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Abstract: This paper presents an overview of emerging memory technologies. It begins with the
presentation of stand-alone and embedded memory technology evolution, since the appearance
of Flash memory in the 1980s. Then, the progress of emerging memory technologies (based on
filamentary, phase change, magnetic, and ferroelectric mechanisms) is presented with a review of the
major demonstrations in the literature. The potential of these technologies for storage applications
addressing various markets and products is discussed. Finally, we discuss how the rise of artificial
intelligence and bio-inspired circuits offers an opportunity for emerging memory technology and
shifts the application from pure data storage to storage and computing tasks, and also enlarges the
range of required specifications at the device level due to the exponential number of new systems
and architectures.

Keywords: memory; nonvolatile memory; reliability; data storage; artificial intelligence; computing;
von Neumann; emerging memory; neuromorphic circuit

1. Introduction

In the digital era, we are living through societal changes, carried by major technological
revolutions. The amount of generated data is exponentially growing; in 2025, about
175 million terabytes will be generated, which would represent 10 times the volume
produced in 2015 [1]. This trend comes with a large increase in connected objects and
smart components and with the development of required data centers to cover the needs
of social networks, streaming, and video on demand. Indeed, it is forecasted that in 2025
data centers will consume about 5% of the globe’s produced energy [2], which will cause
further issues. Moreover, we are living a change of paradigm where computing system
energy consumption is limited more by data transfer than computation itself, leading to
the rise of memory-centric and in-memory computing systems. In this context, pressure
is exerted on the memory component to fulfill the new specifications of these emerging
computing system architectures.

Figure 1 presents a brief summary of the main milestones of nonvolatile memory history.
The history of semiconductor memory began in 1984 when Dr. Masuoka invented

the NAND flash memory [3], leading to success in 1989, when Toshiba’s first NAND flash
reached the market [4]. NAND technology was scaled for decades, retaining the same
concept, stack, and architecture, with the memory density increasing exponentially over
time [5]. In 2001, various Flash players announced and launched MLC (multilevel cell)
NAND, enabling a capacity increase [6].

In 2007, Toshiba presented the first NAND integrated into 3D architecture [7], while
Samsung announced in 2012 the first generation of 3D NAND.

After 2010, embedded memories began to reach the 28-nm node [8], where traditional
memory cell concepts became limited in terms of area shrinkage capability and increas-
ing complexity. Then, pressure was exerted on emerging memory concepts in order to
pursue scaling to more aggressive technology nodes, opening the path to new class of
embedded technologies.
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In 2015, Intel and Micron developed the 3D XPoint Technology based on a phase
change memory (PCM). This new class of memory enabled filling the latency gap between
DRAM and Flash, often referred to as storage class memory. This made possible new
system memory architectures with improved performances, bringing innovation to the
nonvolatile memory (NVM) arena. The first announcement was made in 2015, and the
technology has been available on the open market under the brand name Optane (Intel)
since 2017 [9].

We are now in the more than Moore era, and we work toward new systems (including
in-memory computing and non von Neumann architectures) that emulate the human brain
to achieve high energy efficiency, parallelism, and ability in cognitive tasks, such as object
recognition, association, adaptation, and learning [10]. This offers a strong opportunity for
new memory technologies.

This article presents the evolution of memory technologies since the invention of Flash
memory, and describes how the exponential increase in new systems (essentially coming
from in-memory computing architectures, artificial intelligence, and neuromorphic circuits)
offers opportunities to back-end emerging memory technologies. Section 2 presents the
memory technologies’ market and trends for both stand-alone and embedded sectors.
Section 3 presents an overview of emerging memories with key demonstrators presented
in the literature. Finally, Section 4 analyzes how emerging memories can be used in new
computing systems, for both von Neumann and non von Neumann architectures.

2. Market and Trends of Memory Technologies
2.1. Technology Trends of Nonvolatile Memories
2.1.1. Nonvolatile Memory Market

The impressive growth of the NVM market was made possible by the advent of
flash memories, NOR first and NAND later, and has been fueled by the development of
battery-supplied wearable electronics [11]. Thus, successive memory revolutions were
supported by a novel application that allowed the market to exponentially increase. Mobile
phones, PDAs, MP3 players, and digital cameras were the drivers in the 1990s [11]. With
the emergence of smartphones, tablets, USB drives, and SSD (solid state drives), a new
driving force led to a NAND market increase in the digital era of the 2000s [12]. More
recently, artificial intelligence and other new applications offer a strong opportunity for
emerging memories using new switching mechanisms. The next 10 years are expected to
provide many growth opportunities for the semiconductor industry, with a continuous
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increase in technical and business challenges. In 2026, the NAND Flash market is predicted
to represent the current GDP of medium-sized countries. Competitive pressures within
many segments of the semiconductor industry will increase significantly in the future, but
semiconductor companies that have innovative businesses as well as product strategies are
expected to achieve financial success [13].

The memory market can be divided into two categories, high capacity standalone
memories and embedded memories where the memory device is integrated into a core CMOS
process flow. These two technologies are presented and described in the following sections.

2.1.2. Evolution of Standalone Nonvolatile Memory Technologies

Today, the Flash memory market is driven by high capacity standalone memories
for mass storage applications. High memory capacity is required by applications such
as digital still and video cameras, mp3 players, solid state drives (flash), mobile phones,
and all manner of flash card products. For standalone applications, where density is
doubling every 12 months [14], cell area is the key factor. Indeed, standalone memories
need aggressive cell dimensions to achieve high memory densities with low cost per bit,
required in the applications mentioned above.

For over 40 years, the evolution of nonvolatile memories was mostly based on the
floating gate MOS transistor [1]. Scaling of the NAND technology was pursued below
the 20-nm node [15]. Then, critical limits led to the appearance of 3D memory [16] that
entered the market in ~2015 and changed the conservative memory world. In 2020, vertical
NAND stacked up to 96 layers, used QLC (quad level cells, four bits per cells) and reached
a density of about 10 Gb/mm2, with typical memory capacities of one terabyte [17]. In
21 years, multilevel cell flash memory density has increased 10,000 times.

