(ρ,Ri): Insert a square ρ in the conflict set Ri. If Ri = ∅, create a new conflict set.
Delete(ρ,Ri): Delete a square ρ from the conflict set Ri. If Ri becomes empty, delete Ri.
Query(σ,Ri, C): Given a query square σ whose center lies below all centers of all squares

in R, and a horizontal line segment C below σ, return (if it exists) a square ρ ∈ R that
intersects σ, but is not in the conflict set Ri, and that also does not contain C.

We map every square ρ = [ℓρ, rρ] × [bρ, tρ] ∈ R to a point pρ = (bρ, ℓρ, rρ) in R3, and
store these points in a 3D-range tree T augmented for range counting queries [8]. Hence,
every third-level subtree Tν stores the number of points mν in Tν . Furthermore, for each
such subtree, and each conflict set Ri, consider the subset of points stored in the leaves of
Tν for which the corresponding square appears in Ri. If this set is non-empty then node ν
also stores the size mν,i = |{pρ | pρ ∈ Tν ∧ ρ ∈ Ri}| of this set. Furthermore, we maintain a
bipartite graph between the squares in R and the conflict sets Ri, so that given a square
ρ ∈ R we can find the ℓ conflict sets it appears in in O(ℓ) time. We implement all trees
using general balanced trees [4] so that we can perform updates efficiently. A 3D-range tree
uses O(m log2 m) space. Each square in the multiset

⋃
iRi contributes to O(log3 m) nodes

of T , and hence the entire structure uses at most O((m+ z) log3 m) space. We show how to
answer our queries and how to update the data structure:

▶ Lemma 8. Let R be a set of m squares, let z =
∑
|Ri|, and let there be at most k ≤ m

conflict sets. Let each ρ ∈ R appear in at most l conflict sets. There is a data structure
D∗(R) of size O((m+ z) log3 m) that supports:
Insert(ρ) in O(l · log3 m) amortized deterministic time,
Delete(ρ) in O(l · log3 m) amortized deterministic time,
Insert(ρ,Ri) in O(log3 m) amortized deterministic time,
Delete(ρ,Ri) in O(log3 m) amortized deterministic time, and
Query(σ,Ri, C) in O(log3 m) amortized deterministic time.

MFCS 2024

63:12 Fully-Adaptive Dynamic Connectivity of Square Intersection Graphs

σ

ρ

C

bρ

ℓρ rρ

tσ

ℓσ rσ

ℓC rC

yC

σ

ρ

ℓρ rρ

yC

ℓC rC
ℓρ

rρ

ℓσ rσ

ℓσ

rσ

rρ

ℓσ

ℓρ

(a) (b) (c)

bσC

Figure 5 (a) Since the center of ρ lies above the center of σ, we can essentially treat ρ as a
rectangle unbounded from the top, and σ as a rectangle unbounded from the bottom. (b) A square
ρ may intersect σ but is not allowed to contain C. (c) The x-extents of the objects map to points
in R2. Squares (whose x-extent) intersects (the x-extent) of σ lie in the blue region, and are not
allowed to lie in the purple region.

Proof. To insert a square ρ ∈ R we use the standard insertion procedure for (dynamic)
3D-range trees; we insert the point pρ into O(log3 m) subtrees. If, one of our subtrees becomes
too unbalanced, we rebuild it from scratch. Rebuilding a dD-range tree on a set P of n points
can be done in O(n logd−1 n) time. However, we also still have to update the mν,i counts for
each ternary subtree Tν and each conflict list. We can do this in O(ln logd n) time as follows.
For each point pρ ∈ P we obtain the at most l conflict sets Ri it appears in, and for each
leaf corresponding to pρ we simply walk upward updating the mν,i counts appropriately. It
follows that the amortized insertion time is O(l log3 m). Deletions are handled similarly in
O(l log3 m) amortized time.

