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Abstract 
Our comprehension of membrane function has predominantly advanced through research on glycerophospholipids, also known as 
phosphoglycerides, which are glycerol phosphate-based lipids found across all three domains of life. However, in bacteria, a perplexing 
group of lipids distinct from glycerol phosphate-based ones also exists. These are amino acid-containing lipids that form an amide 
bond between an amino acid and a fatty acid. Subsequently, a second fatty acid becomes linked, often via the 3-hydroxy group on 
the first fatty acid. These amide-linked aminolipids have, as of now, been exclusively identified in bacteria. Several hydrophilic head 
groups have been discovered in these aminolipids including ornithine, glutamine, glycine, lysine, and more recently, a sulfur-containing 
non-proteinogenic amino acid cysteinolic acid. Here, we aim to review current advances in the genetics, biochemistry and function of 
these aminolipids as well as giving an ecological perspective. We provide evidence for their potential significance in the ecophysiology 
of all major microbiomes, i.e. gut, soil, and aquatic as well as highlighting their important roles in influencing biological interactions. 

Keywords: aminolipids, bacterial membrane, environmental lipidomics 

Introduction 
Lipids comprise the building blocks for all biological membranes, 
providing a fluid and dynamic environment for hosting integral 
and peripheral membrane proteins that are critical for nutrient 
acquisition, defense, and cell signaling [1]. Of all lipids, glyc-
erol phosphate based glycerophospholipids are probably the best 
studied given they are ubiquitous in all three domains of life. 
Indeed, it has been proposed that the most ancient life forms 
likely had a glycerophospholipid-based membrane [2]. Over recent 
years environmental microbiology has focused on the transfor-
mation between glycerophospholipids and non-phosphorus lipids 
such as betaine lipids and glycolipids [3–5]. However, a unique 
group of lipids which appears confined to bacteria are the amino 
acid containing aminolipids, often comprised of an amide linked 
3-hydroxy fatty acid (R1) and an ester linked fatty acid (R2) 
attached to the 3-hydroxy group at R1 (Fig. 1A). These aminolipids 
can be integrated into both inner and outer membranes of bacte-
rial cells [6, 7]. A noticeable structural difference between amino-
lipids and glycerophospholipids is that glycerophospholipids are 
made from a glycerol backbone whereas aminolipids are syn-
thesized from a 3-hydroxy acyl fatty acid backbone. Several pro-
teinogenic amino acids are found as the hydrophilic headgroup 
in these aminolipids, including glycine, glutamine and lysine. 

Non-proteinogenic amino acids have also been found including 
ornithine and more recently cysteinolic acid [8–10]. 

It is important to differentiate the aminolipids that are dis-
cussed here from aminoacyl phospholipids (Fig. 1B), the latter 
including lysyl-phosphatidylglycerol (PG), alanyl-PG and arginyl-
PG [11]. A common feature of these aminoacyl phospholipids 
is to neutralize the negative charge of bacterial phospholipids 
(such as PG) using aminoacylated transfer RNAs (tRNAs), thus 
allowing pathogenic bacteria to successfully evade host immu-
nity by preventing the action of cationic antimicrobial peptides 
(CAMPs). However, interested readers should look elsewhere for 
elegant and comprehensive reviews on amino acid decoration of 
phospholipids [11, 12]. 

Two-step biosynthesis of aminolipids 
The biosynthesis of aminolipids typically involves two steps to 
form the mature lipid that is composed of two fatty acid chains, 
although these lipids can undergo subsequent modifications such 
as hydroxylation, methylation and transamination. Readers inter-
ested in this topic are encouraged to refer to recent reviews for 
additional information [13, 14]. In the first step, fatty acids are 
activated before they are conjugated to an amino acid to form an
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Figure 1. Representative structures of aminolipids and related compounds, including common fatty acid activation pathways. (A) Selected structures 
of several known aminolipids. (B) Examples of aminoacyl phospholipids. (C) Overview of currently known 2-step aminolipid biosynthetic pathways. (D) 
Currently known pathways for fatty acid activation in biological systems. (E) Selected examples of N-acylated amino acids, including N-acylhomoserine 
lactones and lyso-aminolipids. The 3-hydroxy group in the aminolipid is highlighted in red. FA, fatty acid chains; PG, phosphatidylglycerol; ad, 
adenosine; FAAL, fatty acyl-AMP ligase; FACL, fatty acyl-CoA ligase; ACP, acyl carrier protein; AA, amino acid. 

amide bond ( Fig. 1C). Subsequently in the second step, another 
fatty acid is conjugated to create the mature aminolipid (Fig. 1C). 
Fatty acids are generally inert chemicals and require specific 
biological mechanisms for activation to make them biologically 
available for condensation with an amino acid. Several mecha-
nisms exist for the formation of an amide bond between fatty 
acids and amino acids, including acyl-phosphate, acyl-adenylate 
and acyl-ACP (acyl carrier protein) (Fig. 1D). 