Flash NAND has been adopted in solid state drives (SSD) over the past 10 years and
now shares the data storage market with hard disk drives (HDD) thanks to its constant
decreasing bit cost. Three-dimensional NAND continues to improve and is expected to
continue as a leading technology for data storage [1]. In the case of 3D NAND, scaling
is mainly achieved by stacking, making it possible to retain the same cell dimensions in
some successive nodes to maintain cell characteristics. Despite many challenges, Flash
continues with constant technology, performance, architecture, and design improvements.
In particular, in order to pursue scaling, stacking of two arrays (to relax the aspect ratio),
integrating the CMOS under the memory array (to increase density), and adopting a more
aggressive multilevel (with optimized programming algorithms) [18] with 96 stacked levels.
A state-of-the-art multistacked memory hole process was presented by Toshiba in 2018 [19].

2.1.3. Trends in Embedded Nonvolatile Memory Technologies

Although the majority of the market is represented by high-density standalone memo-
ries, the embedded nonvolatile memory market is finding increasing use in a wide array
of integrated circuits with applications ranging from a few bits (analog trimming) to
megabytes for data/code storage. In systems with embedded nonvolatile memories, the
memory array occupies only a certain fraction of the total die area due to the relatively
small number of embedded bit cells. For this reason, the cell size shrink is not essential and
larger cell sizes can be adopted with respect to standalone memories [20]. However, high
programming voltages can lead to the need of high voltage transistors in the periphery
what can impact the circuit size.

Three sectors can be distinguished for embedded memories, which are key enablers
of today’s wide variety of microcontroller products [21]:

- Automotive microcontrollers: these represent the most important market. The
main applications include powertrain, body and convenience, safety, connectivity,
security, etc.

- Smartcard microcontrollers: these represent a wide range of applications, including
ticketing, authentication, government ID, payment, security, etc. This market has
recently increased with the rise of the Internet of Things (IoT) and connected objects.
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- Consumer and industrial: these also represent a wide range of applications, and
include any type of machine or equipment that can use memory.

Smaller than the standalone memories market, the embedded market still represents
tens of billion dollars every year with huge volume growth. Embedded specifications
depend on the market and applications [22]. The most stringent market is the automotive,
with aggressive specifications especially for grade 0 (−40 ◦C to +150 ◦C ambient operating
temperature range).

In terms of technology, each competitor develops and uses its own memory cell
concept. They all rely on charge trapping mechanisms (in a poly-Si floating gate or in a
nitride charge trapping layer) and differ in cell architecture, from 1 T (one transistor) and
1.5 T (self-aligned control gate, select gate, and split gate, which is discussed further on) to
2 T options (separated select gate and memory gate). Production is currently at the 40 nm
node, while 28 nm technologies are increasing in volume production. The current main
embedded NVM charge storage-based cell concepts in production are described in [20].

2.2. General Context and Evolution of Nonvolatile Memories
2.2.1. The Era of Big Data

We are living during the big data revolution. Big data mainly affects large com-
panies, in particular the GAFAMI (Amazon, Apple, Facebook, Google, Microsoft, and
IBM), but also changes our everyday life. Big data relies on the three Vs: volume, variety,
and velocity:

- First, there is a tremendous volume of generated data. More than two trillion gigabytes
(109 bytes) are created each day. Moreover, the evolution of data generation follows an
exponential growth, and extrapolations forecast 175 ZB of data in 2025 [1], four times
more than what we use today. People are forecasted to carry more than four mobile
devices and 75% of the worldwide population will be connected to the network [23].

This data deluge is accompanied by a constant improvement in memory technologies,
with bit density and memory capacity increasing by a factor of 1.4 every year [19]. In 2020,
a 1-mm2 die can integrate 10 Gb of memory capacity [19].

Another important point to mention is that this data increase will be supported by all
memory types: even if SSD has the highest increase, HDD and even the tape market will
also grow [24]. The IDC (International Data Corporation, global provider of intelligence,
advisory services, and events for the information technology, telecommunications, and
consumer technology markets) forecasts that over 22 ZB of storage capacity must ship
across all media types from 2018 to 2025 to keep up with storage demands.

- Apart from the high volume of data, there is also a large variety of data in various
forms. It differs from application to application. Data come from photos, videos,
audio recordings, email messages, documents, books, presentations, tweets, etc., and
are generally unstructured.

- Finally, new data are coming quickly. The data flow is the velocity vector. Every
day 900 million photos are uploaded to Facebook, 500 million tweets are posted on
Twitter, 0.4 million hours of video are uploaded to YouTube, and 3.5 billion searches
are performed in Google [25]. On a large scale and considering all the contributions,
data traffic was expected to grow by a factor of 1455 from 2018 to 2020, following
an exponential evolution, as reported by IBS [26]. In particular, video is expected to
maintain a growth rate of 70–80% every year for the next decade [26].

According to CISCO, data traffic is forecast to increase 2.5 times over the period 2016
to 2021 [27]. The majority of the increase in data traffic is due to the increase in video
content delivery, projected to account for 82% of traffic by 2021 [27]. The devices that
will thus be the major contributors are smartphones and TVs with respective data traffic
percentages of 33% and 30% [28].

We are also in the era of IoT, with the exponential growth of connected objects in our
everyday life. We have smartphones, smart watches, smart clothes, etc. The number of
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network-connected devices is increasing, from an estimated 18 billion in 2020 to 46 billion
in 2030, which represents an almost 300% increase in that period, with an average com-
pound annual growth rate (CAGR) of 9.8% [28]. The majority of this growth is related
to automation network connected devices and, in particular, to IoT, which will represent
about half of connected device stocks in 2030 [28].

2.2.2. Exponential Increase in Required Energy

This data deluge leads to greater energy consumption. It is forecasted that in 2025,
data centers’ consumption will represent 5% of the globe’s energy production [29]. The
International Energy Agency [30], “which aims to promote energy efficiency as the key
to ensuring safe, reliable, affordable, and sustainable energy systems, provides technical
analysis and policy guidance to its members and other governments concerning energy
using equipment and systems”. In particular, in the frame of the Technology Collaboration
Program (TCP), it delivers detailed reports on device usage and energy consumption in the
Electronic Devices and Networks Annex (EDNA).

EDNA studies analyze energy consumption due to devices becoming connected to
the network, and identify three main areas: upstream energy use of the communications,
data networks, and data centers; network standby energy use of the edge equipment;
and network active energy use of the edge and LAN equipment. Then, each device (TV,
smart phone, tablet, etc.) has two energy consumption contributions, one coming from the
device itself and one from the upstream network and data centers. Energy use will increase
significantly from 75 TWh in 2010 to 220 TWh in 2030 for LAN devices. The largest increase
in device energy use is due to machine-to-machine devices. The TV category exhibits the
second largest increase in network-connected energy use at the device level, essentially
due to video on demand. Smartphones, one of the largest contributors, use more upstream
energy in comparison with their device energy [28].