To insert or delete a square ρ in one of the conflict sets Ri we update the mν,i counts in
the O(log3 m) affected nodes (and we insert or delete the appropriate edge in the bipartite
graph). If one of the mν,i counts reaches zero after a deletion, we stop storing it. Any counts
that we do not store explicitly are considered to be zero.

Consider a query with square σ = [ℓσ, rσ]×[bσ, tσ], horizontal segment C = [ℓC , rC]×{yC},
and conflict set Ri (see also Figure 5). We will argue that there are O(1) axis parallel boxes
Q1, .., QO(1) such that the subset of squares from R that intersect σ but do not contain C is
the subset of points that lies in

⋃
j Qj . Our range tree allows us to obtain O(log3 m) ternary

subtrees Tν that together represent the points in this region (in O(log3 m) time). For each
such subtree we then consider the counts mν and mν,i: if they are equal all points (squares)
in Tν also appear in Ri, and hence there are no candidate points (squares) to be found in Tν .
Otherwise, we have mν > mν,i, and hence Tν does contain a point pρ for which ρ intersects
σ, does not contain C, and for which ρ ̸∈ Ri. Moreover, one of the two children of ν, say
node µ, must then also have mµ > mµ,i. This way we can find pρ in time proportional to
the height of Tν . It follows that the total query time is O(log3 m). All that remains is to
describe the regions Q1, .., QO(1).

Since the center of σ is guaranteed to lie below all centers of squares in R, and yC ≤ bσ,
we can essentially treat all squares as three-sided rectangles. In particular, a square ρ ∈ R
intersects σ if and only if pρ = (bρ, ℓρ, rρ) lies in the query range Q = (−∞, tσ]× (−∞, rσ]×
[ℓσ,∞) (see Figure 5). Using that yc ≤ bσ ≤ (bρ + tρ)/2, we find that C ⊂ ρ if and only if
pρ lies in the range Q′ = (∞, yC]× (−∞, ℓC]× [rC ,∞). Hence, ρ intersects σ, but does not
contain C if and only if pρ ∈ Q \Q′. Since both Q and Q′ are orthogonal boxes this region
can be expressed as the union of O(1) orthogonal ranges. ◀

I. van der Hoog, A. Nusser, E. Rotenberg, and F. Staals 63:13

7 Maximal Bichromatic Matchings

The Maximal Bichromatic Matching data structure (MBM) in [16] relies upon a square
intersection data structure D. Consider a pair of disjoint quadtree cells C1, C2 and two sets
R ⊆ π(C1) and B ⊆ π(C2). The MBM stores two square intersection data structures: D(R)
and D(B), plus a maximal bichromatic matching MRB of the graph G[R ∪B].

Given two such cells C1, C2, they dynamically maintain the matching as follows: For all
edges in MRB, dynamically remove the endpoints from the square intersection structures
storing D(R\MRB) and D(B\MRB). When a new square σ gets inserted into B, query
D(R\MRB) to find a square in R\MRB that intersects σ. If such a square ρ exists, add the
edge (ρ, σ) to the matching MRB . Subsequently delete ρ from D(R\MRB). With a similar
procedure for deletions, one can dynamically maintain MRB in time proportional to the
update and query time of the intersection data structure D.

Defining the sets R and B. The sets R and B must be carefully chosen if we want to
avoid spending quadratic space in n or ψ. Recall the pipeline of Kaplan et al. [16]. For each
storing cell C1, for each C2 ∈ P∗(π(C1)), they store an MBM between the pair (C1, C2). We
know that there may be Θ(ψ2) cells in the set P∗(π(C1)). Suppose that for each pair C1, C2
they set R ← π(C1) and B ← π(C2). Every square in π(C1) may get stored O(ψ2) times
and the total space usage is O(ψ2n). To improve space and time usage, the authors of [16]
instead set R ← {σ ∈ π(C1) | C2 ∈ P∗(σ)} and B ← π(C2), see Figure 6(a). Since each
square σ ∈ π(C1) has O(ψ) cells in its perimeter P∗(σ), each square σ is stored O(ψ) times
and the total space is O(ψ · |π(C1)|). A charging argument then shows that the total space
required is O(ψn). The data structures can be updated in O(ψ) times: the update time of
the intersection data structures D(R\MRB) and D(B\MRB).