The direct condensation of ATP with a carboxylate group in 
fatty acids can be catalyzed by ATP grasp enzymes (Pfam 13 535) 
involving acyl-phosphate as the key intermediate, as seen in the 
formation of acyl-histidine in Legionella pneumophila, the causative 

agent of Legionnaires’ disease [15, 16]. However, it is worth noting 
that whether this type of system can effectively use 3-hydroxy 
fatty acids as a substrate has not been tested. Perhaps a more 
relevant example of acyl-phosphate serving as the fatty acid 
donor is observed in glycerophospholipid synthesis, where the 
PlsY enzyme transfers the acyl group from acyl-phosphate to 
glycerol-3-phosphate to form lyso-PG [17]. Fatty acids can also be 
activated to form an acyl-adenylate intermediate, e.g. by a fatty 
acid AMP ligase (FAAL) or a fatty acid CoA ligase (FACL) [18, 19]. 
However, whether FAAL/FACL enzymes can be utilized in amino-
lipid synthesis has yet to be established. Curiously, it appears that 
acyl-ACP is the donor of choice for aminolipid biosynthesis, which
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has been experimentally confirmed in the synthesis of ornithine-
containing aminolipids [14, 20]. 

It is important to highlight that 3-hydroxy fatty acids are often 
required in the final step of ester bond formation for attaching 
the second fatty acid in several aminolipids (Fig. 1A). It thus 
appears that the aminolipid biosynthesis pathway might have 
“hijacked” 3-hydroxy fatty acyl-ACP from the type II fatty acid 
synthesis pathway, an essential intermediate in the elongation 
step mediated by the FabG reductase, to supply the intermediate 
required for aminolipid biosynthesis [21]. Similarly, several acyl-
transferases involved in lipid A biosynthesis, such as LpxA and 
LpxM, all require 3-hydroxy fatty acyl-ACP as the preferred sub-
strate [22, 23]. Subsequent formation of lyso-aminolipids between 
3-hydroxy fatty acyl-ACP and an amino acid is often carried out 
by an N-acyl transferase (Pfam 13 444), the archetype of which in 
ornithine lipid biosynthesis is OlsB [20]. 

The first step in aminolipid biosynthesis, i.e. the formation of 
an amide bond between the carboxylate functional group of an 
activated fatty acid and the amine group of an amino acid, closely 
resembles the biosynthesis of fatty acyl amides that are widely 
recognized for their role in cell signaling [24]. A large group of fatty 
acyl amides known as N-acylated amino acids, where an amino 
acid provides the functional amine group (Fig. 1E), are produced 
by a variety of organisms, including humans. Perhaps the best 
known of these is anandamide which is capable of binding to 
human cannabinoid receptors (reviewed in Ezzili et al., 2010 [25]). 
It is worth noting that many bacteria are also able to produce 
N-acylated amino acids although their in vivo function is poorly 
understood [26–28]. In these microbes, N-acylated amino acids 
can be synthesized through a group of GNAT acyltransferases 
that show some similarity to enzymes involved in aminolipid 
biosynthesis (see below). However, as it stands, it has not been 
reported whether these N-acylated amino acids can be further 
acylated to produce an aminolipid-like molecule that can be 
incorporated into microbial membranes. These N-acylated amino 
acids identified from soil microorganisms often do not have a 3-
hydroxygroup which can be readily acylated further to form a 
mature membrane lipid. 