2.2.3. Limitations of Computing Systems

The memory hierarchy of computing systems is organized in tiers, with CPU at
the top for computing, followed by SRAM, DRAM, storage memory, and HDD/Tape at
the bottom of the architecture. Each memory block of the system has greater capacity
than the preceding but slower latency. Thus, there is a cost vs. performance tradeoff in
memory subsystem, performance increasing as it moves closer to the processors. Then
capacity increases by roughly one order in each subsequent level [31]. It is becoming
more accepted by the community that the standard memory architecture (organized in a
cache/memory/storage hierarchy) is no longer able to address the bottlenecks in current
computing systems [32,33].

First, there is a latency gap between DRAM and NAND [32], leading to high energy
consumption and long latency to move data within the system [34]. DRAM latency will
be sustained and throughput will improve. On the other hand, NAND will maintain or
improve performance with cost leadership. Thus, there is space for a new memory to enter
the hierarchy, fill this gap between DRAM and NAND, and improve computing system
performance [33]. This new class of memory is known as storage class memory (SCM). As
it may be too difficult for one memory to fill the gap, two types of storage class memories
can be distinguished: memory mapped and storage mapped [11]. Memory mapped SCM
should combine read/write and endurance performances close to DRAM, with improved
retention time (without being a true nonvolatile memory) and lower cost. Storage mapped
SCM should be nonvolatile, cost much less than DRAM, and have improved performances
(speed and endurance) with respect to Flash memories. In particular, the 3DXpoint using
PCRAM fits well between NAND and DRAM in the computing memory hierarchy [31].

Moreover, memory performance and speed growth have not kept pace with that
of processors (memory latency remains almost constant), leading to a performance gap
known as the “memory wall” [35,36]. This performance gap between processor and
memory is widening with technology scaling [37]. In von Neumann systems, separation
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of computing and memory becomes critical for performance and efficiency when data
movement becomes prominent, as is the case in current system. Memory access energy
costs 1–3 orders of magnitude higher than computing [38], and consumes approximately
1000 times the energy of a complex addition [36]. Currently, data movement between
the main memory and conventional computation units is a major contributor to the total
system energy consumption in consumer devices. For instance, it was reported that
data movement accounts for 62.7% of the total energy consumed by Google consumer
workloads [39]. This is why new non von Neumann architectures were proposed and
developed to exploit locality and near-memory computing in order to reduce the cost and
energy of data movement.

2.2.4. Development of New Computing Systems

The previous paragraphs highlighted the (1) current data exponential increase, (2) energy
increase, and (3) performance limitations of current computing systems. For these reasons,
new computing systems are currently being developed and used. In particular, near
memory or in-memory computing are proposed to solve the memory wall and the high
energy and time cost of data transfer in data centers. However, there is a tradeoff among
the existing systems between flexibility and efficiency [1], and choosing the appropriate
configuration for each purpose is key.

We can make the following classifications of computing systems depending on the
application, in terms of increasing energy efficiency [38]:

- CPU: they are fully programmable and versatile (can execute any function). There is a
clear separation between logic and memory.

- GPU: there is a shared memory architecture with thousands of cores; they operate
with high parallel workload.

- Near-memory processing: this system aims to supply high performance and high-
density memories as close as possible to the processing units. They are dedicated to
data-intensive computing (AI, graph processing, and optimization processing). They
combine local and shared memory. They are used for cloud and edge devices.

- In-memory processing: in this system, computing and memory are collocated, which
eliminates the von Neumann bottleneck. Major changes in both memory and comput-
ing units must be achieved in order to couple data processing and storage. In-memory
processing is used for vector processing (AI with limited model size) and is mostly
used for edge devices.

- Neuromorphic dynamical systems: they are brain inspired and merge logic and
memory. They are used for AI or autonomous systems.

Among all these systems, there are many artificial neural networks and especially
deep learning networks that have matched or surpassed human level capabilities. These
“neuromorphic circuits” are the subject of interest for the scientific community.

Deep neural networks (DNNs), or large-scale layered networks of artificial neurons,
have profoundly transformed the field of machine learning and represent the state-of-the-
art in a variety of video, image, audio, and text processing tasks. They are already deployed
in many real-world applications such as Google’s image and voice search, Apple’s Siri,
Facebook’s DeepText and DeepFace, Microsoft’s Skype Translator, and many others [40].
They should also enter a wider range of applications in the future, including autonomous
vehicles, education, and healthcare. The rise of neuromorphic circuits offers unique oppor-
tunities for emerging memories. Among them, two terminal back-end memories integrated
in crossbar arrays could significantly improve the efficiency of deep neural networks as
will be discussed in the next section.

In conclusion, these new systems, offering significant computing energy, are also very
demanding in terms of high reliability memories and require new memory technologies
with excellent capacity, bandwidth, and performance. Research perspectives on emerging
memories for new non von Neumann systems are discussed in the next sections.
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3. Overview of Emerging Memory Technologies
3.1. Emerging Memory Technologies
3.1.1. Filamentary Memory

Filamentary memories (Figure 2), also known as resistive random access memories
(RRAM) are based on the reversible formation and disruption of a conductive filament in
an insulator sandwiched between two metal electrodes when an electric field is applied.
This electrical behavior was first reported in the 1960s [41,42] and was largely studied
until the early 1980s for memory device applications. In the 2000s, new classes of RRAM
appeared and the interest in this technology returned [43].
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Two classes of filamentary memories can be distinguished: in oxide RAM (OxRAM,
the filament comes from the formation of oxygen vacancies in the resistive layer, while in
CBRAM (conductive bridging RAM), it results from the dissolution of an active electrode
generally made of Cu or Ag.

RRAM technology has many advantages. It is a low-cost two-terminal device and
the number of integration steps is lower than in standard Flash. It also has a low voltage
operation: typical RRAM operating voltages are 1–3 V, which is much lower than ~20 V of
Flash NAND memories. In addition, RRAM is a fast memory, with a typical programming
time of 100 ns. Less than 10 ns programming times were also reported in the literature [46].