Defining an MBM for adaptive ψ. When the aspect ratio is adaptive (or, even when it is
bounded), the approach by Kaplan et al. [16] requires an update time linear in ψn, since,
after increasing ψ, the perimeter P∗(π(σ)) increases in size by O(ψ) for every storing cell C1.
We could try to avoid this issue by replacing their definition of perimeter with ours. That is,
for every cell C1, we would consider the O(ψ2) cells C2 in P(π(C1)). For the pair C1, C2,
we want to maintain an MBM between sets R← {σ ∈ π(C1) | C2 ∈ P(σ)} and B ← π(C2);
by storing R and B each in their separate data structure for square intersection queries.
However, such a structure can also not be efficiently dynamically maintained, see Figure 6(b).
Thus, we must avoid storing the sets R\MRB and B\MRB explicitly in a data structure.

C1

(a) D(R) D(π(C2))(b)

Figure 6 (a) C1 with a blue C2 ∈ P∗(π(C1)). The elements of the set R = {σ ∈ π(C1) | C2 ∈
P∗(σ)} are the green and yellow squares. (b) If we split C2 to create a cell C′, then the corresponding
R′ would consist only of the orange squares. Since there exists no efficient way to split intersection
data structures, constructing the new data structure on R′ takes linear time.

MFCS 2024

63:14 Fully-Adaptive Dynamic Connectivity of Square Intersection Graphs

Applying our data structure problem. We now apply our previous data structure problem.
Let C1 be a storing cell in our quadtree T (S). We maintain the data structure D∗(π(C1))
(i.e. we set R ← π(C1)). Let there be k cells in the perimeter P(π(C1)). Then by Lemma 5,
we have k ∈ O(ψ2). Let Ci be some storing cell in P(π(C1)), we denote by Mi some maximal
matching in the graph G[R ∪B] for R← {γ ∈ π(C1) | Ci ∈ P(γ)} and B ← π(Ci). Denote
by Ri the squares in π(C1) that are part of Mi; we say that Ri is a conflict set. The result
of this transformation are k conflict sets of π(C1). Moreover, each square ρ in π(C1) may
appear in at most l ∈ O(|P(ρ)|) ⊂ O(ψ) conflict sets. We now apply Lemma 8 four times
(one for each direction). We maintain for all C1 this data structure D∗(π(C1)) and show:

▶ Theorem 9. Let S be a set of n squares with adaptive aspect ratio ψ. We can maintain
for pair of storing cells (C1, C2) a maximal bichromatic matching in G[R ∪ π(C2)] with
R← {γ ∈ π(C1) | C2 ∈ P(γ)}. Our solution uses O(n logψ log3 n) space. Inserting/deleting
a square σ requires O(|P(σ)| · log3 n+ log5 n) amortized time.

Proof. We first analyse our space usage and then show how to maintain each matching.

Upper bounding size. For C1, denote by z1 the sum of all Ci, over all edges in the maximal
matching of G[R ∪ π(Ci)] with R ← {γ ∈ π(C1) | C2 ∈ P∗(γ)}. Lemma 8 presents a data
structure with size O((|π(C1)|+z1) log3 |π(C1)|). Denote byM(S) the set of all edges, across
all maximal bichromatic matchings, for all pairs of storing cells (C1, C2). Let M(S) contain
z∗ elements. It follows that all these data structures use at most O((n+ z∗) · log3 n) total
space. We upper bound the number of edges in z∗ by charging each edge to one of their
endpoints. Intuitively, we charge each matched edge to the squares of the smallest quadtree
cell. Every square σ ∈ S receives at most O(logψ) charges and z∗ is upper bound by n logψ.