Phylogenetically, N-acyltransferases involved in aminolipid 
biosynthesis form a separate branch distinct from other acyl-
transferases, most noticeably N-acylated amino acid synthase 
and acyl-homoserine lactone synthase (Fig. 2). Domain analysis 
suggests that all enzymes involved in aminolipid biosynthesis 
(see below), along with some involved in N-acyl amino amide 
synthesis, share the common PF13444 domain. Both N-acylated 
amino acid synthase and acyl-homoserine lactone synthase 
use acyl-ACP for the initial step of amide bond formation. 
Curiously, enzymes catalyzing the amide bond formation between 
aromatic and non-aromatic amino acids are clearly separated 
phylogenetically. However, it remains to be investigated whether 
aromatic amino acids can indeed lead to the formation of mature 
aminolipids. 

The second step in aminolipid biosynthesis typically involves 
an O-acyltransferase (Fig. 3), which shares some sequence 
similarity to the PlsC enzyme responsible for glycerophos-
pholipid phosphatidic acid biosynthesis [39]. This family of 
O-acyltransferases also contains several enzymes involved in 
lipopolysaccharide (LPS) synthesis and modification, as well as 
the PatA acyltransferase involved in modifying membrane lipids 
in mycobacteria. Together, these proteins form a large group 
known as the lysophospholipid acyltransferase (LPLAT) family. 
Thus, it is likely that different functional domains are capable of 
O-acylation in the second step of aminolipid synthesis in different 

organisms and there may be new sequence motifs yet to be 
discovered. This consideration is important when interpreting 
omics-data in the context of aminolipid biosynthesis (see below). 

Known aminolipids: their synthesis and 
function 
Several pathways for aminolipid biosynthesis in bacteria have 
been studied in detail in recent years. Arguably the best example 
is ornithine lipid [14, 40] whose synthesis is often carried out by 
two genes olsB/olsA usually found adjacent to each other on the 
chromosome. OlsB is an N-acyltransferase that forms the amide 
bond and OlsA an O-acyltransferase that forms the ester bond. 
In some bacteria, particularly Bacteroidetes and Flavobacteria, 
one single protein encoded by olsF is responsible for ornithine 
biosynthesis. While the C-terminus of OlsF shows a high degree 
of similarity to OlsB, the N-terminus differs from OlsA. Ornithine 
lipid appears widely distributed in bacteria and previous genome 
analyses have found more than half of bacterial genomes appear 
to have pathways involved in its biosynthesis. 

There has been long-standing speculation that OlsB homo-
logues are likely responsible for the initial step in the synthesis 
of various other aminolipids [40]. This was indeed the case for at 
least two other aminolipids, the glutamine lipids found in marine 
roseobacter clade bacteria that are important players in oceanic 
biogeochemical cycling [29], as well as glycine lipids found in an 
important group of gut microbes [30]. It is unfortunate that these 
two independent studies, published in the same year, both des-
ignated the N-acyltransferase involved in glutamine and glycine 
aminolipid biosynthesis as GlsB. Given this may lead to confusion 
in the literature we thus propose to rename the N-acyltransferase 
involved in glutamine synthesis as GluB to avoid confusion in 
the future. Intriguingly, these lipids appear to have a relatively 
restricted distribution, as determined through genome analysis. 
GluB is predominantly found in marine roseobacters (Alphapro-
teobacteria) [29] whilst GlsB is prevalent in gut associated Bac-
teroides [30]. The second step of the synthesis of glutamine and 
glycine lipids involves an O-acyltransferase similar to that known 
for the synthesis of ornithine lipids. Glycine aminolipid and its 
lyso form have been identified in previous omics studies of the gut 
microbiome [41, 42]. Indeed, the discovery of GlsB was instrumen-
tal in unveiling the synthesis of these microbiota-derived lipids for 
the first time. Phylogenetic analysis indicates that gluB genes may 
have arisen from a gene duplication event involving olsB, whereas 
glsB genes could potentially have emerged from the duplication of 
the C-terminus of OlsF (Fig. 2). 

