
HAL Id: hal-04836773
https://hal.science/hal-04836773v1

Submitted on 13 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

A novel flexible infinite element for transient acoustic
simulations

D. Bizzarri, S. van Ophem, P. Marchner, O. Atak, H. Bériot

To cite this version:
D. Bizzarri, S. van Ophem, P. Marchner, O. Atak, H. Bériot. A novel flexible infinite ele-
ment for transient acoustic simulations. Journal of Sound and Vibration, 2025, 599, pp.118854.
�10.1016/j.jsv.2024.118854�. �hal-04836773�

https://hal.science/hal-04836773v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


A novel flexible infinite element for transient acoustic
simulations

D. Bizzarria,b,∗, S. van Ophemb,c, P. Marchnera, O. Atakd, H. Bériota

aSiemens Industry Software NV, Interleuvenlaan 68, Leuven, 3001, Belgium
bKU Leuven, Department of Mechanical Engineering, Celestijnenlaan

300, Heverlee, B-3001, Belgium
cFlanders Make@KU Leuven, Belgium

dSiemens Digital Industries Software, Hills Rd, Cambridge, United Kingdom

Abstract

This article addresses the efficient solution of exterior acoustic transient
problems using the Finite Element Method (FEM) in combination with in-
finite elements. Infinite elements are a popular technique to enforce non-
reflecting boundary conditions. The Astley-Leis formulation presents several
advantages in terms of ease of implementation, and results in frequency-
independent system matrices, that can be used for transient simulations of
wave propagation phenomena. However, for time-domain simulations, the
geometrical flexibility of Astley-Leis infinite elements is limited by time-
stability requirements. In this article, we present a novel infinite element
formulation, called flexible infinite element, for which the accuracy does not
depend on the positioning of the virtual sources. From a software imple-
mentation perspective, the element proposed can be seen as a specialized
FEM element and can be easily integrated into a high-order FEM code.
The effectiveness of the flexible formulation is demonstrated with frequency
and time-domain examples; for both cases, we show how the flexible infinite
elements can be attached to arbitrarily-shaped convex FE boundaries. In
particular, we show how the proposed technique can be used in combina-
tion with existing model order reduction strategies to run fast and accurate
transient simulations.
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unbounded acoustics.

1. Introduction

The finite element method (FEM) is one of the most popular techniques
to simulate the propagation of acoustic waves, as it allows to efficiently solve
complicated problems by discretizing the physical domain of interest. The
simulation of wave fields in unbounded regions represents a challenge, as
computers can only handle a finite number of elements. The simplest, but
rather inaccurate, approach consists of applying an impedance boundary
condition at the artificial boundary of the finite element domain [1]. High-
order absorbing boundary conditions [2] and the perfectly matched layer
(PML) [3] represent more accurate alternatives. In particular, the PML has
been proven to be very efficient for the solution of wave problems in the
frequency domain. The PML has also been extensively studied for transient
applications (see [4]-[10] and references therein). However, time-domain PML
formulations require the use of auxiliary variables; the resulting increase in
the number of degrees of freedom (DOFs) makes the PML less attractive to
simulate transient phenomena.

The infinite element method, introduced by Bettess and Zienkiewicz [11],
employs special elements that extend from the boundary of the FE domain
to infinity. Over the years, different formulations have been proposed in the
literature. In particular, two groups of formulations, which differ in the choice
of the test functions in the infinite domain, were developed: the unconjugated
formulation, where the test basis functions and the shape functions are the
same, and the conjugated formulation, where the test basis functions are the
complex conjugate of the shape functions. A detailed comparison of these
strategies is given in [12], where the advantages and disadvantages of both
are analyzed in detail.

Alternatives exist also in terms of geometrical discretization of the infinite
elements. The so-called mapped formulations rely on a mapping from the
physical element to a parent element [13]-[16]: their main advantage is the
geometrical flexibility, as they can be attached to arbitrary convex-shaped
FE boundaries. By contrast, for Burnett elements [17]-[19], the geometry of
the envelope is restricted to spheroids and no mapping is employed.

Astley-Leis infinite elements [20] belong to the family of mapped formu-
lations. They differ from other conjugated formulations by a weight fac-
tor in the test functions, which is designed to cancel out the unbounded
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terms in the integrals that need to be computed to obtain the system ma-
trices. Astley and Hamilton [21] studied the stability of these elements. For
the standard Astley-Leis formulation, based on the Atkinson-Wilcox expan-
sion [22], stability and convergence in the time domain have robustly been
demonstrated only for configurations where the infinite elements are attached
to spherical (or cylindrical) envelopes, with virtual sources aligning with a
global center (or axis) of radiation. Under these conditions, the trial solu-
tion exhibits a close correspondence with a truncated form of the Atkinson-
Wilcox expansion, leading to convergent solutions. A notable characteristic
of these ideal configurations is that the global mass matrix of the infinite
elements is theoretically zero for perfect spherical (or cylindrical) interfaces.
However, practical implementations introduce discretization approximations,
which can result in small, non-zero terms in the mass matrix. These minor de-
viations can potentially trigger spurious instabilities in transient simulations.
The numerical studies reported in [21] indicate that stable solutions can be
achieved by deliberately setting the global infinite element mass matrix to
zero. This technique effectively disregards the small, non-zero contributions
arising from discretization errors, without compromising the overall accuracy
of the solution. When considering more general cases involving arbitrarily
convex-shaped interior domains, a similar stability-preserving strategy can be
employed. The key requirement for this approach is that the radial edges of
the infinite elements must be normal to the finite element boundary. In such
configurations, the infinite element mass matrix naturally approaches zero,
allowing for the same technique of neglecting small discretization-induced
contributions. However, in these cases, the virtual sources do not coincide
with a global center of radiation, and, as a consequence, the trial solutions
do not accurately approximate the global Atkinson-Wilcox expansion. In
practice, for most scenarios, this means that standard Astley-Leis infinite
elements based on the Atkinson-Wilcox expansion should be attached only
to spherical (or cylindrical) envelopes for transient simulations.

Alternative mapped spheroidal infinite element formulations, based on the
Holford expansion [18], have been proposed, both in the frequency domain
and in the time domain [23], [24]. These elements were observed to give
stable solutions without the need to set the infinite element mass matrix
to zero [21]. However, for such formulations, as well as for non-mapped
spheroidal formulations [17]-[19], the benefits of a smaller interior domain
may be nullified by the necessary increases in the radial order of the infinite
element shape functions, as observed in [24], [25] and [26].
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Li et al. [27]-[30] proposed an alternative conjugated mapped formula-
tion, where radial shape functions of the Lagrangian type are modified to
satisfy exactly the truncated multipole expansion along the infinite edges,
irrespective of the location of the virtual sources. However, to the best of
the authors’ knowledge, such formulation has not been explored in the con-
text of transient simulations; additionally, it’s worth noting that due to the
restriction to radial shape functions derived from Lagrange polynomials, Li’s
elements may face challenges with conditioning, particularly for high radial
orders [31].

The fact that conjugated infinite element formulations result in frequency-
independent system matrices and maintain the sparsity of the FEM system,
makes them readily available for time-domain simulations [32]-[34] and suit-
able for Model Order Reduction (MOR) [35]. This is particularly interest-
ing, as in recent years MOR for transient simulations has emerged as one
of the key technologies in a number of applications [36]-[39]. The aim of
MOR techniques is to build Reduced Order Models (ROMs) that capture
the most relevant dynamics of the corresponding initial Full Order Mod-
els (FOMs), using only a fraction of the DOFs. In [38] a numerical test is
presented, for which the performance of the time-domain PML formulation
from Kaltenbacher et al. [10] is compared with the Astley-Leis infinite el-
ement formulation. In particular, it is shown that using the PML results
in a larger number of DOFs, due to the presence of the auxiliary variables.
Moreover, from a MOR perspective, it is necessary to use a split-basis ap-
proach, which results in tripling the number of DOFs of the final ROM, to
guarantee time-domain stability preservation of the PML formulation after
MOR. Since this performance comparison between the PML and the infinite
element method is limited to a single numerical test, it is difficult to draw
general conclusions. The study cited, however, gives an indication that using
infinite elements for unbounded transient problems leads to more efficient
computations, especially when MOR techniques are used.

In this work, we propose a novel infinite element formulation for radial
shape functions of any type, which satisfies exactly the truncated multipole
expansion, irrespective of the orientation of the infinite edges. Consequently,
we employ the new flexible infinite element to achieve a time-stable and ac-
curate formulation, for arbitrarily shaped convex envelopes. Our approach
retains the key advantages of standard Astley-Leis elements while extend-
ing applicability to more general geometries. Specifically, our formulation
preserves the frequency-independent nature of the system matrices, main-
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tains compatibility with standard quadrature rules for integral evaluation,
and remains suitable for standard MOR techniques. The integration of the
flexible infinite elements into a high-order FEM software is discussed. We
show how one can take advantage of the quickhull algorithm [40] to automat-
ically generate a convex acoustic domain around sources of interest. Finally,
the combination of the proposed formulation with an existing MOR strategy
is discussed.

The article is structured as follows. In Section 2, the Helmholtz problem
and the resulting system of equations in the time domain are introduced, to-
gether with a description of the standard Astley-Leis formulation. In Section
3, the novel flexible infinite element is presented and its stability properties
are discussed. In Section 4, we discuss the integration of the infinite element
formulation into a high-order FEM software. In Section 5, we demonstrate
the effectiveness of the proposed method on two academic examples, while
in Section 6 we consider a problem of industrial complexity. Finally, a con-
clusion is proposed in Section 7.