More formally, we over-estimate the edges in M(S). Fix for every pair (C1, C2) with
C2 ∈ P(π(C1))) an arbitrary maximal bichromatic matching in the graph G[π(C1) ∪ π(C2)]
(i.e., we ignore the fact that we match between sets R ⊆ π(C1) and B ⊆ π(C2), and fix some
potentially larger matching in the bigger graph G[π(C1)∪π(C2)]). Denote for C1 byM≺(C1)
the set of all matchings between C1 and C2 where |C1| ≺ |C2| for ≺ ∈ {<,=, >}. Any edge
e ∈M(S) is inM=(C1)∪M<(C1) for some storing cell C1. First, we upper bound |M=(C1)|.
There are O(1) cells C2 with |C1| = |C2| and C1 ∈ P(π(C2)) or vice versa. For every such
C2, there can be at most O(|π(C1)|) edges in a MBM in G[π(C1) ∪ π(C2)]. Thus, there are
at most O(|π(C1)|) edges in M=(C1). Second, by Lemma 6, there are at most O(logψ) cells
C2 with C1 ∈ P(π(C2)) and |C1| < |C2|. Again, every matching in G[π(C1) ∪ π(C2)] has at
most O(|π(C1)|) edges, thus M<(C1) contains at most O(|π(C1)| · logψ) edges. Now:

z∗ = |M(S)| ≤
∑

storing cell C1

|M=(C1)|+ |M<(C1)| ≤
∑

storing cell C1

|π(C1)| · logψ ≤ n logψ

It follows we use at most O((n+ z∗) · log3 n) ⊂ O(n logψ log3 n)) space.

Maintaining the MBM. Suppose that we delete a square σ from S (this is the more
difficult case). We can find its storing cell Cσ in O(logn) time using standard quadtree
navigation. We obtain D∗(π(Cσ)) with its k ∈ O(ψ2) conflict sets. Recall that σ appears in
at most l ∈ O(|P(σ)|) conflict sets. By Lemma 8, we may remove σ from the data structure
D∗(π(Cσ)) in O(l log2 n) ⊆ O(|P(σ)| · log2 n) amortized time. What remains is to update
all the matchings. We recall that we maintain a matching between (Cσ, C2) in two cases:
either the cell C2 ∈ P(π(Cσ)) or Cσ ∈ P(π(C2)). There are at most O(|P(π(Cσ))|) cells of
the first case, and O(logψ) cells of the second case. By Theorem 7, we may obtain all such
cells in O(log5 n+ |P(σ)|) time.

I. van der Hoog, A. Nusser, E. Rotenberg, and F. Staals 63:15

Processing a cell C2. Fix a cell C2 with a corresponding conflict set R2 in D∗(π(Cσ)). We
test if σ was an endpoint of the matching (σ, ρ) by searching over the conflict set R2. If so,
then we delete σ from the conflict set R2. What remains is to try and rematch ρ.

Thus, we want to find a square in R = {γ ∈ π(σ) | C2 ∈ P(γ)}, that is not already in the
conflict set R2 (i.e. not already in the matching between G[R ∪B]). Denote by K the cell
Cσ scaled by a factor 5 around its center and by K the bottom facet of K. We claim that ρ
can be matched to a square in R if and only if Query(ρ,R2,K) from Lemma 8 is not empty.

Indeed, for any γ ∈ π(Cσ) that intersects ρ and contains K, must contain K. By definition,
C2 ̸∈ P(γ) and thus γ ̸∈ R. For any γ ∈ π(Cσ) that intersects ρ where γ ∈ R2, by definition
γ ̸∈ R\MRB . For any γ ∈ π(Cσ) that does not intersect ρ, there is no edge between γ and ρ
in G[R ∪B]. It follows that with one query we may rematch ρ in O(log3 n) amortized time.

Since there are at most O(|P(σ)| + logψ) cells C2 to consider, we can maintain every
MBM in O(|P(σ)| · log3 n+ log5 n) time. ◀

8 Dynamic connectivity in square intersection graphs

Having formally introduced and analysed every component, we can now fully state what our
data structure maintains. For an illustration, we refer back to Figure 2. We store a data
structure that uses at most O(n log3 n logψ) space:
(1) We store S in a quadtree T (S).