More recently, a new sulfur-containing aminolipid (SAL) was 
discovered in marine bacteria named SAL [8]. This lipid comprises 
a non-proteinogenic amino acid containing sulfur, cysteinolic 
acid. The first synthesis step, however, does not appear to be 
carried out by an OlsB N-acyltransferase homolog and the gene 
responsible for this step is still awaiting identification. However, 
the final step of O-acylation is performed by the salA gene which is 
homologous to olsA. Both OlsA and SalA share common sequence 
motifs with PlsC [8, 28]. However, it is worth noting that the 
N-terminus of OlsF involved in ornithine lipid biosynthesis in 
some flavobacteria and Serratia spp. lacks sequence similarity 
with PlsC [31]. Indeed, the OlsA/PlsC proteins feature a charac-
teristic Pfam 01553 domain, whereas the N-terminus of OlsF and 
recently discovered O-acyltransferase GlyA have a different Pfam 
19 576 domain (Fig. 3). Previous genome analysis has shown that 
salA appears to be confined to the marine roseobacter clade for
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Figure 2. The phylogeny of N-acyltransferases involved in aminolipid biosynthesis together with those involved in homoserine lactone synthesis and 
N-acylated aromatic amino acid synthesis. The evolutionary history was inferred using a neighbor joining algorithm from a multiple sequence 
alignment obtained with ClustalX. Bootstrap values greater than 50% are shown. A total of 304 positions were used in the final dataset. Evolutionary 
analysis was conducted in MEGA7. Protein domain analysis was obtained from the InterProScan at EBI (https://www.ebi.ac.uk/interpro/search/ 
sequence/). Sequences included in this analysis include OlsB (BAB1_0147 Brucella abortus; SMc01127 Sinorhizobium meliloti; SPO1980 Ruegeria pomeroyi; 
MED193_03912 Phaeobacter sp. MED193; BCAL1281 Burkholderia cenocepacia; mlr3216 Mesorhizobium loti; HTCC7211_00011000 Pelagibacter sp. HTCC7211; 
Rhodobacter capsulatus); GluB (SPO2489 R. pomeroyi; MED193_22491 Phaeobacter sp. MED193; LAZ29_20365 Rhodobacter sphaeroides [29]), GlsB (locus tags – 
BVU_RS07720 Bacteroides vulgatus; BM023_RS02715 Prevotella ruminicola; HMPREF1203_RS01905 Bacteroides fragilis [30]), OlsF (Spro_2569 Serratia 
proteamaculans; MED134_08291 Dokdonia sp. MED134; PEDSA_2277 Pseudopedobacter saltans; Fjoh_0833 Flavobacterium johnsoniae [31]), LasI (PDB 1RO5) 
and EsaI (PDB 1KZF) involved in SAM-dependent homoserine lactone synthesis [32, 33], and FeeM (PDB 2G0B), NasW (AAO64420), NasP (ABB76600), 
NasY1 (AAG53691), and NasR (AAO64421) involved in N-acylated amino acid synthesis [28, 34]. 

reasons that are unclear [ 8]. Perhaps this restriction is related to 
the unique ability of these bacteria to produce and metabolize a 
range of C3 sulfonates [43, 44], including cysteinolic acid which 
forms the hydrophilic head group of this unusual lipid [9]. 

Another lesser-known aminolipid features lysine as the head-
group. This lipid, along with its hydroxylated forms, have been 
found in the soil bacterium Pseudopedobacter saltans as well as 
Agrobacterium spp. and Pedobacter spp. [45, 46]. However, the exact 
synthesis mechanism remains unclear although it is speculated 
that an OlsF homolog is likely involved [31, 46]. Similar to the 
hydroxylation of ornithine lipid by OlsE, it is hypothesized that 
an OlsE homolog is responsible for lysine lipid hydroxylation [46]. 
An OlsE homolog is also found in some marine roseobacters, such 
as SPO0328 in Ruegeria pomeroyi DSS-3 (i.d. 35%, e-value e−54), 
but it remains to be seen whether this gene is responsible for 
hydroxylation of the ornithine lipid or the SAL lipid found in this 
bacterium [8]. 

Unlike glycerophospholipids, the physiological functions of 
these aminolipids are generally not well understood and no 
clear pattern has yet emerged for these lipids. Indeed, it appears 
that in different bacteria their roles are noticeably dissimilar. 
For example, in the soil bacterium Sinorhizobium meliloti, the  
production of ornithine lipids is believed to be at least in 
part a response to phosphorus (P) deficiency. However, this 
transition from phospholipids to ornithine lipids does not appear 
to be relevant for root nodulation on legume host plants [39]. 
In Pseudomonas aeruginosa, ornithine lipid production is also 
enhanced under P limitation, and this lipid seems to play a 
role in the resistance of Pseudomonas aeruginosa to antimicrobial 

peptides [47]. However, ornithine lipids are not tightly regulated 
by P availability in other bacteria, e.g. Burkholderia sp. [48] and  
Ruegeria sp. [29]. Thus, the specific role of these lipids may differ 
significantly depending on the organism under investigation. 