2. Finite and Infinite elements for acoustics

This section provides the theoretical background for our study of the
flexible infinite element formulation. We first introduce the notation and
provide an overview of the general problem in Section 2.1. We then review
the state-of-the-art formulation, namely the Astley-Leis infinite elements,
in Section 2.2. Finally, in Section 2.3, we review the conditions for the
stability of the Astley-Leis formulation and discuss its limitations in the
context of transient simulations. These limitations provide the motivation
for the development of the flexible infinite element formulation.

2.1. Problem statement
2.1.1. Governing equation

We take the convention that the time-dependence of the fields is exp(iωτ),
where ω is the angular frequency and τ is the time. The behavior of the
pressure field p in the unbounded domain Ω is described by the Helmholtz
equation in the frequency domain:

∇2p+ k2p = 0 in Ω, (1)

where k is the wavenumber. The domain Ω is subdivided into an interior
region Ωi and an exterior region Ωe; we denote with Γ the interface between
the two domains (see Figure 1).
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ΓS

Ωe

ΓΩi

ΓN

Figure 1: Exterior acoustic problem, schematic representation. Ωi and Ωe are the interior
and exterior domain, respectively. Γ is the interface between the two domains, and ΓS is
the envelope where the Sommerfeld condition is imposed.

At the interior boundary ΓN of the domain Ωi a Neumann boundary
condition is prescribed. Dirichlet and Robin boundary conditions can be
easily handled as well, but they won’t be considered here for ease of notation.
The Sommerfeld condition states that no waves can be reflected at infinity;
in mathematical terms, in a d dimensional domain, this is written as:

r
d−1
2

{
∂p

∂r
+ ikp

}
→ 0 as r → ∞, (2)

where r is the spherical/cylindrical radius.
As in [41], approximating (2), we can rewrite:

∇xp · n = −ikp on ΓS, (3)

where ∇x is the gradient operator in Cartesian coordinates, and ΓS is a
spherical (or cylindrical) envelope with outward unit normal n, placed at
radial distance R from the envelope Γ, with R → ∞.

The corresponding boundary value problem reads as follows:
∇2p+ k2p = 0 in Ω

∇xp · n = −iρωvn on ΓN

∇xp · n = −ikp on ΓS, for R → ∞,

(4)

where ρ is the fluid density and vn is the prescribed normal velocity on ΓN.
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2.1.2. Variational formulation and discretization
Using the method of weighted residuals, we obtain the following varia-

tional formulation:∣∣∣∣∣∣
Find p ∈ H1(Ω) such that, ∀q ∈ H1(Ω)

lim
R→∞

∫
Ω

{
∇xq · ∇xp− k2qp

}
dΩ + ik

∫
ΓS

{qp} dΓ + iω

∫
ΓN

{ρqvn} dΓ = 0,

(5)
where H1 is the Sobolev space where the solution is sought.

Eq. (5) is solved by using H1-conforming finite elements in Ωi and attach-
ing infinite elements to the envelope Γ. In this case, p and q are approximated
by ph ∈ V h ⊂ H1(Ω) and qh ∈ Qh ⊂ H1(Ω), where V h is the space of shape
functions and Qh is the space of test functions. In the Astley-Leis formula-
tion, thanks to the weight factor used in the test functions, the Sommerfeld
condition is automatically satisfied and does not need to be taken into ac-
count in the variational formulation [20]. The discrete variational formulation
reads: ∣∣∣∣∣∣

Find ph ∈ V h such that, ∀qh ∈ Qh

lim
R→∞

∫
Ω

{
∇xq

h · ∇xp
h − k2qhph

}
dΩ + iω

∫
ΓN

{
ρqhvn

}
dΓ = 0,

(6)

which can be rewritten as a linear system of equations:[
−ω2M+ iωC+K

]
p(ω) = f(ω), (7)

where p is the vector of DOFs, f is the forcing vector, M, C, and K ∈
RnDOF×nDOF are the mass, damping, and stiffness matrices, respectively, and
nDOF is the number of DOFs.

Since, for the Astley-Leis formulation, the system matrices are frequency-
independent, Eq. (7) can be readily transformed into the time domain:

Mp̈τ (τ) +Cṗτ (τ) +Kpτ (τ) = fτ (τ), (8)

where pτ and fτ are the inverse Fourier transforms of p and f , respectively.

2.1.3. Multipole expansion
The Atkinson-Wilcox theorem [22] states that at any point outside the

smallest sphere circumscribing all the sound sources, the solution of problem
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(4) can be written as the multipole expansion:

p = exp(−ikr)
∞∑
n=1

Gn(α, θ, k)

rn
(9)

where Gn is the directivity function, α and θ are the spherical angles, and
r is the radial distance, measured from the center of radiation, that coin-
cides with the center of the minimal enclosing sphere. For ease of notation,
throughout the rest of the paper, we will assume that the origin O of the
absolute Cartesian coordinate system coincides with the center of radiation.

The Atkinson-Wilcox theorem has been extended by Burnett and Holford
[18] to include the spheroidal case. By placing the envelope Γ outside the
minimal enclosing sphere (for the Atkinson-Wilcox expansion) or spheroid
(for the Holford expansion), we ensure that the solution in the exterior do-
main Ωe is composed only of outward propagating waves; this consideration
is used to select a proper trial solution in the infinite elements.

The so-called spheroidal formulations have received some criticism in the
past [24]-[26], since the smaller number of DOFs in the FEM region is often
counterbalanced, in practical applications, by the need for higher radial or-
ders in the exterior region. On the other hand, numerical experiments have
been performed in the frequency domain, using mapped infinite elements
based on expansion (9), where the conditions of the Atkinson-Wilcox theo-
rem were explicitly violated [42], [31], [43]: namely, non-spherical envelopes
were used, partially lying inside the minimal enclosing sphere. Although the
convergence of this approach has not been formally proven [44], numerical
experiments with sufficiently smooth envelopes gave satisfactory results (see
[45] for more details). For all the test cases encountered during our research,
our observations were in line with the cited literature. These claims will be
further expanded in Section 6.

2.2. Review of Astley-Leis infinite elements
2.2.1. Geometrical interpolation

The Astley-Leis formulation relies on a mapping from the infinite physi-
cal element to a finite parent element. In particular, in two dimensions (see
Figure 2), the physical element is mapped to a rectangular parent element
(t, v ∈ [−1, 1]); in three dimensions, the parent element can be a triangu-
lar prism or a cube, depending on the shape of the corresponding physical
element, and the parent element coordinates are named s, t and v.
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Figure 2: Schematic representation of a mapped infinite element. In our convention, the
center of radiation coincides with the origin O of the Cartesian coordinates system.

In the following, we denote the position vector of the generic point p in the
e-th infinite element by the vector of Cartesian coordinates xp = (xp, yp, zp).
During the meshing process of the interior domain, n nodes are defined on
the envelope Γ within the e-th infinite element. Subsequently, for each node
on Γ, a corresponding mapping node is defined in the exterior domain. The
i-th infinite edge is the line that originates from node i on Γ, passes through
the corresponding mapping node i + n, and extends to infinity (see Figure
2).

We denote with ai the distance between the mapping nodes i and i+ n:

ai = ||xi+n − xi|| , (10)

where ||·|| is the Euclidean norm. The virtual source Oi is located (see Figure
2) along the direction of the i-th infinite edge, towards the interior domain,
at distance ai from Γ.

For any point on the i-th infinite edge, the distance ξi from the corre-
sponding virtual source is mapped to the parent element radial coordinate
v:

ξi(v) =
2ai
1− v

. (11)
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We denote with ξ the interpolated distance between the mapping nodes and
their corresponding virtual sources. A mapping between ξ and the radial
parent element coordinate v is obtained for any point inside the infinite
element:

ξ(s, t, v) =
2 a(s, t)

1− v
, (12)

where the interpolated distance a between the mapping nodes on Γ and their
respective virtual sources is defined as:

a(s, t) =
n∑

i=1

Nt
i(s, t)ai. (13)

where Nt
i are the standard tangential geometrical mapping functions (typi-

cally Lagrangian polynomials).
The vector of Cartesian coordinates for a point inside the e-th infinite

element is found by interpolating the nodal Cartesian coordinates:

x(s, t, v) = NΓ
v (v)

n∑
i=1

Nt
i(s, t)xi +NΥ

v (v)
2n∑

i=1+n

Nt
i(s, t)xi, (14)

where xi are the vectors of Cartesian coordinates at the mapping nodes, and
the radial geometric mapping functions NΓ

v (v) and NΥ
v (v) are defined as:

NΓ
v (v) =

(
− 2v

1− v

)
, NΥ

v (v) =

(
1 + v

1− v

)
. (15)

Finally, the so-called phase distance µ is defined as:

µ(s, t, v) = ξ(s, t, v)− a(s, t). (16)

When the infinite edges are extruded orthogonally to Γ, the phase distance
µ (s, t, v) represents the distance between the point with physical coordinates
x (s, t, v) and the envelope Γ, as represented in Figure 2.