Resistive RAM underwent a strong improvement in its performance and maturity.
Demonstrations of macros are now reported down to the 22 nm node. Bitcell area of less
than 0.05µm2 [47] was achieved by Intel, and 20 nm cell size functionality was demonstrated
by Panasonic with high performances [48]. The endurance of macros of more than one
megabyte now reach 10–100 kcycles, while the intrinsic endurance was demonstrated to
be more than 1010 cycles for single cells [49], showing the technology’s reliability can be
further improved. In particular, Panasonic demonstrated a limited resistance distribution
shift up to 100 k with 10-ppm bitcell resolution [50], and Leti showed no fail after 105 cycles
on 16 kb arrays on a 28 nm node [44].

High-temperature operation is affected by oxygen vacancies (or metal) temperature
assisted diffusion, limiting RRAM retention. In particular, device stability becomes critical
when low programming currents are used [51]. Renesas demonstrated that it was possible
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to reach a −6δ margin (with a one bit ECC) after 40 min at 200 ◦C (equivalent to 10 years at
85 ◦C), which corresponds to a 0.1% chip failure of two-megabyte cells [52].

Finally, good scalability was shown: scaled memory devices include: 10 nm crossbar
OxRAM [53] and 5 nm liner CBRAM [54]; further density improvements could be obtained
with vertical RRAM architecture [43].

As filamentary switching can be observed in most integrated layers, many elements
were investigated until some consensus finally appeared on transition metal oxides (Ta2O5,
HfO2, Al2O3, etc.). Depending on the integrated materials, various device performances
are possible, enabling targeting of various applications.

Today the main application of RRAM is in embedded products. For classical embed-
ded technologies, chip cost reduction will be very difficult beyond 2× nm nodes, due to
their limited scalability and increasing complexity for integration in sub−28 nm CMOS
nodes [20]. For that reason, RRAM is a strong candidate for future nodes due to its simple
bitcell structure and low process complexity. RRAM is highly studied for IoT for its good
density and low power consumption. Panasonic proposed the first commercially available
implementation of RRAM. They offered a microcontroller for portable healthcare, security
equipment, or sensor processing applications. Renesas also investigated RRAM for low-
power microcontroller units (MCUs) for IoT applications [52]. Intel [47,55] and TSMC [56]
both demonstrated RRAM based macros in 22 nm in a 1T1R configuration for embedded
applications, with comparable features (85 ◦C 10-year retention, 10 kcycles endurance).
Intel studies mobile and RF applications and TSMC targets eFlash, IoT, and smartcards.
Adesto offers RRAM based EEPROM, as a compatible serial memory for discrete and
embedded memory applications. They target IoT and other energy-conscious applications.
The startup Crossbar is also very active and provides RRAM for IoT system-on-chips but
also persistent memory solutions.

In the case of embedded applications, the memory is integrated in the BEOL above
the logic. In particular, the memory cell is integrated above the select transistor in the
1T1R configuration. The bitcell area is limited by the transistor more than by the memory
itself [57]. Thus, it is important to have low operating voltages. Ideally, the RRAM would
use logic transistors where the voltage was ~1 V. Due to the short RRAM programming
time (~100 ns), the transistor could operate in overdrive mode [57]. This leads a targeted
RRAM programming voltage of ~1.5 V to be compatible with logic CMOS to reach the best
bitcell density. For more advanced nodes (1× nm nodes), the memory could be integrated
in a 1S1R configuration with a backend selector [58,59] to reduce the bitcell size and target
higher capacities than the 1T1R architecture allows [60].

The main issue for RRAM is the variability and related resistance distribution spread
for high and low resistive states. Indeed, the conductive filament is composed with a finite
number of atoms, and the memory operation is governed by stochastic phenomena [61,62].
Thus, from cycle to cycle, the conductive filament can have various shapes and is consti-
tuted by an uncontrolled number of atoms leading to resistance variability. This resistance
dispersion reduces the read window margin and limits the maximum memory capacity
that can be achieved. In order to improve RRAM variability, various solutions have been
investigated. The first is to improve the memory stack [63,64]. In particular, “subquantum”
CBRAM where filaments comprise a semiconductor or semimetal instead of a metal were
proposed [65] in order to achieve thicker filaments, less affected by single events. The
second approach is to adjust programming schemes and algorithms in order to reach
sharper resistance distributions [66,67].

Once RRAM variability is improved, larger capacities can be envisaged and new fields
can be targeted. In particular, storage class memories (SCM) can be envisaged where the
RRAM would be placed between the DRAM and storage memory in the hierarchy due to
its high speed and good endurance. A few years ago, Micron presented a 16 Gb RRAM in a
27 nm node targeting SCM applications with excellent reliability, achieving 105 cycles with
<7 × 10−5 of bit error rate due to optimized programming schemes [68]. No further work
has reported from Micron but SONY also provides cross-point RRAM for storage class
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memory applications with an excellent widow margin of two decades at 3δ [69]. Western
Digital introduced RRAM in its roadmap [70] and announced “RRAM SCM will close the
gap in terms of per-GB cost with BiCS NAND and will thus widen the gap with DRAM,
which will make it more economically feasible”. RRAM also has the potential to enable
analog neuromorphic computing features. This could allow low power neuromorphic
IP in embedded nonvolatile memory system-on-chip without adding additional process
complexity [20]. More details are provided in the next section.

In summary, RRAM is a proven technology with very low cost, ease of integration in
the backend, suitable for embedded (smart card and IoT) and neuromorphic applications.
Solving the variability issue would enable opening the application field to other domains
such as storage class memories.

3.1.2. Phase Change Memory

Phase change memory (Figure 3) is based on the reversible transition between amor-
phous (insulating) and crystalline (conductive) states of a chalcogenide alloy. The phase
transition is obtained by current-induced Joule heating. The most typical materials are
Ge2Sb2Te5 (GST) or GeTe. Chalcogenide has been researched for a long time, and used as
a recording material for optical disks, and chalcogenide memory is in the market although
its density is small.
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Phase change memories offer low voltage operation (<3 V), fast behavior (~100 ns
switching), and nonvolatility. Very high endurance (1012 cycles at the single cell level) has
been demonstrated. It is a two terminal device and can be integrated into the BEOL. Phase
change memories do not require any initialization step (unlike RRAM, for example) and
work in unipolar mode. Moreover, phase change memories can have an analog behavior,
which is suitable for some neuromorphic applications. The device characteristics can be
tuned through material engineering (doping, etc.). Thus, they have the capability to address
the high temperature retention required in embedded applications and the high speed
required, for example, in storage class memory applications depending on the elected
stack [72,73].