This quadtree contains for each cell σ ∈ S the neighborhood N (σ). Additionally, we
maintain all C ∈ C(S) with O(|C(σ)| · log4 n+ log6 n) amortized time (Thm 7).
This quadtree requires O(n logψ) space (Thm 7).

(2) We augment our quadtree with a Marked-Ancestor Tree (MAT).
We mark each cell C ∈ C(S) in the MAT (Thm 7).

(3) For any storing cell C, we define a conflict set Ri for all cells Ci ∈ P(π(C)). We store
π(C) with the conflict sets in our square intersection data structure D∗(π(C)).

Let z∗ =
∑
C

∑
i |Ri|, the total space required is O((n+ z∗) log3 n) (Lem 8).

By the proof of Theorem 9, z∗ ∈ O(n logψ) so we use O(n logψ log3 n) total space.
(4) For each storing cell C1 and each C2 ∈ P(π(C1)), we store a Maximal Bichromatic

Matching (MBM) in G[R ∪B].
We set R as the set of squares in C1 that have C2 in their perimeter (R ← {γ ∈
π(C1) | C2 ∈ P(γ)} and B ← π(C2).
Updates in S require O(|P(σ)| · log3 n+ log5 n) amortized time (Thm 9).

(5) Finally, for any pair (C1, C2), if their MBM is not empty, we store an edge between them.
We maintain the resulting “proxy graph” in the HLT data structure [14].
Inserting or deleting a square σ introduces at most O(|P(σ)|+ logψ) new edges.

We finally show that this data structure implies the following:

▶ Theorem 10. Let S be a set of squares with adaptive aspect ratio ψ. We can store S in
a dynamic data structure of size O(n log3 n logψ) with O((|C(σ)| + |P(σ)|) log4 n + log6 n)
amortized deterministic update time such that for any pair of squares (σ, ρ) we can query for
the connectivity between σ and ρ in O(logn/ log logn) time.

Proof. Our pipeline functions identical to the pipeline of [16]. Given σ, we obtain a pointer to
its storing cell Cσ in O(1) time. We then query the marked-ancestor tree in O(logn/ log logn)
time to find the largest ancestor Cα of Cσ that is marked. The cell Cα is marked by at least
one squares γ that contains Cα in its interior. We obtain a pointer to γ and its storing cell
C∗ in O(1) time. We note that if there is also some squares γ′ that marked Cα, we may
arbitrarily get a pointer to either γ or γ′. Doing the same procedure for ρ gives a cell R∗. We

MFCS 2024

63:16 Fully-Adaptive Dynamic Connectivity of Square Intersection Graphs

test whether C∗ and R∗ are connected in the proxy graph O(logn/ log logn) time. We now
claim that these two cells are connected in the proxy graph if and only if (ρ, σ) are connected.
The key observation to prove this claim is that, if we were to rescale the plane, our graph
contains the proxy graph maintained by Kaplan et al. [16] as a subgraph. Indeed at the time
of a query, ψ is fixed. Thus, we may rescale the plane such that every square has a diameter
in [1

ψ , 1]. Let H(S) be the quadtree of [16], then T (S) ⊂ H(S). Kaplan et al. maintain for
every pair (C1, C2) with C2 ∈ P∗(π(C1)) an Maximal Bichromatic Matching in the graph
G[R′ ∪B′] for R′ ← {γ ∈ π(C1) | C2 ∈ P∗(γ)} and B′ ← π(C2). For each nonempty MBM
between a pair (C1, C2), they store an edge in the proxy graph.

Note that if the MBM is nonempty, then both C1 and C2 are storing cells. It follows
that C2 ∈ P(π(C1)); and that R′ = R. Thus, we store for each non-empty MBM a maximal
bichromatic matching in the graph G[R ∪B] = G[R′ ∪B′] as in [16]. This implies that after
rescaling, whenever there exists an edge in the proxy graph of [16], there exists an edge in
our data structure. Thus, we may immediately apply the proof of Theorem 4.3 in [16] to
conclude that (σ, ρ) are connected if and only if (C∗, R∗) are. ◀

References
1 Anders Aamand, Adam Karczmarz, Jakub Lacki, Nikos Parotsidis, Peter M. R. Rasmussen, and

Mikkel Thorup. Optimal decremental connectivity in non-sparse graphs. CoRR, abs/2111.09376,
2021. arXiv:2111.09376.