We emphasize that the notation adopted here is slightly different from
what is usually found in the literature because we want to distinguish be-
tween r as defined in Section 2.1.3 (i.e., the distance from the center of
radiation) and ξ, the interpolated distance between the mapping nodes and
their respective virtual sources, defined in (12). In particular, since we take
the convention that the origin O of the Cartesian coordinate system coincides
with the center of radiation, r can be written as:

r(s, t, v) = ∥x(s, t, v)∥. (17)
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2.2.2. Shape and test functions
By analogy with the Atkinson-Wilcox expansion (9), the shape functions

are written as:
ϕ(s, t, v) = ψ(s, t, v) exp [−ikµ] , (18)

where ψ(s, t, v) is the usual vector of polynomial shape functions used in the
FE domain. By inserting the radial mapping (12) in (18), it can be verified
that the trial solution p̃ in the exterior domain takes the following form:

p̃ ∼
(
α1

ξ
+ ...+

αm

ξm

)
exp [−ik(ξ − a)] , (19)

where m is the selected radial order in the infinite domain, and the terms
α1, ..., αm are interpolation functions

αi = αi(s, t)∀i ∈ [1,m]. (20)

In other words, for the i-th infinite edge, the pressure field generated by
the m-th order virtual multipole source, placed at Oi, can be accurately
approximated. This is where the idea of virtual sources comes from.

An interesting case to analyze is when all the virtual sources of the e-th
infinite element coincide with the center of radiation O. In this case, along
the i-th infinite edge, we obtain:

p̃ ∼
(α1

r
+ ...+

αm

rm

)
exp [−ik(r − a)] , (21)

since ξ = r along the i-th infinite edge, when Oi ≡ O. In other words, when
all the virtual sources coincide with the center of radiation, the approxi-
mated field variable ph can mimic the multipole expansion (9), truncated at
the radial order m, along the infinite edges, ensuring good accuracy of the
approximation. In all other cases, relationship (21) is not necessarily true.
This explains why, for traditional mapped infinite element formulations, the
accuracy depends on the location of the virtual sources.

In the Astley-Leis formulation, a Petrov-Galerkin approach is taken: the
test and trial functions belong to different function spaces; in particular,
the test basis functions are the complex conjugate of the shape functions,
multiplied by a weight factor w:

ϕ̃ = wψ exp[+ikµ], (22)
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where the weight factor takes the form:

w =

(
1− v

2

)pw

. (23)

In contrast to the Bubnov-Galerkin method, where the test basis functions
are equal to the shape functions, the Petrov-Galerkin method results in un-
symmetric system matrices. This choice for the test basis functions is par-
ticularly convenient: first, being a conjugated formulation, the Astley-Leis
formulation results in frequency-independent system matrices, which can be
readily used in the time domain; second, for pw ≥ 2, standard quadrature
rules can be used for the evaluation of the integrals necessary to compute
the system matrices. In [20] the choice of pw = 2 is justified on physical
grounds, although it is pointed out that any power pw ≥ 2 preserves the
boundedness of the system matrix integrals. Irrespective of the choice of
pw, the conjugated weighted formulation was shown to lead to a variational
formulation in weighted Sobolev spaces, for which existence and uniqueness
of the solution were proven [12], [46]. Denoting with Mij

IE, Kij
IE, and Cij

IE

the (i, j)-th components of the infinite element mass, stiffness, and damping
element matrices respectively, for the Astley-Leis formulation we have:

Mij
IE =

1

c2

∫
Ωe

{
wψiψj

[
1− ∥∇xµ∥2

]}
dΩ, (24)

Kij
IE =

∫
Ωe

{
(ψi∇xw + w∇xψi) · ∇xψj

}
dΩ (25)

Cij
IE =

1

c

∫
Ωe

{
wψi∇xµ · ∇xψj −ψiψj∇xµ · ∇xw

−wψj∇xψi · ∇xµ
}

dΩ
(26)

2.3. Review of conditions for stability
In this subsection, we analyze the conditions under which the Astley-Leis

formulation is stable. Astley and Hamilton [21] empirically observed that
when "zero-mass" Astley-Leis infinite elements are constructed, the formula-
tion is time-stable. Cipolla [47] argued that the positive semi-definiteness of
the global mass matrix is a necessary condition for stability. Our numerical
experiments, some of which are presented here, while others have been pub-
lished in previous works ([36], [39], [48]) or remain unpublished, indicate that
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such condition is not only necessary, but also sufficient. This assumption has
been observed to hold true for a wide variety of numerical experiments, but
it is not yet underpinned by any formal proof.

This analysis extends the one carried out by Astley and Hamilton [21].
In particular, in Section 3.5 of [21], only the system matrices relative to the
infinite elements are considered; here, by contrast, we include the case where
the interior domain is discretized with finite elements. Moreover, in Section
3.5 of [21] only the case where the inner surface of the infinite element is
an arc of a circle is inspected; in this subsection, we extend the analysis to
arbitrary convex shapes.

A symmetric matrix A ∈ RnA×nA is defined positive semi-definite when

a⊤Aa ≥ 0, ∀a ∈ RnA . (27)

For the sake of brevity, we will adopt A ≥ 0 as a shorthand notation to
indicate positive semi-definiteness of the matrix A. Because of the infinite
elements’ contribution, the mass matrix may not always be positive semi-
definite, causing the system to become unstable.

In Appendix C.1, we prove that if the mass submatrix relative to the in-
finite domain MIE is positive semi-definite, then the global mass matrix M
is also positive semi-definite. In Appendix C.2, we show that MIE ≥ 0, pro-
vided that the element mass matrix Me

IE ≥ 0 for all the infinite elements. In
Appendix C.3, we show that Me

IE ≥ 0 if ∥∇xµ∥ ≤ 1 for any point within the
infinite element. Therefore, we can conclude that if ∥∇xµ∥ ≤ 1 everywhere
in the exterior domain, then M ≥ 0. As already mentioned, our empirical
observations indicate that the positive semi-definiteness of the global mass
matrix lead to a stable system.

In Appendix C.4 we show that, if the infinite elements are extruded
orthogonally to the envelope Γ, and if the envelope is discretized exactly,
∥∇xµ∥ = 1 for any point within the infinite elements. However, because
of the geometrical approximation, small numerical errors can arise, poten-
tially causing ∥∇xµ∥ > 1 for some points in the exterior domain. Astley and
Hamilton [21] proposed to remedy this effect by enforcing MIE = 0 (which
is equivalent to imposing ∥∇xµ∥ = 1 everywhere in the exterior domain),
arguing that the consequent change in the frequency domain solution is neg-
ligible, provided that the transverse node spacing is sufficiently fine to resolve
adequately the curvature of Γ. As shown in Appendix C.1, it is actually suf-
ficient to impose ∥∇xµ∥ ≤ 1 to ensure MIE ≥ 0; this can be achieved by
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enforcing ∥∇xµ∥ = 1 only for points where ∥∇xµ∥ > 1 and leaving ∥∇xµ∥
unchanged elsewhere.

In summary , we have shown in this section that if the infinite elements
are extruded orthogonally and if the mass matrix correction is applied to
account for geometrical discretization errors, the global mass matrix in the
Astley-Leis formulation is positive semi-definite. However, requiring that the
infinite elements are extruded orthogonally to Γ means that, in general, the
virtual sources cannot be located at the center of radiation. This limits the
accuracy of all standard mapped formulations, especially for envelopes with
a high aspect ratio, and explains the need to develop a new flexible infinite
element formulation.

3. Flexible infinite element formulation

In this section, we describe the new flexible formulation, for which the
geometric and field shape functions are constructed using two distinct map-
pings. This feature makes the accuracy of our formulation independent of
the location of the mapping nodes in the exterior domain. As a consequence,
the flexible infinite elements can be used to accurately simulate transient
acoustic wave propagation problems for arbitrarily convex-shaped envelopes.

3.1. Modified shape functions
Our objective is to develop an infinite element trial solution which mim-

ics a truncated version of the Atkinson-Wilcox expansion, irrespective of the
location of the mapping nodes. This is achieved by using r (i.e., the distance
from the center of radiation) for the definition of the shape and phase func-
tions, rather than the coordinate ξ (i.e., the interpolated distance from the
virtual sources). To do so, we first redefine the phase distance as

µ(s, t, v) = r(s, t, v)− a(s, t), (28)

where r is computed according to (17), and a is the radial distance evaluated
on Γ:

a(s, t) = r(s, t, v = −1). (29)

The symbol · is used for the new variables defined in the flexible formulation.
One may try to write the shape functions as

ϕ = ψr(s, t, r(s, t, v)) exp [−ikµ] , (30)
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where ψr(s, t, r(s, t, v)) would be obtained as a tensor product between the
usual polynomial functions in the tangential direction and rational functions
in the radial direction, specifically designed to satisfy (21). However, the
construction of these rational functions would not be trivial, and the effort
of implementing such a formulation in an existing FEM software would be
substantial. Instead, we introduce a new auxiliary mapping between the
radial distance r and the auxiliary coordinate v:

v(s, t, v) = 1− 2a(s, t)

r(s, t, v)
. (31)

It should be noticed that this mapping largely resembles the inverse of map-
ping (12), with r, v, and a instead of ξ, v, and a. The new auxiliary mapping
is schematically represented in Figure 3.