In terms of limitations, phase change memory technology suffers from resistance drift
that can affect its high temperature retention [74,75]. Optimized programming schemes
(better than detection threshold adjustment over time) were proposed to improve immunity
to drift for multilevel operations [76]. Moreover, they generally need elevated (hundreds
of µA) currents to operate (linked to the melting temperature of the material and to the
current density needed to achieve such a temperature), which can be a limitation for
consumption and crossbar integration. This is balanced, nevertheless, by the fact that the
programming current decreases as the cell size is called: a 20 nm confined cell can be reset
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at <100 µA [77,78]. However, at high density, thermal disturbance among neighboring cells
can become critical and may require additional layers. In terms of speed, quenching time
can limit the programming speed. In terms of process and integration, PCRAM may also
require complex alloys (ternary or quaternary materials) with an accurate control of the
layer composition. They can also need specific device structures such as wall architecture
to improve programming efficiency with more technological steps and lithography levels
than other emerging memories.

PCRAM has a high maturity and products already use this technology. The most
well-known is the 3D Crosspoint technology developed by Intel and Micron that integrates
the PCRAM with a backend selector in crosspoint arrays. The technology is used as a
storage class memory to fill the latency gap between DRAM and NAND in the memory
hierarchy. Two types were initially envisaged with two different locations in the system [1]:
“Storage mapped” is part of the memory hierarchy with typical 128 Gb memory capacities.
The memory is faster than NAND, has higher endurance, and is 10X more dense than
conventional memories. “Memory mapped” is a shadow of DRAM; data in DRAM are
copied to the 3D XPoint in order to expand the size of the main memory. Intel has proposed
Optane. Intel Optane DC Persistent and SSD/Caches memories can achieve 100s ns and 1s
µs, respectively, allowing significant improvement of computer architecture [79]. Micron
also offered the X100 NVMe™ SSD cache memory based on 3D XPoint™ Technology. STMi-
croelectronics also provides PCRAM technology for automotive embedded applications
for 28 nm node and beyond [80,81]. The memory uses a chalcogenide ternary material and
is integrated in the BEOL of 28 nm FDSOI technology, with a cell size of 0.036 µm2. A bit
error rate of <10−8 was achieved after multiple bakes at 150 ◦C and 10 k cycling of code
storage memory was shown.

So far, phase change memory technology has followed the Gartner Hype Cycle, with
R&D in the 1960s, followed by the first product generation (Samsung for mobile phones),
negative press in the 2000s (reporting drift issue during retention), and a second product
generation (3D-Xpoint) now in the market.

In summary, PCRAM is a mature technology showing high reliability, fast speed, and
high endurance, which makes it a strong candidate for both automotive grade embedded
applications and storage class memories.

3.1.3. Magnetic Memory

MRAM (magnetic RAM) is a memory that uses the magnetism of electron spin to
provide non-volatility (Figure 4). MRAM stores information in magnetic material integrated
with silicon circuitry.

Toggle MRAM uses a one transistor, one MTJ (magnetic tunnel junction) cell to provide
a simple high-density memory. During a read, the pass transistor is activated and data
are read by comparing the resistance of the cell to a reference device. During writes, the
magnetic field from Write Line 1 and Write Line 2 writes the cell at the intersection of the
two lines but does not disturb other cells on either line. Another MRAM technology uses
a spin torque transfer property, which is the manipulation of the spin of electrons with a
polarizing current, to establish the desired magnetic state of the free layer to program, or
write, the bits in the memory array. Spin transfer torque MRAM (STT-MRAM) provides a
significant reduction in switching energy compared to toggle MRAM and is highly scalable,
enabling higher density memory products.

The advantage of MRAM is fast switching speed compared to other nonvolatile
memories, with ~1–10 ns read and write erase times and very good endurance (up to
1015 cycles).

One major concern with MRAM is the scalability that is difficult due to the complexity
of etching many layers with good conformity. Moreover, MRAM etching generally uses
ion beam etching, which is not suitable for extensive scaling. The other generally reported
issue is MRAM data retention. However, recent material and stack development allowed
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significantly improved retention performances [83], which can be attributed to the adoption
of a dual MgO interface instead of the standard single layer.
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MRAM also suffers from small ON/OFF current ratio compared to the other emerging
memories: STT-MRAM has a small window and TMR reduces with temperature [83,84].
Multilevel is difficult to achieve and MRAM requires a good sense amplifier. One decade
ago, magnetic memories were envisaged for SRAM replacement (last level cache) due
to their high speed and endurance. However, the retention and reliability of MRAM
has been highly improved, opening the range of applications to eDRAM (Samsung [85]),
embedded (Samsung [85], GlobalFoundries [86], Intel [87]), Industrial (Everspin [88]), and
even automotive (TSMC) applications.

Intel recently presented significant improvements in MRAM technology [89,90] for
embedded applications. STT-MRAM is also proposed by GF for Embedded, MCU, and IoT
applications [86]. Avalanche is shipping perpendicular MRAM for SRAM (manufactured at
partner foundries) but also announced the production in 2020 of a 22 nm MRAM for Flash
replacement for nonvolatile embedded applications [84]. The limitation of spin memories
was retention, but recent achievements by TSMC have shown that this technology can be
envisaged for automotive applications in the near future [82].

Several products already exist in the market, such as the spin transfer torque MRAM
for DDR3 and the DDR4 (DRAM) product of Everspin using STT-MRAM, serial periph-
eral interface (SPI) and parallel interface MRAM (using toggle MRAM technology) from
Everspin, and the SPSRAM (a persistent SRAM using STT-MRAM technology with serial
peripheral interface) and SPNOR (perpendicular STT-MRAM for embedded Flash and
embedded SRAM used in system-on-chips) memories from Avalanche technology.

In summary, MRAM offers excellent endurance suitable for DRAM and SRAM appli-
cations, but has also shown recent increased stability for embedded applications. Stack
complexity is generally invoked as a device limitation. The next challenge will be to
increase its scalability and capacity.

3.1.4. Ferroelectric Memory

Ferroelectric memories (FeRAM) are based on the polarization of ferroelectric materials
(Figure 5). In an FeRAM, thin ferroelectric films are sandwiched between two metallic
electrodes and used as capacitors. When an electric field is applied across the stack, the
states are aligned with the electric field leading to a low-energy state. Analogically, the
high-energy state is obtained when the polarization alignment is antiparallel to the electric
field. Moving from the high-energy state to the low-energy state or vice versa produces
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energy as a charge and is normally called a switch charge (Qs). Therefore, two Q(V)
curves are obtained as a function of the polarization of the electric field applied. An access
transistor is used to sense the state of the ferroelectric film, while the typical polarization
depends on the electric field.
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Ferroelectrics are theoretically an ideal solution for low write power nonvolatile
memories. However, the complexity of ferroelectric perovskites has hindered the scaling
of such devices to competitive feature sizes. The discovery of ferroelectricity in hafnium
oxide solved this issue, and led to renewed interest by the scientific community in this
concept for various applications, due to its CMOS compatibility [92–94].