2 Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked ancestor problems. In Proceedings
39th Annual Symposium on Foundations of Computer Science (Cat. no. 98CB36280), pages
534–543. IEEE, 1998.

3 Stephen Alstrup, Jens P. Secher, and Maz Spork. Optimal on-line decremental connectivity in
trees. Inf. Process. Lett., 64(4):161–164, 1997. doi:10.1016/S0020-0190(97)00170-1.

4 Arne Andersson. General balanced trees. J. Algorithms, 30(1):1–18, 1999. doi:10.1006/jagm.
1998.0967.

5 Kevin Buchin, Maarten Löffler, Pat Morin, and Wolfgang Mulzer. Preprocessing imprecise
points for delaunay triangulation: Simplified and extended. Algorithmica, 61(3):674–693, 2011.

6 Timothy M Chan and Zhengcheng Huang. Dynamic geometric connectivity in the plane with
constant query time. arXiv preprint arXiv:2402.05357, 2024.

7 Timothy M. Chan, Mihai Pătraşcu, and Liam Roditty. Dynamic connectivity: Connecting to
networks and geometry. SIAM J. Comput., 40(2):333–349, 2011. doi:10.1137/090751670.

8 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
geometry: Algorithms and applications, 3rd Edition. Springer, 2008. URL: https://www.
worldcat.org/oclc/227584184.

9 David Eppstein. Dynamic generators of topologically embedded graphs. In Proceedings of
the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 12-14, 2003,
Baltimore, Maryland, USA, pages 599–608. ACM/SIAM, 2003. URL: http://dl.acm.org/
citation.cfm?id=644108.644208.

10 David Eppstein, Zvi Galil, Giuseppe F Italiano, and Thomas H Spencer. Separator based
sparsification for dynamic planar graph algorithms. In Proceedings of the twenty-fifth annual
ACM symposium on Theory of Computing, pages 208–217, 1993.

11 Greg N. Frederickson. Data structures for on-line updating of minimum spanning trees, with
applications. SIAM J. Comput., 14(4):781–798, 1985. doi:10.1137/0214055.

12 Sariel Har-Peled. Quadtrees-hierarchical grids. Lecture notes, 2010.
13 Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph algorithms

with polylogarithmic time per operation. J. ACM, 46(4):502–516, 1999. doi:10.1145/320211.
320215.

14 Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
Journal of the ACM (JACM), 48(4):723–760, 2001.

https://arxiv.org/abs/2111.09376
https://doi.org/10.1016/S0020-0190(97)00170-1
https://doi.org/10.1006/jagm.1998.0967
https://doi.org/10.1006/jagm.1998.0967
https://doi.org/10.1137/090751670
https://www.worldcat.org/oclc/227584184
https://www.worldcat.org/oclc/227584184
http://dl.acm.org/citation.cfm?id=644108.644208
http://dl.acm.org/citation.cfm?id=644108.644208
https://doi.org/10.1137/0214055
https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/320211.320215

I. van der Hoog, A. Nusser, E. Rotenberg, and F. Staals 63:17

15 Jacob Holm and Eva Rotenberg. Good r-divisions imply optimal amortized decremental bicon-
nectivity. In Markus Bläser and Benjamin Monmege, editors, 38th International Symposium
on Theoretical Aspects of Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken,
Germany (Virtual Conference), volume 187 of LIPIcs, pages 42:1–42:18. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.STACS.2021.42.

16 Haim Kaplan, Alexander Kauer, Katharina Klost, Kristin Knorr, Wolfgang Mulzer, Liam
Roditty, and Paul Seiferth. Dynamic connectivity in disk graphs. In 38th International
Symposium on Computational Geometry (SoCG 2022). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022.