1
2

3
4

∞ ∞

Center of radiation
Mapping nodes

O

a1 a2

r1 r2

1 2

3 4t

v

v = −1

v = 1

Physical element Auxiliary parent element

Figure 3: Schematic representation of the auxiliary mapping in a flexible infinite element

Exploiting the auxiliary mapping, we propose a new formulation for the
shape functions:

ϕ = ψ(s, t, v) exp [−ikµ] , (32)

where ψ are the usual polynomials, expressed with respect to the variables
s, t, v instead of the variables s, t, v as in (18) for the Astley-Leis formulation.
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As shown in Figure 3, v = −1 on the envelope Γ, which is necessary to
ensure continuity of the shape functions between the interior and the exterior
domains. By inserting the radial mapping (31) in (32), it can be verified that
the following holds true

p̃ ∼
(α1

r
+ ...+

αm

rm

)
exp [−ik(r − a)] , (33)

not only for points along the infinite edges but for any point inside the e-th in-
finite element. In other words, the trial solution within an individual mapped
element reproduces a truncated version of the global Wilcox-Atkinson the-
orem, irrespective of the geometry of the infinite elements. Therefore, the
concept of virtual sources does not apply to our formulation. This feature
makes our formulation more geometrically flexible than traditional mapped
formulations since the accuracy does not depend on the positioning of the
mapping nodes.

The evaluation of ∇xψ, necessary to compute the integrals in (25) and
(26), is carried out in the usual way:

∇xψ = J∇uψ, (34)

where J is the Jacobian of the mapping between the Cartesian coordinates
(x, y, z) and the parent element coordinates (s, t, v), while ∇u =

[
∂
∂s
, ∂
∂t
, ∂
∂v

]⊤.
In standard FEM, the computation of ∇uψ typically involves shape func-
tions that depend directly on the parent element coordinates. However, in
our case, ψ is a function of the auxiliary parent element coordinate v, which
introduces a variation in how the gradient ∇uψ is computed. Nevertheless,
implementing this computation in software remains straightforward. This
involves leveraging existing FEM frameworks with minor modifications to
accommodate the dependency on v, as shown in Appendix A. As in the
Astley-Leis formulation, the test functions are chosen as the weighted com-
plex conjugate of the shape functions:

ϕ̃ = wψ(s, t, v) exp [+ikµ] . (35)

The implications of this choice were already discussed in detail in Section
2.2.2.

3.2. Time-domain stability of the flexible infinite element
The new flexible infinite element requires a separate stability analysis

since the definition of µ in (28) differs from the definition of µ in (16), used in
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standard mapped formulations. In particular, even when the infinite elements
are extruded orthogonally to the envelope Γ and there is no approximation
in the geometrical discretization, it cannot be guaranteed that ∥∇xµ∥ ≤ 1
everywhere. This poses a challenge for the stability of the method.

In Appendix D, we analyze the behavior of ∥∇xµ∥, showing that, when
the infinite edges are orthogonal to the envelope Γ, ∥∇xµ∥ ≤ 1 in the near-
field, while ∥∇xµ∥ ≥ 1 in the intermediate and far-field. In Section 3.2.1,
we present a stabilized time-domain formulation. Finally, in Section 3.2.2,
exploiting the analysis in Appendix D, we propose a strategy to guarantee
the accuracy of the stabilized formulation.

3.2.1. Stabilized formulation
Because of the behavior of ∥∇xµ∥, analyzed in Appendix D, a strategy

to stabilize the flexible infinite element formulation is necessary. To stabilize
the new flexible formulation, we propose to substitute the non-stabilized
mass matrix Me

IE with M̃e
IE. We consider the case where the integral in

(C.3) is computed using Gauss quadrature. In this case, using the notation
introduced in Appendix C.3, we can write

Me
IE = ψ⊤Deψ. (36)

M̃e
IE = ψ⊤D̃eψ, (37)

where the j-th component of the stabilized diagonal matrix D̃e is defined as:{
D̃e

jj = De
jj if ∥∇xµ(gj)∥ ≤ 1

D̃e
jj = 0 if ∥∇xµ(gj)∥ > 1.

(38)

This ensures that D̃e ≥ 0 and therefore M̃e
IE ≥ 0, which was empirically

observed to lead to a time-stable formulation, as discussed in Section 2.3.

3.2.2. Accuracy of the stabilized formulation
In the previous subsection, we showed how to stabilize the flexible infinite

element formulation. However, the stabilization procedure may potentially
affect the accuracy of the method. This comes from the fact that some of
the entries in D̃e may differ substantially from the corresponding entries in
De, making M̃e

IE a bad approximation of Me
IE.

Exploiting relationship (D.10), which holds when the infinite edges are
extruded orthogonally to the envelope Γ, we can design a strategy to ensure
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the accuracy of the flexible infinite elements after the stabilization proce-
dure by modifying the test functions. We propose to tune the power pw in
the weight factor w, as introduced in (23), to make sure that the stabiliza-
tion procedure does not significantly affect the accuracy. In practice, this
is achieved by controlling the relative difference between D̃e and De: the
smaller this difference, the smaller the accuracy loss. We recall that in the
Astley-Leis formulation pw = 2, but that any pw ≥ 2 is admissible (see dis-
cussion in Section 2.2.2). We observe that w = 1 at the envelope Γ (v = −1)
and w → 0 as v → 1. By increasing pw, the weighting factor can be made
arbitrarily small for v > −1 (i.e., for points that do not lie on the envelope
Γ). Let’s consider the κ-th Gauss point gκ, for which ∥∇xµ(gκ)∥ > 1. Since
relationship (D.10) holds for orthogonally extruded infinite edges, gκ cannot
lie on the envelope Γ. The corresponding diagonal entry in the matrix De is

De
κκ =

1

c2
gwκ · detJκ

(
1− ∥∇xµ(gκ)∥2

)
w(gκ), (39)

while the corresponding entry in D̃e is

D̃e
κκ = 0. (40)

We emphasize that, since relationship (D.10) holds, it is guaranteed that
w(gκ) < 1 and we can impose∣∣∣De

κκ − D̃e
κκ

∣∣∣ = |De
κκ| < ϵ, (41)

by choosing
w(gκ) <

ϵ∣∣ 1
c2
gwκ · detJκ (1− ∥∇xµ(gκ)∥2)

∣∣ , (42)

where ϵ is a tolerance value, set by the user. By substituting expression (23)
into (42), we obtain

pw > log

(
ϵ∣∣ 1

c2
gwκ · detJκ (1− ∥∇xµ(gκ)∥2)

∣∣
) [

log

(
1− vgκ

2

)]−1

. (43)

The parameter pw is chosen constant across the whole domain to guarantee
the continuity of the test functions, such that (43) is satisfied for all the infi-
nite elements. A smaller tolerance ϵ implies a smaller difference between De

and D̃e and, as a consequence, a smaller accuracy loss after the stabilization
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step. We emphasize that positive semi-definitiness of the global mass matrix
is guaranteed by (38), while the accuracy of the stabilized formulation is
guaranteed by (43). The accuracy-preserving procedure is applicable only to
configurations where the infinite edges are extruded normally to the envelope
Γ, as only in these cases can an arbitrarily accurate and positive semi-definite
approximation of the global mass matrix be derived. This is similar to [21],
where the "zero-mass" Astley-Leis infinite elements are only accurate under
such normal extrusion conditions.

The only cost of selecting pw > 2 is that a higher number of Gauss points
are needed to carry out the computation since the order of the polynomials to
be integrated increases with pw. Typically, for numerical acoustic simulations
relying on FEM, the most computationally intensive operation is the factor-
ization of the fully assembled matrix; for this reason, despite an increase in
the computational cost of the assembly step, the total computational cost of
the flexible formulation is comparable to that of the Astley-Leis formulation,
for the same number of DOFs. Furthermore, the flexible infinite elements of-
ten result in a drastic decrease in the number of DOFs due to their geometric
flexibility, making the simulations less computationally intensive overall, as
documented in Sections 5 and 6.

3.3. Infinite elements extrusion in the normal direction
As already explained in previous sections, the infinite edges need to be ex-

truded orthogonally to the envelope Γ to ensure that a positive semi-definite
global mass matrix can be constructed without a significant accuracy loss.
Unfortunately, it is not trivial to compute the normal of Γ for general con-
vex shapes. In some cases, information about the normal vectors could be
provided by CAD tools, with the drawback of requiring an additional prepro-
cessing step. In other cases, only meshed domains are available, without a
reference geometry. We solve this issue by following the procedure presented
in [49]. With this approach, only a mesh of the interior domain is necessary.
The required normal vectors at the mapping nodes on Γ are computed as
follows:

• For a vertex, the normal vector n(s, t) is taken as the average of the
normals of the elements touching the vertex.

• Inside quadratic elements, for a node defined in the middle of an edge
(or face), n(s, t) is computed as the average of the normal vectors at
the end nodes belonging to the edge (or face).
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The user has to specify the extrusion length, which is the distance a as defined
is (10), for the i-th mapping node on Γ, with parent element coordinates
(si, ti,−1). Then, the location of the mapping node i+ n inside the exterior
domain is determined in the following way:

xi+n = xi + an(si, ti). (44)

The process is repeated for all the mapping nodes on the envelope Γ, for all
the infinite elements.

4. Software implementation of high-order finite and infinite ele-
ments

In this subsection, we discuss the implementation of the infinite elements
into a high-order FEM code. The considerations made here hold for both
the Astley-Leis formulation and the flexible infinite elements. We refer to
the adaptive order p-FEM approach described in [50], where Lobatto shape
functions (also called integrated Legendre polynomials) are used, and to [51],
where the method was generalized to include anisotropic orders. For a num-
ber of Helmholtz problems, this approach has been shown to drastically im-
prove the efficiency of the numerical models, when compared with conven-
tional FEM, exploiting the fact that high-order polynomial approximations
are more effective at controlling the pollution effect. An added benefit of
using a hierarchical set of shape functions, such as the Lobatto polynomials,
is found when solutions in the frequency domain are required over a range of
frequencies. It is possible to compute the element matrices only once for the
highest order, and then, at each frequency, one can extract only the required
portion of these matrices to assemble the global matrix. A key feature of
the proposed method is the use of a simple local error indicator to select a
priori the polynomial order in each element. For calculations over a range of
frequencies, this approach requires only a single mesh. For each frequency,
the error estimator adaptively selects the suitable polynomial order in each
element to meet the accuracy target.