Three types of ferroelectric-based memories are:

- Ferroelectric FET (FeFET): the ferroelectric material is embedded in the gate stack of
a transistor. The nonvolatile polarization of the material acts as a remnant control
gate and leads to a threshold voltage shift of the characteristics. This concept offers
ultra-low power but is a three terminal device and can thus hardly be envisaged for
high-density applications. Moreover, the effect vanishes for thin layers, making the
concept hardly scalable. Finally, the degradation of the interface layer between the
ferroelectric and the semiconductor channel limits endurance, in particular, due to
trapped charge that affects the conduction of the FET below the ferroelectric [92].
For all of these reasons FeFET are targeting Flash or EEPROM rather than DRAM
replacement. In particular, it is now seen as an alternative to Flash for ultra-low power
applications [91], due to its 10 fJ/bit consumption and five-nanosecond programming
speed. FeFET based eNVM solutions were integrated into leading edge technologies:
GlobalFoundries FeFET technology was embedded into the 28 nm gate first HKMG
low power CMOS platform, showing 6δ distribution, reasonable endurance, and
stable data retention [95]. GF also demonstrated a 22 nm node on FDSOI CMOS
technology [96].

- Capacitor based ferroelectric RAM (FeRAM): in this case, the cell resembles a DRAM
with the capacitor dielectric replaced by the ferroelectric. Recent reports verified anti-
ferroelectric properties for pure ZrO2 dielectrics used in DRAM stacks. By employing
electrodes with different work function values, a built-in bias is introduced within
the anti-ferroelectric stack, thus creating two stable nonvolatile states [97]. It demon-
strated 1010 endurance and 10 ns speed combined with 100 ◦C retention, making this
concept very promising for a dense (6 F2) and new class of nonvolatile DRAM. In
FeRAM, reading is destructive as it is performed by switching the ferroelectric into a
specific direction and measuring the contrast between a switching and a nonswitching
event. Thus, programming is required after each reading operation. In terms of
FeRAM reliability challenges, trapped charges at the ferroelectric-electrode interface
have to be controlled to improve retention (requiring careful interface engineering),
while dielectric breakdown induced by high coercive film has to be prevented to
insure high endurance [92].
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- Ferroelectric tunneling junctions (FTJ): in this case, the memory is a two terminal
device. In the FTJ, a very thin ferroelectric film is used that allows tunneling and
the tunneling current is modulated by the polarization of the ferroelectric. A critical
issue for this concept (which is more prospective than the previous ones) is the low
read current.

In summary, FeRAM is a simple and low cost memory offering very low consumption
(~10 fJ/bit), suitable for low power applications (IoT, etc). Its high endurance and nonvolatil-
ity also make it a promising technology for the future, including neuromorphic circuits.

3.1.5. Emerging Memory Benchmark

A tentative benchmark is proposed in Figure 6.
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Figure 6. Tentative benchmark of various emerging memory technologies for various applications.

In this table, two parts are reported for some technologies. Indeed, adjusting the
materials and stacks, it is possible to tune the memory characteristics and target distinct
applications. In particular, we consider standalone, embedded, cache, and DRAM replace-
ment applications.

The features are questionable and can be debated; the table only gives general trends
for various emerging technologies, while characteristics can vary depending on the materi-
als and technological maturity. Nevertheless, this table can be used as a starting point to
evaluate how these new technologies can solve current challenges.

Finally, Figure 7 focuses on macros for embedded applications. Most macros are
integrated in 28 nm or 22 nm nodes. Cell size, limited by the selected transistor, is always
in the range of 0.04–0.05 µm2. The best endurance has been demonstrated for MRAM
with 106 cycles (10–100 kc for Resistive RAM, 100 kc for Phase Change RAM). Various
applications are targeted, from smartcard and IoT to automotive grade MCU.
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Figure 7. Table summarizing the emerging memory macros for embedded applications.

4. New Systems with New Memories
4.1. Evolution of Von Neumann Computing Systems

Emerging memory technologies can be used in several places in this hierarchy, each
having its own advantages with respect to the current implementation:

- It can be used in the storage memory area, either as a replacement of current flash
technology, or, at least in the short term as an intermediate step between the main
memory and the flash or disks: storage class memories (SCM); in this case, the memory
will be interfaced via an I/O-like interface, such as SATA, Ethernet, PCIe, or another
interface that could emerge, and the transfer of data with the main memory could be
managed by the OS (operating system) of the chip as it is today for storage memory.
The storage memory market being essentially cost-driven, it is likely that RRAM will
only replace the now well-established flash technology when it is cost-competitive;
as flash density continues to increase due to monolithic 3D integration, this will take
time. In the meantime, the emerging memory could be used as an intermediate step
between flash and the main memory, as for instance an ultra-fast SSD used to store
data with frequent access. The large difference in latency is likely to make acceptable
a higher cost. Currently, the gap in latency between the main memory, which is
in the order of 30–50 ns and the one of flash-based storage, which is about 100 µs
(much more in writing) is vast, and having a technology enabling microsecond scale
latencies would undoubtedly be an improvement for data centric applications. For
these reasons, 1 µs latency and 106 cycle high density RRAM and PCRAM (possibly
in vertical architectures) could be two strong candidates for this role.

- It can be used in the main memory area, either as a DRAM companion chip, located
on the same memory bus, or as a replacement of the DRAM. Inserting the emerg-
ing memory on the main memory bus, alongside DRAM components, will present
significant system benefits. It will improve data integrity management; data can be
quickly secured locally, on a word-by-word basis, instead of using current cumber-
some journaling or check-pointing schemes to protect data from events such as a
loss of power supply. This can significantly reduce data traffic in a data center, as
it is estimated that data integrity management can represent up to 80% of the file
system usage in PetaFlop data centers. As the emerging memory should become more
dense and less expensive than DRAM, it will enable much greater capacity than main
memories; this is especially important for big data applications, where storing large
multidimensional tables in the main memory enables a tremendous performance
advantage, because these tables often need to be accessed in a different order than
the way it has been stored in the storage memory, which can only be accessed sequen-
tially. It will also simplify atomic operations in transactional databases, as RRAM are
byte addressable and nonvolatile. They propose a much more efficient solution than
current NVDIMMs composed of a mix of DRAM and flashes powered by a bulky
supercapacitor during the data transfer from DRAM to Flash when the main power
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supply is lost. For these reasons, according to the specifications, fast (~100 ns) and
high endurance (~109 cycles) RRAM and PCRAM could succeed.