17 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar voronoi diagrams for general distance functions and their algorithmic applications.
Discrete & Computational Geometry, 64(3):838–904, 2020.

18 Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polylogar-
ithmic worst case time. In Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA,
January 6-8, 2013, pages 1131–1142. SIAM, 2013. doi:10.1137/1.9781611973105.81.

19 Katharina Klost. An algorithmic framework for the single source shortest path problem with
applications to disk graphs. Computational Geometry, 111:101979, 2023.

20 Fabian Kuhn, Rogert Wattenhofer, and Aaron Zollinger. Ad-hoc networks beyond unit disk
graphs. In Proceedings of the 2003 Joint Workshop on Foundations of Mobile Computing,
DIALM-POMC ’03, pages 69–78, New York, NY, USA, 2003. Association for Computing
Machinery. doi:10.1145/941079.941089.

21 Jakub Lacki and Piotr Sankowski. Optimal decremental connectivity in planar graphs. In
Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International Symposium on Theoretical
Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany, volume 30
of LIPIcs, pages 608–621. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:
10.4230/LIPIcs.STACS.2015.608.

22 Chih-Hung Liu. Nearly optimal planar k nearest neighbors queries under general distance
functions. SIAM Journal on Computing, 51(3):723–765, 2022.

23 Maarten Löffler, Joseph A Simons, and Darren Strash. Dynamic planar point location
with sub-logarithmic local updates. In Algorithms and Data Structures: 13th International
Symposium, WADS 2013, London, ON, Canada, August 12-14, 2013. Proceedings 13, pages
499–511. Springer, 2013.

24 Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic minimum
spanning forest with subpolynomial worst-case update time. In Chris Umans, editor, 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, October 15-17, 2017, pages 950–961. IEEE Computer Society, 2017. doi:10.1109/FOCS.
2017.92.

25 Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J.
Comput. Syst. Sci., 26(3):362–391, 1983. doi:10.1016/0022-0000(83)90006-5.

26 Robert Endre Tarjan. A class of algorithms which require nonlinear time to maintain disjoint
sets. J. Comput. Syst. Sci., 18(2):110–127, 1979. doi:10.1016/0022-0000(79)90042-4.

27 Robert Endre Tarjan and Jan van Leeuwen. Worst-case analysis of set union algorithms. J.
ACM, 31(2):245–281, 1984. doi:10.1145/62.2160.

28 Mikkel Thorup. Decremental dynamic connectivity. J. Algorithms, 33(2):229–243, 1999.
doi:10.1006/jagm.1999.1033.

29 Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In F. Frances Yao and
Eugene M. Luks, editors, Proceedings of the Thirty-Second Annual ACM Symposium on
Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 343–350. ACM, 2000.
doi:10.1145/335305.335345.

30 Dan E Willard and George S Lueker. Adding range restriction capability to dynamic data
structures. Journal of the ACM (JACM), 32(3):597–617, 1985.

MFCS 2024

https://doi.org/10.4230/LIPIcs.STACS.2021.42
https://doi.org/10.1137/1.9781611973105.81
https://doi.org/10.1145/941079.941089
https://doi.org/10.4230/LIPIcs.STACS.2015.608
https://doi.org/10.4230/LIPIcs.STACS.2015.608
https://doi.org/10.1109/FOCS.2017.92
https://doi.org/10.1109/FOCS.2017.92
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1016/0022-0000(79)90042-4
https://doi.org/10.1145/62.2160
https://doi.org/10.1006/jagm.1999.1033
https://doi.org/10.1145/335305.335345

	1 Introduction
	2 Problem statement and technical overview
	3 Storing disks in quadtrees
	3.1 Space complexity of the quadtree

	4 Maintaining and navigating quadtrees
	5 Specific square intersection data structures
	6 Square intersection data structure
	7 Maximal Bichromatic Matchings
	8 Dynamic connectivity in square intersection graphs