Infinite elements based on Lagrange polynomials have been shown to
present conditioning problems for high radial orders [31]. The use of Jacobi
[31] and Berstein [52] polynomials has been proposed to improve the condi-
tioning and optimize the performance of Krylov-based iterative solvers. As
pointed out in [31], Lobatto polynomials, even though suboptimal from a
conditioning perspective, outperform Lagrange polynomials in this respect.
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By adopting the same type of polynomials for finite and infinite elements,
the software implementation becomes particularly easy. In this case, the in-
finite element subroutine can be developed by reusing most of the routines
called by its finite element counterpart. The only differences are that the
new radial geometric mapping (15) needs to be implemented, and different
formulas need to be used for the computation of the system matrices, which
does not require any additional implementation effort. In other words, in
a software implementation, the infinite elements can be simply seen as spe-
cialized anisotropic high-order elements. This is an important aspect, as
the implementation burden of the infinite element method may hinder its
broad use in practical applications. An additional benefit of using Lobatto
polynomials in the exterior domain is that the hierarchical structure of the
system matrices is preserved for unbounded-domain simulations and can be
exploited for frequency-domain calculations.

The interpolation order for each element in the FE domain is selected
based on the a priori error estimator described in [50]; the radial order on
the infinite edges is manually selected in this work, while the orders on the
envelope Γ are designed to ensure continuity with the FE domain. Future
work may consider automatic order assignment for radial shape functions as
well. Finally, vertex, edge and face DOFs are set to zero at infinity (v = 1 in
the parent element) to enforce the decay of the pressure field.

5. Numerical validation

In this section, the flexible infinite element is compared to the Astley-Leis
formulation, with numerical examples in two and three dimensions, both in
the frequency domain and in the time domain. The FE domain is meshed
with the mesh generator Gmsh [53], while the infinite elements are extruded
at run time, using one of the following strategies:

• The confocal-rays approach, where the infinite edges are extruded in
the radial direction and converge towards the center of radiation. In the
Astley-Leis formulation, this means that all the virtual sources coincide
with the center of radiation.

• The normal-rays approach, where the infinite edges are aligned with
the vector n, normal to the FE boundary envelope Γ.
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Curved triangular or tetrahedral elements are used in the interior domain,
while the exterior mesh is made of quadrangular or prismatic elements. The
results are obtained using an in-house Matlab code.

In the following examples, we will often refer to the relative L2−error
between the numerical and the reference solution, pnum and pref respectively,
computed on the envelope Γ:

E2(Γ) =
∥pnum − pref∥L2(Γ)

∥pref∥L2(Γ)

(45)

and in the interior domain Ωi:

E2(Ωi) =
∥pnum − pref∥L2(Ωi)

∥pref∥L2(Ωi)

. (46)

When using the flexible formulation for transient problems, we will mea-
sure the error induced in the frequency domain by the stabilization procedure
(see discussion in Section 3.2.2), for the largest frequency of interest, as:

Est
∞(Ωi) =

∥pst
num − punst

num∥∞(Ωi)

∥punst
num∥∞(Ωi)

, (47)

where pst
num is obtained using the stabilized formulation, while punst

num is ob-
tained using the non-stabilized formulation. The subscript ∞ indicates the
∞−norm, computed for a generic vector v as: ||v||∞ = maxi |vi|.

5.1. Monopole source in 2D
First, we analyze the case of a monopole source in a 2D domain. Con-

sidering a monopole source located at the center of radiation, we have the
following inhomogeneous Helmholtz equation in the unbounded domain Ω:

∇2p+ k2p = Aδ(r) in Ω, (48)

where A is the source strength. The reference acoustic pressure amplitude
pref , which is the analytical solution to Eq. (48), is given by:

pref(r) = i
A

4
H

(2)
0 (kr), (49)

where H(2)
0 is the zeroth order Hankel function of the second kind. The source

is enclosed by a convex envelope, and the two meshes generated using the
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confocal-rays and the normal-rays approach are shown in Figure 4. A node
is placed at the source point. In its vicinity, the mesh is refined due to the
singularity of the analytical solution at r = 0, while in the rest of the domain
larger elements are used to fully exploit the efficiency of high-order FEM.
The characteristic dimension of the geometry is L = 2 The characteristic
length of the elements at the interface between the interior domain and the
exterior domain is h = 0.25.
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(a) Confocal rays (b) Normal rays

Figure 4: 2D meshes used for the numerical experiments. The FEM mesh, the envelopes
Γ and Υ (in blue) and the portion of the infinite edges between Γ and Υ are shown. In
the confocal-rays approach, all the virtual sources coincide with the center of radiation. In
the normal-rays approach, all the infinite edges are locally orthogonal to the envelope Γ.
In both cases, the mesh is refined in the vicinity of the monopole source location, which
coincides with the center of radiation.

5.1.1. Frequency-domain results
The frequency-domain solutions presented herein are computed using a

uniform interpolation order throughout the entire computational domain,
i.e., the order of interpolation is identical for all finite elements and infi-
nite elements in all directions. Numerical convergence studies are done by
investigating the effect of the order chosen on the accuracy of the meth-
ods. First of all, we compare the performance of the new flexible infinite
element against the Astley-Leis formulation, for the confocal-rays configura-
tion. Even though, for the configuration considered, all the virtual sources
coincide with the center of radiation, the Astley-Leis formulation and the
flexible formulation are still different. This is because, for the Astley-Leis
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formulation, the radial coordinates are found, as specified in (12) and (13),
using the standard interpolating functions, while, for the flexible infinite el-
ement, they are computed as a function of the Cartesian coordinates, using
(17) and (29). In Figure 5 we plot the L2−error on the envelope Γ for several
frequencies, for both approaches, as a function of the interpolation order.
For all four frequencies, the L2−error of the standard Astely-Leis formula-
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Figure 5: Flexible infinite element (black) vs standard Astley-Leis element (gray), results
for the confocal-rays configuration. All the virtual sources coincide with the center of
radiation and with the location of the physical source.

tion reaches a plateau, while the flexible infinite element approach displays
better p-convergence properties. These results are explained by the fact that
(33) is satisfied everywhere for the flexible infinite elements, while for the
Astley-Leis formulation it is only valid along the infinite edges when the
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confocal-rays extrusion approach is adopted (see discussion in Appendix B).
In other words, the trial solution mimics the truncated multipole expansion
(9) in the whole exterior domain for the flexible formulation, but only along
the infinite edges for the Astley-Leis formulation. The resulting accuracy dif-
ference is higher for coarser meshes, which are typically used in the context
of high-order adaptive FEM, while it is negligible when fine meshes are used.
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Figure 6: Flexible infinite element (black) vs standard Astley-Leis element (gray), results
for the normal-rays configuration. The mesh extrusion is performed as described in Section
3.3.

Next, we compare the flexible infinite elements with the Astley-Leis in-
finite elements when the normal-rays extrusion strategy is adopted. This
serves as a preliminary to the time-domain comparison, where the normal
rays strategy is the only one capable of delivering stable and accurate re-

25



sults. In Figure 6, we present evidence of the significant accuracy enhance-
ment achieved through the flexible formulation. In this case, the results are
explained by the fact that, once again, (33) is satisfied everywhere for the
flexible formulation since the space spanned by the shape functions does not
depend on the orientation of the infinite elements; for the Astley-Leis infinite
elements, by contrast, (33) is not satisfied since the virtual sources do not
coincide with the center of radiation.

5.1.2. Time domain
As discussed in 2.3, empirical evidence suggests that when the infinite

element mass matrix is not positive definite, the system is prone to instabil-
ity. The confocal-rays extrusion approach typically results in a mass matrix
that cannot be accurately approximated by a positive semi-definite matrix
in either the Astley-Leis or flexible formulations. For this reason, we focus
only on the normal-rays approach. For this example, the monopole source is
placed at (0.5, 0.4) to show that the flexible infinite elements work well even
when the center of radiation does not coincide with the physical source. The
source is located at a node point. The input signal used for the simulation
is a sine-wave, with ka = 20, filtered using the Hamming window. So, the
forcing vector fτ (τ), with τ ∈ [0, T ], is

fτ (τ) =
25

46

[
1− cos

(
2πτ

T

)]
︸ ︷︷ ︸

Hamming window

sin(kτ)f , (50)

where f ∈ RnDOF is the forcing vector in the frequency domain, i.e., the right-
hand side in Eq. (7). The polynomial order for each element in the interior
domain is selected adaptively, using the a priori error indicator from Bériot
et al. [50], with target L2−error E2 = 0.01, while the radial order in the
infinite domain is set to m = 6 for both cases. The power in (23) for the
flexible formulation is set to pw = 6 and the maximum relative error induced
by the stabilization procedure is Est

∞ = 0.0007, computed according to (47)
for the frequency range considered. In other words, it is clear that the error
induced by the stabilization procedure is negligible since it is largely below
the target error used to select the orders in the FEM domain.