The function of glycine-containing aminolipids has been pri-
marily studied in the context of infection and immunity, particu-
larly in the gut microbiome (recently reviewed by Ryan et al., [49]) 
although many environmental bacteria are also known to produce 
them [10]. Both glycine and ornithine aminolipids are known to 
induce an immune response, but through different pathways. 
For example, synthetic ornithine lipids composed of saturated 
C14:0 fatty acids are able to bind to Toll like receptor 4 (TLR4), 
which is the best-known receptor for lipopolysaccharides (LPS) of 
Gram-negative bacteria, thus reducing the LPS-induced immune 
response [50, 51]. In contrast, glycine lipid such as flavolipin inter-
acts with TLR2, a receptor known to interact with lipopeptides 
[51, 52]. The lyso form of flavolipin (mono-acylated) activates 
G-protein coupled receptors (GPCR) through internal signaling 
cascades [42]. Lyso glycine aminolipids display hemolytic activity 
and can lyse membranes [53]. This membrane-disrupting activity 
is similar to that of N-acylated amino acids that are able to disrupt 
bacterial membranes and exhibit antimicrobial activity [27]. 

In the marine environment, two unusual aminolipids, SAL and 
the glutamine-containing aminolipid, are largely confined to the 
marine roseobacter group [8, 29]. These bacteria are well known 
for their metabolic versatility and their ability to form various 
interactions with algae, marine animals and other organisms [54]. 
As such, we have hypothesized that these aminolipids in marine 
roseobacter may have a role in cell–cell interactions. This has
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Figure 3. The phylogeny of O-acyltransferases of the lysophospholipid acyltransferase (LPLAT) family involved in the synthesis of phosphatidic acid, 
aminolipids as well as those involved in lipopolysaccharide (LPS) biosynthesis and modification. The evolutionary history was inferred using a 
neighbor joining algorithm from a multiple sequence alignment obtained with ClustalX. Bootstrap values greater than 50% are shown. A total of 557 
positions were used in the final dataset. Evolutionary analysis was conducted in MEGA7. Protein domain analysis was obtained from the InterProScan 
at EBI (https://www.ebi.ac.uk/interpro/search/sequence/). Sequences included in this analysis include LpxP (NP_416879), LpxL (NP_415572), LpxN 
(NP_229869), PatA (PDB 5F2Z, [35]), LpxM (PDB 5KN7, [23]), AlmG (NP_231217, [36]), PlsC (PDB 5KYM, [37]), PlsC (NC_011748), OlsA from Pseudomonas 
aeruginosa (PA4351, [38]), Ruegeria pomeroyi (SPO1979, [29]), Sinorhizobium meliloti (SMc01116, [39]), SalA from R. pomeroyi (SPO0716, [8]) and Phaeobacter 
inhibens (PGA1_c01210), GlsA (BVU_RSO7715, [30]), and OlsF from Serratia proteamaculans (Spro_2569), Pseudopedobacter saltens (PEDSA_2277). 

been partially validated. For example, changes in membrane lipid 
composition in roseobacters seems to influence the dynamics of 
bacteria-protist interactions [ 55]. However, unlike the formation 
of betaine-containing lipids through membrane lipid remodeling 
[55], the absence of SAL lipids does not appear to affect grazing 
of R. pomeroyi DSS-3 by Uronema sp. (unpublished data). The loss 
of two aminolipids, ornithine and glutamine lipids in R. pomeroyi 
DSS-3, however, significantly alters membrane protein compo-
sition and completely changes the dynamics of bacteriophage 
attachment [6]. These studies suggest that the physiology of 
lipids is likely influenced by the interplay between lipids and 
integral or peripheral membrane proteins, and possibly other 
macromolecules that are attached to the lipid membrane, e.g. 
LPS. Perhaps, it is this uncertainty regarding how alterations in 
lipid composition can impact local protein assembly and function 
that makes predicting the function of aminolipids in various 
organisms somewhat challenging. 