- It can also be used as a last-level cache replacement or complement; it is unlikely that
memory technology could become fast enough to be used as a first-level cache. In
this case, the cache capacity could be made much higher, diminishing the external
bandwidth requirements. Here, the most stringent requirements would be speed
(<30 ns) and endurance (>1016). We cannot rely on wear-leveling in this case as the
cache capacity would not be sufficient in regard to its bandwidth, each bit being
written frequently. A high endurance of 1016 cycles is likely to reserve this application
for STT-MRAM. FeRAM could be placed between an SCM memory (memory type)
and the DRAM due to its high endurance. Finally, the only technology that exhibits
performances close to SRAM is the SOT-MRAM. As far as cost and power consumption
are concerned, the reference there is embedded DRAM (eDRAM); the RRAM has to
be cheaper and less consuming than eDRAM to be competitive.

A summary of the possible implementation of emerging memories in the memory
hierarchy is presented in Figure 8. In this figure, storage class memory refers to a class
of memory that stands between DRAM and disk storage in the data storage hierarchy.
In other work, this class of memory has been defined as persistent memory [98]. The
difference at the system level between persistent storage, nonpersistent DRAM extension,
and persistent memory at the architecture level is not discussed in this paper.
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4.2. Emerging Memories for Non Von Neumann Systems

In the context of the development of new architectures, emerging memories could
enable revolutionary novel functions and computing paradigms due to their specificities
(Figure 9). Thus, apart from von Neumann architecture evolutions, emerging memories
offer new types of applications that can be classified as follows: novel functions, in/near
memory computing, and neuromorphic architectures.
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4.2.1. Novel Functions

A large number of work takes advantage of multiple undesirable nanoscale OxRAM
phenomena, such as RESET current stochastics fluctuation, random telegraph noise (RTN),
and RESET state resistance variability to realize security and computing circuits [99]
such as random number generators (RNG) [100] or physical unclonable functions (PUF).
However, some RRAM features do not following fully random laws: some correlation exists
among subsequent RRAM levels, for instance [101], and the filament retains some memory
effect of its morphology in the previous cycles [54]. Moreover, the reliability of RRAM
PUF may degrade with retention loss, read instability, and thermal variation, while PUF
uniqueness is maintained as long as the randomness in the RRAM resistance distribution
is preserved [102]. Thus, implied physics have to be clearly understood to insure sufficient
reliability of the circuit. More generally, as device physicists, our knowledge on the physics
of new technologies helps us to understand how it can serve the emergence of new systems
and architectures, which requires improving our knowledge on system aspects to be able
to communicate with architects.

4.2.2. In/Near Memory Computing

In-memory computing uses nonvolatility and the ability to couple computing with
data, such as through Ohm’s law to perform multiplication. Artificial neural networks take
advantage of this by reducing the amount of data movement compared to von Neumann
architectures. The expected performances strongly depend on the application and targeted
system. However, general guidelines can be drawn. First, co-integration and persistence of
the memory are prerequisite, while endurance and capacity are the key expected features.
In order to move computing tasks in the emerging memory, endurance has to remain as
close as possible to SRAM performances: the higher the endurance, the more important
the amount of computing that can be done in the emerging device. Then, increasing the
memory capacity will enable improving system complexity and performance. Again, the
gain in memory capacity has to be significant with respect to what can be achieved with
SRAM. As endurance and capacity increase, the system efficiency and performance will
be improved.
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Today, RRAM and PCRAM endurance is insufficient to perform computing in a device,
and only specific computing tasks can be achieved with a limited number of cycles. On
the contrary, MRAM appears to be a promising technology due to its excellent endurance.
The challenge of this technology will be to improve its capacity, using more scalable spin-
based concepts [103], in order to envisage the development of more complex and better
performing systems.

Ternary content addressable memory (TCAM) can also be listed as a computing
architecture. TCAM performs parallel searches by comparing input searched data with
data stored in the memory and returning the data address when a match occurs. TCAMs
provide a lookup response in a single clock cycle making them faster and more energy-
efficient than random access memory-based search systems. Emerging memories and
in particular RRAMs are a promising solution to implement TCAMs and can offer more
area- and energy-efficiency with respect to static random access memory (SRAM)-based
TCAMs [104].

4.2.3. Neuromorphic Architectures

As stated before, time and energy spent to move data between memory and processor
(across the so-called von Neumann bottleneck) has become the main issue of computa-
tional systems, especially for datacentric applications such as realtime image recognition
and natural language processing. One way to improve computing system efficiency and
capabilities is to study the human brain. It is characterized by its complex parallel architec-
ture connecting myriad low-power computing elements (neurons) and adaptive memory
elements (synapses), which outperforms modern von Neumann processors on many tasks
involving unstructured data classification and pattern recognition [105].

Various works report neuromorphic digital chips to improve the energy efficiency
of the multiply accumulate operation, which is the basic task required in deep neural
networks. Among the large number of demonstrations and approaches of proposed
neuromorphic architectures, a distinction can be made between digital neural network
accelerators, analog deep learning accelerators, and spiking brain inspired neural networks.
In 2016, a TrueNorth brain chip was proposed and presented by IBM [106] as an energy
efficient bio-inspired circuit to implement AI. This is an asynchronous parallel-distributed
modular scalable architecture, and for this reason, it is considered to be non von Neumann
architecture. At a prospective level, the MAC operation can be directly performed in
the memory exploiting Kirchhoff’s law [107]. In this context, advanced memory devices
offering high capacity, nonvolatility, and also ML and analog behavior are perfectly suited
for these new architectures. More details are presented in the following for the various
neuromorphic architecture categories.

- Digital neural network

Research into custom digital accelerators primarily focuses on redesigning a GPU-like
processor, explicitly designed for deep learning, using full ASIC designs or FPGAs.