By solving the quadratic eigenvalue problem[
λ2M+ λC+K

]
pλ = 0, (51)
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we verify that all the eigenvalues λ have real part smaller than zero, which
confirms that the flexible stabilized and the "zero-mass" Astley-Leis formu-
lations are indeed stable.

A reference analytical solution is obtained by first computing the inverse
Laplace transform of the frequency-domain solution given in (49) to derive
the system’s impulse response, and then convolving this impulse response
with the input signal defined in (50) to determine the system’s time-domain
response.

In Figure 7, we plot the non-dimensional acoustic pressure (= p/ρc2)
for two points on the convex envelope (point A = (−1.3, 0.2) and point B
= (−0.78,−0.24)) as a function of non-dimensional time (= cτ/a) for the
"zero-mass" Astley-Leis formulation and the stabilized flexible formulation,
together with the reference solution. The numerical solution obtained us-
ing the flexible formulation closely matches the reference solution, while the
Astley-Leis formulation does not provide satisfactory results, as expected,
due to the non-circular interior domain.
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(b) Point B = (-0.78, -0.24).

Figure 7: Performance of the stabilized flexible and "zero-mass" Astley-Leis formulation
for an arbitrary convex envelope (see Figure 4), in the time domain, using the normal-rays
extrusion strategy. Pressure history at points A and B on the convex envelope Γ. Compar-
ison between reference (gray line), stabilized flexible infinite element (black squares) and
"zero-mass" Astley-Leis formulation (red line). The radial order in the exterior domain is
set to m = 6, while the order in the interior domain is determined through the a priori
error estimator.
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5.2. Scattering of a plane wave by a sphere
In this subsection, we consider the scattering of a plane wave by a sphere,

and we test the performance of the flexible infinite elements and of the Astley-
Leis infinite elements. Several polyhedral shapes with rounded edges were
used as enclosing surfaces. Rounding the corners is necessary to guarantee
the accuracy of the method, regardless of the infinite element formulation
used, since the normal vector has to be continuous throughout the whole
surface for the extrusion direction to be orthogonal to the envelope at any
point.

The scattering sphere has unit radius a = 1, while the pseudo-polyhedral
domains have a midradius of 2 and a fillet radius of 0.2. The mesh used in
the interior domain has elements with a characteristic length h = 0.3, with
a refinement corresponding to the rounded corners to resolve the geometric
details. The orders in the FEM region are once again set adaptively, using
the a priori error indicator from Bériot et al. [50], with target L2−error
E2 = 0.01.

5.2.1. Frequency-domain results
We consider an incident plane wave travelling in the x−direction, and we

solve for the scattered component of the acoustic field. The acoustic pressure
amplitude of the scattered field for this problem is given by:

pref(x) = −
∞∑

m=0

im(2m+ 1)
j′m (ka)

H
(2)
m

′
(ka)

H(2)
m (kr)Pm(x/r), r ≥ a, (52)

where jm is the m-th order spherical Bessel function, H(2)
m is the m-th order

second-kind spherical Hankel function, and Pm is the m-th order Legendre
polynomial. The numerical simulation is set up by enforcing a Neumann
boundary condition on the sphere. This condition specifies that the normal
derivative of the numerical solution on the boundary must match the negative
normal derivative of the incident solution.

The best-interpolation error is computed as the relative L2-error between
the analytical solution and its L2-projection onto the finite element space:

EBest =
∥Ppref − pref∥L2(Ωi)

∥pref∥L2(Ωi)

. (53)

This error corresponds to the best numerical solution that can be reached,
given the FE mesh and the orders used, irrespective of the infinite element
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formulation used. In Figure 8 we show the numerical results obtained using
flexible infinite elements extruded in the normal direction. We conducted
numerous simulations, varying the radial order m in the exterior domain
from 1 to 10. It can be observed that for the flexible formulation the relative
L2-error in the interior domain E2(Ωi) approaches the best interpolation
error for increasing radial order m. The pseudo-tetrahedron is the most
challenging shape since, in this case, the envelope Γ is closer to the scattering
surface. These results support the method’s applicability and accuracy in a
three-dimensional setting. As expected, the Astley-Leis formulation results
in larger errors and slower convergence, especially at high frequencies.

5.2.2. Time-domain results
In this subsection, out of all the pseudo-polyhedral shapes presented in

Section 5.2.1, only the most challenging one, the pseudo-tetrahedron, is con-
sidered. We analyze the results of a transient simulation, where the input
signal is a sine-wave with ka = 10, filtered by the Hamming function, as in
the 2D case. In Figure 9, the pressure results at the envelope points A and
B for the stabilized flexible infinite elements and the "zero-mass" Astley-Leis
infinite elements are shown; for both cases, the radial order in the infinite
elements is set to m = 5. The power in (23) for the flexible formulation is
set to pw = 6 and the maximum relative error induced by the stabilization
procedure is Est

∞ = 0.001. Once again, the error induced by the stabilization
procedure is negligible since it is largely below the target error used to select
the orders in the FEM domain. A quadratic eigenvalue analysis confirms
that all eigenvalues have real part smaller than zero for both formulations.

The reference numerical solution is computed on a larger FEM domain,
consisting of a sphere with radius 2 surrounding the scatterer, using the "zero-
mass" Astley-Leis infinite elements with the infinite edges extruded in the
radial direction, such that all the virtual sources coincide with the center of
the scattering sphere. The radial order in the infinite domain for the reference
solution is set to m = 10 and the radial quantities are computed according to
expressions (17) and (29). Good accuracy of the reference numerical model
is guaranteed by the use of a large FEM domain, high radial order m and
the modified interpolation of radial quantities, combined with the fact that
all the virtual sources coincide with the center of radiation.

Also in this case, it can be noticed that the flexible formulation outper-
forms the traditional Astley-Leis formulation, in terms of accuracy.
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Figure 8: Each colored line corresponds to one pseudo-polyhedral domain. Darker colors
correspond to pseudo-polyhedra with more edges. Flexible infinite elements (blue lines) vs
Astley-Leis infinite elements (red lines). Dashed lines: best interpolation error in the FE
domain. The interpolation order in each element of the interior domain is set adaptively,
using the a priori error estimator. The radial order m is uniform throughout the exterior
domain.
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(a) Point A = (1.137, 1.222, 0.560).
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(b) Point B = (0.522, 1.426, 0.642).

Figure 9: Performance of the stabilized flexible formulation and "zero-mass" Astley-Leis
formulation for a pseudo-tetrahedron enclosing the scattering sphere, in the time domain,
using the normal-rays extrusion strategy. Pressure history at points A and B on the
convex envelope Γ. Comparison between reference (gray line), flexible infinite element
(black squares) and traditional Astley- Leis formulation (red line). The radial order in the
exterior domain is set to m = 6, while the orders in the interior domain are determined
through the a priori error estimator.

6. Application to a problem of industrial complexity

In this section, we present a procedure to tackle unbounded problems of
industrial complexity, using the flexible infinite element formulation. In par-
ticular, to showcase the effectiveness of the method, we consider the shark
submarine, shown in Figure 10. For the frequency-domain validation, we an-
alyze the scattering of a plane wave, while for the time domain, we consider a
monopole source, located close to the FE boundary. An automatic algorithm
for the creation of a convex envelope around the scatterer, together with the
automatic extrusion of the infinite edges in the normal direction, is used.

To accelerate transient simulations, we use a MOR procedure, introduced
by van de Walle [37] and van Ophem [38], called Automatic Krylov Subspace
Algorithm (AKSA). The high level of automation of the proposed procedure,
together with the computational efficiency enabled by the use of general-
shaped convex envelopes, make it very attractive for realistic transient ap-
plications.
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(a) CAD model. (b) Surface mesh, characteristic length h =
0.02.

(c) Convex envelope automatically gener-
ated at the minimal distance d = 0.05.

(d) Cut view of the final tetrahedral mesh.

Figure 10: Shark model.

6.1. Automatic generation of a convex domain
In this subsection, we describe the automatic process to get a mesh for

the computational domain. First, a surface mesh made of second-order tri-
angular elements, with characteristic length h = 0.02, is created on the sub-
marine, which is of unit total length a. Secondly, an approximate convex hull
is generated automatically using the quickhull algorithm [40], implemented
in the simulation package Simcenter 3D [54] developed by Siemens Indus-
try Software. The minimal distance between the submarine surface and the
convex envelope is d = 0.05. Once again, second-order triangular elements
with characteristic length h = 0.02 are used to mesh the external surface.
Then, a volume mesh, that comprises tetrahedral second-order elements, is
created between the two surface meshes. The infinite elements are extruded
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automatically along the normal direction, so that the transient formulation
is time-stable, following the process described in Section 3.3. The final mesh,
shown in Figure 10, is made of 183 519 elements and 232 959 nodes. Since
the convex envelope lies inside the smallest sphere circumscribing the scat-
terer, convergence is not theoretically guaranteed by the Atkinson-Wilcox
theorem. In Section 6.3.1 and Section 6.3.2, we will show that, in practice,
when attaching flexible infinite elements to the convex hull, good accuracy
can be reached both in the time domain and in the frequency domain.