Uncovering aminolipid biosynthesis in the 
environment through lipidomics and 
metagenomics 
Environmental lipidomics (a.k.a. metalipidomics) has emerged as 
a potent tool for revealing the vast array of membrane lipids 
within various environmental settings, and elucidating how 
the environment can influence microbiome dynamics across 
diverse climate scenarios [56]. Nonetheless, it is puzzling that 
only a few studies have documented the detection of aminolipids 
in environmental samples through mass spectrometry-based 
lipidomics investigations, despite genomic analyses indicating the 

abundance of genes involved in aminolipid biosynthesis across 
many bacterial genomes. Only a handful of studies have 
reported the presence of ornithine aminolipids or its methy-
lated derivatives [57–62]. This scarcity of aminolipid reports 
in an environmental context may be partially attributed to 
the insufficient utilization of extensive mass spectrometry 
fragmentation analyses, essential for assigning environmental 
lipidomics data (comprising intact lipid m/z and MSn fragmen-
tation patterns) to distinct aminolipid species. It is perhaps 
unsurprising that ornithine lipids are comparatively better 
documented, as a diagnostic m/z 115 fragment originating 
from dehydrated cyclized ornithine amino acid is observed in 
positive-mode electrospray ionization mass spectrometry [63], 
facilitating the identification of this aminolipid in environmental 
metalipidomics studies. The identification of aminolipids heavily 
relies on the availability of reference ion component spectra, 
underscoring the urgent need for further research to discover 
and catalogue novel aminolipid species. Current lipid databases, 
e.g. the Global Natural Product Social Molecular Networking 
(GNPS) library [64] and the LIPID MAPS Structure Database 
[65], are deficient in comprehensive aminolipid references, 
limiting their use in structural annotation of aminolipids. 
Employing advanced techniques such as fragment network 
analysis through platforms such as the GNPS could help char-
acterization of aminolipids in future environmental lipidomics 
studies [59]. 

It is noteworthy that the precursor for aminolipid synthesis, 
3-hydroxy fatty acids, is also commonly employed as a biomarker 
indicative of the presence of bacterial LPS [66], which has been 
extensively used in paleoclimate research. Comprehensive soil, 
sediment, and aquatic environment samplings have revealed the
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Figure 4. The global distribution of microbial aminolipid biosynthesis potential. (A) Detection of aminolipids through environmental lipidomics 
surveys, represented by triangles, and the global distribution of key genes involved in aminolipid biosynthesis in representative environmental 
microbiomes, including freshwater (n = 20), marine surface water (n = 20) and soil (n = 20) represented by green, blue and red circles, respectively. The 
environmental lipidomics dataset included in this figure is shown in Supplementary Table S1. Globally distributed metagenome datasets were 
retrieved from the NCBI, and basic sample and quality information is presented in Supplementary Table S2. (B) The relative abundance of aminolipid 
biosynthesis genes across different ecosystems, expressed as a percentage of whole-community single-copy marker gene (SCMG) abundances. Gut 
microbiome metagenome datasets (n = 20), with human DNA sequences removed using BMTagger, were obtained from the human microbiome project 
[67] accessible at https://www.hmpdacc.org/HMASM/. Briefly, raw data was trimmed to clean the data using Trimmomatic v0.39 [68], which was then 
used to assemble contigs using MEGAHIT v1.2.9 [69] with a  k-mer range from 21 to 119. Gene predictions for contigs were made by prodigal v2.6.3 [70]. 
The aminolipid biosynthesis genes and ten bacterial single-copy housekeeping genes were searched by HMMER v3.4 [71], applying a optimized cut-off 
(e-value <1e-40). Relative gene abundances were calculated as reads per kilobase per million mapped reads (RPKM) using CoverM v0.7.0 [72]. Then, the 
relative abundance of aminolipid biosynthesis genes was normalized by dividing by the median abundance of ten bacterial SCMGs [73]. The taxonomy 
of these aminolipid biosynthesis genes was affiliated against the IMG’s unrestricted isolate genomes (IUIG) dataset (dated 11/20/2023) using 
DIAMOND blastp v2.1.9.163 [74] with an  e-value <1e-5. These data are summarized in Supplementary Table S3. 