In the approach followed by Stanford, emerging memories can be used to improve
the efficiency of microcontrollers for various applications representing machine learning
(including convolutional neural network). In particular, in [108] improved accuracy of
neural network inference was shown with a RRAM and SRAM chip, with faster (lower
latency) and lower energy features during transition to shutdown than Flash can offer.
RRAM, used for inference, stores neural network model weights (five levels). During active
mode, instructions are read in the RRAM and executed in the microcontroller core. After
the data are processed, the results are written back to the RRAM. Instructions are read
in the RRAM and executed in the µcontroller core. Thus, nonvolatile memories, and in
particular, emerging backend memories become an essential on-chip device due to their
fast and low energy operation, suitable for a wide range of application domains, from edge
nodes for the Internet of Things (IoT) to large computing clusters.
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In a digital neural network accelerator, key requirements for emerging memories
would be low latency (compared to Flash), nonvolatility, limited endurance (for offline
learning), and high capacity. Thus, OxRAM and PCM can be good candidates for these systems.

- Analog deep learning accelerator

The core of any analog-based accelerator is a memory array that can store the values
of the weight matrix in an analog fashion [105]. Analog computing is made possible with
an emerging memory that exhibits an analog behavior, which is the case with PCRAM in
particular, and with RRAM to a certain extent (changing the programming current or using
various RESET states). This can be utilized, for example, in constructing analog circuits that
solve linear systems of equations in constant rather than polynomial time. These systems
can operate in a read mode, which reduces the endurance requirements of the memory. A
typical example is the achievement of the multiply accumulate (MAC) operation within
large memory arrays [107,109,110] as demonstrated by IBM. Multiplication between a set
of input voltages and programmed conductances in an array is the dominant operation
performed in modern neural networks. In IBM circuits, emerging memory is coupled to
another device to perform inference and training tasks; a PCM is used for inference while
training, which requires extensive endurance, and is insured by a capacitor [111] or by
SRAM [112].

These innovative architectures impose constraints and requirements on the memory
technologies such as very high capacity, multilevel capabilities with high accuracy on
device conductance and low variability, high endurance, and low power consumption.
In this context, several techniques have been proposed in the literature to solve the im-
perfections of current technologies: in [113], a mixed hardware–software neural-network
implementation combines long-term storage in PCM (for weight data), near-linear updates
of volatile capacitors, and weight-data transfer with ‘polarity inversion’ to cancel out inher-
ent device-to-device variations. In [114,115], RRAM are used in low precision binarized
neural networks (BNN), to cope with device non-idealities. In this type of neural network,
both synaptic weights and neuron activations are implemented by binary values (+1 or −1)
after a network training process.

Panasonic developed neuromorphic computing based on analog RRAM, resistive
analog neuromorphic device (RAND), as a low power solution for edge application [116].
The authored demonstrated MNIST recognition and sensor application in which several
networks could be configured at the same time.

Finally, multiple bits-per-cell was demonstrated in OxRAM in 1T4R configuration
due to gradual SET/RESET [117]. The authors claim that this makes the structure suitable
for multiple deep learning applications and showed high degrees of inference accuracy
within 0.01% of ideal values. However, statistical cell-to-cell variability limits the maximum
number of levels because of the overlap between adjacent resistance distributions [118],
and OxRAM resistance relaxation after programming leads to overlap of the memory states,
which can alter the circuit reliability [119].

- Spiking brain inspired neural network

In spiking neural networks, the approach is to mimic human brain behavior and to
represent data with spikes. Spiking neural networks (SNN) with spike-timing dependent
plasticity (STDP) are then capable of replicating bio-realistic online/unsupervised learn-
ing [120,121], which is not the case for deep learning architectures relying on supervised
backpropagation. In SNN processes, the simultaneous spiking activity at two neurons
can lead to a potentiation of the synapse connecting them, meaning that two neurons
which are active in response to the same event, should be linked by a relatively strong
synaptic connection.

In this field, various demonstrations were proposed in the literature, aiming at im-
plementing STDP in hardware synapses adopting various classes of emerging memories
(including RRAM, CBRAM, STT-MRAM, and PCM). In [122], and [123] OxRAM synapses
based on HfO2 and SiOx resistive memory technologies were combined with analog neu-
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rons in spiking neural networks for MNIST digit classification. The OxRAM, coding the
synaptic weights of the network, was thus used for inference in the DNN, which required
high reading operations but only a very limited number of cycles.

As for an analog neural network, no emerging technology can afford the high num-
ber of cycles that can offer continuous learning of the system. Thus, today, learning
is performed offline, and synaptic weights are then coded in the nonvolatile memories
for inference.

In conclusion, the emergence of high capacity memories, with good endurance, ideally
with analogic behavior (or at least multilevel) can significantly improve the efficiency of
data transfer and allow the emergence of new computing and non von Neumann systems.

5. Conclusions

The general context of nonvolatile memories is characterized by several key points.
First, the era of big data in which we live implies a constant and tremendous increase in
data volume generation associated with the increase in the number of connected objects.
The introduction into the market of 3D-NAND allowed pursuing a density increase. At the
system level, the memory hierarchy suffers from two limitations, memory wall (between
SRAM and DRAM) and latency gap (between DRAM and Flash), offering opportunities for
new technologies. Data deluge also changed the paradigm of computing system; limited
today by data transfer more than computing. This leads to the necessity for more efficient
and specialized architectures, such as in-memory computing and neuromorphic circuits.

At the component level, there is currently a renewed interest in emerging memory
technologies (RRAM, PCRAM, MRAM, FeRAM, etc), based on “old” concepts due to the
combination they offer in terms of fast speed, high endurance, and nonvolatility. Today, no
universal memory has been discovered so far, and we move towards the co-existence of
various concepts, more and more specialized to a specific application.

Currently, 3D-NAND is dominant in the world of standalone memories and there
is no clear need for a new concept to replace it. However, there is an opportunity for
emerging memories to enter the memory hierarchy in new (von Neumann and non von
Neumann) computing systems to improve efficiency and performances. Innovation will
thus consist in new architectures made possible by the advent of new memory technologies
showing more and more maturity. This will require strong collaboration and mutual
understanding between device engineers and system architects. On the other hand, it is
more difficult and expensive to maintain current embedded charge based technologies
for newtechnology nodes. Various emerging technologies are thus called upon to enter
the embedded memory market. The wide range of existing applications in this domain
should result in the appearance of various technologies depending on the applications.
To fill these requirements, there is a place for a dedicated research to improve emerging
memory performances, based on evolving concepts, new materials, and also optimized
programming schemes, which should be adapted to the physics of emerging devices.
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