6.2. Model Order reduction procedure
Since the flexible infinite elements, as the traditional Astley-Leis infinite

elements, result in frequency-independent and sparse system matrices, their
use in combination with Krylov-based MOR is particularly attractive. To
accelerate transient simulations, we use AKSA [37], [38], which aims at auto-
matically building a ROM whose frequency response function (FRF) matches
the FRF of the initial FOM, within a user-specified tolerance, in the frequency
range of interest, by only using a few system solves and enriching the pro-
jection basis with higher-order moments. To obtain a time-domain ROM of
the shark submarine, for example, valid between ka = 5 and ka = 50, with
a relative error tolerance tol = 0.01, only 5 full system solves are necessary.

6.3. Results
6.3.1. Frequency-domain results

We now present numerical tests showcasing the accuracy of the flexible
infinite element formulation for simulating the scattering of plane waves in
the frequency domain. The simulations were performed for four plane waves
traveling at different angles of incidence α and θ. As a reference, we use the
results obtained using the automatic perfectly matched layer (AML) imple-
mentation [49], with 5 layers. The AML formulation is a well-established
conformal PML technique to enforce non-reflecting conditions for acoustic
simulations in the frequency domain, implemented in Simcenter 3D. The
accuracy of the AML to simulate the scattering of plane waves from the
submarine model was established in [49] through a convergence study.

For the configuration using infinite elements, the orders in the FEM do-
main are assigned adaptively, using the a priori error estimator from Bériot
et al. [50], with target L2−error E2 = 0.01, while the radial order in the
exterior domain is user-defined; for the AML case, the orders are assigned
adaptively in the whole computational domain. For all cases analyzed, the
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mesh used is the one shown in Figure 10. The relative L2-error on the convex
envelope is shown in Figure 11, for ka = 10 and ka = 100. In all cases, the in-
finite elements display good convergence, with a relative L2-error consistently
below 0.03 for radial order 8, approaching the target error.
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(b) ka = 100.

Figure 11: Frequency domain results for plane waves hitting the shark submarine at
different spherical angles α and θ (expressed in radians). Performance of the flexible
infinite element formulation with infinite edges extruded in the normal direction. The
AML implementation is used to compute the reference solution.

6.3.2. Time-domain results
Finally, we consider the scattering of a monopole source placed in front

of the shark, at (0, 0, 0.5).
The target L2−error, used to compute the orders in the FEM domain, is

set once again to E2 = 0.01. The radial order for the infinite elements is set
to m = 8. The power in (23) for the flexible formulation is set to pw = 8
and the maximum relative error induced by the stabilization procedure is
Est

∞ = 0.0002. Once again, the error induced by the stabilization procedure
is negligible when compared to the finite element discretization error.

The input signal consists of a sine wave with ka = 45, filtered using the
Hamming window. A ROM, valid between ka = 5 and ka = 50, with a
relative error tolerance tol = 0.01, is generated using AKSA. The FRFs of
the FOM and the ROM are compared in Figure 12 for a random entry in
the solution vector. The final ROM has 90 DOFs, while the initial FOM
had 465 905 DOFs. We ran all our numerical experiments on a Dell desktop
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Figure 12: FRF comparison ROM (gray line) vs FOM (black stars), for a random entry in
the solution vector. Results obtained by attaching flexible infinite elements to the convex
hull.

computer with 384 Gb of RAM and 3.00GHz clock speed. The offline MOR
procedure took 5 minutes and 45 seconds, and a single full-system solve,
an operation performed several times during AKSA, required 15.5 Gb of
memory.

As a reference, we compute the transient response to the same excita-
tion using the standard Astley-Leis formulation with a spherical envelope
surrounding the submarine. In this case, the model has 1 039 249 nodes,
801 405 elements and 2 515 697 DOFs, 5 times more than the convex-hull
model. In this case, the offline MOR procedure takes 95 minutes, and for a
full-system solve 151.9 Gb of memory are necessary. Additionally, the pro-
jection basis, which needs to be stored throughout the whole MOR process,
is 5 times larger than in the previous case, as the number of rows corresponds
to the DOFs of the FOM. Once again, the final ROM has 90 DOFs.

In Table 1 we summarize the data on the computational requirements to
build a ROM using AKSA for the two models. This comparison highlights the
computational efficiency enabled by the geometrical flexibility of the novel
formulation.

In Figure 13 we plot the pressure as a function of time at different points
on the submarine surface for the convex hull and the spherical envelope
models. The use of the convex hull model, made possible by the newly
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DOFs Time [min.] Memory
(full-system solve) [Gb]

Convex hull 465905 5.45 15.5
Sphere 2515697 95 151.9

Table 1: Computational requirements for AKSA, comparison between the models with
convex hull and spherical envelope enclosing the submarine.
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(a) Point A = (-0.116, -0.230, -0.396).
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(b) Point B = (-0.035, -0.002, -0.990).

Figure 13: Pressure history at points A and B on the submarine surface, using "zero-mass"
Astley-Leis infinite elements attached to the spherical envelope (gray line) and stabilized
flexible infinite elements attached to the convex hull (black squares).

developed flexible infinite element formulation, is clearly more efficient, since
the MOR process is considerably less expensive while accuracy is preserved.
In Figure 14 we show the pressure results at different time steps.
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(a) τ = 5 (b) τ = 205

(c) τ = 405 (d) τ = 605

(e) Legend.

Figure 14: Transient results (non-dimensional pressure) at four different time steps, visu-
alized in Simcenter 3D. Monopole source placed in front of the shark.

7. Conclusion

In this work, we introduced a novel flexible infinite element formulation
for the simulation of unbounded wave propagation problems. One of the
main disadvantages of traditional mapped formulations is that their accu-
racy depends on the geometrical configuration of the infinite elements. For
transient simulations, where the infinite elements have to be extruded or-
thogonally to the boundary of the finite element domain, the user is not free
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to place the virtual sources where desired. This limits the accuracy of such
formulations, especially in the case of high-aspect-ratio acoustic domains.

In the flexible formulation, a new set of shape functions is defined, that
makes the accuracy independent of the location of the mapping nodes. A
stabilization procedure was derived for arbitrarily shaped convex domains.
In particular, we demonstrated empirically that the flexible formulation lead
to stable transient solutions when the infinite element mass matrix is pos-
itive semi-definite, or can be approximated as such without compromising
the accuracy. Several 2D and 3D numerical tests were analyzed, establish-
ing the superior accuracy of the flexible formulation compared to standard
mapped infinite elements both in the frequency and in the time domains, for
comparable computational cost.

The flexible infinite element formulation, and its stabilized form, were
combined with a Model Order Reduction scheme to provide highly effi-
cient frequency-domain and transient numerical models for an industrial-scale
problem. The flexible formulation led to substantial computational gains by
enabling the use of a non-spherical domain to enclose the complex-shaped
scattering body.

Future research directions include developing an error estimator to auto-
matically determine the radial order of the shape functions and investigating
strategies to automate the choice of the power in the Astley-Leis weighting
factor based on user-defined accuracy requirements. Additionally, the flex-
ible formulation could be extended to the case with mean flow, making it
applicable to aero-acoustic problems.
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Appendix A. Computation of gradients in the flexible formulation

In the following we show how to compute ∇uψ. Given thatψ = ψ(s, t, v),
we have:

∂ψ

∂s
=

∂ψ

∂s

∣∣∣
v
+

∂ψ

∂v

∂v

∂s
, (A.1)
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∂ψ

∂t
=

∂ψ

∂t

∣∣∣
v
+

∂ψ

∂v

∂v

∂t
, (A.2)

∂ψ

∂v
=

∂ψ

∂v

∂v

∂v
, (A.3)

where
∂ψ

∂s

∣∣∣
v
,
∂ψ

∂t

∣∣∣
v
, and

∂ψ

∂v

are readily available from standard FEM subroutines. In the following, we
show how to compute ∇uv. Eq. (17) can be rewritten as

r(s, t, v) = ||x(s, t, v) · x(s, t, v)||. (A.4)

Therefore we have
∇ur =

1

r
x⊤∇ux, (A.5)

with ∇ux computed in the usual way. Similarly, we have:

∂a

∂s
=

1

a
x
∣∣∣
v=−1

· ∂x
∂s

∣∣∣
v=−1

, (A.6)

∂a

∂t
=

1

a
x
∣∣∣
v=−1

· ∂x
∂t

∣∣∣
v=−1

. (A.7)

Finally, from (31) follows:

∂v

∂s
=

2

r

(
−∂a

∂s
+

a

r

∂r

∂s

)
, (A.8)

∂v

t
=

2

r

(
−∂a

∂t
+

a

r

∂r

∂s

)
, (A.9)

and
∂v

∂v
=

2a

r2
∂r

∂v
. (A.10)

From a software implementation perspective, these operations are straight-
forward to implement, as all the necessary components for the computations
are already available in standard FEM. Similar considerations hold true for
the derivatives of µ.
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Appendix B. Interpolation of radial coordinates in the Astley-Leis
formulation

Inside the e-th infinite element, we have, in general:

ξ ̸= r, (B.1)

even when all the virtual sources coincide with the center of radiation. This
discrepancy arises because while ξ is determined using interpolating functions
identical to those used to derive the Cartesian coordinates vector x, the radial
distance r cannot be obtained, in general, as a linear combination of the
Cartesian coordinates.