widespread occurrence of 3-hydroxy fatty acids across global 
ecosystems. However, whether or not these molecules are truly 
derived from bacterial LPS is questionable, given that aminolipids 
are also likely prevalent in the environment. Despite the limited 
number of studies measuring aminolipids in the environment, 
recent advances in uncovering genes involved in aminolipid 
biosynthesis have facilitated analysis of various environmental 

metagenomics datasets for the presence of these genes. This 
analysis included representative microbiomes from marine 
surface water, freshwater, and soil ecosystems, as well as the 
human gut. The data presented in Fig. 4 reveal intriguing patterns. 
Whilst genes responsible for ornithine lipid biosynthesis appear 
ubiquitous across all ecosystems studied, the distribution of 
other aminolipids seems confined to specific ecosystems. For
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instance, the salA gene responsible for the synthesis of the 
SAL lipid is particularly abundant in marine surface water 
microbiomes, whereas the glycine lipid biosynthesis gene glsB 
is most prevalent in the human gut. Moreover, genes like gluB 
(required for glutamine lipid biosynthesis) and salA which are 
relatively abundant in marine bacteria, are completely absent in 
the human gut. 

A perspective on future research needs 
Aminolipids represent an intriguing group of bacterial membrane 
lipids but we are only just starting to understand their physio-
logical and metabolic roles. Activation of (3-hydroxy) fatty acids 
through the common bacterial type II fatty acid synthesis path-
way enables subsequent adding of the 2nd fatty acid through an 
ester bond in a piggy-back manner. There it appears that bacteria 
hijacked fatty acyl-ACP from the type II fatty acid synthesis path-
way to make aminolipids. Given the type II fatty acid synthesis 
pathway is largely found in bacteria, this could help explain the 
lack of these lipids in archaea and eukaryotes. However, given 
that the synthesis of the sulfur-containing aminolipids SAL in 
roseobacters does not require a 3-hydroxy fatty acid, it thus 
remains to be seen whether similar aminolipids may exist beyond 
bacteria. 

To date, only a handful of amino acids are found in these 
lipids and questions remain whether other aminolipids exist in 
bacterial membranes. Noticeably, to date no aromatic amino acids 
are found in aminolipids (e.g. tyrosine, phenylamine), nor are 
amino acids with heterocyclic rings found (e.g. histidine, proline) 
yet their N-acyl amino acid counterparts appear common in the 
biosphere. To address these disparities, a thorough, systematic 
and meticulous investigation of membrane lipids in a wide range 
of bacterial isolates and model organisms using high-resolution 
mass spectrometry is clearly required in future lipidomics studies. 
For some aminolipids that are known to be present in bacterial 
membranes, their synthesis pathways also remain to be fully 
established, e.g. lysine aminolipids and SALs. Uncovering the 
genes underpinning their biosynthesis would greatly advance our 
understanding of the biosynthetic potential of particular micro-
biomes, helping guide the design of metalipidomics surveys to 
confirm their presence and quantify their abundance. 

Functional studies of these lipids in microbial membranes are 
still in their infancy. Both glycine lipids and ornithine lipids, which 
are abundant in the human gut microbiome (Fig. 4), have been 
identified as potential immunomodulators. Ornithine lipids pro-
duced by the gut bacterium Akkermansia muciniphila likely influ-
ence the host’s production of pro-inflammatory cytokines and 
antimicrobial peptides through interaction with the host tran-
scription factor ATF3 [75]. Ornithine itself can also influence gene 
expression by interacting with ribosomes [76]. Other aminolipids 
such as SAL and glutamine lipids are not as widely distributed 
as ornithine lipids, and their functions appear to be group or 
strain-specific, depending on the model organisms investigated. 
For example, SAL lipids in Phaeobacter sp. play a role in biofilm 
formation, yet in a closely related marine roseobacter strain R. 
pomeroyi DSS-3, deletion of the salA gene had little impact on 
biofilm formation. Thus, it is entirely possible that the interplay 
between lipids-lipids and lipids-proteins varies between bacte-
rial strains, making precise prediction of aminolipid function in 
bacterial physiology not at all straightforward. Moreover, from a 
fundamental perspective, it is puzzling why bacteria encode the 
capacity to produce these lipids in the first place. For example, 
the well-studied model bacterium Escherichia coli does not appear 

to produce any aminolipids. After all, evolution has selected 
glycerophospholipids from the beginning of life’s existence [2]. 
Thus, future studies should employ a wide variety of aminolipid-
producing models to investigate their roles across a range of 
bacteria-bacteria and bacteria-host interactions. Only through 
such extensive work can a pattern for the role of these lipids begin 
to emerge. 
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