Consider, as an example, an infinite element for which the inner surface
is a circular arc, discretized with linear elements, as depicted in Figure B.15.
Both virtual sources, relative to nodes 1 and 2, coincide with the center of the
arc. This means that the radial distance a1 between node 1 and the virtual
source O1 coincides with the radius of the circular arc; the same holds true
for a2. When computing a, according to the standard interpolation of the
nodal values ai and a2, using formula (13), we obtain a = a1 = a2. However,
for points inside the infinite element, along the discrete approximation Γh of
the envelope Γ, the distance from the center of the circular arc is not a. This
situation is equivalent to defining an interpolated virtual source location for
points on Γh at distance a from Γh along the radial direction (see Figure
B.15). In other words, when using formulas (12) and (13) to compute ξ and
a the interpolated locations of the virtual sources do not coincide with the
center of the arc O. This means that relationship (21) is valid, in general,
only along the infinite edges, even when the virtual sources relative to all the
infinite edges coincide with the center of radiation. The effects of this fact
on the quality of the approximation are analyzed in Section 5.1.1.

Appendix C. Time stability conditions for the Astley-Leis formu-
lation

Appendix C.1. Conditions for positive semi-definiteness of M
First of all, we show that, if the mass matrix relative to the infinite

domain, MIE ∈ RnIE×nIE (where nIE is the number of DOFs associated with
the infinite elements) is positive semi-definite, then the global mass matrix
M is also positive semi-definite. Let’s consider a generic vector y ∈ RnDOF :

y⊤My = yFE
⊤MFE yFE + yIE

⊤MIE yIE ≥ 0, (C.1)

40



Γ

Γh1 2

O

a
a

Virtual sources
Interpolated virtual source

Figure B.15: Schematic representation of an infinite element. The envelope Γ is a circle,
and it is discretized with a piecewise linear envelope Γh. The virtual sources relative to
the nodes 1 and 2 coincide with the center of the arc O. The interpolated virtual sources
relative to the other points on Γh do not coincide with the center of the arc O.

where the subscripts FE and IE denote the DOFs associated with the finite and
the infinite elements, respectively; the last inequality in (C.1) comes from the
fact that MIE ≥ 0 by hypothesis and MFE ≥ 0 when standard polynomial
shape functions are used and the material properties of the medium in which
sound propagates are physically realizable. The inequality in (C.1) is valid
for any vector y ∈ RnDOF , which means, by definition of positive semi-definite
matrix, that M ≥ 0.

Appendix C.2. Conditions for positive semi-definiteness of MIE

Next, we show that MIE ≥ 0, provided that the element mass matrix
Me

IE ∈ RnIE×nIE is positive semi-definite for all the infinite elements. Let’s
consider a generic vector yIE ∈ RnIE :

yIE
⊤MIEyIE = y1

IE
⊤
M1

IE y1
IE + ...+ ynE

IE
⊤MnE

IE ynE
IE ≥ 0, (C.2)

where nE is the number of infinite elements, and the inequality comes from
the fact that Me

IE ≥ 0 by hypothesis, with e = 1, ..., nE. By definition of
positive semi-definite matrix, inequality (C.2) implies MIE ≥ 0.
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Appendix C.3. Condition for positive semi-definiteness of Me
IE

We now analyze under which conditions Me
IE ≥ 0. In the Astley-Leis

formulation, when the test basis functions are taken as the weighted complex
conjugate of the shape functions, Me

IE takes the form (see [13]):

Me
IE =

∫
Ω

{
1

c2
wψ⊤ψ

[
1− ∥∇xµ∥2

]}
dΩ, (C.3)

where c is the speed of sound. To make it easier to analyze its definiteness, we
rewrite it in a much simpler form. In particular, when using Gauss quadra-
ture formulas to perform the integration, expression (C.3) can be rewritten
as

Me
IE = ψ⊤Deψ, (C.4)

where ψ ∈ RnIE×ng is the matrix of polynomial functions, evaluated at the
Gauss points:

ψ =

 ψ(g1)
...

ψ(gng)

 , (C.5)

ng is the number of Gauss points, gj = (sgj , t
g
j , v

g
j ), is the vector of parent

element coordinates of the j-th Gauss point and De is a diagonal matrix,
whose j-th component along the diagonal is

De
jj =

1

c2
gwj · detJj [1− ∥∇xµ(gj)∥]w(gj), (C.6)

where gwj is the j-th Gauss weight and detJj is the determinant of the Jaco-
bian of the transformation between physical and parent element coordinates,
evaluated at the j-th Gauss point.

Since De is a diagonal matrix, it is positive semi-definite if and only if all
its components are not smaller than zero. This happens if and only if

∥∇xµ(gj)∥ ≤ 1 ∀i, i = 1, ..., ng. (C.7)

We show that if De ≥ 0 then Me
IE ≥ 0. Let’s choose a generic vector y ∈ Rn:

y⊤Me
IEy = y⊤ (ψ⊤Deψ

)
y = (ψy)⊤De (ψy) = z⊤Dez ≥ 0, (C.8)

where the last inequality in (C.8) comes from the fact that De ≥ 0 by hy-
pothesis, with z = ψy ∈ Rng . This proves that De ≥ 0 implies Me

IE ≥ 0.
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Appendix C.4. Behavior of ∥∇xµ∥
Let’s define ξ(s, t, v) as the vector pointing in the direction orthogonal to

the envelope Γ, with magnitude ξ(s, t, v):

ξ(s, t, v) = n(s, t)ξ(s, t, v), (C.9)

where n(s, t) is the unit vector normal to the envelope Γ at the point identified
by the parent element coordinates (s, t, v = −1). For the classical Astley-Leis
formulation, the phase distance µ is defined in (16); after differentiating with
respect to ξ, we obtain

∂ µ

∂ ξ
= 1. (C.10)

Additionally, for the properties of the gradient operator, thanks to the re-
lationship between the gradient of a function and its directional derivatives,
we have:

∇xµ · ξ =
∂ µ

∂ ξ
ξ. (C.11)

Let’s consider the ideal scenario where the envelope Γ is represented exactly
and no error arises from the geometrical discretization, and let’s choose the
infinite edges in the e-th element to be extruded orthogonally to the envelope
Γ. In this case, µ (s, t, v) represents the distance between the point with
physical coordinates x (s, t, v) and Γ. As such, the lines with constant µ
are perpendicular to n(s, t). This means that ∇xµ (s, t, v), which, for the
properties of the gradient operator, is perpendicular to the µ iso-lines, is
parallel to n(s, t) and, as a consequence, aligned with ξ. Thus, we can write

∇xµ (s, t, v) · ξ (s, t, v) = ∥∇xµ (s, t, v)∥ξ (s, t, v) . (C.12)

Finally, inserting (C.11) and (C.10) in (C.12) and simplifying the resulting
equation, we obtain

∥∇xµ (s, t, v)∥ =
∂ µ

∂ ξ
(s, t, v) = 1. (C.13)

This means that, if the extrusion direction is orthogonal to the envelope Γ
for all the infinite edges, we obtain ∥∇xµ∥ = 1 everywhere in the exterior
domain, provided that no approximation errors arise from the discretization
of Γ.
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Appendix D. Behavior of ∥∇xµ∥ for flexible infinite elements

In this appendix, we study the behavior of ∥∇xµ∥ when the infinite edges
in the e-th element are extruded in the direction orthogonal to the envelope
Γ, as in the time-stable infinite elements proposed in [21]. For simplicity, we
consider the two-dimensional case, but all the considerations made in this
appendix hold in three dimensions. Let’s consider a point on the envelope Γ,

n

∆ξ

a

r(t,−1 + δ)

Γ

O

δ

1 2

3 4t

v

Physical element Parent element

Figure D.16: Schematic representation of a region inside a flexible infinite element. The
infinite edges are extruded orthogonally to the envelope Γ.

with parent element coordinates (t, v = −1). First, we show that

∥∇xµ(t, v = −1)∥ ≤ 1, (D.1)

provided that the infinite edges in the element are aligned with the normal
vector of the envelope Γ at the mapping nodes on Γ. For the properties of
the gradient operator, thanks to the relationship between the gradient of a
function and its directional derivatives, we have:

∇xµ(t,−1) · ξ(t,−1) =
∂µ

∂ξ
(t,−1)a (D.2)

The envelope Γ is an iso-line of µ, with µ = 0 by definition. It follows

∥∇xµ(t,−1)∥ =
∂µ

∂ξ
(t,−1), (D.3)
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since the gradient of µ is perpendicular to the iso-lines of µ. Let’s define

∆ξ(δ) = ξ(v = −1 + δ)− a, (D.4)

and
∆r(δ) = r(v = −1 + δ)− a. (D.5)

The partial derivative of µ with respect to ξ can be written as

∂µ

∂ξ
(t,−1) = lim

δ→0

∆r(δ)

∆ξ(δ)
. (D.6)

By triangle inequality (see Figure D.16), we have

r(v = −1 + δ) ≤ ∆ξ + a, (D.7)

from which follows
∆r ≤ ∆ξ. (D.8)

As a consequence, we obtain

∂µ

∂ξ
(t,−1) ≤ 1. (D.9)

Therefore, by plugging (D.9) into (D.3), we obtain

∥∇xµ(t,−1)∥ ≤ 1. (D.10)

Once again, as in the classical Astley-Leis formulation, small errors may arise
because of the geometrical approximation. In this case, as in [21], we propose
to neglect these small discrepancies to ensure the stability of the method.

For v → 1, it is easy to show that ∆r → ∆ξ which implies

lim
v→1

∥∇xµ∥ → 1. (D.11)

In the region between v = −1 and v → 1 , we don’t have any guarantee
that ∥∇xµ∥ ≤ 1. The exact behavior of ∥∇xµ∥ depends on the geometry of
the infinite element. Geometries for which ∥∇xµ∥ > 1 for v > 0 are often
encountered in practical applications.
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